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Traveling wave solutions of the heat flow of director fields
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Abstract

We consider the simplest possible heat equation for director fields, ut = �u+|∇u|2u (|u| = 1), and construct axially symmetric
traveling wave solutions defined in an infinitely long cylinder. The traveling waves have a point singularity of topological degree 0
or 1.

Résumé

Dans ce papier nous considérons l’équation de la chaleur la plus simple pour champs de vecteurs unitaires, ut = �u + |∇u|2u

(|u| = 1), avec domaine donné par un cylindre infiniment long. Pour cette équation nous édifions des solutions axialement symé-
triques en forme de front progressif. Ces fronts progressifs ont un point de singularité avec degré topologique 0 ou 1.
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1. Introduction

We consider the heat flow of harmonic maps from an infinitely long vertical cylinder, Ω = {(x1, x2, x3): x2
1 + x2

2 <

1} ⊂ R
3, to the unit sphere S

2 in R
3:

ut − �u = |∇u|2u in Ω × R. (1)

It can be viewed as the simplest possible equation of a class of evolution equations for director fields which natu-
rally arise in applications (see [20] and [5]). In cylindrical coordinates (r, θ, x3), axially symmetric solutions can be
represented in the form
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u(r, θ, x3, t) = (cos θ sinh, sin θ sinh, cosh), (2)

where h = h(r, x3, t), the so-called angle function, satisfies the scalar equation (see [9,10])

ht = hrr + hx3x3 + hr

r
− sin(2h)

2r2
for 0 < r < 1, x3 ∈ R, t ∈ R. (3)

Recently [1,17] it has been shown that nonuniqueness of axially symmetric solutions of harmonic map flow, which
was observed for the first time by Coron [8], is directly related to the occurrence of point singularities in the so-
lutions: in the special case of the unit ball in R

3 as spatial domain and the function x/|x| as initial and boundary
condition, the evolution of the point singularity on the vertical axis of the ball can be prescribed, i.e. given any func-
tion ζ0(t) ∈ (−1,1) there exists an axially symmetric solution of the heat flow (with the same initial and boundary
condition!) which is regular in its domain except of the set {(x1, x2, x3, t) = (0,0, ζ0(t), t), t � 0}. The proof of this
nonuniqueness phenomenon is based on the construction of quite complicated comparison functions for Eq. (3).

In a forthcoming paper [15], we shall see that for more general axially symmetric initial functions nonuniqueness
results can still be obtained, but it is much harder to find appropriate comparison functions. Traveling wave solutions
in infinitely long cylinders with a point singularity on the x3-axis turn out to be very useful in this context.

This motivated us to look for traveling wave solutions of Eq. (3) with positive wave speed c > 0: h(r, x3, t) =
ψ(r, x3 − ct). With abuse of notation we shall denote the function ψ(r, z) by h(r, z), z = x3 − ct . Then h satisfies the
singular elliptic equation

hrr + hzz + hr

r
+ chz − sin(2h)

2r2
= 0 for 0 < r < 1, z ∈ R, (4)

to which we add a boundary condition at r = 1:

h(1, z) = g(z). (5)

Here g is a given function which satisfies, for some z0 < z1 and 0 < B < A,

g ∈ C4(R), g′ � 0 in R, g = A in (−∞, z0), g = B in (z1,∞). (6)

At first glance condition (5) may seem artificial. In a way it forces solutions to move in the x3-direction with
prescribed speed c > 0, and one could argue that this trivially imposes the existence of traveling wave solutions
with the same velocity. On the other hand this construction supplies exactly the type of comparison functions needed
in [18]. In addition the techniques developed in the present paper can be used to construct solutions of (4), (5) in the
more “natural” case that g(z) is a constant independent of z [3], a construction which leads to new and unexpected
nonuniqueness phenomena for traveling waves which provide significant new insight in the nonuniqueness for the
general heat flow mentioned before [4].

To ensure that the traveling waves have a point singularity, we shall always choose A > π and 0 < B < π/2. The
axial symmetry implies that point singularities necessarily belong to the z-axis (since the equation for h is regular for
r > 0), and it is easy to show that h(0, z) is necessarily a multiple of π for a.e. z ∈ R. Since we shall construct traveling
waves which are nonincreasing with respect to z, this means that point singularities occur at points (r, z) = (0, z̄) at
which h is discontinuous. The following two theorems, the main results of the paper, show that it is possible to have
both singular points at which h jumps from π to 0 (Theorem 1) and ones at which h jumps from 2π to 0 (Theorem 2).
In the first case the topological degree of the point singularity is 1, in the latter case it is 0.

Theorem 1. Let c > 0 and let g(z) be a given function satisfying (6) with

π < A < 3π/2 and 0 < B < π/2. (7)

Then there exists a function h1 : [0,1]×R → R which is smooth in (0,1]×R and satisfies Eqs. (4) and (5). In addition
the following properties are satisfied:

(i) there exists z̄1 such that h1 is continuous in {(0, z): z 	= z̄1}, h1(0, z) = 0 if z > z̄1 and h1(0, z) = π if z < z̄1;
(ii) h1(r, z) is nonincreasing with respect to z;

(iii) h1(r, z) → 2 arctan(br) uniformly with respect to r ∈ [0,1] as z → ∞, where b is defined by 2 arctanb = B;
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(iv) h1(r, z) → π + 2 arctan(a1r) uniformly with respect to r ∈ [0,1] as z → −∞, where a1 is defined by
π + 2 arctana1 = A;

(v) h1 is real analytic in [0,1) × R \ {(0, z̄1)}.

Theorem 2. Let c > 0 and let g(z) be a given function satisfying (6) with

π < A < 3π and 0 < B < π/2. (8)

Then there exists a function h2 : [0,1] × R → R which satisfies Theorem 1 with properties (i), (iv) and (v) replaced
by:

(i) there exists z̄2 such that h2 is continuous in {(0, z): z 	= z̄2}, h2(0, z) = 0 if z > z̄2 and h2(0, z) = 2π if z < z̄2;
(iv) h2(r, z) → 2π + 2 arctan(a2r) uniformly with respect to r ∈ [0,1] as z → −∞, where a2 is defined by

2π + 2 arctana2 = A;
(v) h2 is real analytic in [0,1) × R \ {(0, z̄2)}.

Our approach will be variational. In the case of Theorem 2 the minimization problem involves a variant of the
relaxed energy introduced by Bethuel, Brezis and Coron in [6] and used by Hardt, Lin and Poon [12] to construct
axially symmetric harmonic maps with zero-degree singularities. The proof of the monotonicity of the solutions with
respect to z relies on a rearrangement technique.

The paper is organized as follows. In Section 2 we introduce the two minimization problems. In Section 3 we
collect some preliminary results. In Section 4 we prove the existence of minimizers and in Section 5 we show their
monotonicity with respect to z. In Section 6 we prove that the minimizers have a singularity. In Section 7 we discuss
the behavior of the singularities as c → ∞.

2. Variational formulation

Let c > 0. Eq. (4) is the Euler–Lagrange equation of the functional

Φc(f ) =
∫
R

dz

1∫
0

dr

{
r

2
ecz

(
f 2

z + f 2
r + sin2 f

r2
− Gb(r)

)}
. (9)

The function Gb(r) is chosen in such a way that Φc(f ) is convergent as z → ∞ for all functions f belonging to
a suitable class which contains the function 2 arctan(br), describing the desired behavior of the traveling waves as
z → ∞ (see point (iii) of Theorems 1 and 2):

Gb(r) = sin2(2 arctan(br))

r2
+

∣∣∣∣ d

dr

(
2 arctan(br)

)∣∣∣∣
2

. (10)

A straightforward calculation shows that

1∫
0

r

2
Gb(r)dr = 2b2

1 + b2
. (11)

On the other hand, it is well known (see also Theorem 23 in Appendix A) that, if 0 < b < 1,

1∫
0

r

2

(
f 2

r + sin2 f

r2

)
dr � 2b2

1 + b2
if f ∈ H 1

loc

(
(0,1]) and f (1) = 2 arctanb. (12)

We define the class of functions

W =
{
v ∈ W

1,2
loc

(
R;L2

r (0,1)
) ∩ L2

loc

(
R;H 1

r (0,1)
); sinv ∈ L2

loc

(
R;L2

r (0,1)
)}

,

r
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where the subscript r (in L2
r , H 1

r etc.) indicates that the usual Lp or Sobolev spaces are to be considered with the
weight function r . If f ∈ W , then for a.e. z ∈ R the function f (·, z) is defined almost everywhere in (0,1), f (·, z) ∈
H 1

r (0,1), and (sinf (·, z))/r ∈ L2
r (0,1). This implies (see [20]) that, for almost every z ∈ R, f (·, z) ∈ C0([0,1]) and

f (0, z) = k(z)π for some k(z) ∈ Z. (13)

If f ∈ W , the trace of f at r = 1 is well-defined. If f (1, z) ≡ g(z) for a.e. z ∈ R, it follows from (6), (11), (12) and
the monotone convergence theorem that

Φc(f ) = lim
α→−∞
β→∞

β∫
α

dz

1∫
0

dr

{
r

2
ecz

(
f 2

z + f 2
r + sin2 f

r2
− Gb(r)

)}

is well-defined and attains values in (−∞,∞]. More precisely, for such functions f we have that

Φc(f ) � −
z1∫

−∞
dz

1∫
0

r

2
eczGb(r)dr = − 2b2ecz1

c(1 + b2)
. (14)

We define, for each c > 0,

Wc = {
f ∈ W; f (1, z) ≡ g(z), Φc(f ) < ∞}

(observe that Wc 	= ∅; it contains the function 2 arctan(br) + (g(z) − 2 arctanb)r). Since (14) holds in Wc we can
formulate our first minimization problem:

First variational problem. Find h1 ∈Wc which minimizes Φc in Wc.
Its solution will be the traveling wave of Theorem 1.
In order to prove Theorem 2 we need a suitable variant of the concept of relaxed energy, introduced in [6]. Let

C = {
ξ ∈ C1([0,1] × R

); supp(ξ) ⊆ [0,1] × [−M,M] for some M > 0
}

and

Cc = {
ξ ∈ C; ∣∣∇ξ(r, z)

∣∣ � ecz in [0,1] × R
}
.

