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Abstract

We consider the problem −�u = |u|p−1−εu in Ω , u = 0 on ∂Ω , where Ω is a bounded smooth domain in R
N symmetric with

respect to x1, . . . , xN , which contains the origin, N � 3, p = N+2
N−2 and ε is a positive parameter. As ε goes to zero, we construct

sign changing solutions with multiple blow up at the origin. These solutions have, as ε goes to zero, more and more annular-shaped
nodal domains.

Résumé

Nous considérons le problème −�u = |u|p−1−εu dans Ω , u = 0 sur ∂Ω , où Ω est un domaine borné de R
N symétrique par

rapport à x1, . . . , xN qui contient l’origine, N � 3, p = N+2
N−2 et ε est un paramètre positif. Quand ε → 0, nous construisons des

solutions changeant de signe qui ressemblent à une superposition de transitoires centrées dans l’origine. Ces solutions admettent,
quand ε → 0, de plus en plus de domaines nodeaux ressemblant à un anneau.
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1. Introduction

We consider the problem{−�u = |u|p−1−εu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in R
N , N � 3, p = N+2

N−2 and ε is a positive parameter.
First, let us consider the critical case, i.e. ε = 0. Pohozaev proved in [39] that problem (1.1) has no solutions if Ω

is starshaped. On the other hand, Kazdan and Warner observed in [32] that (1.1) has a positive radial solution when
Ω is an annulus. In [5] Bahri and Coron proved that (1.1) has a positive solution, provided that Ω has nontrivial
topology. To our knowledge there are only few results about existence of sign changing solutions of problem (1.1) in
the critical case. In [30] the authors provide existence and multiplicity of sign changing solutions in specific cases,
like for instance in the case of tori. In [19] the authors obtain existence and multiplicity results for sign changing
solutions in domains with small holes and in some contractible domains with an involution symmetry. We also recall
the classical result of Ding [25] who showed that (1.1) has infinitely many sign changing solutions in the whole space
Ω = R

N . Concerning sign changing solutions for different problems with critical growth, we refer to the papers [1,2,
15,17,18,27,31,34].

In this paper, we deal with the slightly subcritical case, i.e. ε > 0. In order to state old and new results, it is
useful to recall some well known definitions. We denote by G the Green’s function of the Laplacian with Dirichlet
boundary condition on ∂Ω and by H its regular part, i.e. G(x,y) = CN |x − y|2−N − H(x,y), x, y ∈ Ω , where
CN = 1/(N − 2)ωN and ωN denotes the surface area of the unit sphere in R

N . Observe that �xH = 0 in Ω × Ω

and G = 0 on ∂(Ω × Ω). The leading term H(x,x) of the regular part of the Green’s function is called the Robin’s
function of Ω at x.

It is well known that problem (1.1) has always a positive least energy solution uε which is obtained by solving the
variational problem

inf

{
‖u‖2 =

∫
Ω

|∇u|2: u ∈ H1
0(Ω),

∫
Ω

|u|p+1−ε = 1

}
.

In [13,26,29,42,41] it was proved that, as ε goes to zero, uε blows up and concentrates at a single point ξ in Ω ,
which is a critical point (a minimum point) of the Robin’s function. Conversely, it was shown in [41,37] that, if ξ is
a “stable” critical point of the Robin’s function, then problem (1.1) has for ε small a solution which blows up at ξ

as ε goes to zero. In general, problem (1.1) can have positive solutions which concentrate simultaneously at different
points ξ1, . . . , ξk of Ω , k � 2, as ε goes to zero. This was analysed in [40,6,37]: the condition which ensures existence
and multiplicity of solutions which blows up at more than one point involve both the Green’s function and Robin’s
function. As far as the existence of positive solutions to (1.1) is concerned, we want to point out the fact that if uε

solves (1.1) and blows up at some points ξ1, . . . , ξk of Ω , then necessarily each ξi is a simple blow up point (see [33]).
More precisely, the profile of the solution uε near each blow up point ξi can be approximated as

uε(x) ∼ λi

√
ε

(λ2
i ε + |x − ξi |2)(N−2)/2

,

with αN = [N(N − 2)](N−2)/4, for some constant λi which depends only on N and k. Roughly speaking, we can also
say that uε has k simple positive bubbles.

The existence of one sign changing solution to (1.1) for ε ∈ (0,p − 1) was first proved in [16] and [8]. Later,
multiple sign changing solutions and their nodal properties were studied in [7,9]. In all these papers, the authors
consider a larger class of nonlinearities with superlinear and subcritical growth. In particular, in [7,9] it is shown that,
for fixed ε ∈ (0,p − 1), problem (1.1) has a sequence of sign solutions ±un

ε , with ‖un
ε‖ → ∞ as n goes to ∞, and

such that un
ε has at most n + 1 nodal domains. Recently in [10], the authors proved the existence of N pairs ±u

(j)
ε ,

j = 1, . . . ,N , of sign changing solutions such that each u
(j)
ε blows up positively at a point ξ

(j)

1 ∈ Ω and negatively

at a point ξ
(j) ∈ Ω , with ξ

(j) 
= ξ
(j), as ε goes to 0. We point out that each of these solutions considered in [10] has
2 1 2
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one simple positive bubble and one simple negative bubble. More precisely the profile of u
(j)
ε near each blow up point

ξ
(j)
i , i = 1,2, can be approximated when ε goes to 0 as

u(j)
ε (x) ∼ αN(−1)i

λi

√
ε

(λ2
i ε + |x − ξ

(j)
i |2)(N−2)/2

,

with αN = [N(N − 2)](N−2)/4, for some constant λi which depends only on N .
In this paper, we focus on a new phenomenon: we observe the presence of sign changing bubble towers constituted

by superposition of positive bubbles and negative bubbles of different blow up orders. This stands in strong contrast
to the fact that positive solutions to (1.1) can only have simple bubbles in the subcritical case (see [33]). We assume
that Ω is a bounded smooth domain in R

N symmetric with respect to x1, . . . , xN , which contains the origin. Our main
result reads:

Theorem 1.1. For any integer k � 1, there exists εk > 0 such that for any ε ∈ (0, εk) there exists a pair of solutions
uε and −uε to problem (1.1) such that

uε(y) = αN

k∑
i=1

(−1)i
(

Miε
2i−1
N−2

M2
i ε2 2i−1

N−2 + |y|2
)N−2

2 (
1 + o(1)

)
,

where αN := [N(N −2)]N−2
4 , M1, . . . ,Mk are positive constants depending only on N and k and o(1) → 0 uniformly

on compact subsets of Ω , as ε → 0. Moreover, uε is even with respect to the variables x1, . . . , xN .

