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Nearly time optimal stabilizing patchy feedbacks
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Abstract

We consider the time optimal stabilization problem for a nonlinear control system ẋ = f (x,u). Let T (y) be the minimum time
needed to steer the system from the state y ∈ R

n to the origin, and call A(τ ) the set of initial states that can be steered to the
origin in time T (y) � τ . Given any ε > 0, in this paper we construct a patchy feedback u = U(x) such that every solution of
ẋ = f (x,U(x)), x(0) = y ∈A(τ ) reaches an ε-neighborhood of the origin within time T (y) + ε.

Résumé

On considère un problème de stabilization en temps optimal pour un système de commandé non-linéaire du type ẋ = f (x,u).
Notons par T (y) le temps minimal nécessaire pour aller de y ∈ R

n à l’origine, et par A(τ ) l’ensemble des y ∈ R
n tels que

T (y) � τ . Pour chaque ε > 0, on construit un feedback u = U(x) de type patchy tel que toutes les solutions de ẋ = f (x,U(x)),
x(0) = y ∈A(τ ) atteignent un ε-voisinage de l’origine en temps au plus T (y) + ε.
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1. Introduction

Consider an optimization problem for a nonlinear control system of the form

ẋ = f (x,u), u(t) ∈ U, (1.1)

where x ∈ R
n describes the state of the system, the upper dot denotes a derivative w.r.t. time, while U ⊂ R

m is the
set of admissible control values. A central issue in the theory of optimal control is the existence of a feedback control
u = U(x) such that all trajectories of
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ẋ = f
(
x,U(x)

)
(1.2)

are optimal, for a given performance criterion. In most cases, the optimal feedback law u = U(x) is not continuous.
As shown in Example 1.1 in [26] or Example 2 in [10], even near-optimal feedback laws can usually be found only
within a class of discontinuous functions.

Therefore, it is essential to provide suitable definitions of “generalized solutions” for discontinuous ODE’s. In
particular, we recall the concept of “sample-and-hold” solutions and Euler solutions [18] (limits of sample-and-hold
solutions), which were successfully implemented both within the context of stabilization problems [16,30,32,33] and
of near-optimal feedbacks [17,19,26] (see also [25] for a discussion of further definitions of generalized solutions
relevant for optimization problems). We point out that a major difficulty which in general arises in the construction
of discontinuous feedbacks is that, as illustrated by Examples 5.3 and 5.4 in [29], arbitrary discontinuous feedback
can generate too many trajectories, some of which fail to be optimal. In fact, Example 5.3 in [29] shows that the set
of Carathéodory solutions of the optimal closed-loop equation (1.2) contains, in addition to all optimal trajectories,
some other arcs that are not optimal. Moreover, Example 5.4 in [29] exhibits an optimal control problem in which the
optimal trajectories are Euler solutions, but the closed-loop equation (1.2) has many other Euler solutions which are
not optimal. To avoid such a type of behavior, it is thus necessary to implement a careful construction of the feedback
law so to achieve the desired optimality of all sample-and-hold trajectories as in [17,19,26], or of all Carathéodory
solutions as it is shown in the present paper.

A different strategy, proposed by Piccoli [27] and Sussmann [34], takes as primary object of investigation an
optimal “synthesis” which is just a collection of optimal trajectories not necessarily arising from a feedback control.
A general notion of regular synthesis is discussed in [29] where a sufficiency theorem for optimal synthesis is proved.
For other definitions of regular synthesis we refer to [8,12]. The existence and the structure of an optimal synthesis
has been the subject of a large body of literature on nonlinear control. At present, detailed results are known for time
optimal planar systems of the form

ẋ = f (x) + g(x)u, u ∈ [−1,1], x ∈ R
2,

see [9] and the references therein. For more general classes of optimal control problems, or in higher space dimensions,
the construction of an optimal synthesis faces severe difficulties. On one hand, the optimal synthesis can have an
extremely complicated structure, and only few regularity results are presently known (see [23]). Already for systems
in two space dimensions, an accurate description of all generic singularities of a time optimal synthesis involves the
classification of eighteen topological equivalence classes of singular points [11,27,28]. In higher dimensions, an even
larger number of different singularities arises, and the optimal synthesis can exhibit pathological behavior such as the
famous “Fuller phenomenon” (see [24,35]), where every optimal control has an infinite number of switchings. On the
other hand, even in cases where a regular synthesis exists, the performance achieved by the optimal synthesis may not
be robust. In other words, small perturbations can greatly affect the behavior of the synthesis (e.g. see Example 5.3
in [29]).

Because of the difficulties faced in the construction of an optimal syntheses, it seems natural to slightly relax our
requirements, and look for nearly-optimal feedbacks instead. This is indeed the main purpose of the present paper.
Within this wider class, one can hope to find a feedback law whose discontinuities are sufficiently “tame”, providing
the existence of trajectories in the usual Carathéodory sense, all of which are “almost optimal”. Moreover, the new
feedback laws will have a simpler structure and better robustness properties than a regular synthesis.

For sake of definiteness, we shall study the problem of steering the system (1.1) from any initial state y ∈ R
n to the

origin in minimum time, under the basic assumptions

(H) The set U ⊂ R
m of admissible control values is bounded. Moreover, the function f : Rn × R

m �→ R
n is twice

continuously differentiable and has sublinear growth:∣∣f (x,u)
∣∣� c

(
1 + |x|) for all u ∈ U. (1.3)

For y ∈ R
n, call T (y) the minimum time needed to steer the system from the state y ∈ R

n to the origin, i.e. set

T (y)
.= inf

{
t � 0; there exists some trajectory x(·) of (1.1) that satisfies x(0) = y, x(t) = 0

}
. (1.4)

Roughly speaking, our main theorem states the following. If we relax a bit the optimality requirements, asking that
every initial state y be steered inside an ε-neighborhood of the origin within time T (y) + ε, then this can be accom-
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plished by a patchy feedback, for any fixed ε > 0. Other relevant references for the problem of optimal (discontinuous)
feedback construction are [7,13,15,20–22,31].

Patchy feedback controls were first introduced in [1] in order to study asymptotic stabilization problems. They have
a particularly simple structure, being piecewise constant in the state space R

n. Moreover, the Carathéodory solutions of
the corresponding Cauchy problems (1.2) enjoy important robustness properties [2–4], which are particularly relevant
in many practical situations. Indeed, one of the main reasons for using a state feedback is precisely the fact that open
loop controls are usually very sensitive to disturbances. In particular, we have shown in [2] that a patchy feedback
is “fully robust” with respect to perturbation of the external dynamics, and to measurement errors having sufficiently
small total variation so to avoid the chattering behavior that may arise at discontinuity points.

We recall here the main definitions (see [1]):

Definition 1.1. By a patch we mean a pair (Ω,g) where Ω ⊂ R
n is an open domain with smooth boundary ∂Ω, and

g is a smooth vector field defined on a neighborhood of the closure Ω of Ω, which points strictly inward at each
boundary point x ∈ ∂Ω .

Calling n(x) the outer normal at the boundary point x, we thus require〈
g(x),n(x)

〉
< 0 for all x ∈ ∂Ω. (1.5)

Definition 1.2. We say that g :Ω �→ R
n is a patchy vector field on the open domain Ω if there exists a family of

patches {(Ωα,gα); α ∈A} such that

– A is a totally ordered set of indices,
– the open sets Ωα form a locally finite covering of Ω ,
– the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα

∖⋃
β>α

Ωβ. (1.6)

We shall occasionally adopt the longer notation (Ω,g, (Ωα,gα)α∈A) to indicate a patchy vector field, specifying both
the domain and the single patches.

By setting

α∗(x)
.= max{α ∈ A; x ∈ Ωα}, (1.7)

we can write (1.6) in the equivalent form

g(x) = g
α∗(x)

(x) for all x ∈ Ω. (1.8)

Remark 1.1. Notice that the patches (Ωα,gα) are not uniquely determined by a patchy vector field (Ω,g). Indeed,
whenever α < β , by (1.6) the values of gα on the set Ωα ∩ Ωβ are irrelevant. Therefore, if the open sets Ωα form
a locally finite covering of Ω and we assume that, for each α ∈ A, the vector field gα satisfies (1.5) at every point
x ∈ ∂Ωα \⋃β>α Ωβ , then the vector field g defined according with (1.6) is again a patchy vector field. To see this,

it suffices to construct vector fields g̃α (defined on a neighborhood of Ωα as gα) which satisfy the inward pointing
property (1.5) at every point x ∈ ∂Ωα and such that g̃α = gα on Ωα \⋃β>α Ωβ (cf. [1, Remark 2.1]). In fact, with
the same arguments one deduces that, to guarantee that a vector field g defined on an open domain Ω according
with (1.6) be a patchy vector field, it is sufficient to require that each vector field gα satisfy (1.5) at every point
x ∈ ∂Ωα \ ((

⋃
β>α Ωβ) ∪ ∂Ω).

If g is a patchy vector field, the differential equation

ẋ = g(x) (1.9)

has several useful properties. In particular, in [1] it was proved that the set of Carathéodory solutions of (1.8) is closed
(in the topology of uniform convergence) but possibly not connected. Moreover, given an initial condition

x(t0) = x0, (1.10)
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the Cauchy problem (1.9), (1.10) has at least one forward solution, and at most one backward solution, in the
Carathéodory sense. For every Carathéodory solution x = x(t) of (1.9), the map t �→ α∗(x(t)) is left continuous
and non-decreasing.

Remark 1.2. In some situations it is useful to adopt a more general definition of patchy vector field than the one
formulated above. Indeed, one can consider patches (Ωα,gα) where the domain Ωα has a piecewise smooth boundary
(see [3]). In this case, the inward-pointing condition (1.5) can be expressed requiring that

g(x) ∈ ◦
TΩ (x) (1.11)

where
◦
TΩ (x) denotes the interior of the tangent cone to Ω at the point x, defined by

TΩ(x)
.=
{
v ∈ R

n: lim inf
t↓0

d(x + tv,Ω)

t
= 0

}
. (1.12)

Clearly, at any regular point x ∈ ∂Ω , the interior of the tangent cone TΩ(x) is precisely the set of all vectors v ∈ R
n

that satisfy 〈v,n(x)〉 < 0 and hence (1.11) coincides with the inward-pointing condition (1.5). One can easily see that
all the results concerning patchy vector fields established in [1,2] remain true within this more general formulation.

Definition 1.3. Let (Ω,g, (Ωα,gα)α∈A) be a patchy vector field. Assume that there exist control values vα ∈ U such
that, for each α ∈ A, there holds

gα(x) = f (x, vα) ∀x ∈ Dα
.= Ωα

∖⋃
β>α

Ωβ. (1.13)

Then, the piecewise constant map

U(x)
.= vα if x ∈ Dα (1.14)

is called a patchy feedback control on Ω , and referred to as (Ω,U, (Ωα, vα)α∈A).

Remark 1.3. By Definitions 1.2 and 1.3, the vector field

g(x) = f
(
x,U(x)

)
defined in connection with a given patchy feedback (Ω,U, (Ωα, vα)α∈A) is precisely the patchy vector field
(Ω,g, (Ωα,gα)α∈A) associated with a family of fields {gα: α ∈ A} satisfying (1.5). Notice that, recalling the no-
tation (1.7), for all x ∈ Ω we have

U(x) = vα∗(x). (1.15)

As observed in Remark 1.1, the values of the vector fields f (x, vα) on the set Ωα ∩Ωβ are irrelevant whenever α < β ,
and it is not necessary that f (x, vα) satisfy the inward-pointing condition (1.5) at the points of ∂Ωα ∩ (

⋃
β>α Ωβ).

Moreover, all the properties of a patchy feedback continue to hold even in the case where we assume that the inward-
pointing condition (1.5) fails to be satisfied at the points of (∂Ωα ∩ Σ) \ ⋃β>α Ωβ , for some region Σ of the
boundary ∂Ω . Clearly, in this case every Carathéodory trajectory of the patchy vector field g can eventually reach
the boundary ∂Ω only crossing points of the region Σ .