We define for every f ∈ W and ξ ∈ C,

L(f, ξ) := 1

2

∫
R

dz

1∫
0

sinf (fzξr − frξz)dr − 1

2

∫
R

cos
(
f (1, z)

)
ξz(1, z)dz. (15)

We observe that L(f, ξ) is well-defined and L(f,−ξ) = −L(f, ξ). Hence

Lc(f ) := sup
ξ∈Cc

L(f, ξ) ∈ [0,∞] for f ∈ W .

It turns out that Lc < ∞ in Wc:

Theorem 3. Let f ∈ Wc and let Pf = {z ∈ R; cos(f (0, z)) = −1}. Then

Lc(f ) =
∫
Pf

ecz dz < ∞.

We observe that, by (13), Pf is well-defined and Lebesgue-measurable. We shall prove Theorem 3 in Section 3.
Theorem 2 corresponds to the following minimization problem:

Second variational problem. Find h2 ∈Wc which minimizes Φc + 2Lc in Wc.
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3. Preliminaries, proof of Theorem 2.1

We introduce the following coordinate transformation:

x = ecz > 0 ↔ z = c−1 logx. (16)

It transforms Eq. (4) into

(rhr)r + c2r
(
x2hx

)
x

− sin(2h)

2r
= 0 in (0,1) × R

+,

which is the Euler–Lagrange equation of the functional

Ψc(f ) = 1

2c

∞∫
0

dx

1∫
0

r

(
c2x2f 2

x + f 2
r + sin2 f

r2
− Gb(r)

)
dr.

Transformation (16) induces naturally a bijective map T :W → T (W), f (r, z) �→ f (r, c−1 logx), and

T (W) =
{
f ∈ W

1,2
loc

(
R

+;L2
r (0,1)

) ∩ L2
loc

(
R

+;H 1
r (0,1)

); sinv

r
∈ L2

loc

(
R

+;L2
r (0,1)

)}
.

In particular

T
(
Wc

) = {
f ∈ T (W);f (1, x) ≡ g

(
c−1 log(x)

)
,Ψc(f ) < ∞}

,

Ψc(f ) = lim
α→0+
β→∞

1

2c

β∫
α

dx

1∫
0

r

(
c2x2f 2

x + f 2
r + sin2 f

r2
− Gb(r)

)
dr. (17)

We observe that

Φc(f ) = Ψc

(
T (f )

)
for f ∈Wc. (18)

We set

L(f, ξ) = 1

2

∫
R+

dx

1∫
0

sin(f )(fxξr − frξx)dr − 1

2

∫
R+

cos
(
f (1, x)

)
ξx(1, x)dx

for every f ∈ T (W) and ξ ∈ T (C). It follows easily that

T (C) = {
ξ ∈ C1([0,1] × R

+)
: supp(ξ) ⊆ [0,1] × [

M−1,M
]

for some M > 1
}
,

T
(
Cc

) =
{
ξ ∈ T (C):

1

x2
ξ2
r + c2ξ2

x � 1 in [0,1] × R
+
}
,

and L(T (f ), T (ξ)) = L(f, ξ) for each ξ ∈ C and f ∈W . Hence, defining

Lc(f ) = sup
ξ∈T (Cc)

L(f, ξ) � 0 for f ∈ T (W),

we obtain that

Lc(f ) = Lc

(
T (f )

)
for all f ∈W . (19)

In order to prove Theorem 3 we need the following result.

Proposition 4. For all f ∈ T (W)

L(f, ξ) = −1

2

∫
+

cos
(
f (0, x)

)
ξx(0, x)dx for ξ ∈ T (C),
R
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and

Lc(f ) = sup
{λ∈C1

0 (R+);|λ′|�1/c}

(
−1

2

∫
R+

cos
(
f (0, x)

)
λ′(x)dx

)
.

Proof. The first statement implies at once the second one. If ξ is sufficiently smooth, the first statement follows from
an integration by parts in (15) (observe that for all f ∈ W we have, in addition to (13), that cosf (·, z) is absolutely
continuous in [0, 1] for a.e. z ∈ R, and cosf (r, ·) is locally absolutely continuous in R for a.e. r ∈ (0, 1)). A standard
approximation argument completes the proof of the first statement. �
Proposition 5. Let w ∈ T (Wc), let Ew = {x ∈ R

+; cos(w(0, x)) = −1} and let μ denote the 1-dimensional Lebesgue
measure. Then

Lc(w) = 1

c
μ(Ew) < ∞.

Proof. First we prove that μ(Ew) < ∞. Arguing by contradiction we suppose that μ(Ew) = ∞. Let z1 be defined
by (6) and set x1 = ecz1 . Then μ(Ew ∩ (x1,∞)) = ∞. For all x ∈ Ew ∩ (x1,∞) we have that w(0, x) = k(x)π , with
k(x) odd, and w(1, x) = 2 arctanb. Hence it follows from (11) and Lemma 20 that for any x ∈ Ew ∩ (x1,∞)

1∫
0

r

2

(
c2x2w2

x + w2
r + sin2 w

r2
− Gb(r)

)
dr � 2

1 + b2
− 2b2

1 + b2
= 2

1 − b2

1 + b2
.

On the other hand, by (12), the same integral is nonnegative if x � x1 and uniformly bounded from below if
0 < x � x1. Since μ(Ew ∩ (x1,∞)) = ∞ and 1 − b2 > 0, this implies that Ψc(w) = ∞. Hence w /∈ T (Wc) and
we have found a contradiction.

Let λ ∈ C1
0(R+) such that |λ′| � c−1. Then

−1

2

∫
R+

cos
(
w(0, x)

)
λ′(x)dx = −1

2

∫
R+\Ew

λ′(x)dx + 1

2

∫
Ew

λ′(x)dx = −1

2

∫
R+

λ′(x)dx +
∫

Ew

λ′(x)dx

=
∫

Ew

λ′(x)dx � μ(Ew)

c

and hence, by Proposition 4, Lc(w) � μ(Ew)/c.
It remains to prove that Lc(w) � μ(Ew)/c. Let ε > 0. Then there exists xε > 0 such that �ε ≡ μ(Ew ∩ (0, xε)) >

μ(Ew) − ε. Let λε be the function

λε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x

c
if x ∈ (0, xε],

2xε − x

c
if x ∈ (xε,2xε],

0 if x > 2xε.

It follows from Proposition 4 and a straightforward approximation argument that

Lc(w) � −1

2

∫
R+

cos
(
w(0, x)

)
λ′

ε(x)dx.

Hence
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Lc(w) � − 1

2

∫
R+

cos
(
w(0, x)

)
λ′

ε(x)dx = − 1

2c

xε∫
0

cos
(
w(0, x)

)
dx

+ 1

2c

2xε∫
xε

cos
(
w(0, x)

)
dx = − 1

2c

(
μ

(
(0, xε) \ Ew

) − μ
(
(0, xε) ∩ Ew

))

+ 1

2c

(
μ

(
(xε,2xε) \ Ew

) − μ
(
(xε,2xε) ∩ Ew

))
> − 1

2c
(xε − 2�ε) + 1

2c
(xε − 2ε),

since μ((xε,2xε) ∩ Ew) � μ(Ew \ (0, xε)) = μ(Ew \ (Ew ∩ (0, xε))) = μ(Ew) − �ε < ε and μ((xε,2xε) \ Ew) =
xε − μ((xε,2xε) ∩ Ew) > xε − ε. Hence Lc(w) > (μ(Ew) − 2ε)/c and since ε > 0 can be chosen arbitrarily small
the proof is complete. �

Theorem 3 follows at once from (19), Proposition 5, and the relation∫
Pf

ecz dz = 1

c

∫
ET (f )

dx = 1

c
μ(ET (f )).

We conclude this section with a technical result which we shall use in Section 6.

Proposition 6. Let 0 < b < 1, w ∈ T (Wc), k ∈ Z \ {0} and 0 < σ < σb, where

σb = arccos

(
3b2 − 1

1 + b2

)
.

Then

μ
({

x > 0;w(0, x) = kπ
}) = lim

r→0+ μ
({

x > 0; kπ − σ � w(r, x) < kπ + σ
})

< ∞.

Proof. Let n ∈ N and 0 < r < 1, and set

Sn = {
0 < x < n;w(0, x) = kπ

}
,

Sr,n = {
0 < x < n; kπ − σ � w(r, x) < kπ + σ

}
,

Fr,n = {
x > n; kπ − σ � w(r, x) < kπ + σ

}
.

Since, for a.e. x > 0, w(·, x) ∈ C0([0,1]) and w(0, x) = j (x)π for some j (x) ∈ Z, the characteristic function of the
set {x > 0; kπ − σ � w(r, x) < kπ + σ } converges a.e. to the characteristic function of {x > 0;w(0, x) = kπ} (here
we have used that σ < π ). Hence, by Lebesgue’s theorem μ(Sr,n) → μ(Sn) as r → 0 for all n ∈ N.