It seems that this is the first result dealing with sign changing bubble tower solutions for superlinear boundary value
problems close to the critical exponent. The asymptotic expansion and some energy estimates derived in the course
of the proof allow to draw interesting consequences concerning the number and shape of the nodal domains of the
solution uε . More precisely, we have

Theorem 1.2. For ε > 0 sufficiently small, the solution uε constructed in Theorem 1.1 has precisely k nodal domains

Ω1
ε , . . . ,Ωk

ε such that Ω
j
ε contains the sphere S

j
ε = {y ∈ R

N : |y| = ε
2j−1
N−2 }, and (−1)juε > 0 on Ω

j
ε for all j .

Consequently, 0 ∈ Ωk
ε , and Ω1

ε is the only nodal domain of u which touches the boundary ∂Ω .

In particular, we obtain solutions with arbitrarily many annular shaped nodal domains as ε goes to 0.
The proof of Theorem 1.1 relies on a form of Lyapunov–Schmidt procedure (see [4]), which reduces the construc-

tion of the searched solutions to a finite dimensional variational problem, in a general scheme already followed in the
study of bubble towers in [20,21,24].

Let us point out that the situation turns out to be very different in the slightly supercritical case, i.e. ε < 0. We recall
that, if the domain Ω has a small hole, problem (1.1) has positive solutions blowing up at two or three points, see
[22] and [38]. Moreover, if Ω has some symmetries, problem (1.1) has solutions blowing up at an arbitrary number of
points (see [23,35,38]). An interesting nonexistence result obtained in [11] states that, for any domain Ω , there are no
positive solutions to (1.1) blowing up at a single point as ε goes to zero. A natural question then arises: is it possible to
construct a sign changing bubble tower solution to (1.1) (as in Theorem 1.1) when ε is negative and small enough? We
conjecture that the answer is negative. Indeed this is suggested by the estimates obtained in the present paper. More
precisely, in order to detect sign changing bubble tower solutions in the slightly supercritical case, we could reduce
the problem in the same way to a finite dimensional one, but for small negative ε the reduced functional (the function
Ĩε defined in Lemma 4.1 below) does not have any critical points (as follows from Lemma 4.2 and estimate (4.24)).

It is also worth to compare Theorem 1.1 with recent results on positive bubble tower solutions for the supercritical
Dirichlet problem⎧⎨⎩−�u = up+ε + λu in Ω ,

u > 0 in Ω ,
u = 0 on ∂Ω ,

(1.2)

where Ω is a bounded smooth domain in R
N , N � 4, ε and λ are positive parameters. In [20] the authors considered

the case when Ω is a ball and they proved the existence of radial solutions to (1.2), which have a multiple bubble at the
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origin, provided ε and λ are small enough. Recently, the result was extended in [28], where the authors constructed
solutions to problem (1.2), which have multiple blow up at finitely many points which are the critical points of
a function whose definition involves the Green’s function. Successively, existence of bubble tower solutions was
established for the Neumann supercritical problem⎧⎨⎩−�u + u = up+ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

when Ω is even with respect to N − 1 variables, N � 3 and 0 is a point in ∂Ω with positive mean curvature. In [24]
the authors proved the existence of solutions to (1.3) which resemble the form of a superposition of bubbles centered
at 0.

The proof of Theorem 1.1 relies on a form of Lyapunov–Schmidt procedure (see [4]), which reduces the construc-
tion of the searched solutions to a finite-dimensional variational problem, in a general scheme already followed in the
study of bubble towers in [20,21,24]. The paper is organized as follows. In Section 2 we collect basic tools, and we
introduce a change of coordinates. In Section 3 we apply a finite-dimensional reduction method to the transformed
problem. We like to warn the reader that in this section we did not repeat the proofs of the estimates required for
the reduction procedure, referring the reader to [20,21,24]. In Section 4 we derive an asymptotic expansion for the
reduced energy functional. Here we decided to include the details, since the expansion shows crucial differences in
comparison with [20,21,24]. Finally, in Section 5 we complete the proof of Theorem 1.1 and we prove Theorem 1.2.

2. Preliminaries

It is well known (see [3,14,43]) that the functions

wμ(y) = αN

μ
N−2

2

(μ2 + |y|2)N−2
2

, μ > 0,

with αN := [N(N − 2)]N−2
4 , are the only radial solutions of the equation

−�u = up in R
N.

We define πμ to be the unique solution to the problem{
�πμ = 0 in Ω,

πμ = −wμ on ∂Ω.

We remark that the function Pwμ := wμ + πμ is the projection onto H1
0(Ω) of the function wμ, i.e.{−�Pwμ = w

p
μ in Ω,

Pwμ = 0 on ∂Ω.