To state our main results, we first need to relax the minimum time problem. Call U the family of admissible control
functions, i.e. all measurable functions t �→ u(t), t � 0, with u(t) ∈ U almost everywhere. For y ∈ R

n and u ∈ U , we
denote by t �→ x(t;y,u) the solution of the Cauchy problem

ẋ(t) = f
(
x(t), u(t)

)
, x(0) = y. (1.16)

The global existence and the uniqueness of this solution are guaranteed by the assumptions (H). Now fix ε > 0
arbitrarily small and define the penalization function

ϕε(x)
.=
⎧⎨⎩

|x|2
ε2 − |x|2 if |x| < ε, (1.17)
∞ if |x| � ε.
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Consider the following ε-approximate minimization problem:

inf
t�0; u∈U

{
t + ϕε

(
x(t;y,u)

)}
. (1.18)

We denote this infimum by V (y), for every y ∈ R
n, and refer to y �→ V (y) ∈ [0,∞] as the value function for (1.18).

Observe that V (y) � T (y). Hence, for a fixed time T > 0, the set of points that can be steered to the origin within
time T is contained in the sub-level set

ΛT
.= {

y ∈ R
n; V (y) � T

}
. (1.19)

With the above notations, our main result can be stated as follows.

Theorem 1. Let the assumptions (H) hold and, given ε > 0, T > 0, let ΛT be the sub-level set defined in (1.19) in
connection with the value function V for (1.18). Then, there exists a patchy feedback control u = U(x), defined on

ΛT,ε
.= {

y ∈ R
n; V (y) � T ; |y| � ε

}
, (1.20)

such that, for each y ∈ ΛT,ε , every Carathéodory solution of

ẋ = f
(
x,U(x)

)
, x(0) = y (1.21)

reaches the ball

Bε
.= {

x ∈ R
n; |x| � ε

}
within time V (y) + ε.

The assumptions (H) are very general. They do not even imply the existence of optimal controls, even for the
relaxed problem (1.18). We recall that the standard existence theory requires the additional assumptions

(H′) The set U ⊂ R
m of admissible control values is compact. For every x ∈ R

n, the set of velocities {f (x,u); u ∈ U}
is convex.

If both (H) and (H′) hold, then the infimum in (1.4) and in (1.18) are actually attained (e.g. cf. [14]). Moreover,
the minimum time function T : Rn �→ [0,∞] is lower semicontinuous. This fact is a well known consequence of the
closure property of the graph of the set valued map S : [0,∞) × R

n � R
n defined by S(t, y)

.= {x(t;y,u); u ∈ U} .
Because of the lower semicontinuity of the minimum time function, and by (1.3), it follows that, for every τ � 0, the
attainable set

A(τ)
.= {

y ∈ R
n; T (y) � τ

}
(1.22)

is compact. Since V (y) � T (y) for all y ∈ R
n, from Theorem 1 one thus obtains

Corollary. Let the assumptions (H) and (H′) hold, and let ε > 0, τ > 0 be given. Then there exists a patchy feedback
control u = U(x), defined on the set

Aε(τ)
.= {

y ∈ R
n; T (y) � τ ; |y| � ε

}
, (1.23)

such that, for each y ∈ Aε(τ), every Carathéodory solution of (1.21) reaches the ball Bε within time T (y) + ε.

In all previous papers [1–3] the construction of a stabilizing patchy feedback did not make any use of a control-
Lyapunov function for (1.1). Instead, the feedback law was obtained by patching together a finite number of open-loop
controls. We remark that a straightforward adaptation of this strategy would not work here. Indeed, let ε > 0 be given.
As in [1], we can then cover the set Aε(τ) with finitely many tubes Ω1, . . . ,ΩN and construct a patchy feedback
u = Uα(x) steering each point y ∈ Ωα inside the ball Bε within time T (y) + ε. However, we cannot guarantee that
the patchy feedback

u(x) = Uα∗(x), α∗(x)
.= max{α; x ∈ Ωα} (1.24)
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Fig. 1.

is nearly-optimal (see Fig. 1). Indeed, call Tα(y) the time taken by the control Uα to steer the point y ∈ Ωα in-
side Bε . Let t �→ x(t) be a trajectory of the patchy feedback (1.24), with x(0) = y, x(τ) ∈ Bε . Assume α∗(t) = α for
t ∈ ]tα−1, tα]. The near-optimality of each feedback implies Tα(x) � T (x) + ε for every x. Moreover

Tα

(
x(tα−1)

)− Tα

(
x(tα)

)= (tα − tα−1).

Unfortunately, from the above inequalities one can only deduce

T
(
x(tα−1)

)− T
(
x(tα)

)
� (tα − tα−1) − ε

and hence τ � T (y) + Nε. This is a useless information, because the number N of tubes may well approach infinity
as ε → 0.

To overcome this problem, in the present paper we perform an entirely different construction of the patchy feed-
back. As starting point, instead of open-loop controls, we use the value function V for the problem (1.18), together
with a piecewise quadratic approximation Ṽ . This has the form

Ṽ (x) = min
j

Vj (x), Vj (x) = aj + bj · x + c|x|2

and satisfies Ṽ (x) � V (x) + ε for each point x. The result will be achieved by constructing a patchy feedback such
that

d

dt
Ṽ
(
x(t)

)= ∇Ṽ
(
x(t)

) · f (x(t), u(x(t)
)
� ε

at a.e. time t .

2. Preliminary results

Throughout the paper, by B(x, r) we denote the closed ball centered at x with radius r , and set Br
.= B(0, r).

The closure, the interior and the boundary of a set Ω are written as Ω ,
◦
Ω and ∂Ω , respectively, while diam(Ω)

denotes the diameter of a bounded set Ω . The distance of a point x from a set Ω is denoted by dΩ(x), while dΩ(E)
.=

infx∈E dΩ(x) denotes the distance between two sets Ω,E. The number of elements of a finite set J is denoted by |J |.
We begin by observing that the infimum in (1.18) provides an upper bound for the time needed to steer the system

(1.1) from y to the ball Bε . Hence, for every T � 0, the sub-level set ΛT of the value function V for (1.18) is contained
in the set of points that can be steered to the ball Bε within time T . On the other hand, notice that the scalar Cauchy
problem

ż = c(1 + z), z(0) = ε, (2.1)
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has solution

z(t) = (1 + ε) ect − 1. (2.2)

Therefore, because of (1.3), a comparison argument yields

ΛT ⊆ Bz(T ), (2.3)

for every T � 0.
In connection with the relaxed minimization problem (1.18), we now show that the value function V is Lipschitz

continuous on ΛT and locally semiconcave, that is, for any x0, there exists a constant c0 > 0 such that there holds

V (x1) + V (x2) − 2V

(
x1 + x2

2

)
� c0|x1 − x2|2 (2.4)

for all x1, x2 in a neighborhood of x0. We refer to [14] for the definition and properties of semiconcave functions.

Lemma 1. With the assumptions (H), for any fixed ε,T > 0 the restriction of the value function V for (1.18) to the
sublevel set ΛT is Lipschitz continuous and locally semiconcave. Indeed, there exists a positive constant λ such that,
for every point y0 ∈ ΛT where V is differentiable, there holds

V (y) � V (y0) + 〈∇V (y0), y − y0
〉+ λ|y − y0|2 ∀y ∈ ΛT . (2.5)

Proof.
1. First observe that, since we are only proving something about the value function V for (1.18), it is not restrictive
to assume that the additional hypotheses (H′) hold. Indeed, allowing the set of controls to range in the closure of U
does not affect the value function. Moreover, if the sets of velocities {f (x,u); u ∈ U} are not convex, we can replace
the original system (1.1) by a chattering one (see [6]), such that the problem (1.18) yields exactly the same value
function. This in particular implies that the value function V is lower semicontinuous and that the sub-level set (1.19)
is compact.
2. Next, observe that, since the function f is twice continuously differentiable and the sets ΛT , U are compact, by
standard differentiability properties of the trajectories of a control system (1.1), there holds

sup
t∈[0,T ], y∈ΛT

u∈U

∣∣∣∣ ∂

∂y
x(t;y,u)

∣∣∣∣� exp
{
T ‖Dxf ‖L∞(ΛT )

} .= M1, (2.6)

sup
t∈[0,T ], y∈ΛT

u∈U

∣∣∣∣ ∂2

∂y2
x(t;y,u)

∣∣∣∣� [
M1
(
1 + T M3

1 ‖D2
xf ‖L∞(ΛT )

)] .= M2, (2.7)

where

‖Dxf ‖L∞(ΛT )
.= sup

x∈ΛT , u∈U

∣∣∣∣ ∂

∂x
f (x,u)

∣∣∣∣< ∞,

‖D2
xf ‖L∞(ΛT )

.= sup
x∈ΛT , u∈U

∣∣∣∣ ∂2

∂x2
f (x,u)

∣∣∣∣< ∞,

(2.8)

provide a bound on the first and second partial derivatives of f w.r.t. the x-variable, over the set ΛT . Then, because
of (2.6), there exists a constant c1 such that∣∣x(t;y2, u) − x(t;y1, u)

∣∣� c1|y2 − y1| ∀t ∈ [0, T ], y1, y2 ∈ ΛT , u ∈ U . (2.9)

3. Given y0 ∈ ΛT , by the previous assumptions at point 1 there exists an optimal control u0 ∈ U , and a time t0, such
that

t0 + ϕε

(
x(t0;y0, u0)

)= V (y0) � T . (2.10)

This, by definition (1.17) of ϕε , of course implies

t0 � T ,
∣∣x(t0;y0, u0)

∣∣� ε

√
T

. (2.11)

1 + T
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Hence, using (2.11) together with (2.9), we find that there exists some constant δ > 0, depending only on ε,T , and
on c1, but not on the point y0 ∈ ΛT , such that

∣∣x(t0;y,u0)
∣∣� ε

√
2T + 1

2(1 + T )
∀y ∈ B(y0, δ) ∩ ΛT . (2.12)

Observe now that, since V (y) is the infimum in (1.18), there holds

V (y) � V 0(y)
.= t0 + ϕε

(
x(t0;y,u0)

) ∀y. (2.13)

Because of (2.12), the map y �→ V 0(y) defined in (2.13) is twice continuously differentiable at every point of
B(y0, δ) ∩ ΛT . Hence, since (2.10) implies V 0(y0) = V (y0), there holds

V 0(y) � V (y0) + 〈∇V 0(y0), y − y0
〉+ λ0|y − y0|2 ∀y ∈ B(y0, δ) ∩ ΛT , (2.14)

with

λ0
.= sup

η∈B(y0,δ)∩ΛT

∣∣D2V 0(η)
∣∣.

The gradient of the function V 0 is computed by

∇V 0(y) = ∇ϕε

(
x(t0;y,u0)

) · ∂

∂y
x(t0;y,u0).

Thus, relying on (2.6), (2.12), and setting

M0
.= sup

t∈[0,T ], y∈ΛT

u∈U

∣∣x(t;y,u)
∣∣, (2.15)

we obtain∣∣∇V 0(y)
∣∣� 2ε2|x(t0;y,u0)|

(ε2 − |x(t0;y,u0)|2)2
· M1 � 8(1 + T )2M0M1

ε2
.= c2 ∀y ∈ B(y0, δ) ∩ ΛT . (2.16)

With similar computations, using (2.7), (2.12), we find that a bound on the second derivative of V 0 is provided by∣∣D2V 0(y)
∣∣� ∣∣D2ϕε

(
x(t0;y,u0)

)∣∣∣∣∣∣ ∂

∂y
x(t;y,u)

∣∣∣∣+ ∣∣∇ϕε

(
x(t0;y,u0)

)∣∣∣∣∣∣ ∂2

∂y2
x(t;y,u)

∣∣∣∣
�
[

8(1 + T )2M1

ε2
+ 64(1 + T )3M2

0M1

ε4
+ 8(1 + T )2M0M2

ε2

]
.= c3 ∀y ∈ B(y0, δ) ∩ ΛT . (2.17)

Notice that the constants c2, c3 depend only on ε,T , and on the function f , but not on the point y0 ∈ ΛT . Then, (2.13),
(2.14), together with (2.16), (2.17) yield

V (y) � V (y0) + (c2 + δc3)|y − y0| ∀y ∈ B(y0, δ) ∩ ΛT , ∀y0 ∈ ΛT , (2.18)

which, in turn, implies

y1, y2 ∈ ΛT , |y1 − y2| < δ �⇒ ∣∣V (y1) − V (y2)
∣∣� (c2 + δc3)|y1 − y2|. (2.19)

Since the set ΛT is compact, we deduce from (2.19) that the map V is (globally) Lipschitz continuous on ΛT .
4. Given y0 ∈ ΛT , in connection with the constants λ0, δ, c2 introduced at point 3 choose