It is easy to complete the proof if we show that for all ε > 0 there exists ν ∈ N such that μ(Fr,n) < ε for all n � ν

and 0 � r � 1.
Arguing by contradiction we suppose that there exists ε > 0 such that for every ν ∈ N there exist n = n(ν) � ν and

0 � rn � 1 such that μ(Frn,n) � ε. Choosing ν � x1 ≡ ecz1 , w(1, x) = 2 arctanb for every x ∈ Frn,n. On the other
hand, since k 	= 0, w(rn, x) � π − σ or w(rn, x) < −π + σ if x ∈ Frn,n. Hence, by Lemma 20, for all n = n(ν) and
x ∈ Frn,n

1∫
rn

r

2

(
w2

r (r, x) + sin2 w(r, x)

r2

)
dr �

∣∣cos(2 arctanb) + cos(σ )
∣∣.

In view of (11) it is natural to require that the right-hand side is larger than 2b2/(1 + b2), which leads at once to the
condition σ < σb . Hence there exists C = C(b,σ ) > 0 such that for n = n(ν) and ν � x1

∞∫
n

dx

1∫
0

r

2

(
w2

r (r, x) + sin2 w(r, x)

r2
− Gb(r)

)
dr � Cμ(Frn,n) � Cε.

On the other hand, since w ∈ T (Wc), the latter integral vanishes as n → ∞, and we have found a contradiction. �
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4. Existence of minimizers

In this section we prove the following result:

Theorem 7. Let g satisfy (6), with 0 < B < π
2 and A > B , and let b ∈ (0,1) be defined by 2 arctanb = B . Then the

first and the second variational problem have a solution, h1and h2 respectively, which satisfy the following properties:

(i) h1 and h2 are real analytic in (0,1) × R and continuous up to r = 1, and satisfy Eqs. (4) and (5).
(ii) If π < A < 3π

2 , then 2 arctan(br) < h1(r, z) < π + 2 arctan(a1r) for (r, z) ∈ (0,1) × R, where a1 ∈ (0,1) is
defined by π + 2 arctana1 = A.

(iii) If π < A < 3π , then 2 arctan(br) < h2(r, z) < 2π + 2 arctan(a2r) for (r, z) ∈ (0,1) × R, where a2 ∈ R is defined
by 2π + 2 arctana2 = A.

(iv) hi(r, z) → 2 arctan(br) (i = 1,2), uniformly with respect to r ∈ [0,1] as z → ∞.

Proof. We only sketch the proof in case of the second variational problem. Since great parts of it are standard, we
omit all details except of the less standard ones. We set

I = inf
{
Φc(h) + 2Lc(h);h ∈Wc

}
.

By (14),

I � − 2b2ecz1

c(1 + b2)
.

Let {hn} be a minimizing sequence and let σ > 0. We set, for all f ∈ W
1,2
r ((0,1) × (−σ,σ )),

Ec,σ (f ) =
σ∫

−σ

dz

1∫
0

dr

{
r

2
ecz

(
f 2

z + f 2
r + sin2 f

r2

)}
,

Φc,σ (f ) = Ec,σ (f ) −
σ∫

−σ

dz

1∫
0

dr

(
r

2
eczGb(r)

)
.

Then Φc,σ (hn) is uniformly bounded with respect to both σ and n. In addition, {hn} is bounded in W
1,2
r ((0,1) ×

(−σ,σ )) for all σ , and, by a standard diagonal procedure, there exist h, belonging to W
1,2
r ((0,1) × (−σ,σ )) for all

σ > 0, and a subsequence of {hn}, which we shall denote again by {hn}, such that

h(1, z) = g(z) for a.e. z ∈ R,

hn ⇀ h in W 1,2
r

(
(0,1) × (−σ,σ )

)
and hn → h a.e. in (0,1) × R,

and
sinhn

r
⇀

sinh

r
in L2((−σ,σ );L2

r (0,1)
)

(indeed, sinhn

r
is uniformly bounded in L2((−σ,σ );L2

r (0,1)) and the weak convergence follows from Lebesgue’s
Dominated Convergence Theorem applied to the sequence

{f sinhn} =
{

sinhn√
r

√
r f

}
,

with f ∈ L2((−σ,σ );L2
r (0,1))).

Setting fn = hn − h, the identity Ec,σ (hn) = Ec,σ (fn) + Ec,σ (h) + R, with

R =
σ∫

dz

1∫ {
recz

(
fnrhr + fnzhz + sinfn sinh coshn

r2

)}
dr,
−σ 0
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implies that

Ec,σ (hn) = Ec,σ (h) + Ec,σ (hn − h) + o(1) as n → ∞. (20)

We fix σ > 0 and ξ ∈ Cc such that supp(ξ) ⊆ [0,1] × [−σ,σ ]. We claim that

2L(hn, ξ) − 2L(h, ξ) � −Ec,σ (hn − h) + o(1) as n → ∞. (21)

This inequality follows easily from the decomposition 2L(hn, ξ) − 2L(h, ξ) = I1,n + I2,n + I3,n + I4,n, where

I1,n =
σ∫

−σ

dz

1∫
0

dr
{
sinfn cosh(fnzξr − fnrξz)

}
,

I2,n =
σ∫

−σ

dz

1∫
0

dr
{
sinh(cosfn − 1)(fnzξr − fnrξz)

}
,

I3,n =
σ∫

−σ

dz

1∫
0

dr
{
sinh(fnzξr − fnrξz)

}
,

I4,n = −
σ∫

−σ

dz

1∫
0

dr
{
(sinh − sinhn)(hzξr − hrξz)

};

|I1,n| �
σ∫

−σ

dz

1∫
0

r

{ | sinfn|
r

|∇fn| |∇ξ |
}

dr �
σ∫

−σ

dz

1∫
0

r

2
ecz

{
sin2 fn

r2
+ |∇fn|2

}
dr = Ec,σ (fn),

and Ii,n → 0 as n → ∞ for i = 2,3,4.
Combining (20) and (21) and taking σ and ξ as before, we have that

Φc,σ (h) + 2L(h, ξ) � Φc,σ (hn) + 2L(hn, ξ) + o(1) � Φc,σ (hn) + 2Lc(hn) + o(1). (22)

Arguing as in the proof of (14), we obtain that Φc(hn) � Φc,σ (hn) − 2b2e−cσ /(c(1 + b2)) for all σ > z1. Since
Φc(hn) + 2Lc(hn) → I as n → ∞, it follows from (22) that Φc,σ (h) + 2L(h, ξ) � I + 2b2e−cσ /(c(1 + b2)) for all
ξ ∈ Cc and σ > z1 such that supp(ξ) ⊆ [0,1] × [−σ,σ ]. Letting σ → ∞ we find that Φc(h) + 2L(h, ξ) � I for all
ξ ∈ Cc, and hence h solves the second variational problem.

It remains to prove points (i)–(iv) of Theorem 7. The proof of (i) is standard. The proofs of (ii) and (iii) are similar
and we omit the one of (ii).

Proof of (iii). Let f1(r, z) = max{2 arctan(br), h2(r, z)}. Then f1 ∈ W , f1(1, z) = g(z) for a.e. z ∈ R, |f1r | �
max(|h2r |,2b/(1 + b2r2)), and |f1z| � |h2z|. We fix z ∈ R arbitrarily. Since h2(r, z) − 2 arctan(br) is real analytic in
(0,1), we may write

E−(z) ≡ {
r ∈ (0,1);h2(r, z) < 2 arctan(br)

} =
⋃

n∈T ⊆Z

(αn,βn), (23)

where 0 � αn < βn � αn+1 < βn+1 � 1 for n,n + 1 ∈ T . We observe that, for all n ∈ T , h2(βn, z) = 2 arctan(bβn)

and, if αn > 0, h2(αn, z) = 2 arctan(bαn). We set

H(r, z;u) = r
(

u2
r (r, z) + u2

z(r, z) + sin2 u(r, z)

2

)
.

2 r
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Then
1∫

0

(
H(r, z;f1) − H(r, z;h2)

)
dr =

∫
E−(z)

(
H

(
r, z;2 arctan(br)

) − H(r, z;h2)
)

dr

=
∑
n∈T

βn∫
αn

(
H

(
r, z;2 arctan(br)

) − H(r, z;h2)
)

dr.

By Corollary 21

βn∫
αn

(
H

(
r, z;2 arctan(br)

) − H(r, z;h2)
)

dr � 0 if αn > 0. (24)

We observe that αn = 0 may happen for at most one value of n, and if so we may assume without loss of generality
that α0 = 0. Since 0 < b < 1, it follows in this case from Theorem 23 that also

β0∫
0

(
H

(
r, z;2 arctan(br)

) − H(r, z;h2)
)

dr � 0 if α0 = 0. (25)

Hence, by (24) and (25),

1∫
0

H(r, z;f1)dr −
1∫

0

H(r, z;h2)dr � 0. (26)

Since (26) holds for a.e. z ∈ R we conclude that Φc(f1) � Φc(h2). In particular f1 ∈ Wc. In addition it follows from
Theorem 3 that Lc(f1) � Lc(h2). This implies that f1 is a solution of the second variational problem. By standard
regularity theory f1 is smooth in (0,1) × R and, by the strong maximum principle, f1(r, z) > 2 arctan(br) for all
(r, z) ∈ (0,1) × R. Hence f1 = h2 in (0,1) × R and we have proved the first inequality in (iii).