It is well known that the following expansion holds

πμ(y) = −αNμ
N−2

2 H(0, y) + o
(
μ

N−2
2

)
uniformly in Ω . (2.1)

Let us consider parameters μ1 > μ2 > · · · > μk . We look for a solution to (1.1) of the form

u(y) =
k∑

i=1

(−1)i
(
wμi

(y) + πμi
(y)

) + ψ(y), (2.2)

where the rest term ψ is a small function which is even with respect to the variables y1, . . . , yN .
As in [20,21,24], we rewrite this problem in different variables. We consider spherical coordinates y = y(ρ,Θ)

centered at the origin given by ρ = |y| and Θ = y
|y| . We define the transformation

v(x,Θ) = T (u)(x,Θ) :=
(

p − 1
) 2

p−1

e−xu
(
e− p−1

2 xΘ
)
.

2
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We denote by D the subset of S = R × SN−1 where the variables (x,Θ) vary. After these changes of variables,
problem (1.1) becomes{

L0(v) = cεe−εx |v|p−1−εv in D,
v = 0 on ∂D,

(2.3)

where

cε =
(

p − 1

2

) 2ε
p−1

and

L0(v) = −
(

p − 1

2

)2

�SN−1v − v′′ + v. (2.4)

L0 is the transformed operator associated to −�. Here and in what follows, ′ = ∂
∂x

and �SN−1 denotes the Laplace–
Beltrami operator on SN−1.

We observe then that

T (wμ)(x,Θ) = Wξ(x) := W(x − ξ),

where

W(x) :=
(

4N

N − 2

)N−2
4

e−x
(
1 + e− 4

N−2 x
)− N−2

2 , with μ = e− p−1
2 ξ . (2.5)

W is the unique solution of the problem⎧⎨⎩W ′′ − W + Wp = 0 in R,

W ′(0) = 0, W > 0,

W(x) → 0 as x → ±∞.

(2.6)

We see also that setting

Πξ = T (πμ), with μ = e− p−1
2 ξ , (2.7)

then Πξ solves the boundary problem{
L0(Πξ ) = 0 in D,

Πξ = −Wξ on ∂D.
(2.8)

We note the useful fact that this transformation leaves the associated energies invariant (up to a constant). Indeed, the
energy functional associated to problem (2.3) is

Iε(v) := 1

2

(
p − 1

2

)2 ∫
D

|∇Θv|2 dx dΘ + 1

2

∫
D

(|v′|2 + |v|2)dx dΘ − cε

p + 1 − ε

∫
D

e−εx |v|p+1−ε dx dΘ (2.9)

and the energy functional associated to problem (1.1) is

Jε(u) := 1

2

∫
Ω

|∇u|2 dy − 1

p + 1 − ε

∫
Ω

|u|p+1−ε dy. (2.10)

Then we have the identity

Iε(v) =
(

2

N − 2

)N−1

Jε(u), v = T (u). (2.11)

Let us consider points 0 < ξ1 < ξ2 < · · · < ξk . We look for a solution to (2.3) of the form

v(x,Θ) =
k∑

(−1)i
(
W(x − ξi) + Πξi

(x,Θ)
) + φ(x,Θ), (2.12)
i=1
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where the rest term φ is a small function which is symmetric with respect to the variables Θ1, . . . ,ΘN .
A crucial remark is that v(x) ∼ ∑k

i=1(−1)iW(x − ξi) solves (2.3) if and only if (going back in the change of
variables)

u(y) ∼ αN

k∑
i=1

(−1)i
(

e− 2ξi
N−2

e− 4ξi
N−2 + |y|2

)N−2
2

solves (1.1). Therefore, the ansatz given for v provides (for large values of the ξi ’s) a sign changing bubble-tower
solution for (1.1).

Let us write

Wi(x) := W(x − ξi), Πi := Πξi
, Vi = Wi + Πi, V :=

k∑
i=1

(−1)iVi . (2.13)

We consider the ansatz v = V + φ. In terms of φ, problem (2.3) becomes{
L(φ) = N(φ) + R in D,

φ = 0 on ∂D,
(2.14)

where

L(φ) := L0(φ) − cεe−εxf ′
ε(V )φ, (2.15)

N(φ) := cεe−εx
[
fε(V + φ) − fε(V ) − f ′

ε(V )φ
]
, (2.16)

R := cεe−εxfε(V ) −
k∑

i=1

(−1)iW
p
i . (2.17)

Here, we set fε(s) := |s|p−1−εs.

3. The reduction method

Rather than solving (2.14) directly, we consider first the following intermediate problem: given points ξ :=
(ξ1, . . . , ξk) ∈ R

k find a function φ symmetric with respect to the variables Θ1, . . . ,ΘN such that for certain con-
stants ci⎧⎨⎩L(φ) = N(φ) + R + ∑k

i=1 ciZi in D,

φ = 0 on ∂D,∫
D

Ziφ dx dΘ = 0 if i = 1, . . . , k

(3.1)

where the Zi ’s are defined as follows. Let

zi(y) = μi

∂

∂μi

wμi
(y) for i = 1, . . . , k, with μi = e− 2

N−2 ξi .

Each zi solves the linearized problem (see [12])

−�z = pwp−1
μi

z in R
N.

Let Pzi be the projections onto H1
0(Ω) of the function zi , i.e. �Pzi = �zi in Ω , Pzi = 0 on ∂Ω . Let Zi(x,Θ) :=

T (P zi)(x,Θ). Then Zi solves{
L0(Zi) = pW

p−1
i W ′

i in D,

Zi = 0 on ∂D.

In order to solve problem (3.1), it is necessary to understand first its linear part. Given a function h, we consider
the problem of finding φ such that for certain real numbers ci the following is satisfied⎧⎨⎩L(φ) = h + ∑k

i=1 ciZi in D,

φ = 0 on ∂D,∫
Z φ dx dΘ = 0 if i = 1, . . . , k

(3.2)
D i
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where the linear operator L is defined in (2.15). We need uniformly bounded solvability in proper functional spaces
for problem (3.2), for a proper range of the ξi ’s. To this end, it is convenient to introduce the following norm. Given a
small but fixed number 0 < σ < 1, we define:

‖g‖∗ := sup
(x,Θ)∈D

(
k∑

i=1

e−(1−σ)|x−ξi |
)−1∣∣g(x,Θ)

∣∣.
Although this norm depends on σ and the numbers 0 < ξ1 < · · · < ξk , we do not indicate this dependence in our
notation. In fact, different choices of σ and ξ = (ξ1, . . . , ξk) lead to equivalent norms. Let C∗ be the Banach space
of all continuous functions g :D → R which are symmetric with respect to the variables Θ1, . . . ,ΘN and for which
‖g‖∗ < +∞.