λ > max

{
λ0,

Lip(V ) + c2

δ

}
,

and observe that, because of (2.16), there holds〈∇V 0(y0), y − y0
〉+ λ|y − y0|2 � (−c2 + λδ)|y − y0|

� Lip(V ) · |y − y0| ∀y ∈ ΛT \ B(y0, δ). (2.20)

Thus, (2.13), (2.14), together with (2.20), yield

V (y) � V (y0) + 〈∇V 0(y0), y − y0
〉+ λ

∣∣y − y0
∣∣2 ∀y ∈ ΛT . (2.21)
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5. Fix ρ > 0. By the above arguments there exist a positive constant λ = λρ so that, for every fixed y0 ∈ ΛT +ρ , the
estimate (2.21) holds for all y ∈ ΛT +ρ . Next, given x0 ∈ ΛT , choose δ0 so that B(x0, δ0) ⊂ ΛT +ρ . Then, for any
y1, y2 ∈ B(x0, δ0) ∩ ΛT , one has y1+y2

2 ∈ ΛT +ρ . Hence, applying (2.21) for y = yi , i = 1,2, and y0 = y1+y2
2 , and

summing up the corresponding inequalities, since y1 − y0 = y0 − y2 we obtain

V (y1) + V (y2) � 2V

(
y1 + y2

2

)
+ λ

[|y1 − y0|2 + |y2 − y0|2
]
� 2V

(
y1 + y2

2

)
+ λ|y1 − y2|2,

which shows that the estimate (2.4) is verified, with c0 = λ, for all y1, y2 ∈ ΛT in the ball B(x0, δ0). Therefore, the
map V is locally semiconcave on ΛT .
6. To conclude the proof of the lemma, consider a point y0 ∈ ΛT where V is differentiable, and observe that, by (2.21),
one has〈

∇V (y0) − ∇V 0(y0),
y − y0

|y − y0|
〉
� λ

[
|y − y0| + o(|y − y0|)

|y − y0|
]

(2.22)

for all y ∈ ΛT . Thus, taking yσ
.= y0 +σ(∇V (y0) − ∇V 0(y0))/(|∇V (y0) − ∇V 0(y0)|), σ > 0 from (2.22) we deduce∣∣∇V (y0) − ∇V 0(y0)

∣∣� λ

[
σ + o(σ )

σ

]
∀σ > 0. (2.23)

By letting σ → 0 in (2.23) we obtain ∇V 0(y0) = ∇V (y0) which, together with (2.21), yields (2.5), completing the
proof of the lemma. �

We next show that the value function V enjoys an infinitesimal decrease property at every point where it is differ-
entiable, which is expressed in terms of an Hamilton–Jacobi inequality.

Lemma 2. With the assumptions (H), given ε,T > 0, let V be the value function for (1.18). Then, there exists
0 < ε0 < ε such that, letting ΛT,ε0 be the set defined in (1.20), for each y ∈ ΛT,ε0 at which V is differentiable there
holds

inf
v∈U

{〈∇V (y), f (y, v)
〉}+ 1 � 0. (2.24)

Proof. Given ε,T > 0, set

ε0
.= ε

√
4T + 1

2(1 + 2T )
, ε′

0
.= ε

√
2T

1 + 2T
, (2.25)

τ0
.= c−1 ln

(
ε0 + 1

ε′
0 + 1

)
, (2.26)

where c denotes the constant in (1.3), and observe that, by definition (1.17) of ϕε , one has

ϕε(x) � 2T whenever |x| � ε′
0. (2.27)

Then, recalling that (2.2) provides the solution to the scalar Cauchy problem (2.1), by a comparison argument, and
because of (1.3), we deduce that

|y| � ε0 �⇒ ∣∣x(t;y,u)
∣∣� ε′

0 ∀t ∈ [0, τ0], u ∈ U . (2.28)

Hence, (2.27) together with (2.28), yields

t + ϕε

(
x(t;y,u)

)
� 2T ∀t ∈ [0, τ0], |y| � ε0, u ∈ U . (2.29)

From (2.29) we deduce that, for every y ∈ ΛT,ε0 , the value function for (1.18) satisfies

V (y) = inf
t>τ0; u∈U

{
t + ϕε

(
x(t;y,u)

)}
> τ0. (2.30)

Thus, we reach the conclusion of the lemma observing that by standard arguments in control theory (e.g. see [5,14])
one can show that the value function for (2.30) satisfies the Hamilton–Jacoby inequality (2.24) at every point where
V is differentiable. �
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Fig. 2.

Remark 2.1. Notice that, in the proof of Theorem 1, we shall only need to have at a disposal a value function V

satisfying the conclusions of Lemmas 1 and 2.

We state now two technical results which will be useful later in the construction of an almost time optimal patchy
feedback. We shall provide a proof of them in Appendix A at the end of the paper. Throughout the following, for any
given subset C of a sphere S, we let ∂SC denote the boundary of C relative to the topology of S.

Lemma 3. Given r0 > 0, let S be a sphere with radius r � r0, and let g be a bounded, Lipschitz continuous vector
field on R

n which points strictly inward at the points of a closed set C ⊂ S that has a piecewise smooth relative
boundary ∂SC. More precisely, letting nS(y) denote the unit outer normal to S at the point y, assume that〈

nS(y), g(y)
〉
� −c̄ ∀y ∈ C, (2.31)

for some constant c̄ > 0. Denote by t �→ x(t, y) the solution of the Cauchy problem ẋ = g(x), x(0) = y. Then there
exists ε > 0, depending only on r0, c̄, ‖g‖L∞ , and on the Lipschitz constant Lip(g) of g, such that the following holds.
Define

Γε̄(C)
.= {

x(τ, y); y ∈ B(C, ε̄) ∩ S, dC
2(y) − ε̄2 < τ � 0

}
. (2.32)

Then the vector field g is transversal to the boundary of Γε̄
.= Γε̄(C). Indeed, it points strictly inward on the set

∂−Γε̄
.= {

x
(
dC

2(y) − ε̄2, y
);y ∈ ◦

B(C, ε̄) ∩ S
}

(2.33)

and strictly outward on the set

∂+Γε̄
.= ∂Γε̄ ∩ S. (2.34)

The lens-shaped domain (2.32) provides the basic building block for the construction of the patchy feedback
produced in the next section. In some situations it will be necessary to restrict such domains cutting them along
hyperplanes in order to preserve the (almost) time-optimality property of the feedback law (cf. Fig. 2). The next
lemma provides an a-priori lower bound on the distance between the upper boundary of a collection of such domains
and the union of spheres around which the domains are constructed.

Lemma 4. Given 0 < r0 < r ′
0, let B1, . . . ,Bν be a finite collection of balls with surfaces S1, . . . , Sν , having radii

r1, . . . , rν ∈ [r0, r
′
0], and satisfying

Si ∩
ν⋃

j=1

◦
Bj �= ∅,

Si

∖ ν⋃ ◦
Bj �= ∅,

∀i = 1, . . . , ν. (2.35)
j=1
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Consider the sets

Ci
.= Si

∖( ν⋃
j=1

◦
Bj

)
∀i = 1, . . . , ν, (2.36)

and let g1, . . . , gν be bounded, Lipschitz continuous vector fields which point strictly inward (towards the interior of
S1, . . . , Sν ) on C1, . . . ,Cν , respectively. Then, there exist constants ε̄′, c4 > 0, depending only on ν, r0, r ′

0, and on
‖gi‖L∞ , Lip(gi), i = 1, . . . , ν, such that the following holds. Let

Π =
ν⋃

k=1

Πk, Πk
.= {πk,i; i ∈ Jk},

Jk ⊂ {1, . . . , ν} \ {k} ∀k,

(2.37)

be a ( possibly empty) collection of hyperplanes enjoying the properties:

– πk,i = πi,k for all i ∈ Jk , k ∈ Ji ;
– πk,i ∈ Πh if and only if either h = k, i ∈ Jh, or h = i, k ∈ Jh;
– if

◦
Bk ∩ ◦

Bi �= ∅, i ∈ Jk , then πk,i is the hyperplane passing through Sk ∩ Si (cf. Fig. 3);
– if

◦
Bk ∩ ◦

Bi= ∅, i ∈ Jk , then πk,i is an hyperplane separating Sk and Si , i.e. s.t. Sk , Si are entirely contained in
the opposite closed half spaces determined by πk,i (cf. Fig. 4).

For every Jk �= ∅, and for any i ∈ Jk , call π−
k,i the open half space determined by πk,i that contains Ck \ ∂Sk

Ck . Then,
setting (cf. Fig. 5)

Γ
Jk

ε̄′
.= Γ

Jk

ε̄′ (Ck)
.=
⎧⎨⎩Γε̄′(Ck) ∩

⋂
i∈Jk

π−
k,i if Jk �= ∅,

Γε̄′(Ck) otherwise,

k = 1, . . . , ν, (2.38)

C
.=

ν⋃
k=1

Ck, G .=
ν⋃

k=1

Γ
Jk

ε̄′ , (2.39)

∂−G .= ∂G
∖ ν⋃

k=1

Bk, (2.40)

one has

dC(∂−G) � c4. (2.41)

Fig. 3. Fig. 4.
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Fig. 5.

3. Proof of the theorem

The proof will be given in several steps.
1. Given ε,T > 0 (ε < min{1, T }), fix some constant T ′ > T + 1, and observe that by Lemma 1 the value function V

for (1.18) is Lipschitz continuous on ΛT ′ .= {y ∈ R
n; V (y) � T ′}. Hence, by Rademacher’s theorem V is differen-

tiable a.e. in ΛT ′ . Then, letting λ > 0 be the constants provided by Lemma 1 in connection with the set ΛT ′ , for each
y ∈ ΛT ′ at which V is differentiable define a quadratic function V y setting

V y(x)
.= V (y) + ∇V (y) · (x − y) + (1 + λ)|x − y|2. (3.1)

Notice that, because of (2.5), there holds

V (x) + |x − y|2 � V y(x) ∀x ∈ ΛT ′ . (3.2)

Moreover, according with Lemma 2, there exists some constant ε0 > 0 so that, given a constant

0 < ε1 <
ε

4T ′ , (3.3)

for every y ∈ ΛT ′,ε0

.= {y ∈ ΛT ′ ; |y| � ε0} where V is differentiable we can choose a control value vy ∈ U such that〈∇V (y), f
(
y, vy

)〉
< −1 + ε1. (3.4)

Choose the constant ε0 so that, setting

ε′
0

.= ε

√
4T ′ + 1

2(1 + 2T ′)
, ε′′

0
.= ε

√
2T ′

1 + 2T ′ ,

τ0
.= c−1 ln

(
ε′

0 + 1

ε′′
0 + 1

)
,

(3.5)

where c denotes the constant in (1.3), there holds

ε0 < min

{
ε

4
, ε′

0

}
,

ε2
0

ε2 − ε2
0

<
τ0

2
. (3.6)

Notice that, by definition (1.17) of ϕε , and because of (3.6), the value function V for (1.18) satisfies

V (x) �
ε2

0

ε2 − ε2
<

τ0

2
∀x ∈ Bε0 . (3.7)
0
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Next, choose some other constant

L′ > L
.= diam(ΛT ′) + √

nLip(V ) +
√

n
(
Lip(V )

)2 + 4T ′(1 + λ), (3.8)

where Lip(V ) denotes the Lipschitz constant of V on ΛT ′ . Hence, since the assumptions (H) imply the Lipschitz
continuity in x of the function f (x,u) on the compact set BL′ × U, uniformly for u ∈ U, and because also ∇V y is
Lipschitz continuous with a Lipschitz constant independent on y ∈ ΛT ′ , there will be some constant c5 > 0 (depending
only on L′) such that∣∣〈∇V y(x1), f (x1, u)

〉− 〈∇V y(x2), f (x2, u)
〉∣∣� c5|x1 − x2|∣∣f (x1, u) − f (x2, u)

∣∣� c5|x1 − x2| ∀x1, x2 ∈ BL′ , u ∈ U. (3.9)

Then, setting

c6
.= √

nLip(V ) + 4(1 + λ)diam(ΛT ′), (3.10)

and choosing ε2 > 0 so that

ε2 < min

{√
ε

3
,

ε1

8c5c6
,

√
τ0

2
,

T ′ − T

1 + Lip(V )
,L′ − L

}
, (3.11)

we deduce from (3.4), (3.9) that, for every y ∈ ΛT ′,ε0 where V is differentiable there holds〈∇V y(x), f
(
x, vy

)〉
< −1 + 2ε1 ∀x ∈ B(y,2ε2) ∩ BL′ . (3.12)