Similarly we define f2 = min{2π + 2 arctan(a2r), h2(r, z)}. Arguing as before, with E−(z) replaced by E+(z) =
{r ∈ (0,1);h2(r, z) > 2π + 2 arctan(a2r)}, only the inequality (25) needs to be slightly modified. So we suppose that
there exist z ∈ R and β0 ∈ (0,1] such that

h2(r, z) > 2π + 2 arctan(a2r) for 0 < r < β0 and h2(β0, z) = 2π + 2 arctan(a2β0). (27)

In view of (13) we may assume without loss of generality that h2(0, z) = k0(z)π for some k0(z) ∈ Z. By (27) we have
that k0(z) � 2. If k0(z) = 2 or if k0(z) � 4, we obtain from Lemma 20 that (25) still holds, with 2 arctan(br) replaced
by 2π + 2 arctan(a2r). In the remaining case, k0(z) = 3, (25) is replaced by the inequality

β0∫
0

(
H

(
r, z;2π + 2 arctan(a2r)

) − H(r, z;h2)
)

dr � 2 if h2(0, z) = 3π,

which follows easily from Lemma 20. This means that the inequality Φc(f2) � Φc(h2) is not necessarily valid, but
since cos(h2(0, z)) = −1 if k0(z) = 3, it follows easily from Theorem 3 that the inequality Φc(f2) + 2Lc(f2) �
Φc(h2) + 2Lc(h2) holds.

Proof of (iv). We only prove the result for h1, which we shall denote by h. It follows from (11) and (12) that

U(z) ≡
1∫

0

r

2

(
h2

r + sin2 h

r2
− Gb(r)

)∣∣∣∣
z

dr � 0 if z � z1,

where z1 is defined by (6). Since
∫ ∞
z1

eczU(z)dz � Φc(h)+2b2ecz1/(c(1 + b2)) < ∞, there exists a sequence zn → ∞
such that U(zn) → 0 as n → ∞. Hence, by Theorem 24, h(r, zn) → 2 arctan(br) uniformly with respect to r ∈ [0,1]
as n → ∞.
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By standard Schauder estimates, for any ρ > 0 the function Vρ(z) ≡ ∫ 1
ρ

h2
z(r, z)dr is Lipschitz continuous in R.

On the other hand, the inequality

∞∫
z1

dz

1∫
0

recz

2
h2

z dr � Φc(h) + 2b2ecz1

c(1 + b2)

implies
∫ ∞
z1

Vρ(z)ecz dz < ∞ and then Vρ(z)e
c
2 z → 0 as z → ∞.

By Schauder estimates, from here follows the existence of K,δ > 0 such that ‖hz(·, z)‖L∞(ρ,1) � Ke−δz. Hence
limz→∞ h(r, z) exists for all r ∈ (0,1] and it is equal to limn→∞ h(r, zn) = 2 arctan(br). Obviously, for any ρ > 0,

lim
z→∞h(r, z) = 2 arctan(br) uniformly with respect to r ∈ [ρ,1]. (28)

It remains to show that the limit is uniform with respect to r ∈ (0,1]. In the next section we shall show that we may
assume that h is decreasing with respect to z (in the proof we shall use (28)). Hence the uniform convergence follows
at once from the uniform convergence along the subsequence {zn}. �
5. Monotonicity properties of minimizers

In this section we shall show that our two variational problems have solutions which are decreasing with respect
to z. We use a one-dimensional monotone rearrangement technique [14] applied to the variable x = ecz.

Throughout this section f (r, x) will denote a C1-function defined in (0,1) × R
+ satisfying the following four

properties:

(1) for all r ∈ (0,1), C ∈ R and 0 < α < β the sets {x ∈ [α,β];f (r, x) = C} and {x ∈ [α,β];fx(r, x) = 0} are finite;
(2) fr ∈ L∞((ρ,1) × R

+) and fx ∈ L∞((ρ,1) × (ρ,∞)) for all ρ > 0;
(3) f ∈ L∞((0,1) × R

+) and

�(r) ≡ inf
x>0

f (r, x) < L(r) ≡ sup
x>0

f (r, x) for 0 < r < 1;

(4) for any ρ > 0, limx→∞ f (r, x) = �(r) uniformly with respect to r ∈ [ρ,1).

In view of Theorem 7, (28) and standard Schauder estimates applied to Eq. (4), the functions

f1 ≡ T (h1) and f2 ≡ T (h2) (29)

satisfy these four properties, with �(r) = 2 arctan(br). Here T is the operator induced by the transformation x = ecz

and introduced in Section 3.
Given f , we set

Ωd,r = {
x > 0;f (r, x) � d

}
for d ∈ R, 0 < r < 1,

f ∗(r, x) = sup
{
d ∈ R | x � μ(Ωd,r )

}
for 0 < r < 1, x > 0,

where μ is the one-dimensional Lebesgue measure. By construction, the rearrangement f ∗ of f is nonincreasing with
respect to x, limx→∞ f ∗(r, x) = �(r) uniformly with respect to r ∈ [ρ,1) for ρ > 0, and for all 0 < r < 1, d1 < d2

μ
({

x > 0;d1 � f ∗(r, x) < d2
}) = μ

({
x > 0;d1 � f (r, x) < d2

})
. (30)

Now we are ready to formulate the main result of this section and its first consequence.

Theorem 8. Let T be defined as in Section 3 and let f1 and f2 be defined by (29). Then T −1(f ∗
1 ) and T −1(f ∗

2 ) are
solutions of, respectively, the first and second variational problem.

Corollary 9. We may assume that the functions h1 and h2, defined in Theorem 7, are strictly decreasing with respect
to z in (0,1) × R, and that for all ρ > 0

h1(r, z) → π + 2 arctan(a1r) uniformly with respect to r ∈ [ρ,1] as z → −∞. (31)
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The first part of Corollary 9 follows at once from Theorem 8 and the monotonicity of the rearranged functions.
The monotonicity of h1 implies the existence of the limit in (31), which we denote by v(r). It easily follows that v

is a solution of the equation vrr + 1
r
vr − sin(2v)/(2r2) = 0 in the interval (0,1), with boundary condition v(1) =

g(−∞) = π + 2 arctana1. In addition it follows from Theorem 7(ii) that 2 arctan(br) � v(r) � π + 2 arctan(a1r)

in (0,1). The only function v satisfying all these conditions is the function π + 2 arctan(a1r). It follows at once
from Schauder estimates that the convergence is uniform in the sets [ρ,1] for ρ > 0, which completes the proof of
Corollary 9.

We observe that, arguing as before, we need the condition that a2 � 0 to obtain a result similar to (31) for the
function h2:

h2(r, z) → 2π + 2 arctan(a2r) uniformly with respect to r ∈ [ρ,1] as z → −∞. (32)

Indeed, if a2 < 0 the same procedure leads to two possible limit functions in (32): 2π + 2 arctan(a2r) and
π − 2 arctan(r/a2). Only in Section 6 we shall be able to exclude the latter possibility.

It remains to prove Theorem 8.
We define, for 0 < r < 1, d ∈ R, and 0 < σ < τ , the sets

Ωσ,d,r = {
x � σ ;f (r, x) � d

}
, Ωτ

d,r = {
x ∈ (0, τ ];f (r, x) � d

}
, Ωτ

σ,d,r = {
x ∈ [σ, τ ];f (r, x) � d

}
,

and, in (0,1) × R
+, the rearranged functions

f ∗σ (r, x) =
{

sup
{
d ∈ R;μ(Ωσ,d,r ) > 0

}
if x � σ,

sup
{
d ∈ R;x − σ � μ(Ωσ,d,r )

}
if x > σ,

f ∗
τ (r, x) =

{
sup

{
d ∈ R;x � μ

(
Ωτ

d,r

)}
if x � τ,

sup
{
d ∈ R; τ � μ

(
Ωτ

d,r

)}
if x > τ,

f ∗σ
τ (r, x) =

⎧⎪⎨
⎪⎩

sup
{
d ∈ R;μ(

Ωτ
σ,d,r

)
> 0

}
if x � σ,

sup
{
d ∈ R;x − σ � μ

(
Ωτ

σ,d,r

)}
if x ∈ (σ, τ ],

sup
{
d ∈ R; τ − σ � μ

(
Ωτ

σ,d,r

)}
if x > τ.

It follows at once from the definition of f ∗σ that for all x � σ

f ∗σ (r, x) = Lσ,r := sup
x�σ

f (r, x).

The proofs of the following propositions are based on standard techniques for one-dimensional rearrangements
(see [14]). In particular we remind the reader that it is well known that f ∗ and f ∗σ are continuous and a.e. differen-
tiable in (0,1) × R

+, and that, for all 0 < ρ < 1 and σ > 0,∥∥(f ∗)r
∥∥

L∞(Rρ)
,
∥∥(

f ∗σ
)
r

∥∥
L∞(Rρ)

� ‖fr‖L∞(Rρ),∥∥(f ∗)x
∥∥

L∞(Rρ,σ )
,
∥∥(

f ∗σ
)
x

∥∥
L∞(Rρ)

� ‖fx‖L∞(Rρ,σ ),

where Rρ = (ρ,1) × R
+ and Rρ,σ = (ρ,1) × (σ,∞).

Proposition 10. For all 0 < σ < τ

f ∗(r, x) � f ∗σ (r, x) � f ∗(r, x − σ) if 0 < r < 1 and x > σ,

f ∗
τ (r, x) � f ∗σ

τ (r, x) � f ∗
τ (r, x − σ) if 0 < r < 1 and σ � x � τ.