Arguing exactly as in Propositions 1 and 2 in [20] and in Propositions 5.1 and 5.2 in [21], we obtain the following
result.

Proposition 3.1. There exist ε0 > 0, R0,R1 > 0 and C > 0 such that if ε ∈ (0, ε0) and if ξ = (ξ1, . . . , ξk) satisfies

R0 < ξ1, R0 < min
1�i<k

(ξi+1 − ξi), ξk <
R1

ε
, (3.3)

then for any h ∈ C∗ problem (3.2) admits a unique solution Tε(ξ,h) ∈ C∗, with∥∥Tε(ξ,h)
∥∥∗ � C‖h‖∗ and |ci | � C‖h‖∗.

Moreover, the map ξ → Tε(ξ,h), with values in L(C∗), is of class C1 and∥∥DξTε(ξ,h)
∥∥
L(C∗) � C

uniformly in ξ satisfying conditions (3.3).

Now, we are ready to solve problem (3.1). We shall do this after restricting conveniently the range of the parameters
ξi . Let us consider for a number M large but fixed, the following conditions:

ξ1 >
1

2
log

(
1

Mε

)
, min

1�i<k
(ξi+1 − ξi) > log

(
1

Mε

)
, ξk < k log

(
1

Mε

)
. (3.4)

Arguing exactly as in Proposition 3 in [20] and in Lemma 6.1 in [21], we prove the following result.

Proposition 3.2. There exists ε0 > 0 and C > 0 such that for any ε ∈ (0, ε0) and for any ξ = (ξ1, . . . , ξk) which
satisfies (3.4) there exists a unique solution φ = φ(ξ), c = (c1(ξ), . . . , ck(ξ)) to problem (3.1) which satisfies ‖φ‖∗ �
Cε. Moreover, the map ξ → φ(ξ) is of class C1 for the ‖ · ‖∗ norm and ‖Dξφ‖∗ � Cε.

4. Estimates for the reduced functional

In this section, we fix a large number M and assume that conditions (3.4) hold true for ξ = (ξ1, . . . , ξk). According
to the results of the previous section, our problem has been reduced to that of finding points ξi so that the constants
ci which appear in (3.1), for the solution φ given by Proposition 3.2, are all equal to zero. Thus, we need to solve the
system of equations

ci(ξ) = 0 for any i = 1, . . . , k. (4.1)

If (4.1) holds, then v = V +φ will be a solution to (2.14) or equivalently to (2.3). This system turns out to be equivalent
to a variational problem, related to the functional (2.9) associated to problem (2.3). Indeed, by the same (standard)
arguments as given on p. 301 in [20], the following result is proved.

Lemma 4.1. The function V + φ is a solution to (2.3) if ξ is a critical point of the function

ξ �→ Ĩε(ξ) := Iε(V + φ),

where V = V (ξ) is given by (2.13), φ = φ(ξ) is given by Proposition 3.2, and Iε is defined in (2.9).
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The following estimate is crucial for finding critical points of Ĩε . It can be proved exactly as Lemma 4 in [20] and
Lemma 6.2 in [24].

Lemma 4.2. The following expansion holds:

Ĩε(ξ) = Iε(V ) + o(ε),

where the term o(ε) is uniform over all points satisfying constraints (3.4), for some given M > 0.

We make the following choices for the points ξi :

ξ1 = −1

2
log ε + logΛ1, (4.2)

ξi+1 − ξi = − log ε − logΛi+1, i = 1, . . . , k − 1, (4.3)

where the Λi ’s are positive parameters. For notational convenience, we also set Λ := (Λ1, . . . ,Λk).
The advantage of the above choice is the validity of the expansion of the functional (2.9) given in the following

lemma.

Proposition 4.3. For any δ > 0, there exists ε0 > 0 such that for any ε ∈ (0, ε0) the following expansion holds

Iε(V ) = ka4 + εΨk(Λ) − k2 − 2k + 2

2
a2ε log ε + ka1ε + εRε(Λ)

where

Ψk(Λ) := a5H(0,0)

Λ2
1

+ ka2 logΛ1 +
k∑

i=2

[
a3Λi − (k − i + 1)a2 logΛi

]
and as ε → 0 the term Rε converges to 0 uniformly on the set of Λi ’s with δ < Λi < δ−1, i = 1, . . . , k. Here ai ,
i = 0, . . . ,5, are positive constants depending only on N .

The proof of this expansion relies on arguments inspired by [20,21,24]. For the convenience of the reader, we
present the details here. As a first step, we collect some asymptotic estimates in the following lemma.

Lemma 4.4. For fixed δ > 0 and δ < Λi < δ−1, i = 1, . . . , k, the following estimates hold as ε goes to zero:∫
D

|V |p+1 = kωN−1

∫
R

Wp+1(x)dx + o(1), (4.4)

∫
D

(|V |p+1 − |V |p+1−ε
) = kωN−1

∫
R

Wp+1(x) logW(x)dx + o(1), (4.5)

∫
D

x|V |p+1 =
(

k∑
j=1

ξj

)
ωN−1

∫
R

Wp+1(x)dx + o(1). (4.6)

Here ωN−1 is the surface area of SN−1. Moreover, considering the numbers χ1 = 0, χl = ξl−1+ξl

2 , l = 2, . . . , k,
χk+1 = +∞ and setting Dl = {(x,Θ) ∈ D: χl � x < χl+1}, we have for i, j, l = 1, . . . , k∫

Dl

W
p
i Wj = o(ε) if i 
= l, (4.7)

∫
W

p
l Wj = a3e−|ξj −ξl | + o(ε) if j 
= l, (4.8)
Dl
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∫
Dl

[
V

p+1
l − |V |p+1 + (p + 1)V

p
l

∑
j 
=l

(−1)l+jVj

]
= o(ε), (4.9)

∫
Dl

(
W

p
i − V

p
i

)
Vj = o(ε) if i 
= j . (4.10)

Here we have set a3 := ( 4N
N−2 )

N−2
4 ωN−1

∫
R

exWp(x)dx.