2. By the Lipschitz continuity of V on the set ΛT ′ it follows that, for each y ∈ ΛT ′,ε0 at which V is differentiable,
there holds∣∣V y(x) − V (x)

∣∣� c7|x − y| ∀x ∈ ΛT ′ ,

for some positive constant c7. Hence, since the set ΛT ′,ε0 is compact (cf. point 1 of the proof of Lemma 1), we can
cover it with finitely many balls (of sufficiently small radius), centered at points of ΛT ′,ε0 where V is differentiable,
say y1, . . . , yN , so that, setting

Vi(x)
.= V yi (x), 1 � i � N,

Ṽ (x)
.= min

i
Vi(x)

∀x ∈ R
n, (3.13)

there holds

V (x) � Ṽ (x) � V (x) + ε2
2 ∀x ∈ ΛT ′,ε0 . (3.14)

Next, observing that (3.2) implies

Vi(x) > V (x) + ε2
2 ∀x ∈ ΛT ′ \ B(yi, ε2),

we deduce from (3.14) that

Ṽ (x) < Vi(x) ∀x ∈ ΛT ′,ε0 \ B(yi, ε2). (3.15)

Relying on (3.15), letting

Pi
.= {

x ∈ R
n; Vi(x) = Ṽ (x)

}
, (3.16)

we find that

Pi ∩ ΛT ′,ε0 ⊂ B(yi, ε2), 1 � i � N. (3.17)

Hence, by (3.12), (3.17) we have〈∇Vi(x), f
(
x, vi

)〉
< −1 + 2ε1 ∀x ∈ B(Pi , ε2) ∩ ΛT ′,ε0 ∩ BL′ , 1 � i � N, (3.18)

where we have set vi .= vyi (1 � i � N ), while (3.2) yields

Ṽ (x) � V (x) + |x − yi |2 ∀x ∈ Pi ∩ ΛT ′ , 1 � i � N. (3.19)
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3. The patchy feedback u = U(x) will be constructed looking at the level sets of the function Ṽ defined in (3.13). To
this end, observe first that, because of (3.14), and by the choice (3.11) of ε2, there holds

Ṽ (x) < T ′ − Lip(V ) · ε2 ∀x ∈ ΛT . (3.20)

Moreover, notice that, relying on the definitions (3.1) of V yi and (3.8) of the constant L, one finds

1 � i � N, Vi(x) < T ′ �⇒ |x| � |x − yi | + diam(ΛT ′)

�
∣∣∇V (yi)

∣∣+√∣∣∇V (yi)
∣∣2 + 4T ′(1 + λ) + diam(ΛT ′)

�
√

nLip(V ) +
√

n
(
Lip(V )

)2 + 4T ′(1 + λ) + diam(ΛT ′)

� L, (3.21)

which, in turn, by the definition (3.13) of Ṽ , and because of (3.14), yields{
x ∈ R

n; Ṽ (x) < T ′}⊂ ΛT ′ ∩ BL. (3.22)

On the other hand, observe that all level sets of each quadratic function Vi are spheres. Therefore, every level set

Στ
.= {

x ∈ R
n; Ṽ (x) = τ

}
τ � τ0, (3.23)

is contained in a finite union of spheres, and each upper level set {x ∈ R
n; Ṽ (x) � τ }, τ � τ0, is connected. Moreover,

notice that by (3.7), (3.11), (3.14), we derive

max|x|=ε0
Ṽ (x) <

τ0

2
+ ε2

2 � τ0, (3.24)

and hence we find that{
x ∈ R

n; Ṽ (x) � τ0
}∩ Bε0 = ∅. (3.25)

Thus, setting

T ′′ .= T ′ − Lip(V ) · ε2, D .= {
x ∈ R

n; τ0 < Ṽ (x) < T ′′}, (3.26)

thanks to (3.11), (3.14), (3.20), (3.22), (3.25), we deduce that

ΛT,ε ⊂ B(D, ε2) ⊂ ΛT ′,ε0 ∩ BL. (3.27)

We will establish the theorem by constructing the patchy feedback u = U(x) on the domain D. Notice that, with the
same arguments used in the proof of Lemma 2, by the choice of the constants ε′

0, τ0 in (3.5) we find that

V (x) > τ0 ∀x ∈ ΛT ′ , |x| � ε′
0. (3.28)

Hence, since the definition (3.13) of Ṽ implies

V (x) � τ0 ∀x ∈ Στ0,

we deduce from (3.6), (3.28) that

Στ0 ⊂ Bε′
0
⊂ Bε. (3.29)

Next, observe that, since all functions Vi , 1 � i � N , have the same coefficient of the quadratic term, it follows that,
for each couple of indices k �= i, the set

πk,i
.= πi,k

.= {
x ∈ R

n; Vk(x) = Vi(x)
}

(3.30)

is an hyperplane, and the difference of the gradients ∇Vi(x) − ∇Vk(x) is a constant vector on πk,i . Then, letting nk,i

denote the unit normal to πk,i , pointing towards the half space

π+
k,i

.= π−
i,k

.= {
x ∈ R

n; Vk(x) > Vi(x)
}
, (3.31)

one has

∇Vi(x) − ∇Vk(x) = −cnk,i ∀x ∈ πk,i , (3.32)
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for some constant c = ck,i � 0. Denote as π−
k,i the other half space determined by πk,i , i.e. set

π−
k,i

.= π+
i,k

.= {
x ∈ R

n; Vk(x) < Vi(x)
}
. (3.33)

4. The basic step in the construction of U(x) is the following. We shall fix a suitably small time size �t and, in
connection with an increasing sequence of times {τm}m�0 with the property

∃p s.t. τm+p > τm + �t ∀m,

we will construct, for every m � 0, a patchy feedback whose domain contains the region

Dm
.= {

x ∈ R
n; τm < Ṽ (x) � τm+1

}
,

so that all the trajectories x(t) of the corresponding closed-loop system (1.2) satisfy

d

dt
Ṽ
(
x(t)

)
� −1 + 3ε1 for a.e. t,

and eventually enter the set where Ṽ < τm. To this end, fix any τ ∈ [τ0, T
′[ and consider the level set Στ of Ṽ . By

construction, Στ is contained in the union of finitely many spheres, say Si1, . . . , Siντ
. Here we denote as Si�

.= {x ∈ R
n;

Vi�(x) = τ } the surface of the ball Bi�
.= {x ∈ R

n; Vi�(x) � τ }. Notice that, since the definition (3.13) of Ṽ implies
Ṽ (x) < τ for all x ∈ ◦

Bi� , by definition (3.23) it follows that

Στ =
ντ⋃

�=1

Στ,i� , Στ,i�
.= Si�

∖ ντ⋃
q=1

◦
Biq , (3.34)

{
x ∈ R

n; Ṽ (x) < τ
}=

ντ⋃
�=1

◦
Bi� . (3.35)

We can assume that the set of indices Iτ
.= {i1, . . . , iντ } includes only those indices i ∈ {1, . . . ,N} for which there

exists some point x̄ ∈D satisfying

τ = Vi(x̄) < Vj (x̄) ∀j �= i.

This means that

Iτ =
{
i ∈ {1, . . . ,N};

(
Pi

∖⋃
j �=i

Pj

)
∩ Στ �= ∅

}
, (3.36)

and, in particular, implies that

Si

∖ ⋃
j∈Iτ

◦
Bj �= ∅ ∀i ∈ Iτ . (3.37)

Moreover, we may write Στ as the union of ητ connected components Σ1
τ , . . . ,Σ

ητ
τ , so that setting

Ih
τ

.=
{
i ∈ Iτ ;

(
Pi

∖⋃
j �=i

Pj

)
∩ Σh

τ �= ∅
}
, (3.38)

there holds

Si ∩
⋃

j∈Ih
τ

◦
Bj �= ∅ ∀i ∈ Ih

τ , h = 1, . . . , ητ . (3.39)

Notice also that, by (3.13), (3.23), (3.34), (3.37), every set Στ,i , i ∈ Iτ , is nonempty and one has

Στ,i = {
x ∈ R

n; Vi(x) = Ṽ (x) = τ
} ∀i ∈ Iτ , (3.40)

while the definitions (3.30), (3.31), (3.33) imply

πk,i ∩ Sk = πk,i ∩ Si = Sk ∩ Si,

Σ ⊂ π ∪ π− , Σ ⊂ π ∪ π+ ∀k, i ∈ Iτ . (3.41)

τ,k k,i k,i τ,i k,i k,i
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Therefore, relying on (3.41) we deduce that, for every pair of indices k, i ∈ Iτ , k �= i, one of the following two cases
occurs:

– if
◦
Bk ∩ ◦

Bi �= ∅, then πk,i is the hyperplane passing through Sk ∩ Si ;
– if

◦
Bk ∩ ◦

Bi= ∅, then Sk ⊂ πk,i ∪ π−
k,i and Si ⊂ πk,i ∪ π+

k,i , i.e. πk,i is an hyperplane separating Sk and Si .

5. By the above construction, and relying on (3.11), (3.22), we deduce that

Στ,i ⊂Pi ∩ BL,

B(Στ,i , ε2) ⊂ BL′ ,
∀τ ∈ [τ0, T

′′[, i ∈ Iτ . (3.42)

Hence, thanks to (3.18), (3.27), (3.42), we find〈∇Vi(x), f
(
x, vi

)〉
< −1 + 2ε1 ∀x ∈ B

(
Στ,i, ε2

)
, τ ∈ [τ0, T

′′[, i ∈ Iτ . (3.43)

Relying on (3.43), we shall construct around each set Στ,i , i ∈ Iτ , a lens-shaped domain Γτ,i of the form (2.32) as in
Lemma 3, so that the boundary of Γτ,i is transversal to the flow of the vector field gi(x)

.= f (x, vi). Namely, letting
x(t;y, vi) denote the solution of the Cauchy problem ẋ = gi(x), x(0) = y, we will prove the following

Claim 1. There exists a positive constants ε3 so that, for every given τ ∈ [τ0, T
′′[, k ∈ Iτ , the vector field gτ,k(x)

.=
f (x, vk) is transversal to the boundary of the domain

Γτ,k
.= {

x
(
s;y, vk

); y ∈ B(Στ,k, ε3) ∩ Sk, dΣτ,k

2(y) − ε2
3 < s � 0

}
. (3.44)

Namely, it points strictly inward on the upper boundary

∂−Γτ,k
.= ∂Γτ,k

∖ ⋃
j∈Iτ

Bj

and strictly outward on the lower boundary

∂+Γτ,k
.= ∂Γτ,k ∩ Sk.

Moreover, there holds∣∣gτ,k(x)
∣∣� c8 ∀x ∈ Γτ,k, (3.45)

Γτ,k ⊂ B(Στ,k, ε2) ⊂ B(yk,2ε2), (3.46)

for some constant c8 > 0 independent on τ ∈ [τ0, T
′′[, k ∈ Iτ .