In particular f ∗σ → f ∗ uniformly on [α,1) × [α,∞) (α > 0) as σ → 0+, and f ∗σ
τ → f ∗

τ in Cloc((0,1) × (0, τ )) as
σ → 0+.

Proposition 11. Let F : (0,1) × R → R be continuous and nonnegative, and let G : [0,∞) → [0,∞) be convex and
nondecreasing (and hence continuous). Then, for all 0 < σ < τ and 0 < ρ < 1,

τ∫
σ

F
(
ρ,f ∗σ

τ (ρ, x)
)
G

(∣∣(f ∗σ
τ

)
r
(ρ, x)

∣∣)dx �
τ∫

σ

F
(
ρ,f (ρ, x)

)
G

(∣∣fr(ρ, x)
∣∣)dx. (33)
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For the proof it is sufficient to apply Lemma 2.6 and Remark 2.22 of [14] to the function f (ρ, x), with x ∈ [σ, τ ].
In Proposition 11 it is important that the function F does not depend on x. This explains why we cannot apply the

rearrangement technique directly to the functional Φc in the original z variable. On the other hand, the form of the
functional Ψc, defined in (17), and the following key inequality applied to the function P(x) = x2 make the method
work in the x variable:

Proposition 12. Let P(x) be a nonnegative and nondecreasing function defined for x > 0. Then, for all σ > 0 and
0 < ρ < 1,

∞∫
0

P(x)
(
f ∗σ

)2
x
(ρ, x)dx �

∞∫
0

P(x)f 2
x (ρ, x)dx. (34)

Proof. We fix σ > 0 and 0 < ρ < 1 and set

A= {
f (ρ, x);x � σ and fx(ρ, x) = 0

}
.

In view of the properties of f the set A is either finite or countable. We give the proof only in the latter case. So we
assume that A = {an}, where an > an+1 for all n � 0 and limn→∞ an = �(ρ). Of course, supn∈N an = a0 � Lσ,ρ :=
supx�σ f (r, x).

We define the open sets Dn = {x > σ ;an+1 < f (ρ,x) < an} and D∗
n = {x > σ ;an+1 < f ∗σ (ρ, x) < an}. For each

n we can decompose Dn in a finite number, kn, of disjoint open intervals γn,j (j = 1, . . . , kn) on each of which fx(ρ, ·)
is either strictly positive or strictly negative. We label these intervals according to their distance to the origin by taking
γn,1 as the farthest one. Then sgn(fx(ρ, ·)) = (−1)j on γn,j for all j = 1, . . . , kn, and there exists for all j = 1, . . . , kn

and λ ∈ (an+1, an) a unique xj = xj (ρ,λ) ∈ γn,j such that f (ρ, xj (ρ,λ)) = λ. By the implicit function theorem, xj

can be thought as a smooth function defined in an open set containing {ρ} × (an+1, an). Similarly there exists for all
λ ∈ (�(ρ),Lσ,ρ] a unique x∗(ρ,λ) � σ such that f ∗σ (ρ, x∗(ρ,λ)) = λ. By construction, x∗(ρ,λ) = μ(Ωσ,λ,ρ) + σ ,
x∗ is strictly decreasing with respect to λ, and x∗(ρ,λ) ∈ D∗

n if an+1 < λ < an. It is easy to check that

x∗(ρ,λ) = p(kn)σ +
kn∑

j=1

(−1)j+1xj (ρ,λ), (35)

where p(kn) = 0 if kn is odd and p(kn) = 1 if kn even. A simple computation yields that for every n and for almost
all λ ∈ (an+1, an)

∣∣(f ∗σ
)
x

(
ρ,x∗(ρ,λ)

)∣∣ =
(

kn∑
j=1

∣∣(xj )λ(ρ,λ)
∣∣)−1

,

∣∣fx

(
ρ,xj (ρ,λ)

)∣∣ = ∣∣(xj )λ(ρ,λ)
∣∣−1

, j = 1, . . . , kn.

These equalities imply that for every n

∫
Dn

P (x)f 2
x (ρ, x)dx =

kn∑
j=1

∫
γn,j

P (x)f 2
x (ρ, x)dx =

an∫
an+1

(
kn∑

j=1

P(xj (ρ,λ))

|(xj )λ(ρ,λ)|

)
dλ (36)

and ∫
D∗

n

P (x)
(
f ∗σ

)2
x
(ρ, x)dx =

an∫
an+1

P(x∗(ρ,λ))∑kn

j=1 |(xj )λ(ρ,λ)| dλ. (37)

On the other hand we know that x∗(ρ,λ) = μ(Ωσ,λ,ρ) + σ � x1(ρ,λ), since Ωσ,λ,ρ ⊆ [σ,x1(ρ,λ)] by the definition
of x1(ρ,λ). Hence it follows from (36) and (37) that∫

∗
P(x)

(
f ∗σ

)2
x
(ρ, x)dx �

∫
P(x)f 2

x (ρ, x)dx. (38)
Dn Dn
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We remind that a0 = maxn∈N an and Lσ,ρ = supx�σ f (r, x). If a0 = Lσ,ρ , then we have that

(σ,∞)
∖ ⋃

n∈N

Dn and (σ,∞)
∖ ⋃

n∈N

D∗
n (39)

are sets of zero Lebesgue measure, and the inequality (34) follows at once from (38) (we have used that f ∗σ (ρ, ·) is
constant for x ∈ (0, σ ]).

It remains to consider the case in which a0 < Lσ,ρ . Then there exists x̄ > σ such that {x � σ ;a0 < f (ρ,x) <

Lσ,ρ)} = (σ, x̄) and fx(ρ, ·) < 0 in (σ, x̄). Hence f ∗σ (ρ, x) = f (ρ, x) for all σ � x � x̄. Arguing now as in (39) with
(σ,∞) replaced by (x̄,∞), we obtain (34). �
Proposition 13. Let f1 and f2 be given by (29). Then, for i = 1,2,

∫
R+

dx

1∫
0

rx2(f ∗
i

)2
x

dr �
∫

R+
dx

1∫
0

rx2(fi)
2
x dr < ∞.

Proof. Since hi is a minimizer, it follows from (18) that the latter integral is finite. We omit the subscript i. It is
sufficient to prove that for any ρ ∈ (0,1)∫

R+
x2(f ∗)2

x(ρ, x)dx �
∫

R+
x2f 2

x (ρ, x)dx. (40)

Without loss of generality we may assume that the right-hand side is finite, i.e. xfx ∈ L2(R+). Let σn → 0+. By
(34) the sequence {x(f ∗σn)x} is bounded in L2(R+) and, up to a subsequence, there exists v ∈ L2(R+) such that
x(f ∗σn)x → v weakly in L2(R+). It follows easily from Proposition 10 and the regularity properties of f ∗σ and f ∗
that v(ρ, x) = x(f ∗)x(ρ, x) for a.e. x ∈ R

+. Hence (40) follows from (34). �
Proposition 14. Let f1 and f2 be given by (29). Then, for i = 1,2 and for every M � x1 ≡ ecz1 ,

M∫
0

dx

1∫
0

r

((
f ∗

i

)2
r
+ sin2 f ∗

i

r2
− Gb(r)

)
dr �

∞∫
0

dx

1∫
0

r

(
(fi)

2
r + sin2 fi

r2
− Gb(r)

)
dr < ∞.

Proof. Since hi is a minimizer, it follows from (18) that the latter integral is finite. We omit the subscript i. For any
τ > 0 we set

qτ (x) =
1∫

0

r

((
f ∗

τ

)2
r
(r, x) + sin2 f ∗

τ (r, x)

r2
− Gb(r)

)
dr for x > 0.

Observe that qτ is a measurable function with values in R ∪ {∞} and that, by Theorem 23, qτ (x) � 0 for a.e. x > x1
if τ � x1. Similarly, the function

q(x) =
1∫

0

r

(
(f ∗)2

r (r, x) + sin2 f ∗(r, x)

r2
− Gb(r)

)
dr for x > 0

is nonnegative a.e. in (x1,∞). Observing that for any ρ > 0 and M > 0 there exists τ(ρ,M) such that f ∗
τ = f ∗ in

(ρ,1) × (0,M) if τ > τ(ρ,M), it follows that f ∗
τ → f ∗ and (f ∗

τ )r → (f ∗)r locally uniformly on (0,1) × R
+, and

hence, by Fatou’s lemma, q(x) � lim infτ→∞ qτ (x) for all x > 0. In particular

x1∫
q(x)dx � lim inf

τ→∞

x1∫
qτ (x)dx.
0 0
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Since q, qτ � 0 a.e. in [x1,∞) if τ � x1, it follows again from Fatou’s lemma that for all M � x1

M∫
x1

q(x)dx �
∞∫

x1

q(x)dx � lim inf
τ→∞

τ∫
x1

qτ (x)dx.