Proof. Throughout this proof, C stands for a generic constant depending only on N and k whose value may change
in every step of the calculation. From (2.5) we directly deduce the estimate∣∣W(x)

∣∣ � Ce−|x| in D (4.11)

which will be frequently used in the following. Combining the assumption δ < Λi < δ−1 with (4.2) and (4.3), we get

ξ1 > − log

(√
ε

δ

)
and ξi+1 − ξi > − log

(
ε

δ

)
for i = 1, . . . , k − 1. (4.12)

We start by verifying (4.7), first for i 
= l and j 
= l. In this case (4.11) implies

∫
Dl

W
p
i Wj � C

χl+1∫
χl

e−p|x−ξi |e−|x−ξj |

� C(χl+1 − χl)max
{
e−p|χl−ξi |, e−p|χl+1−ξi |}max

{
e−|χl−ξj |, e−|χl+1−ξj |}

� C
ξl+1 − ξl−1

2
e− p|ξl−ξi |

2 e− |ξl−ξj |
2 � C(− log ε)ε(p+1)/2 = o(ε).

Next we consider j = l. By (4.11) we get for i < l

∫
Dl

W
p
i Wl � C

χl+1∫
χl

e−p(x−ξi )ex−ξl dx = Ce−p(ξl−ξi )

ξl+1−ξl
2∫

ξl−1−ξl
2

e−(p−1)x dx

� Ce−p(ξl−ξi )e(p−1)
ξl−ξl−1

2 � Ce− p+1
2 (ξl−ξl−1) � Cε

p+1
2 = o(ε).

For i > l, we find similarly

∫
Dl

W
p
i Wl � C

χl+1∫
χl

ep(x−ξi )e−(x−ξl ) dx = Cep(ξl−ξi )

ξl+1−ξl
2∫

ξl−1−ξl
2

e(p−1)x dx

� Cep(ξl−ξi )e(p−1)
ξl+1−ξl

2 � Ce− p+1
2 (ξl+1−ξl ) = o(ε),

and thus (4.7) is proved in all cases. Next we derive (4.8) for j < l, using the definition of W given in (2.5):

∫
Dl

W
p
l Wj = ωN−1

ξl+1−ξl
2∫

ξl−1−ξl
2

Wp(x)W(x + ξl − ξj )dx + o(ε)

= ωN−1

(
4N

N − 2

)N−2
4

e−(ξl−ξj )

ξl+1−ξl
2∫

ξl−1−ξl

Wp(x)e−x
(
1 + e− 4

N−2 (x+ξl−ξj )
)− N−2

2 dx + o(ε)
2
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= ωN−1

(
4N

N − 2

)N−2
4

e−(ξl−ξj )
(
1 + o(1)

)∫
R

Wp(x)e−x dx + o(ε)

= a3e−|ξj −ξl | + o(ε).

The proof for j > l is similar, since W(−x) = W(x) for all x ∈ R. In particular, (4.7) and (4.8) yield∫
Dl

W
p
i Wj = O(ε) if i 
= l or j 
= l. (4.13)

Next we show (4.4), and we set W̃ = ∑k
i=1(−1)iWi and Π̃ = ∑k

i=1(−1)iΠi , so that W̃ = V − Π̃ . From (2.1), (2.7)
and (4.12) we infer

0 � Wi − Vi = −Πi � Ce−ξi � C
√

ε in D for all i. (4.14)

Hence the mean value theorem implies∣∣∣∣ ∫
D

∣∣W̃ ∣∣p+1 − |V |p+1
∣∣∣∣ � (p + 1)

∫
D

(
k∑

i=1

Wi

)p∣∣Π̃ ∣∣ = o(1), (4.15)

and, by (4.13),∫
D

(
k∑

l=1

W
p+1
l − ∣∣W̃ ∣∣p+1

)
=

k∑
l=1

∫
Dl

(
W

p+1
l −

∣∣∣∣Wl +
∑
j 
=l

(−1)l+jWj

∣∣∣∣p+1)
+ o(1)

� (p + 1)

k∑
l=1

∫
Dl

(
k∑

i=1

Wi

)p(∑
j 
=l

Wj

)
+ o(1)

� C

k∑
l,i=1

∫
Dl

W
p
i

(∑
j 
=l

Wj

)
+ o(1) = o(1). (4.16)

Combining (4.15) and (4.16) we get∫
D

|V |p+1 =
k∑

l=1

∫
D

W
p+1
l + o(1) = kωN−1

∫
R

Wp+1(x)dx + o(1),

which shows (4.4). Since the proof of (4.5) is similar, we omit it. To show (4.6), we use again (4.13) and (4.14) to
estimate∫

D

x|V |p+1 =
∫
D

x
∣∣W̃ ∣∣p+1 + o(1) =

k∑
l=1

∫
Dl

xW
p+1
l + o(1)

= ωN−1

k∑
l=1

ξl+1−ξl
2∫

ξl−1−ξl
2

(x + ξl)W
p+1(x)dx + o(1)

= ωN−1

(
k∑

l=1

ξl

)∫
R

Wp+1(x)dx + k

∫
R

xWp+1(x)dx + o(1)