6. Proof of Claim 1. In order to establish the claim, we shall first derive an upper and lower uniform bound for the
radii of the spheres

Si
.= {

x ∈ R
n; Vi(x) = τ

}
i ∈ Iτ , τ ∈ [τ0, T

′′[, (3.47)

and we will prove an a priori estimate for 〈ni , f (x, vi)〉, x ∈ Στ,i , independent of τ ∈ [τ0, T
′′[, and i ∈ Iτ (ni denoting

the unit outer normal to Si ). To this end observe that by (1.3) one has∣∣gτ,i(x)
∣∣= ∣∣f (x, vi)

∣∣� c9
.= c(1 + L′) ∀x ∈ BL′ . (3.48)

Then, for every fixed i ∈ Iτ , τ ∈ [τ0, T
′′[, writing

Vi(x) = (1 + λ)|x − ωi |2 + bi ∀x ∈ Si,

for some point ωi ∈ R
n and some constant bi , and using (3.3), (3.42), (3.43), (3.48), we derive the estimate

2(1 + λ)|x − ωi | =
∣∣∇Vi(x)

∣∣� |〈∇Vi(x), f (x, vi)〉|
|f (x, vi)| � 1

2c9
∀x ∈ Στ,i . (3.49)

On the other hand, from the definition (3.1) of Vi = V yi , recalling that yi ∈ ΛT ′ , and relying on (3.10), (3.27), one
deduces the a priori bound∣∣∇Vi(x)

∣∣� ∣∣∇V (x)
∣∣+ 4(1 + λ)diam(ΛT ′) � c6 ∀x ∈ D. (3.50)
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Hence, thanks to (3.49), (3.50), we find that the radius ri = |x − ωi |, x ∈ Στ,i , of the sphere Si satisfies

1

4c9(1 + λ)
� ri � c6

2(1 + λ)
∀i ∈ Iτ , τ ∈ [τ0, T

′′[, (3.51)

while (3.3), (3.43), together with (3.50), yield〈
ni , f

(
x, vi

)〉= 〈∇Vi(x), f (x, vi)〉
|∇Vi(x)| � − 1

2c6
∀x ∈ Στ,i, i ∈ Iτ , τ ∈ [τ0, T

′′[. (3.52)

Therefore, because of (3.51), (3.52), we can apply Lemma 3 to every set Στ,k , τ ∈ [τ0, T
′′[, k ∈ Iτ , in connection

with the vector field gτ,k . Thus we deduce the existence of some constant ε3 > 0, so that the field gτ,k(x) = f (x, vk)

is transversal to the boundary of the domain Γτ,k defined in (3.44). Concerning (3.46), observe that choosing ε3 such
that ε3(c9ε3 + 1) < ε2, thanks to (3.42), (3.48) we obtain

dΣτ,k

(
x
(
s;y, vk

))+ dΣτ,k
(y) �

∣∣x(s;y, vk
)− y

∣∣
� |s| ‖gτ,k‖L∞(BL′ ) + dΣτ,k

(y)

� |s|c9 + ε3 < ε2 ∀y ∈ B(Στ,k, ε3) ∩ Sk, −ε2
3 < s � 0. (3.53)

Hence, because of (3.42), (3.17), (3.27), relying on (3.53) we find

Γτ,k ⊂ B(Στ,k, ε2) ⊂ B(Pk, ε2) ⊂ B(yk,2ε2), (3.54)

which proves (3.46). Finally, observe that, for every given k ∈ Iτ , τ ∈ [τ0, T
′′[, fixing some point x̄ ∈ Στ,k , thanks

to (3.46), and because of (3.3), (3.9)–(3.11), (3.52), we derive∣∣f (x, vk
)∣∣� ∣∣f (x̄, vk

)∣∣− ∣∣f (x, vk
)− f

(
x̄, vk

)∣∣
�
∣∣〈nk, f

(
x̄, vk

)〉∣∣− c5 · |x − x̄|
� 1

2c6
− 4c5ε2

� 1

4c6
∀x ∈ Γτ,k, (3.55)

which yields (3.45), thus completing the proof of our claim.
7. Given τ ∈ [τ0, T

′′[, k ∈ Iτ , consider now the domain Γτ,k defined in (3.44), and observe that, because of (3.16),
(3.43), (3.46), every trajectory x(t) of ẋ = gτ,k(x), passing through points of Γτ,k ∩Pk , satisfies

Ṽ
(
x(t)

)= Vk

(
x(t)

)
= Vk

(
x(s)

)+
t∫

s

〈∇Vk

(
x(σ )

)
, f
(
x(σ ), vk

)〉
dσ

� Vk

(
x(s)

)+ (−1 + 2ε1)(t − s)

= Ṽ
(
x(s)

)+ (−1 + 2ε1)(t − s) ∀t > s. (3.56)

However, there may well be points x(t) ∈ Γτ,k where Vk(x(t)) > Ṽ (x(t)). Near these points there is no guarantee that
(3.56) should hold. To address this difficulty, we will consider the set of all indices i �= k such that Vi(x̄) < Vk(x̄) for
some x̄ ∈ Γτ,k , and such that

min
x∈Γτ,k

〈∇Vk(x) − ∇Vi(x), f
(
x, vk

)〉
< 0. (3.57)

In this case, we shall replace Γτ,k with the smaller domain

Γτ,k ∩ {x ∈ R
n; Vk(x) < Vi(x)

}
.

Then, setting

Jτ,k
.= {

i ∈ {1, . . . ,N} \ {k}; Pi ∩ Γτ,k �= ∅, min
〈∇Vk(x) − ∇Vi(x), f

(
x, vk

)〉
< 0

}
, (3.58)
x∈Γτ,k
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Fig. 6. (i /∈ Jτ,k). Fig. 7. (i ∈Jτ,k).

consider the domain (see Fig. 7)

Γ̃τ,k
.=
⎧⎨⎩Γτ,k ∩

⋂
i∈Jτ,k

π−
k,i if Jτ,k �= ∅,

Γτ,k otherwise,

(3.59)

which, according with the definitions (2.32), (2.38), is precisely equal to Γ
Jτ,k

ε3
(Στ,k).

Notice that, because of (3.37), (3.39), (3.51), (3.52), and by the observations at point 4, for every fixed h =
1, . . . , ητ , the spheres Si , i ∈ Ih

τ , and the collection of hyperplanes

Πh
τ

.= {
πk,i; k, i ∈ Ih

τ

}
satisfy the assumptions of Lemma 4. Hence, in the case where⋃

k∈Ih
τ

Jτ,k ⊂ Ih
τ ,

we are in the position to apply the conclusion of Lemma 4 in connection with the collection of hyperplanes Πh
τ and

of sets (see Fig. 8){
Στ,i; i ∈ Ih

τ

}
defined in (3.34), in order to derive a uniform estimate of the distance of the (upper) boundary of

Gh
τ

.=
⋃

k∈Ih
τ

Γ̃τ,k (3.60)

from the set

Σh
τ =

⋃
i∈Ih

τ

Στ,i .

As a consequence, we obtain an estimate of the decrease of Ṽ along trajectories of gτ,k passing through Γ̃τ,k , k ∈ Ih
τ .

More precisely, setting

I∗
1

.=
{
τ ∈ [τ0, T

′′[;
⋃

k∈Ih
τ

Jτ,k ⊂ Ih
τ ∀h = 1, . . . , ητ

}
,

Gτ
.=
⋃
k∈Iτ

Γ̃τ,k =
ητ⋃

h=1

Gh
τ ,

(3.61)

we will prove the following

Claim 2. The domains Γ̃τ,k , k ∈ Iτ , τ ∈ [τ0, T
′′[, defined in (3.59) enjoy the following properties.
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Fig. 8.

(i) For any k ∈ Iτ , τ ∈ [τ0, T
′′[, the vector field gτ,k(x)

.= f (x, vk) points strictly inward at every point of the upper
boundary

∂−Γ̃τ,k
.= ∂Γ̃τ,k

∖ ⋃
j∈Iτ

Bj . (3.62)

(ii) For any y ∈ Γ̃τ,k \⋃j∈Iτ
Bj , k ∈ Iτ , τ ∈ [τ0, T

′′[, there exists a time Tτ,k(y) > 0 so that one has

x
(
Tτ,k(y); y, vk

) ∈ Στ , (3.63)

x
(
t;y, vk

) ∈ Γ̃τ,k ∀t ∈ ]0,Tτ,k(y)
]
, (3.64)

and there holds

Ṽ
(
x
(
t;y, vk

))
� Ṽ

(
x
(
s;y, vk

))+ (−1 + 3ε1)(t − s) ∀0 � s < t � Tτ,k(y), (3.65)

where ε1 is the constant satisfying (3.3).
(iii) For any τ ∈ [τ0, T

′′[, one has

τ � .= sup

{
t ∈ [τ, T ′′[; Σs ⊂ ◦

Gτ

∖ ⋃
j∈Iτ

Bj ∀s ∈ ]τ, t]
}

> τ. (3.66)

Moreover, there exists a positive constant ε4 so that there holds

τ � > τ + ε4 ∀τ ∈ I∗
1 . (3.67)

8. Proof of Claim 2. By Claim 1 we know that, for every k ∈ Iτ , the vector field gτ,k is inward-pointing on the
region ∂−Γ̃τ,k ∩ ∂−Γτ,k . On the other hand, recalling (3.32), the inequality (3.57) guarantees that gτ,k enjoys the

inward-pointing condition also at the boundary points x ∈ ∂−Γ̃τ,k ∩ ◦
Γ τ,k ∩ πk,i , i ∈ Jτ,k . Then, observing that

∂−Γ̃τ,k \ ∂−Γτ,k = ∂−Γ̃τ,k ∩ ◦
Γ τ,k ∩

⋃
i∈Jτ,k

πk,i ,

by continuity it follows that gτ,k(x) ∈ ◦
T Γ̃τ,k

(x) at every point x ∈ ∂−Γ̃τ,k (
◦
T Γ̃τ,k

denoting the interior of the tangent

cone to Γ̃τ,k defined as in (1.12)), which proves the property (i) of Claim 2. Concerning the property (ii), observe first

that by property (i) a trajectory γy(·) of gτ,k starting at a point y ∈ Qτ,k
.= Γ̃τ,k \⋃j∈Iτ

Bj cannot escape from Qτ,k

through a point of ∂−Γ̃τ,k . Thus, since (3.45) shows that |gτ,k| is bounded away from zero, and because by (3.34)
one has ∂Qτ,k \ ∂−Γ̃τ,k ⊂⋃

j∈Iτ
Sj = Στ , it follows that γy(·) must cross the level set Στ in finite time Tτ,k(y) > 0,

and hence (3.63), (3.64) are verified. In fact, with the same arguments above one can show that every trajectory γy(·)
starting at a point of

Qh
τ,k

.= Γ̃τ,k

∖ ⋃
h

Bj , 1 � h � ητ , (3.68)

j∈Iτ
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crosses the set Σh
τ ⊂ Στ in finite time T h

τ,k(y) � Tτ,k(y). Next, observe that setting

Iτ,k
.= {

i ∈ {1, . . . ,N}; Pi ∩ Γ̃τ,k �= ∅}, (3.69)

by definition (3.58) for every i ∈ Iτ,k \ (Jτ,k ∪ {k}) there will be some point x̄i ∈ Γτ,k such that (see Fig. 6)〈∇Vk(x̄i) − ∇Vi(x̄i), f
(
x̄i , v

k
)〉

� 0. (3.70)

Thus, relying on (3.43), (3.46), (3.70), we derive〈∇Vi(x̄i), f
(
x̄i , v

k
)〉= 〈∇Vk(x̄i), f

(
x̄i , v

k
)〉− 〈∇Vk(x̄i) − ∇Vi(x̄i), f

(
x̄i , v

k
)〉

< − 1 + 2ε1.
(3.71)

Then, since (3.27), (3.46) imply Γ̃τ,k ⊂ Γτ,k ⊂ B(yk,2ε2) ∩ BL, using (3.9), (3.11), (3.71), we find〈∇Vi(x), f
(
x, vk

)〉
�
〈∇Vi(x̄i), f

(
x̄i , v

k
)〉+ ∣∣〈∇Vi(x), f

(
x, vk

)〉− 〈∇Vi(x̄i), f
(
x̄i , v

k
)〉∣∣

< −1 + 2ε1 + c54ε2

< −1 + 3ε1 ∀x ∈ Γ̃τ,k, i ∈ Iτ,k. (3.72)

Hence, setting

x(t)
.= x
(
t;y, vk

)
, y ∈ Qh

τ,k, 1 � h � ητ , (3.73)

and observing that, for every fixed 0 � s < t � T h
τ,k(y), by (3.16), (3.69) there will be some index i(s) ∈ Iτ,k such that

Ṽ (x(s)) = Vi(s)(x(s)), relying on (3.43), (3.46), (3.64), (3.72), we derive

Ṽ
(
x(t)

)
� Vi(s)

(
x(t)

)
= Vi(s)

(
x(s)

)+
t∫

s

〈∇Vi(s)

(
x(σ )

)
, f
(
x(σ ), vk

)〉
dσ

� Vi(s)

(
x(s)

)+ (−1 + 3ε1)(t − s)

= Ṽ
(
x(s)

)+ (−1 + 3ε1)(t − s), (3.74)

which yields (3.65) since T h
τ,k(y) � Tτ,k(y). Observe now that, by the observations at point 7, we can apply Lemma 4

for every collection of sets {Στ,k; k ∈ Ih
τ }, and hyperplanes {πk,i; k, i ∈ Ih

τ }, h = 1, . . . , ητ , τ ∈ I∗
1 . Thus we deduce

that there exists some constant c10 > 0 such that

dΣh
τ

(
∂−Gh

τ

)
� c10 ∀h = 1, . . . , ητ , τ ∈ I∗

1 . (3.75)

Since x(T h
τ,k(y)) ∈ Σh

τ , relying on (3.64), (3.75) we find that, for every fixed τ ∈ I∗
1 , 1 � h � ητ , k ∈ Ih