The proof is complete if we show that, for every τ > 0,

τ∫
0

dx

1∫
0

sin2 f ∗
τ

r
dr �

τ∫
0

dx

1∫
0

sin2 f

r
dr, (41)

τ∫
0

dx

1∫
0

r
(
f ∗

τ

)2
r

dr �
τ∫

0

dx

1∫
0

rf 2
r dr. (42)

Inequality (41) follows at once from (33), with G ≡ 1 and F = sin2(f )r−1, Proposition 10 and Fatou’s lemma.
Applying (33) with F = r and G(v) = v2 we find that for all 0 < σ < τ

1∫
0

τ∫
σ

r
(
f ∗

σ,τ

)2
r

dx dr �
1∫

0

τ∫
σ

rf 2
r dx dr. (43)

Letting σ → 0+ and arguing as in the previous proof we easily obtain (42). �
Proof of Theorem 8. It follows at once from Propositions 13 and 14 that Ψc(f

∗
i ) � Ψc(fi), and hence, by (18),

Φc(T
−1(f ∗

i )) � Φc(hi) for i = 1,2.
In view of (19) it remains to prove that Lc(f

∗
2 ) = Lc(f2). By Theorem 7(iii) and Propositions 5 and 6, this is

equivalent to proving that, for σ > 0 small enough,

lim
r→0+ μ

({
x > 0;π − σ � f ∗

2 (r, x) < π + σ
}) = lim

r→0+ μ
({

x > 0;π − σ � f2(r, x) < π + σ
})

.

The latter equality follows at once from (30). �
6. Existence of a point singularity

By Theorems 7 and 8, both variational problems have a minimizer which is strictly decreasing with respect to z

in (0,1) × R. In this section we complete the proofs of Theorems 1 and 2. In particular we shall prove that both
minimizers have exactly one singular point at the axis r = 0 and we shall determine the behavior of the minimizers as
z → −∞.

Theorem 15. Let h1 and h2 be a minimizer of, respectively, the first and second variational problem which is strictly
decreasing with respect z for all 0 < r < 1.

(i) There exists z̄1 ∈ R such that h1(0, z) = π if z < z̄1 and h1(0, z) = 0 if z > z̄1.
(ii) h1(r, z) → π + 2 arctan(a1r) uniformly with respect to r ∈ [0,1] as z → −∞, where a1 is defined by

π + 2 arctana1 = A.
(iii) There exists z̄2 ∈ R such that h2(0, z) = 2π if z < z̄2 and h2(0, z) = 0 if z > z̄2.
(iv) h2(r, z) → 2π + 2 arctan(a2r) uniformly with respect to r ∈ [0,1] as z → −∞, where a2 is defined by

2π + 2 arctana2 = A.
(v) hi is continuous in [0,1] × R \ {(0, z̄i )} and real analytic in [0,1) × R \ {(0, z̄i )} (i = 1,2).

The proof of (i) is based on the following lemma. We omit its proof, which is based on straightforward computations
and estimates.
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Lemma 16. Let p < q and α ∈ C1((p, q]) be such that

α > 0 in (p, q], (α′)2

α3
∈ L1(p, q), α(z) → ∞ and

α′(z)
α2(z)

→ 0 as z → p+.

Then the function v ∈ C1((0,1] × (p, q)), defined by

v(r, z) = 2 arctan

(
α(z)r2

r + 1

)
for (r, z) ∈ (0,1] × (p, q],

satisfies

(i)
∫ 1

0 rv2
r (r, z)dr � 12,

∫ 1
0

sin2 v(r,z)
r

dr � 6,
∫ 1

0 rv2
z (r, z)dr � 8(α′(z))2α−3(z) for p < z � q;

(ii) vz ∈ L2((p, q);L2
r (0,1));

(iii) for all 0 < ρ < 1, v(r, z) → π and vr(r, z), vz(r, z) → 0 uniformly in [ρ,1] as z → p+.

Proof of Theorem 15(i). By (13), h1(0, z) = k(z)π for some integer k(z) for a.e. z. By Theorem 7(ii) and (iv),
k(z) = 0 or k(z) = 1 for a.e. z, and k(z) = 0 for z large enough. Since h1, and hence also k, is nonincreasing with
respect to z, it remains to show that k 	≡ 0 in R. We argue by contradiction and suppose that h1(0, z) = 0 for all z ∈ R.

Given n ∈ N and 0 < rn < 1, by (31) there exists qn � z0 such that h1(r, z) � π for z � qn and r ∈ [rn,1]. We
define pn = qn − 1

n
, αn(z) = (z − pn)

−2 and

h1,n(r, z) =
⎧⎨
⎩

h1(r, z), z > qn,

max
{
h1(r, z), vn(r, z)

}
, z ∈ (pn, qn],

max
{
π,h1(r, z)

}
, z � pn,

where

vn(r, z) = 2 arctan

(
αn(z)r

2

r + 1

)
.

Choosing rn = b/(n2 − b), which is a root of the equation vn(r, qn) = 2 arctan(br), it follows easily from Lemma 16
and the definition of pn and qn that h1,n ∈ Wc.

We claim that Φc(h1,n) < Φc(h1) for n large enough, which is a contradiction since h1 is a minimizer of Φc in Wc.
Given a measurable set S ⊂ (0,1) × R and f ∈W , we set

ES(f ) :=
∫ ∫
S

r

2
ecz

(
f 2

r + f 2
z + sin2 f

r2

)
dr dz.

Then Φc(h1,n) − Φc(h1) = I1,n − I2,n, where

I1,n = E[0,1]×(pn,qn)(h1,n) − E[0,1]×(pn,qn)(h1),

I2,n = E[0,1]×(−∞,pn)(h1,n) − E[0,1]×(−∞,pn)(h1).

By Lemma 16, I1,n � E[0,1]×(pn,qn)(vn) � 25
c

ecpn(ec/n − 1).
We define ρ(z) = inf{r ∈ (0,1]; h1(r, z) � π} for z � z0. Then 0 < ρ(z) < 1, since h1(0, z) = 0 and h1(1, z) =

π + 2 arctana1 if z � z0. We set

An = {
(r, z); 0 < r < ρ(z), z < pn

}
and Bn = {

(r, z); ρ(z) < r < 1, z < pn

}
.

Since h1,n = π in An, it follows from Lemma 20 that

EAn(h1,n) − EAn(h1) = −EAn(h1) � −2

pn∫
−∞

ecz dz = −2

c
ecpn .

Since |(h1,n)r | � |h1r |, |(h1,n)z| � |h1z| and | sinh1,n| � | sinh1| in Bn, this implies that I2,n � − 2 ecpn .

c
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We conclude that

Φc(h1,n) − Φc(h1) � ecpn

c

(
25ec/n − 25 − 2

)
< 0

for n large enough, and we have proved our claim. �
Proof of Theorem 15(ii). The uniform convergence follows at once from (31), Theorem 15(i), the monotonicity in z

and the upper bound in Theorem 7(ii). �
In the proof of part (iii) we shall use an auxiliary lemma which is based on the following proposition.

Proposition 17. Let hi be as in Theorem 15, I be an open nonempty interval and k ∈ Z a constant such that hi(0, z) =
kπ for z ∈ I . Then hi is real analytic in [0,1) × I .

Proof. It is enough to prove that hi is real analytic in a neighborhood of (0, z) for all z ∈ I . The monotonicity with
respect to z implies that hi is continuous in [0,1) × I . Then the function

ui(x1, x2, z) :=
(

x1

r
sinhi(r, z),

x2

r
sinhi(r, z), coshi(r, z)

)
, r =

√
x2

1 + x2
2 ,

(see also (2)) is a continuous weak solution of �u + |∇u|2u + cuz = 0 in D × I , where D indicates the unit disk.
It is well known (see [13] and [11]) that weak solutions are real analytic in open sets in which they are continuous,
and hence ui is analytic in D × I . Since the first component of ui , (ui)1, vanishes in {(0,0)} × I and (ui)1(r,0, z) =
sin(hi(r, z)), the analyticity of the function arcsin in a neighborhood of the origin implies that, given z ∈ I , hi is real
analytic in a neighborhood of (0, z). �
Lemma 18. Let hi , I and k be as in Proposition 17. Then there exists z̃ ∈ I such that (hi)r (0, z̃) 	= 0.

Proof. Omitting the subscript i and arguing by contradiction we suppose that hr(0, z) = 0 for all z ∈ I . We claim that
for all positive integers α

∂αh

∂rα
(0, z) ≡ 0 for z ∈ I. (44)

This leads immediately to a contradiction: by Proposition 17 and (44) h is constant in (0,1) × I , which is impossible
since h is strictly decreasing with respect to z in (0,1) × R.

In order to prove (44) we argue by induction. We know that (44) is true for α = 1. Suppose that it is true for
α = 1, . . . , β for some β � 1. Using a Taylor expansion we obtain that for all z ∈ I and α = 1, . . . , β

∂α

∂rα

(
sin(2h)

)∣∣∣∣
r=0

= 0 and
∂β+1

∂rβ+1

(
sin(2h)

)∣∣∣∣
r=0

= 2
∂β+1h

∂rβ+1
(0, z),

hrr (r, z) = 1

(β − 1)!
∂β+1h

∂rβ+1
(0, z)rβ−1 + O

(
rβ

)
,

hr(r, z)r
−1 = 1

β!
∂β+1h

∂rβ+1
(0, z)rβ−1 + O

(
rβ

)
,

1

2
sin

(
2h(r, z)

)
r−2 = 1

(β + 1)!
∂β+1h

∂rβ+1
(0, z)rβ−1 + O

(
rβ

)
,

hz(r, z) = O
(
rβ+1), hzz(r, z) = O

(
rβ+1).

Substituting these equalities in Eq. (4), we find that (44) holds for α = β + 1. �
Proof of Theorem 15(iii). The proof consists of two steps. In the first one we exclude the possibility that h2(0, z) = 0
for all z ∈ R. In the second one we show that h2(0, z) 	= π for a.e. z ∈ R. Since h2 is nonincreasing with respect to z,
the proof is then completed by Theorem 7(iii)–(iv).
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Step 1. We only give the proof in the case that a2 < 0 (if a2 � 0 the proof can be considerably simplified). As in
the proof of part (i) we argue by contradiction and suppose that h2(0, z) = 0 for all z ∈ R.