= ωN−1

(
k∑

l=1

ξl

)∫
Wp+1(x)dx + o(1).
R
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Here we used that W(−x) = W(x) for all x ∈ R. It remains to show (4.9) and (4.10). Via a Taylor expansion, we get∫
Dl

(
V

p+1
l − |V |p+1 + (p + 1)V

p
l

∑
j 
=l

(−1)l+jVj

)

=
∫
Dl

(
V

p+1
l −

∣∣∣∣Vl +
∑
j 
=l

(−1)l+jVj

∣∣∣∣p+1

+ (p + 1)V
p
l

∑
j 
=l

(−1)l+jVj

)

� p(p + 1)

2

∫
Dl

(
k∑

j=1

Vj

)p−1( k∑
j 
=l

Vj

)2

� C max
i,j
j 
=l

∫
Dl

V
p−1
i V 2

j

� C max
i,j
j 
=l

( ∫
Dl

V
p
i Vj

) p−1
p

( ∫
Dl

V
p+1
j

) 1
p

� C max
i,j
j 
=l

( ∫
Dl

W
p
i Wj

) p−1
p

( ∫
Dl

W
p+1
j

) 1
p = O

(
ε

p−1
p

)
o
(
ε

1
p
) = o(ε),

where (4.7) and (4.13) are used in the last line. Hence (4.9) is proved. Finally, by (4.13), (4.14) and the mean value
theorem, we get for i 
= j

0 �
∫
Dl

(
W

p
i − V

p
i

)
Vj � p

∫
Dl

W
p−1
i (Wi − Vi)Vj

� p

( ∫
Dl

W
p
i Vj

) p−1
p

( ∫
Dl

(Wi − Vi)
pVj

)1/p

= O
(
ε

p−1
p

)
O

(√
ε
) = o(ε),

so that (4.10) holds. �
Proof of Proposition 4.3 (completed). Using (4.4) and (4.5), we find

Iε(V ) = I0(V ) + 1

p + 1

∫
D

|V |p+1 − cε

p + 1 − ε

∫
D

e−εx |V |p+1−ε

= I0(V ) − 1

p + 1

∫
D

(
e−εx − 1

)|V |p+1 +
(

1

p + 1
− 1

p + 1 − ε

)∫
D

e−εx |V |p+1−ε

+ 1 − cε

p + 1 − ε

∫
D

e−εx |V |p+1−ε + 1

p + 1

∫
D

e−εx
(|V |p+1 − |V |p+1−ε

)
= I0(V ) − 1

p + 1

∫
D

(
e−εx − 1

)|V |p+1 + kεa1 + o(ε), (4.17)

where

a1 := ωN−1

p + 1

[(
1

p + 1
+ 2

p − 1
log

p − 1

2

)∫
R

Wp+1(x)dx +
∫
R

Wp+1(x) logW(x)dx

]
,

and from (4.6) we deduce

− 1

p + 1

∫ (
e−εx − 1

)|V |p+1 = ε
1

p + 1

∫
x|V |p+1 + o(ε) = εa2

k∑
j=1

ξj + o(ε), (4.18)
D D
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where

a2 := ωN−1
1

p + 1

∫
R

Wp+1(x)dx.

Next we note that

I0(V ) −
k∑

i=1

I0(Vi) − 1

p + 1

∫
D

[
k∑

i=1

V
p+1
i − |V |p+1

]

= 1

2

(
p − 1

2

)2 ∫
D

[
|∇ΘV |2 + 1

2

∣∣V ′∣∣2 + |V |2 −
k∑

i=1

(
|∇ΘVi |2 + 1

2
|V ′

i |2 + |Vi |2
)]

=
k∑

i,j=1
i>j

(−1)i+j

∫
D

(
p − 1

2

)2

∇ΘVi∇ΘVj + V ′
i V

′
j + ViVj

=
k∑

i,j=1
i>j

(−1)i+j

∫
D

[
−

(
p − 1

2

)2

�SN−1Vi − V ′′
i + Vi

]
Vj

=
k∑

i,j=1
i>j

(−1)i+j

∫
D

W
p
i Vj ,

so that

I0(V ) −
k∑

i=1

I0(Vi) = 1

p + 1

∫
D

[
k∑

i=1

V
p+1
i − |V |p+1

]
+

k∑
i,j=1
i>j

(−1)i+j

∫
D

W
p
i Vj .

Let χl and Dl be defined as in Lemma 4.4. Since 0 � Vi � Wi for all i, we can replace the letter W by V once or
twice in the estimate (4.7), and thus we obtain

I0(V ) −
k∑

i=1

I0(Vi) = 1

p + 1

k∑
l=1

∫
Dl

[
V

p+1
l − |V |p+1 + (p + 1)

∑
l>j

(−1)l+jW
p
l Vj

]
+ o(ε)

= 1

p + 1

k∑
l=1

∫
Dl

[
V

p+1
l − |V |p+1 + (p + 1)

∑
j 
=l

(−1)l+jV
p
l Vj

]

+
k∑

l=1

∑
j 
=l

(−1)l+j

∫
Dl

(
W

p
l − V

p
l

)
Vj −

k∑
l=1

∑
j>l

(−1)l+j

∫
Dl

W
p
l Vj + o(ε),

so that by (4.9) and (4.10) we have

I0(V ) −
k∑

i=1

I0(Vi) = −
k∑

l=1

∑
j>l

(−1)l+j

∫
Dl

W
p
l Vj + o(ε).