τ , using the
same notation in (3.73) one has∣∣y − x

(
T h

τ,k(y)
)∣∣� dΣh

τ

(
∂−Gh

τ

)
� c10 ∀y ∈ ∂−Gh

τ ∩ Qh
τ,k. (3.76)

On the other hand, by (3.27), (3.48), (3.64), we derive∣∣y − x
(
T h

τ,k(y)
)∣∣� c9T h

τ,k(y) ∀y ∈ ∂−Gh
τ ∩ Qh

τ,k, (3.77)

which, together with (3.76), yields

T h
τ,k(y) � c10

c9
∀y ∈ ∂−Gh

τ ∩ Qh
τ,k. (3.78)

Therefore, observing that by (3.23) one has

Ṽ
(
x
(
T h

τ,k(y)
))= τ ∀y ∈ ∂−Gh

τ ∩ Qh
τ,k,

thanks to (3.78), and relying on (3.3), (3.74), we deduce that, for every fixed τ ∈ I∗, 1 � h � ητ , k ∈ Ih
τ , there holds
1
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Ṽ (y) � Ṽ
(
x
(
T h

τ,k(y)
))+ (1 − 3ε1)T h

τ,k(y)

� τ + T h
τ,k(y)

4

� τ + c10

4c9
∀y ∈ ∂−Gh

τ ∩ Qh
τ,k. (3.79)

Hence, since by definitions (2.40), (3.60), (3.68), one has

∂−Gh
τ =

⋃
k∈Ih

τ

∂−Gh
τ ∩ Qh

τ,k,

it follows from (3.79) that

Ṽ (y) > τ + ε4 ∀y ∈ ∂−Gh
τ , 1 � h � ητ , τ ∈ I∗

1 , (3.80)

where ε4
.= c10/(8c9). Moreover, with the same computations in (3.79) we derive also the estimates

Ṽ (y) > τ ∀y ∈ Gh
τ

∖ ⋃
j∈Ih

τ

Bj , 1 � h � ητ , τ ∈ [τ0, T
′′[, (3.81)

Ṽ (y) > τ + minh dΣh
τ
(∂−Gh

τ )

8c9
∀y ∈ ∂−Gh

τ , 1 � h � ητ , τ ∈ [τ0, T
′′[. (3.82)

Notice that (3.81), in particular, implies ∂−Gh
τ ∩ Σh

τ = ∅, for all 1 � h � ητ , and hence one has

χτ
.= τ + minh dΣh

τ

(
∂−Gh

τ

)
8c9

> τ. (3.83)

To conclude, observe that by construction, for every given τ ∈ [τ0, T
′′[, 1 � h � ητ , the set{

x ∈ R
n; Ṽ (x) � τ

} \ ∂−Gh
τ (3.84)

consists of two connected components, one of which, say Oh, contains Σh
τ . Thus, since (3.61) implies

◦
Gτ =⋃ητ

h=1

◦
G

h

τ ,
and because of (3.81), there holds

ητ⋃
h=1

Oh = Στ∪
( ◦
Gτ

∖ ⋃
j∈Iτ

Bj

)
. (3.85)

On the other hand, (3.80), (3.82), imply

{
x ∈ R

n; τ � Ṽ (x) � χτ

}⊂
ητ⋃

h=1

Oh ∀τ ∈ [τ0, T
′′[,

{
x ∈ R

n; τ � Ṽ (x) � τ + ε4
}⊂

ητ⋃
h=1

Oh ∀τ ∈ I∗
1 ,

(3.86)

and hence (3.85), (3.86) together yield

{
x ∈ R

n; τ � Ṽ (x) � χτ

}⊂ Στ ∪
( ◦
Gτ

∖ ⋃
j∈Iτ

Bj

)
∀τ ∈ [τ0, T

′′[, (3.87)

{
x ∈ R

n; τ � Ṽ (x) � τ + ε4
}⊂ Στ ∪

( ◦
Gτ

∖ ⋃
j∈Iτ

Bj

)
∀τ ∈ I∗

1 . (3.88)

Recalling the definition (3.23) of Στ , we recover from (3.87), (3.88) the inclusions
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◦
Gτ

∖ ⋃
j∈Iτ

Bj ⊃ {
x ∈ R

n; τ < Ṽ (x) � χτ

} ∀τ ∈ [τ0, T
′′[, (3.89)

◦
Gτ

∖ ⋃
j∈Iτ

Bj ⊃ {
x ∈ R

n; τ < Ṽ (x) � τ + ε4
} ∀τ ∈ I∗

1 (3.90)

which, in turn, together with (3.83), yield (3.66), (3.67), and thus we complete the proof of the claim.
Notice that, by definitions (3.38), (3.58), (3.59), and from the above proof of Claim 2 it follows that the inclusion

in (3.90) is verified also for all time τ in the set

I∗
2

.= {
τ ∈ [τ0, T

′′[ \ I∗
1 ; ηt = ητ , Ih

t ⊂ Ih
τ ∀t ∈ [τ, τ �

[
, h = 1, . . . , ητ

}
. (3.91)

Hence, we derive

τ � > τ + ε4 ∀τ ∈ I∗
2 . (3.92)

9. Relying on the properties (i), (ii) stated in Claim 2, for every fixed τ ∈ [τ0, T
′′[ we shall construct now a patchy

feedback on the open region

Ωτ
.= ◦
Gτ

∖ ⋃
j∈Iτ

Bj . (3.93)

To this end we first need to slightly enlarge some of the domains defined in (3.59). Namely, for every k ∈ Iτ , consider
the set

Ĵτ,k
.= {

i ∈ Jτ,k ∩ Iτ ; i > k, k ∈ Jτ,i

}
, (3.94)

fix some positive constant ρ � ε3, denote by π
ρ
k,i the hyperplane parallel to πk,i that lies in the half space π+

k,i =
{x ∈ R

n; Vk(x) > Vi(x)} at a distance ρ from πk,i , and call π
ρ,−
k,i the half space determined by π

ρ
k,i that contains πk,i .

Then, set

Γ̂τ,k
.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γτ,k ∩
⋂

i∈Jτ,k\Ĵτ,k

π−
k,i ∩

⋂
i∈Ĵτ,k

(
π

ρ,−
k,i ∩ Γτ,i

)
if Jτ,k �= Ĵτ,k, Ĵτ,k �= ∅,

Γτ,k ∩
⋂

i∈Ĵτ,k

(
π

ρ,−
k,i ∩ Γτ,i

)
if Jτ,k = Ĵτ,k �= ∅,

Γ̃τ,k if Ĵτ,k = ∅,

(3.95)

Ωτ,k
.= Γ̂τ,k

∖ ⋃
j∈Iτ

Bj , (3.96)

and observe that, by definitions (3.59), (3.62), (3.94), (3.95), (3.96), one has

∂Γ̂τ,k

∖ ⋃
h∈Iτ
h>k

Γ̂τ,h ⊂ ∂Γ̃τ,k,

∂Ωτ,k

∖(
Στ,k ∪

⋃
h∈Iτ
h>k

Ωτ,h

)
⊂ ∂−Γ̃τ,k.

Thus, by property (i) of Claim 2 it follows that the vector field gτ,k(x) = f (x, vk) satisfies the inward-pointing
condition (1.5) at every point x ∈ ∂Ωτ,k \ (Στ ∪⋃h∈Iτ

h>k

Ωτ,h). Then, letting gτ denote the vector field on Ωτ defined

by

gτ (x)
.= gτ,k(x) if x ∈ Δτ,k

.= Ωτ,k

∖ ⋃
h∈Iτ
h>k

Ωτ,h, (3.97)

and considering the map Uτ :Ωτ → U defined by

Uτ (x)
.= vk if x ∈ Δτ,k, (3.98)
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in view of Remark 1.3 we deduce that the triple (Ωτ , gτ , (Ωτ,k, gτ,k)k∈Iτ
) is a patchy vector field on Ωτ associated

to the patchy feedback (Ωτ ,Uτ , (Ωτ,k, v
k)k∈Iτ

). Notice that, by definitions (3.59), (3.62), (3.94)–(3.97), one has

Δτ,k ⊂ Γ̃τ,k

∖ ⋃
j∈Iτ

Bj ∀k ∈ Iτ ,

and hence we may apply the property (ii) of Claim 2 to a trajectory of gτ passing through the domain Δτ,k .

Claim 3. The patchy vector field gτ on the domain Ωτ , τ ∈ [τ0, T
′′[, defined in (3.97) enjoys the following properties.

(i) For any y ∈ Ωτ , and for every Carathéodory trajectory γy(·) of

ẋ = gτ (x) (3.99)

starting at y, there exists a time Tτ (y, γy) > 0 so that one has

γy

(
Tτ (y, γy)

) ∈ Στ , (3.100)

and there holds

t + Ṽ
(
γy(t)

)
� Ṽ (y) + 3ε1t ∀0 � t � Tτ (y, γy). (3.101)

(ii) For any τ ∈ [τ0, T
′′[, one has

τ � .= sup
{
t ∈ [τ, T ′′[; Σs ⊂ Ωτ ∀s ∈ ]τ, t]}> τ. (3.102)

Moreover, there exists a positive constant ε4 so that there holds

τ � > τ + ε4 ∀τ ∈ I∗
1 ∪ I∗

2 . (3.103)

10. Proof of Claim 3. Given y ∈ Ωτ , let γy be a trajectory of (3.99) starting at y, and set

tmax(γy)
.= sup

{
t > 0; γy is defined on [0, t]}. (3.104)

By the properties of the patchy vector fields recalled in Section 1 and relying on Claim 2 one can recursively construct
two increasing sequences of times 0 = t0 < t1 < · · · < tν̄ � tmax, and of indices i1 < i2 < · · · < iν̄ ∈ Iτ with the
following properties:

(a) γy is a solution of ẋ = gτ,iν (x) taking values in Δτ,iν for all t ∈ ]tν−1, tν], 1 � ν � ν̄;
(b) γy(tν) ∈ ∂Ωτ,iν+1 for all 1 � ν < ν̄, and γy(tν̄ ) ∈ Στ ∪⋃ i∈Iτ

i>iν̄

∂Ωτ,i ;

(c) tν − tν−1 < Tτ,iν (γy(tν−1)) for all 1 � ν < ν̄, and tν̄ − tν̄−1 � Tτ,iν̄ (γy(tν̄−1)).

Notice that, since {iν}ν is strictly increasing, and because ν̄ � |Iτ | � N (N being the number of quadratic function
Vi that appear in the definition (1.13) of the map Ṽ ), we can produce a sequence of times tν , and of indices iν ∈ Iτ ,
1 � ν � ν̂, of such type so that tν̂ = tmax. Hence, since γy(tν̂ ) ∈⋃ i∈Iτ

i>iν̂

∂Ωτ,i would imply that the trajectory γy could

be prolonged after time tν̂ , which is in contrast with the maximality of tν̂ , by property b) it follows that γy(tν̂ ) ∈ Στ ,
proving (3.100). Next, applying repeatedly the estimate (3.65) of Claim 2, and recalling that γy(0) = y, we derive

Ṽ
(
γy(t)

)
� Ṽ

(
γy(tν)

)+ (−1 + 3ε1)(t − tν)

� Ṽ (y) + (−1 + 3ε1)t ∀t ∈ ]tν−1, tν], 0 < ν � ν̂,

which yields (3.101). To conclude the proof of the claim, we only need to observe that, by definition (3.93), the
estimates (3.102), (3.103) are precisely the same as the estimates (3.66), (3.67), (3.92) established at point 8.
11. Relying on Claim 3, we shall construct now a patchy feedback on the region D defined in (3.26). To this end,
proceeding by induction on m � 0, we introduce a sequence of times τm defined as follows. Observe that, by defini-
tion (3.91), for every τ ∈ [τ0, T

′′[\(I∗
1 ∪ I∗

2 ) one has

Θτ
.= {

t ∈ ]τ, τ �[; either ηt < ητ , or
∣∣Ih

t

∣∣> ∣∣Ih
τ

∣∣ for some 1 � h � ητ

} �= ∅.
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Then, letting τ0 be the constant defined in (3.5), for every m > 0, set

τm
.=
{

τm−1 + ε4 if τm−1 ∈ I∗
1 ∪ I∗

2 ,

infΘτm−1 otherwise. (3.105)

By construction, and because of (3.102), (3.103), there holds

Ωτm ⊃ {
x ∈ R

n; τm < Ṽ (x) � τm+1
} ∀m � 0. (3.106)

Moreover, observing that t �→ ηt is a decreasing map and that ηt � N , |Ih
t | � N , for all t and h, it follows that

{τm}m�0 is a strictly increasing sequence enjoying the property

τm /∈ I∗
1 ∪ I∗

2 �⇒ ∃p > m, p < m + N2 s.t. τp ∈ I∗
1 ∪ I∗

2 . (3.107)

In turn, (3.105), (3.107) imply that for every m there exists some p > m, p < m + N2, such that τp > τm + ε4. Thus,
we deduce that there will be some integer μ such that τμ � T ′′ < τμ+1, and hence, by (3.26), (3.106) one has

D ⊂ Ω
.=

μ⋃
m=0

Ωτm. (3.108)

Let’s introduce the total ordering

(m, k) ≺ (p,h) if either m > p or else m = p, k < h, (3.109)

on the index set

A = {
(m, k): m = 0, . . . ,m, k ∈ Iτm

}
.