Given n ∈ N and ρn = b/(n2 − b), the statement which follows formula (32) (which treats the case a2 < 0) implies
that there exists qn � z0 such that

h2(r, z) � π + 2 arctan

(
r

2|a2|
)

if z � qn and ρn � r � 1. (45)

We set

pn = qn − 1

n
, zn = pn − 1, rn ∈ [ρn,1],

and we define for all 0 � r � 1

vn(r, z) = 2 arctan

(
αn(z)r

2

r + 1

)
, pn < z � qn,

wn(r, z) = π + 2 arctan
(
βn(z)r

)
, zn � z � pn,

ωn(r, z) = max

{
2π − 2 arctan

(
γn(z)r

)
,π + 2 arctan

(
r

2|a2|
)}

, zn − rn � z < zn,

χn(r) = ωn(r, zn − rn),

where

αn(z) = 1

(z − pn)2
, βn(z) = pn − z

2|a2| , γn(z) = 2|a2|
(zn − z)2

.

Finally, we set, for 0 � r � 1,

h2,n(r, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h2(r, z) if z > qn,

max
{
h2(r, z), vn(r, z)

}
if z ∈ (pn, qn],

max
{
h2(r, z),wn(r, z)

}
if z ∈ [zn,pn],

max
{
h2(r, z),ωn(r, z)

}
if z ∈ [zn − rn, zn),

max
{
h2(r, z),χn(r)

}
if z < zn − rn.

It is easy to show that h2,n is locally Lipschitz continuous in (0,1] × R and belongs to Wc. To obtain a contradiction
it is enough to show that

Φc(h2,n) + 2Lc(h2,n) < Φc(h2) + 2Lc(h2) for n large enough. (46)

Defining ES(f ) as in the proof of part (i), we write

Φc(h2,n) − Φc(h2) = I1,n + I2,n + I3,n + I4,n,

where

I1,n := E(0,1)×(pn,qn)(h2,n) − E(0,1)×(pn,qn)(h2),

I2,n := E(0,1)×(zn,pn)(h2,n) − E(0,1)×(zn,pn)(h2),

I3,n := E(0,1)×(zn−rn,zn)(h2,n) − E(0,1)×(zn−rn,zn)(h2),

I4,n := E(0,1)×(−∞,zn−rn)(h2,n) − E(0,1)×(−∞,zn−rn)(h2).

By Lemma 16,

I1,n � E(0,1)×(pn,qn)(vn) � 25

c
ecpn

(
e

c
n − 1

)
. (47)

Since wn(r, z) � π + 2 arctan(r/(2|a2|)) if 0 < r < 1 and zn < z < pn, it follows from (45) that

I2,n � E(0,ρn)×(zn,pn)(h2,n) − E(0,ρn)×(zn,pn)(h2).

Hence, by Corollary 21 and a straightforward calculation,
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I2,n �
pn∫

zn

ecz

(
−2 +

ρn∫
0

1

2
r(h2,n)

2
z dr

)
dz

=
pn∫

zn

ecz

(
−2 +

(
β ′

n(z)

β2
n(z)

)2(
log

(
1 + β2

nρ2
n

) − 1 + 1

1 + β2
nρ2

n

))
dz,

and there exists a constant C2 > 0 which does not depend on n such that

I2,n � −2 + C2ρ
4
n

c

(
ecpn − eczn

)
. (48)

Since γn(z)r � 2|a2|/rn for all r � rn(� ρn) and z ∈ [zn − rn, zn), it follows from (45) that

2π − 2 arctan
(
γn(z)r

)
� π + 2 arctan

(
r

2|a2|
)

� h2(r, z) if r � rn.

Hence

I3,n = E(0,rn)×(zn−rn,zn)(h2,n) − E(0,rn)×(zn−rn,zn)(h2),

and, by Corollary 21,

I3,n �
zn∫

zn−rn

ecz dz

rn∫
0

1

2
r
(
(h2,n)

2
z − (h2)

2
z

)
dr

�
zn∫

zn−rn

ecz dz

rn∫
0

r
(
arctan

(
γn(z)r

))2
z

dr

=
zn∫

zn−rn

ecz

(
γ ′
n(z)

γ 2
n (z)

)2(
log

(
1 + γ 2

n r2
n

) − 1 + 1

1 + γ 2
n r2

n

)
dz.

Since log(1 + s2) � 4
√

s for s > 0, it follows easily that there exists a constant C3 > 0 which does not depend on n

such that

I3,n � C3r
2
n

√
rn eczn . (49)

Since χn(r) = π + 2 arctan(r/(2|a2|)) for r � rn � ρn,

I4,n = E(0,rn)×(−∞,zn−rn)(h2,n) − E(0,rn)×(−∞,zn−rn)(h2).

On the other hand, χn(r) = 2π − 2 arctan(2|a2|r/r2
n) for r � rn, and hence, setting

S− := {
(r, z) ∈ (0, rn) × (−∞, zn − rn); h2(r, z) < χn(r)

}
,

I4,n �
∫ ∫
S−

1

2
recz

((
(χn)

2
r + sin2 χn

r2

)
−

(
(h2)

2
r + sin2 h2

r2

))
dr dz

�
zn−rn∫
−∞

ecz
(
J1,n(z) − J2,n(z)

)
dz,

where

J1,n(z) :=
rn∫

1

2
r

(
(χn)

2
r + sin2 χn

r2

)
dr = 2 − 2r2

n

r2
n + 4|a2|2 ,
0
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and

J2,n(z) :=
ρ(z)∫
0

1

2
r

(
(h2)

2
r + sin2 h2

r2

)
dr

with ρ(z) := inf{r ∈ [0, rn]; h2(r, z) � π}. By Lemma 20 J2,n(z) � 2, and hence there exists a constant C4 > 0 which
does not depend on n such that

I4,n � −C4r
2
n ec(zn−rn). (50)

Since Lc(h2,n) = (ecpn − eczn)/c (by Theorem 3), it follows from (48), (49) and (50) that there exists δ > 0 such
that if ρn � rn � δ then

I2,n + I3,n + I4,n + 2Lc(h2,n) � −1

2
C4r

2
nec(zn−rn).

Hence, by (47), we can choose rn = δ and n so large that

Φc(h2,n) + 2Lc(h2,n) < Φc(h2),

and (46) follows.
Step 2. We argue by contradiction and suppose that there exist p < q such that h2(0, z) = π if p < z < q . In view

of Lemma 18 and the monotonicity of h2 with respect to z, we may assume, without loss of generality, that for some
k0 > 0 either

(h2)r (0, z) � (h2)r (0, q) > k0 > 0 if z < q (51)

or

(h2)r (0, z) � (h2)r (0,p) < −k0 < 0 if p < z. (52)

One way to obtain a contradiction is to modify the proof of a more general result in [12]. Alternatively, we can use
the approach used in the proof of part (iii): if (51) holds, we can construct a function h∗

2 such that h∗
2(0, z) = 2π if

z < q and Φc(h
∗
2) + 2Lc(h

∗
2) < Φc(h2) + 2Lc(h2); if (52) holds, a similar function h∗

2 exists such that h∗
2(0, z) = 0 if

z > p. For example, in the first case we can choose h∗
2 of the type

h∗
2(r, z) =

⎧⎨
⎩

h2(r, z) if 0 < r < 1, z � q or r∗ < r < 1, z < q,

max
{
h2(r, z),ω(r, z)

}
if 0 < r < r∗, z ∈ [q − z∗, q),

max
{
h2(r, z),ω(r, q − z∗)

}
if 0 < r < r∗, z < q − z∗,

where ω(r, z) = 2π − 2 arctan(γ (z)r), γ (z) = C∗(q − z)−2, and r∗, z∗ and C∗ are constants to be chosen appropri-
ately. We leave the details to the interested reader. �
Proof of Theorem 15(iv). The uniform convergence follows at once from formula (32) (which holds only if a2 � 0)
and the sentence immediately after (32) (which holds if a2 < 0), Theorem 15(iii), the monotonicity in z and the upper
bound in Theorem 7(iii). �
Proof of Theorem 15(v). The proof is an immediate consequence of Proposition 17. �
7. Position of the singularity when c → ∞

Let c > 0 and let h1 and h2 be the solutions given by, respectively, Theorems 1 and 2 with a point singularity in
(0, z̄1) and (0, z̄2). In this section we consider the behavior of z̄i as c → ∞. We shall often add the subscript c and
use the notation hi,c and z̄i,c (i = 1,2).

We first give a heuristic argument and set

τ = −z
, τi,c = − z̄i,c and qi,c(r, τ ) = hi,c(r,−cτ). (53)
c c
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Then qi,c is smooth in [0,1] × R \ {(0, τi,c)} and is a solution of the equation

qτ = qττ

c2
+ qrr + qr

r
− sin(2q)

2r2
in (0,1) × R. (54)

In addition qi,c satisfies the properties:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi,c(r,∞) = iπ + 2 arctan(air), r ∈ [0,1],
qi,c(r,−∞) = 2 arctan(br), r ∈ [0,1],
qi,c(1, τ ) = g(−cτ), τ ∈ R,

qi,c(0, τ ) = 0, τ < τi,c,

qi,c(0, τ ) = iπ, τ > τi,c.