Since moreover Πj = O(e−ξi ) = O(ε3/2) for j � 2 uniformly in D, we have

0 �
∫
Dl

W
p
l (Wj − Vj ) =

∫
Dl

W
p
l Πj = o(ε) for j > l,

and we can use (4.7) and (4.8) to get
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I0(V ) −
k∑

i=1

I0(Vi) = −
k∑

l=1

∑
j>l

(−1)l+j

∫
Dl

W
p
l Wj + o(ε)

=
k−1∑
l=1

∫
Dl

W
p
l Wl+1 + o(ε) = a3

k−1∑
l=1

e−|ξl+1−ξl | + o(ε). (4.19)

Finally, by (2.11) we have

I0(Vi) =
(

2

N − 2

)N−1

J0(ωμi
+ πμi

)

and it is well known that

J0(ωμi
+ πμi

) = 1

N

∫
RN

ω
p+1
1 + αN

2
H(0,0)

∫
RN

ω
p

1

(
μN−2

i

) + o
(
μN−2

i

)
. (4.20)

Therefore, since μN−2
1 = e−2ξ1 = O(ε) and μN−2

i = e−2ξi = o(ε) for i � 2, we obtain

k∑
i=1

I0(Vi) = ka4 + a5H(0,0)e−2ξ1 + o(ε), (4.21)

where

a4 :=
(

2

N − 2

)N−1 1

N

∫
RN

ω
p+1
1 (y)dy (4.22)

and

a5 :=
(

2

N − 2

)N−1
αN

2

∫
RN

ω
p

1 (y)dy. (4.23)

Combining (4.17)–(4.19) and (4.21) we deduce that

Iε(V ) = kεa1 + εa2

k∑
i=1

ξi + a3

k−1∑
i=1

e−|ξi+1−ξi | + ka4 + a5H(0,0)e−2ξ1 + o(ε). (4.24)

We note that, by (4.2) and (4.3), we get

k∑
i=1

ξi = −k2 − 2k + 2

2
log ε + k logΛ1 −

k∑
i=2

(k − i + 1) logΛi, (4.25)

k−1∑
i=1

e−|ξi+1−ξi | = ε

k∑
i=2

Λi, (4.26)

e−2ξ1 = ε

Λ2
1

. (4.27)

The claim now follows from (4.24)–(4.27). �
5. Proof of main results

Let us complete the proof of the existence of sign changing-bubble tower solutions to problem (1.1).

Proof of Theorem 1.1. In virtue of Lemma 4.1, we need to find a critical point of the function Ĩε . Performing
the change of variables ξ = ξ(ε,Λ) given in (4.2) and (4.3), it is sufficient to find a critical point of the function
Iε(Λ) = ε−1(Ĩε(ξ(ε,Λ)) − ka4).
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From Lemma 4.2 and Proposition 4.3, we get

Iε(Λ) = ψk(Λ) + c1 + c2 log ε + o(1),

where the term o(1) is uniform and c1, c2 are constants depending only on N and k.
We observe that the function ψk has a minimum point Λ∗ = (Λ∗

1, . . . ,Λ
∗
k) where Λ∗

1 is the minimum on (0,+∞)

of the function

Λ1 → a5
H(0,0)

Λ2
1

+ ka2 logΛ1

and, for i = 2, . . . , k, Λ∗
i is the minimum on (0,+∞) of the function

Λi → a3Λi − (k − i + 1)a2 logΛi.

Since Λ∗ is stable with respect to uniform perturbation, for ε small enough there exists Λε = (Λε
1, . . . ,Λ

ε
k) critical

point of Iε(Λ), such that Λε
i → Λ∗

i as ε → 0, for i = 1, . . . , k.
Therefore, the point ξε = (ξε

1 , . . . , ξ ε
k ), where

ξε
1 = log

Λε
1

ε1/2
, ξ ε

i = log
Λε

1

Λε
2 · · ·Λε

i ε
(2i−1)/2

, i = 2, . . . , k,

is a critical point of Ĩε and the function V + φ(ξε) is a solution to (2.3).

The claim follows, since μi = e− 2
N−2 ξi = Miε

2i−1
N−2 . �

Finally, let us prove the nodal properties of solutions found in Theorem 1.1.

Proof of Theorem 1.2. Let uε be a solution as in Theorem 1.1. We put

ũε(y) =
k∑

i=1

(−1)i
(

Miε
2i−1
N−2

M2
i ε2 2i−1

N−2 + |y|2
)N−2

2

=
k∑

i=1

(−1)i
(

1

Miε
2i−1
N−2 + M−1

i ε− 2i−1
N−2 |y|2

)N−2
2

.

Then

uε(y) = αNũε(y)
(
1 + o(1)

)
, y ∈ Ω, (5.1)

by Theorem 1.1, with o(1) → 0 uniformly on compact subsets of Ω . We consider the spheres S
j
ε = {y ∈ R

N : |y| =
ε

2j−1
N−2 }, j = 1, . . . , k. We may fix a compact subset K ⊂ Ω such that S

j
ε ⊂ K for j = 1, . . . , k and ε > 0 sufficiently

small. For y ∈ S
j
ε we estimate

ũε(y) =
k∑

i=1

(−1)i
(

1

Miε
2i−1
N−2 + M−1

i ε
4j−2i−1

N−2

)N−2
2

= ε− 2j−1
2

k∑
i=1

(−1)i
(

1

Miε
2(i−j)
N−2 + M−1

i ε
2(j−i)
N−2

)N−2
2

= (−1)j ε− 2j−1
2

((
1

Mj + M−1
j

)N−2
2 + o(1)

)
as ε → 0.

Hence (−1)j ũε > 0 on S
j
ε for j = 1, . . . , k and ε > 0 small, and together with (5.1) this implies that also (−1)juε > 0

on S
j
ε for ε small. Thus uε has at least k nodal domains Ω1, . . . ,Ωk such that Ωj contains the sphere S

j
ε .

Next we show that uε has not more than k nodal domains for ε small. For this we recall that, by (2.11), Lemma 4.2,
Proposition 4.3 and (4.22), we have
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Jε(uε) → k

N

∫
RN

ω
p+1
1 (y)dy = k

N
SN/2 as ε → 0, (5.2)

where Jε is defined in (2.10) and S is the best Sobolev constant for the embedding H 1
0 (Ω) ↪→ Lp+1(Ω), i.e.,

S = inf
u∈H 1

0 (Ω)\{0}

∫
Ω

|∇u|2 dy

(
∫
Ω

|u|p+1 dy)2/(p+1)
.