Then, if we define the vector field g on Ω by setting

g(x)
.= gτm,k(x) if x ∈ Dm,k

.= Ωτm,k

∖ ⋃
(m,k)≺(p,h)

Ωτp,h, (3.110)

and consider the map U :Ω → U defined by

U(x)
.= vk if x ∈ Dm,k, (3.111)

in view of the observations at point 9 we deduce that the triple (Ω,g, (Ωτm,k, gτm,k)(m.k)∈A) is a patchy vector field
on Ω associated to the patchy feedback (Ω,U, (Ωτm,k, v

k)(m.k)∈A), so that one has

g(x) = f
(
x,U(x)

) ∀x ∈ Ω. (3.112)

Given y ∈ Ω , let γy be a Carathéodory trajectory of (1.9) starting at y, and define tmax
(
γy

)
as in (3.104). By the

properties of the patchy vector fields and relying on Claim 3 one can recursively construct an increasing sequences
of times 0 = t0 < t1 < · · · < tν̄ � tmax, and a decreasing sequence of indices m1 > m2 > · · · > mν̄ , so that, setting
γν

.= γ �]tν−1,tν ], 1 � ν � ν, there holds:

(a) γy is a solution of ẋ = gτmν
(x) taking values in Ωmν for all t ∈ ]tν−1, tν], 1 � ν � ν̄;

(b) γy(tν−1) ∈ ∂Ωτmν
for all 1 < ν � ν̄, and γy(tν̄ ) ∈ Στ0 ∪⋃mν̄<p ∂Ωτp ;

(c) tν − tν−1 < Tτmν
(γy(tν−1), γν) for all 1 � ν < ν̄, and tν̄ − tν̄−1 � Tτmν̄

(γy(tν̄−1), γν).

Notice that, since {mν}ν is strictly decreasing, and because ν̄ � μ, we can produce a sequence of times tν , and
of indices mν , 1 � ν � ν̂, of such type so that tν̂ = tmax. Thus, since γy(tν̂) ∈ ⋃mν̄<p

∂Ωτp would imply that the
trajectory γy could be prolonged after time tν̂ , which is in contrast with the maximality of tν̂ , by property (b) it
follows that γy(tν̂ ) ∈ Στ0 , and hence, by (3.29), one has γy(tν̂) ∈ Bε . Next, given y ∈ D, applying repeatedly the
estimate (3.101) of Claim 3, we derive

Ṽ
(
γy(tν)

)
� Ṽ

(
γy(tν−1)

)+ (−1 + 3ε1)
(
tν − tν−1

)
� Ṽ (y) + (−1 + 3ε1) · tν ∀0 < ν � ν̂.

(3.113)

Relying on the estimate (3.113) in the case ν = ν̂, and thanks to (3.3), (3.11), (3.14), (3.26), (3.27), we find
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tν̂ � Ṽ (y)

1 − 3ε1

�
(
1 + 2ε1

)(
V (y) + ε2

2

)
� V (y) + 2ε1T

′ + (1 + 2ε1)ε
2
2

< V (y) + ε, (3.114)

which establish the conclusion of the theorem observing that γy reaches the ball Bε within a time � tν̂ since
γy(tν̂ ) ∈ Bε . �
Appendix A

We provide here a proof of the two technical lemmas stated in Section 2, concerning the properties of lens-shaped
domains of the form (2.32) constructed around a collection of spheres with uniformly bounded (from above and from
below) radii.

Proof of Lemma 3. Fix r0 > 0, and observe that the unit normal to a sphere S with radius r � r0 is Lipschitz
continuous with Lipschitz constant 1/r0:∣∣nS(y1) − nS(y2)

∣∣= |y1 − y2|
r

� |y1 − y2|
r0

∀y1, y2 ∈ S.

Hence, by (2.31), and thanks to the Lipschitz continuity of the field g and of the unit normal nS , we deduce that there
exist ε̄ > 0 sufficiently small, and c̄′ > 0, depending only on r0, c0, and on Lip(g), so that〈

nS(x), g(x)
〉
� −c̄′, ∀x ∈ ∂+Γε̄, (A.1)

proving the transversality property of the vector field g to the boundary ∂+Γε̄ . Next, observe that the set ∂−Γε̄ in
(2.33) is a piecewise smooth hypersurface parametrized by

y �→ Φ(y)
.= x
(
dC

2(y) − ε̄2, y
)
, y ∈ B(C, ε̄) ∩ S.

Hence, the tangent space to ∂−Γε̄ at every regular point x = Φ(y) of ∂−Γε̄ is the image of the tangent space to S at y

under the differential of Φ , i.e. there holds

T∂−Γε̄

(
Φ(y)

)= dΦ(y) · TS(y). (A.2)

By standard differentiability properties of the trajectories of ẋ = g(x), one finds that at the points in which dC
2(y) is

differentiable there holds

dΦ(y) = 〈∇dC
2(y), ·〉g(Φ(y)

)+ X
((

dC(y)
)2 − ε̄2)

where X(t) denotes the fundamental matrix solution of the linear problem v̇ = Dg(x(t, y)) · v, that coincides with the
identity matrix Id at time t = 0. Thus, observing that at the points where dC

2(y) is differentiable one has |∇dC
2(y)| �

2dC(y), we obtain∣∣dΦ(y) − Id
∣∣� 2dC(y)‖g‖L∞ + ((

ε̄2 − dC
2(y)

)
Lip(g)

)
e((ε̄2−dC

2(y))Lip(g))

� 2ε̄‖g‖L∞ + (
ε̄2 · Lip(g)

)
e(ε̄2 Lip(g)).

(A.3)

In turn, (A.3) together with (A.2) implies∣∣n∂−Γε̄
(x) − nS

(
Φ−1(x)

)∣∣� c11ε̄ (A.4)

(n∂−Γε̄
(x) denoting the unit normal to ∂−Γε̄), for some constant c11 > 0 depending only on ‖g‖L∞,Lip(g). Then, by

the Lipschitz continuity of g and of the unit normal nS , we deduce from (2.31), (A.4) that, choosing ε̄ > 0 sufficiently
small, there exist some constant c̄′′ > 0, depending only on r0, c0, and on ‖g‖L∞ , Lip(g), so that at every regular point
x = Φ(y) of ∂−Γε̄ there holds〈

n∂−Γ (x), g(x)
〉
� −c̄′′.
ε̄
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Clearly, by continuity this implies that g(x) ∈ ◦
TΓε̄

(x) at every irregular point of ∂−Γε̄ (
◦
TΓε̄

denoting the interior of
the tangent cone to Γε̄ defined as in (1.12)), thus showing that the vector field g is inward-pointing on the boundary
∂−Γε̄ , which completes the proof of the lemma. �
Remark 4.1. Relying on the proof of Lemma 3 one can show that there exists some constant c12 > 0 (depending only
on r0, c̄, ‖g‖L∞ , and on Lip(g)), so that there holds

dS

(
x
(
dC

2(y) − ε̄2, y
))

> c12ε̄
2 ∀y ∈ B(C, ε̄/2) ∩ S. (A.5)

Indeed, notice that thanks to the Lipschitz continuity of the field g we may choose the constants c̄′, ε̄ so that the
estimate in (A.1) holds for all points x ∈ Γε̄ , i.e. such that∣∣〈nS(y), g(x)

〉∣∣� c̄′ ∀x ∈ Γε̄, ∀y ∈ ∂+Γε̄. (A.6)

Relying on (A.6) we then deduce that

dS

(
Φ(y)

)
�
∣∣〈Φ(y) − y,nS(y)

〉∣∣
� c̄′(ε̄2 − dC

2(y)
)

>
c̄′ε̄2

2
∀y ∈ B(C, ε̄/2) ∩ S, (A.7)

which proves (A.5), with c12
.= c̄′/2,

Proof of Lemma 4.
1. We will provide a proof of a more general result than the one stated in the lemma. Namely, we will show that there
exist constants ε̄′, c4 > 0, so that, for every given set of indices I ⊂ {1, . . . , ν}, if we consider the sets

CI .=
⋃
k∈I

Ck, GI .=
⋃
k∈I

Γ
Jk

ε̄′ , (A.8)

∂−GI .= ∂GI
∖ ν⋃

k=1

Bk, (A.9)

one has

dCI
(
∂−GI)� c4. (A.10)

Clearly, in the particular case where I = {1, . . . , ν}, we have

CI = C, GI = G, ∂−GI = ∂−G,

and hence we recover the estimate (2.41) from (A.10). The proof of (A.10), for an arbitrary set I ⊂ {1, . . . , ν}, will
be obtained proceeding by induction on the number |Π | of hyperplanes contained in the set Π considered in (2.37).
Notice that, setting

∂−IΓ
Jk

ε̄′
.= ∂Γ

Jk

ε̄′
∖( ν⋃

j=1

Bj ∪
⋃
j∈I
j �=k

Γ
Jj

ε̄′

)
∀k = 1, . . . , ν, (A.11)

by definitions (A.8), (A.9), one has

∂−GI =
⋃
k∈I

∂−IΓ
Jk

ε̄′ ,

and hence there holds

dCI
(
∂−GI)� mindCI

(
∂−IΓ

Jk

ε̄′
)
. (A.12)
k∈I
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Thus, in order to establish (A.10), it will be sufficient to prove by induction on |Π | that there exist some constants
ε̄′, c4 > 0, so that there holds

dCI
(
∂−IΓ

Jk

ε̄′
)
> c4 ∀k ∈ I. (A.13)

2. Consider first the case where Π = ∅, i.e. assume that Πk = ∅ for all k, and fix some set of indices I ⊂ {1, . . . , ν}.
Then, recalling the definitions (2.32), (2.33), and observing that

∂−Γε̄(Ck) = ∂Γε̄(Ck) \ Bk ∀k = 1, . . . , ν, (A.14)

by (2.38), (A.11), we have

Γ
Jk

ε̄ = Γε̄(Ck),

∂−IΓ
Jk

ε̄′ = ∂−Γε̄(Ck)
∖(⋃

j �=k

Bj ∪
⋃
j∈I
j �=k

Γε̄(Cj )

)
, ∀k = 1, . . . , ν. (A.15)

Let ε̄, c12 be the constants (depending only on r0 and g1, . . . , gν ) provided by Lemma 3 and Remark 4.1 for all sets
C1, . . . ,Cν , and observe that, choosing ε̄ sufficiently small so that

‖gk‖L∞ ε̄2 < ε̄/4 ∀k = 1, . . . , ν, (A.16)

and setting

Rε̄
.= {

y ∈ Sk; ε̄/2 � dCk
(y) � ε̄

}
,

by the definition (2.36) of Ck there holds

B
(
Rε̄,‖gk‖L∞ ε̄2)⊂

ν⋃
j=1

◦
Bj ∀k = 1, . . . , ν. (A.17)

Moreover, since the solution τ �→ x(τ, y) of the Cauchy problem ẋ = gk(x), x(0) = y, satisfies∣∣x(τ, y) − y
∣∣� ‖gk‖L∞τ ∀τ,

we deduce from (A.17) that

Γε̄(Ck)
∖ ν⋃

j=1

◦
Bj⊂

{
x(τ, y); y ∈ B(Ck, ε̄/2) ∩ Sk, dCk

2(y) − ε̄2 � τ � 0
}∩ B

(
Ck,2ε̄

)
∀k = 1, . . . , ν. (A.18)

On the other hand, by (A.14), (A.15) one has

∂−IΓ
Jk

ε̄ ⊂ Γε̄(Ck)
∖ ν⋃

j=1

◦
Bj ∀k = 1, . . . , ν. (A.19)