(55)

If qi,c converges to some limit function qi as c → ∞, it is plausible that qi satisfies the parabolic equation

qτ = qrr + qr

r
− sin(2q)

2r2
in (0,1) × R (56)

with the following conditions at τ = −∞ and r = 1:{
qi(r,−∞) = 2 arctan(br), r ∈ [0,1],
qi(1, τ ) = g(∞) = B, τ < 0,

qi(1, τ ) = g(−∞) = A, τ > 0.

(57)

So qi is a solution of the harmonic map flow on the unit disk, with τ playing the role of time. The problem for qi can
be easily split up in two separate problems: one for τ < 0, with the trivial solution

qi(r, τ ) = 2 arctan(br) if 0 � r � 1, τ < 0, (58)

and the other one for τ > 0 with an initial condition at τ = 0 inherited from (58):⎧⎪⎨
⎪⎩

qτ = qrr + qr

r
− sin(2q)

2r2
, 0 < r < 1, τ > 0,

q(r,0) = 2 arctan(br), 0 < r < 1,

q(1, τ ) = g(−∞) = A, τ > 0.

(59)

Since A > π it is known (see [7]) that (59) has a classical solution q which blows up after finite time τ̄ > 0, satisfying

q(0, τ ) = 0 if τ < τ̄ and q(0, τ̄ ) = π. (60)

In [2,19] it has been shown that this solution can be continued for τ > τ̄ in at least 2 different ways: for τ > τ̄ , q

satisfies either q(0, τ ) = π or q(0, τ ) = 2π . The latter property explains the difference between the limit functions q1
and q2. In particular we claim that z̄1,c and z̄2,c have the same limiting behavior as c → ∞:

Theorem 19. Let h1,c and h2,c be the solutions constructed in Theorems 1 and 2, and let (0, z̄1.c) and (0, z̄2,c) be
their singularities. Then

z̄i,c = −τ̄ c
(
1 + o(1)

) → −∞ as c → ∞ (i = 1,2), (61)

where τ̄ > 0 is defined by (60).

The rigorous proof of this result is quite lengthy, and below we only sketch its structure.
It is not difficult to show that for all compact subsets Ω of (0,1) × R there exists a constant K = K(Ω) which

does not depend on c such that for all c � 1∫ ∫
Ω

(∣∣∣∣∂qi,c

∂r

∣∣∣∣
2

+
∣∣∣∣∂qi,c

∂τ

∣∣∣∣
2)

dτ dr � K.

Hence there exist qi ∈ H 1
loc((0,1) × R) such that, up to subsequences,

qi,c ⇀ qi in H 1 (
(0,1) × R

)
as c → ∞.
loc
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By standard regularity theory, qi is a smooth solution of Eq. (56) in (0,1)×R. In addition qi is increasing with respect
to τ and satisfies 2 arctan(br) < qi(r, τ ) < iπ + 2 arctan(air).

Using that

Φc(hi,c) � Φc

(
2 arctan(br) + (

g(z) − 2 arctanb
)
r
)
� K

c
ecz1

for some K which does not depend on c one can prove that, for any M > 0 and ε > 0,
−M∫

−M−ε

fi,c(τ )dτ � K

c2
ecz1−c2M → 0 as c → ∞, (62)

where

fi,c(τ ) :=
1∫

0

r

2

(
(qi,c)

2
r + sin2(qi,c)

r2
− Gb(r)

)
dr.

By Theorem 23 fi,c(τ ) � 0 in (−∞,−z1/c). Using the monotonicity with respect to τ , it follows easily from (62)
and Theorem 24 that qi,c → 2 arctan(br) uniformly in [0,1] × (−∞,−M] for all M > 0, and (58) follows.

The rest of the proof is based on some detailed information about the minimal solution, qmin(r, τ ) (τ � 0), of (59).
In particular qmin satisfies (60), qmin(0, τ ) = π if τ � τ̄ , and qmin is increasing with respect to τ (since the initial
function is a subsolution). Lap-number theory (see [16]) implies that for all 0 < τ < τ̄ there exists a unique r(τ ) such
that qmin(r(τ ), τ ) = π . In addition r(τ ) is decreasing with respect to τ and r(τ ) → 0 as τ → τ̄ . Finally qmin > π in
(0,1) × (τ̄ ,∞) and (qmin)r (0, τ ) > 0 if τ > τ̄ .

Arguing by contradiction, we use these properties and the fact that hi is a minimizer to prove that

(i) qi = qmin in (0,1) × (0, τ̄ ) and for all ε > 0 there exists cε,1 such that −z̄i,c > (τ̄ − ε)c for all c > cε,1;
(ii) for all ε > 0 there exists cε,2 such that −z̄i,c < (τ̄ + ε)c for all c > cε,2.

The proofs of (i) and (ii) are based on the construction of functions which are similar to the ones used in the
previous section (the functions h1,n and h2,n). We omit their construction, which is rather delicate and lengthy.

Appendix A

Lemma 20. For all w ∈ H 1
loc(0,∞) ⊂ C0((0,∞)) and 0 < ρ1 < ρ2

ρ2∫
ρ1

r

2

(
sin2 w

r2
+

∣∣∣∣dw

dr

∣∣∣∣
2)

dr �
∣∣cos

(
w(ρ2)

) − cos
(
w(ρ1)

)∣∣.
Proof.

∣∣cos
(
w(ρ2)

) − cos
(
w(ρ1)

)∣∣ =
∣∣∣∣∣

ρ2∫
ρ1

− sinw
dw

dr
dr

∣∣∣∣∣ �
ρ2∫

ρ1

r

2

(
2

∣∣∣∣ sinw

r

∣∣∣∣
∣∣∣∣dw

dr

∣∣∣∣
)

dr

�
ρ2∫

ρ1

r

2

(
sin2 w

r2
+

∣∣∣∣dw

dr

∣∣∣∣
2)

dr. �

A straightforward calculation leads to the following consequence:

Corollary 21. Let 0 < α < β , k ∈ Z and b ∈ R. Let

Eβ
α (w) =

β∫
r

2

(∣∣∣∣dw

dr

∣∣∣∣
2

+ sin2 w

r2

)
dr for w ∈ H 1(α,β). (A.1)
α
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Then

Eβ
α (w) � Eβ

α

(
kπ + 2 arctan(br)

) = 2

1 + b2α2
− 2

1 + b2β2

for all w ∈ H 1(α,β) satisfying w(α) = kπ + 2 arctan(bα) and w(β) = kπ + 2 arctan(bβ).

Lemma 22. Let 0 < α < β , w ∈ H 1(α,β) and let E
β
α (w) be defined by (A.1). If k1, k2 are integers satisfying w(α) ∈

[k1π, (k1 + 1)π), w(β) ∈ [k2π, (k2 + 1)π), then

Eβ
α (w) �

⎧⎪⎨
⎪⎩

2(k2 − k1 − 1) + ∣∣cos
(
w(β)

) − (−1)k2
∣∣ + ∣∣(−1)k1+1 − cos

(
w(α)

)∣∣ if k2 > k1,∣∣cos
(
w(β)

) − cos
(
w(α)

)∣∣ if k2 = k1,

2(k1 − k2 − 1) + ∣∣cos
(
w(α)

) − (−1)k1
∣∣ + ∣∣(−1)k2+1 − cos

(
w(β)

)∣∣ if k2 < k1.

Proof. If k2 = k1 the conclusion follows directly from Lemma 20. If k2 > k1 and so w(β) > w(α), it is sufficient
to apply Lemma 20 to the partition α < R0 < · · · < Rk2−k1−1 < β of [α,β], where w(Rj ) = (k1 + 1 + j)π for all
j = 0,1, . . . , k2 − k1 − 1. The case k2 < k1 is similar. �
Theorem 23. Let R > 0, 0 < b < 1 and w ∈ H 1

loc((0,R]). If w(R) = 2 arctanb then

ER
0 (w) =

R∫
0

r

2

(
sin2 w

r2
+

∣∣∣∣dw

dr

∣∣∣∣
2)

dr � ER
0

(
2 arctan

(
br

R

))
= 2b2

1 + b2
.

Proof. The latter equality is trivial. To prove the inequality, we observe that, since 0 < b < 1, if limρ→0+ w(ρ) = kπ

for some k ∈ Z, Lemma 20 implies that ER
0 (w) � 2/(1 + b2) > 2b2/(1 + b2) if k is odd, and ER

0 (w) � 2b2/(1 + b2)

if k is even. It is easy to prove that in all other cases ER
0 (w) = ∞. Indeed, if limρ→0+ w(ρ) exists and is finite but not

equal to a multiple of π , then (sin2 w)/r is not integrable at r = 0; if limρ→0+ w(ρ) is infinite or does not exist it is
enough to apply (repeatedly in the latter case) Lemma 22. �

Setting

Sb(R) =
{
w ∈ H 1

r (0,R); sinw

r
∈ L2

r (0,R),w(R) = 2 arctanb

}
,

Theorem 23 implies that if 0 < b < 1 the function 2 arctan(br/R) is a minimum of the functional ER
0 (w) on Sb(R).

Since any minimum satisfies the Euler–Lagrange equation

wrr + 1

r
wr − sin(2w)

2r2
= 0,

it is easy to show that 2 arctan(br/R) is the unique minimum. Using the estimates obtained in this appendix it is very
easy to show a slightly sharper result, of which we omit the proof:

Theorem 24. Let R > 0, 0 < b < 1 and let {wn} be a minimizing sequence for ER
0 (w) on Sb(R). Then wn(0) = 0 for

n large enough and wn(r) → 2 arctan(br/R) uniformly in [0,R] as n → ∞.
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