Thus, relying on (A.18), (A.19) we find

∂−IΓ
Jk

ε̄ ⊂ {
x
(
dCk

2(y) − ε̄2, y
)
, y ∈ B(Ck, ε̄/2) ∩ Sk

}∩
(

B(Ck,2ε̄)
∖ ν⋃

j=1

◦
Bj

)
, (A.20)

which, in turn, applying (A.5), yields

dSk

(
∂−IΓ

Jk

ε̄

)
> c12ε̄

2 ∀k = 1, . . . , ν. (A.21)

Observe now that, since the radii of Si , i = 1, . . . , ν, are uniformly bounded by r ′
0, and because the definitions (2.36),

(2.39) imply

C = ∂

(
ν⋃

Bj

)
,

j=1
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it follows that there will be some constants c13, c14 > 0, depending only on r ′
0, such that there holds

dC(y) � c13dSk

2(y) ∀y ∈ B(Ck, c14)
∖( ν⋃

j=1

◦
Bj

)
, ∀k = 1, . . . , ν. (A.22)

Hence, thanks to (A.20), (A.22), choosing ε̄ sufficiently small so that

ε̄ <
c14

2
, (A.23)

and observing that

dCI (y) � dC(y) ∀y ∈ R
n, (A.24)

we recover from (A.21) the estimates (A.13), with c4 = c2
12 · c13ε̄

2, and ε̄′ = ε̄ satisfying (A.16), (A.23).
3. Given p � 1, suppose now that there exists some constants c̄p > 0 so that, letting ε̄ be the constant provided by
Lemma 3 and satisfying (A.16), (A.23), when |Π | < p for every set of indices I ⊂ {1, . . . , ν} there holds

dCI
(
∂−GI)� c̄p, (A.25)

dCI
(
∂−IΓ

Jk

ε̄

)
> c̄p ∀k ∈ I. (A.26)

Then, consider the case where |Π | = p. Fix I ⊂ {1, . . . , ν}, k ∈ I . Our goal is to show that there exists some constant
c̄p+1 > 0 so that the estimate in (A.26) is verified with c̄p+1 in place of c̄p . Clearly, if Πk = ∅ we recover the estimates
in (A.26) from the proof derived at point 2. Hence, we need to consider only the case where |Πk| = |Jk| > 0. Then,
recalling the definitions (2.32), (2.33), by (2.38), (A.11), (A.14), one has

Γ
Jk

ε̄ = Γε̄(Ck) ∩
⋂
i∈Jk

π−
k,i , (A.27)

∂−IΓ
Jk

ε̄ = EI
1 ∪ EI

2 ,

EI
1

.=
(

∂−Γε̄(Ck)
∖(⋃

j �=k

Bj ∪
⋃
j∈I
j �=k

Γ
Jj

ε̄

))
∩
⋂
i∈Jk

π−
k,i ,

EI
2

.=
⋃
i∈Jk

EI
2,i , EI

2,i

.=
((

Γε̄(Ck) ∩
⋂

j∈Jk

(π−
k,j ∪ πk,j )

)∖( ν⋃
j=1

Bj ∪
⋃
j∈I
j �=k

Γ
Jj

ε̄

))
∩ πk,i . (A.28)

Observe first that, letting ε̄ be the constant provided by Lemma 3 and satisfying (A.16), (A.23), by the proof estab-
lished at point 2 one immediately deduces the inequality

dSk

(
EI

1

)
� dSk

(
∂−Γε̄(Ck)

∖⋃
j �=k

Bj

)
> c12ε̄

2, (A.29)

which, together with (A.22), (A.24), yields

dCI
(
EI

1

)
> c2

12c13ε̄
4. (A.30)

Hence, if EI
2 = ∅ we recover from (A.30) the estimates in (A.26) with c̄p+1

.= c2
12c13ε̄

4 in place of c̄p . On the other
hand, observe that if we let S

p
j , j ∈ I , denote the surfaces of the balls

B
p
j

.= B(Bj , c̄p/2), j ∈ I, (A.31)

and we consider the set

Cp,I .=
⋃
k∈I

C
p
k , C

p
k

.= S
p
k

∖(⋃
j /∈I

◦
Bj ∪

⋃
j∈I

◦
B

p

j

)
,

by construction one has
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∂

(⋃
j /∈I

Bj ∪
⋃
j∈I

B
p
j

)
=
(

C
∖⋃

j∈I
B

p
j

)
∪ Cp,I , (A.32)

dCI

(
C
∖⋃

j∈I
B

p
j

)
� dCI

(
C ∩ Cp,I)

� dCI
(
Cp,I)

� c̄p

2
. (A.33)

Thus, for every i ∈ Jk for which there holds

πk,i ∩
(⋃

j∈I
B

p
j

∖ ν⋃
j=1

◦
Bj

)
= ∅, (A.34)

since the definition (A.28) implies

EI
2,i ⊂

(
R

n
∖ ν⋃

j=1

Bj

)
∩ πk,i ,

it follows that

EI
2,i ⊂ R

n
∖(⋃

j /∈I
Bj ∪

⋃
j∈I

B
p
j

)
. (A.35)

Then, relying on (A.32), (A.33), (A.35), we deduce that

dCI
(
EI

2,i

)
� min

{
dCI

(
C
∖⋃

j∈I
B

p
j

)
, dCI

(
Cp,I)}

� c̄p

2
, (A.36)

for all i ∈ Jk that satisfy (A.34). Hence, in the case where (A.34) holds for all i ∈ Jk , we obtain from (A.30), (A.36)
the estimate in (A.26) with c̄p+1

.= min{c2
12c13ε̄

4, cp/2} in place of c̄p . Therefore, to complete the proof of the lemma

it remains to derive an estimate of dCI (EI
2 ) when EI

2 �= ∅ and (A.34) does not hold for some i ∈ Jk .
4. With the same definitions and notations introduced at point 3, consider a set of indices I ⊂ {1, . . . , ν} for which
EI

2 �= ∅, and such that (A.34) is not satisfied for some i ∈ Jk . Set

J̃k
.=
{
i ∈ Jk; πk,i ∩

(⋃
j∈I

B
p
j

∖ ν⋃
j=1

◦
Bj

)
�= ∅

}
, (A.37)

and observe that, by the proof derived at point 3, there holds

dCI
(
EI

2,i

)
� c̄p

2
∀i ∈ Jk \ J̃k. (A.38)

On the other hand, for every fixed i ∈ J̃k , by definition (A.31) there will be some constant ρ ∈ [0, (cp/2)] such that,
letting S̃j , j ∈ I , denote the surfaces of the balls

B̃j
.= B

(
Bj ,ρ

)
, j ∈ I, (A.39)

and considering the set

C̃I .=
⋃
h∈I

C̃h, C̃h
.= S̃h

∖(⋃
j /∈I

◦
Bj ∪

⋃
j∈I

◦
B̃j

)
, (A.40)

there holds

πk,i ∩ C̃I �= ∅.
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Then, as a first step towards an estimate of dCI (EI
2,i ) we will show that, setting

Υi
.= C̃I ∩ πk,i , (A.41)

there holds

dΥi

(
EI

2,i

)
� c̄p

2
, ∀i ∈ J̃k. (A.42)

Recalling that πk,i = πi,k , set

Π∗ .= Π \ {πk,i}, Π∗
k

.= Πk \ {πk,i}, Π∗
i

.= Πi \ {πk,i}, (A.43)

and observe that, by the properties of πk,i , one has πk,i /∈ Πj for all j �= k, i, and hence there holds

Π∗ =
⋃

j �=k,i

Πj ∪ Π∗
k ∪ Π∗

i .

Moreover, because of (A.43), one has |Π∗| < |Π | = p. Therefore, setting

J ∗
i

.= Ji \ {k}, Γ
Ji ,∗
ε̄

.= Γε̄(Ci) ∩
⋂

j∈J ∗
i

π−
i,j , I∗ .= I \ {k}, (A.44)

and defining

G∗,I∗ .=

⎧⎪⎨⎪⎩
Γ

Ji ,∗
ε̄ ∪

⋃
j∈I∗\{i}

Γ
Jj

ε̄ if i ∈ I,

GI∗
if i /∈ I,

∂−G∗,I∗ .= ∂G∗,I∗∖ ν⋃
j=1

Bj ,

(A.45)

by the inductive hypothesis we can apply the inequality (A.25) in connection with the set of hyperplanes Π∗ and
hence, in particular, for the set of indices I∗ there holds

dCI∗
(
∂−G∗,I∗)� c̄p. (A.46)

Relying on (A.46), and observing that by (A.44), one has

Γ
Ji

ε̄′ ∩ πi,k = (
Γ

Ji ,∗
ε̄′ ∩ π−

i,k

)∩ πi,k = Γ
Ji ,∗
ε̄′ ∩ πi,k,

since πi,k = πk,i we find that

B
(
CI∗

, c̄p

)∩ πk,i ⊂
(

ν⋃
j=1

Bj ∪ Γ
Ji ,∗
ε̄ ∪

⋃
j∈I∗

Γ
Jj

ε̄

)
∩ πk,i

⊂
(

ν⋃
j=1

Bj ∪
⋃

j∈I∗
Γ

Jj

ε̄

)
∩ πk,i . (A.47)

Moreover observe that, letting

C̃I∗ .=
⋃

h∈I∗
C̃h,

by definitions (A.39), (A.40) one has

C̃I∗ ⊂ B
(
CI∗

, ρ
)
, ρ < cp/2,

and hence there holds

B
(
C̃I∗

, cp/2
)⊂ B

(
CI∗

, cp

)
. (A.48)
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Thus, (A.47), (A.48) together, yield

B
(
C̃I∗

, cp/2
)∩ πk,i ⊂

(
ν⋃

j=1

Bj ∪
⋃

j∈I∗
Γ

Jj

ε̄

)
∩ πk,i . (A.49)

On the other hand, observe that, by the properties of πk,i , we have

S̃k ∩ S̃i = S̃k ∩ πk,i = S̃i ∩ πk,i ,

which, in turn, by definition (A.40) implies

C̃k ∩ πk,i = C̃i ∩ πk,i . (A.50)

Thanks to (A.50), it follows from (A.49) that

B(Υi, cp/2) ∩ πk,i ⊂
(

ν⋃
j=1

Bj ∪
⋃

j∈I∗
Γ

Jj

ε̄

)
∩ πk,i . (A.51)

Then, recalling the definition (A.28) of EI
2,i , we deduce from (A.51) that

EI
2,i ⊂ R

n \ B(Υi, cp/2),

which clearly implies (A.42). Finally, in order to obtain an estimate of dC(EI
2,i ), notice that, since the radii of Si ,

i = 1, . . . , ν, are uniformly bounded by r ′
0, and thanks to the properties of the hyperplanes in Π , there will be some

constants c15, c16 > 0, depending only on r ′
0, such that there holds

dSk
(y) > c15d

2
Υi

(y) ∀y ∈ (B(Sk, c16) ∩ πk,i

)∖( ν⋃
j=1

Bj

)
, ∀i ∈ Jk, k = 1, . . . , ν. (A.52)

Therefore, choosing ε̄ so that

ε̄ <
c16

2
, (A.53)

and observing that by the same computations at point 2 one has

EI
2,i ⊂ ∂−IΓ

Jk

ε̄ ⊂ B(Sk,2ε̄)
∖( ν⋃

j=1

Bj

)
,

we deduce from (A.42), (A.52) that

dSk

(
EI

2,i

)
� c15

c̄2
p

4
∀i ∈ J̃k. (A.54)

Hence, letting ε̄ be the constant provided by Lemma 3 and satisfying (A.16), (A.23), (A.53), relying on (A.22), (A.24)
we recover from (A.54) the estimates

dCI
(
EI

2,i

)
� c13c

2
15

c̄4
p

16
∀i ∈ J̃k, (A.55)

which, together with (A.30), (A.38), yield

dCI
(
∂−IΓ

Jk

ε̄

)
� min

{
dCI

(
E1
)
, min
i∈Jk

dCI
(
EI

2,i

)}
� c̄p+1, (A.56)

where c̄p+1
.= min{c2

12c13ε̄
4, c̄p/2, c13 ·c2

15 · c̄4
p/16}. This establishes the estimate in (A.26) in the case where EI

2 �= ∅,
and (A.34) does not hold for some i ∈ Jk , and the proof of the lemma is completed. �
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