We put cε := infu∈Nε Jε for ε � 0, where Nε is the Nehari manifold given by

Nε =
{
u ∈ H 1

0 (Ω) \ {0}:
∫
Ω

|∇u|2 =
∫
Ω

|u|p+1−ε

}
.

It is well known and easy to see that cε → c0 = 1
N

SN/2 as ε → 0, and therefore

Jε(uε) < (k + 1)cε for ε > 0 small (5.3)

by (5.2). We now suppose by contradiction that uε has at least k + 1 pairwise different nodal domains Ω1, . . . ,Ωk+1.
We let χi be the characteristic function corresponding to the set Ωi . Then uεχi ∈ H 1

0 (Ω) for i = 1, . . . , k by [36,
Lemma 1]. Moreover,∫

Ω

∣∣∇(uεχi)
∣∣2 dy =

∫
Ω

∇uε∇(uεχi)dy = −
∫
Ω

�uε(uεχi)dy

=
∫
Ω

|uε|p−1−εuεχi dy =
∫
Ω

|uεχi |p+1−ε dy,

so that uεχi ∈ Nε . Since also uε ∈ Nε , we obtain

Jε(uε) =
(

1

2
− 1

p + 1 − ε

)∫
Ω

|uε|p+1−ε dy �
(

1

2
− 1

p + 1 − ε

) k+1∑
i=1

∫
Ω

|uεχi |p+1−ε dy

=
k+1∑
i=1

Jε(uεχi) � (k + 1)cε,

contrary to (5.3). The contradiction shows that uε has at most k nodal domains for ε small enough. This completes
the proof of Theorem 1.2. �
Acknowledgement

The authors would like to thank Professor Norman Dancer for communicating a related problem which stimulated
this research.

References

[1] F.V. Atkinson, H. Brezis, L.A. Peletier, Solutions d’équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad.
Sci. Paris 306 (1988) 711–714.

[2] F.V. Atkinson, H. Brezis, L.A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations 85
(1990) 151–170.

[3] T. Aubin, Problèmes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976) 573–598.
[4] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman, 1989.
[5] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,

Comm. Pure Appl. Math. 41 (3) (1988) 253–294.
[6] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.

Partial Differential Equations 3 (1995) 67–93.
[7] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001) 117–152.



340 A. Pistoia, T. Weth / Ann. I. H. Poincaré – AN 24 (2007) 325–340
[8] T. Bartsch, Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7
(1996) 115–131.

[9] T. Bartsch, T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear
Anal. 22 (2003) 1–14.

[10] T. Bartsch, A.M. Micheletti, A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc.
Var. Partial Differential Equations 26 (3) (2006) 265–282.

[11] M. Ben Ayed, K. El Mehdi, M. Grossi, O. Rey, A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Comm.
Contemp. Math. 5 (2) (2003) 179–195.

[12] G. Bianchi, H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991) 18–24.
[13] H. Brézis, L.A. Peletier, Asymptotics for elliptic equations involving critical growth, in: Partial Differential Equations and the Calculus of

Variations, vol. I, in: Progr. Nonlinear Differential Equations Appl., vol. 1, Birkhäuser, Boston, MA, 1996, pp. 149–192.
[14] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth,

Comm. Pure Appl. Math. 42 (1989) 271–297.
[15] A. Castro, M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in

a symmetric domain, Nonlinearity 16 (2003) 579–590.
[16] A. Castro, J. Cossio, J.M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997)

1041–1053.
[17] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,

J. Funct. Anal. 69 (1986) 298–306.
[18] M. Clapp, T. Weth, Multiple solutions for the Brezis–Nirenberg problem, Adv. Differential Equations 10 (4) (2005) 463–480.
[19] M. Clapp, T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential

Equations 21 (1) (2004) 1–14.
[20] M. del Pino, J. Dolbeault, M. Musso, “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem, J. Differential

Equations 193 (2) (2003) 280–306.
[21] M. del Pino, J. Dolbeault, M. Musso, The Brezis–Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9) 83 (12) (2004)

1405–1456.
[22] M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri–Coron’s problem, Calc. Var. Partial Differential Equa-

tions 16 (2003) 113–145.
[23] M. del Pino, P. Felmer, M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull.

London Math. Soc. 35 (2003) 513–521.
[24] M. del Pino, M. Musso, A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non

Linéaire 22 (1) (2005) 45–82.
[25] W.Y. Ding, On a conformally invariant elliptic equation on R

N , Comm. Math. Phys. 107 (1986) 331–335.
[26] M. Flucher, J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math. 94 (1997)

337–346.
[27] D. Fortunato, E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edin-

burgh 105 (1987) 205–213.
[28] Y. Ge, R. Jing, F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal. 221 (2) (2005) 251–302.
[29] Z.C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H.

Poincaré Anal. Non Linéaire 8 (1991) 159–174.
[30] E. Hebey, M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct.

Anal. 119 (1994) 298–318.
[31] N. Hirano, A.M. Micheletti, A. Pistoia, Existence of changing-sign solutions for some critical problems on R

N , Comm. Pure Appl. Anal. 4 (1)
(2005) 143–164.

[32] J. Kazdan, F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975) 567–597.
[33] Y.Y. Li, Prescribing scalar curvature on Sn and related problems. I, J. Differential Equations 120 (2) (1995) 319–410.
[34] A.M. Micheletti, A. Pistoia, On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical

and supercritical growth, Nonlinearity 17 (3) (2004) 851–866.
[35] R. Molle, D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris,

Ser. I 335 (2002) 459–462.
[36] E. Müller-Pfeiffer, On the number of nodal domains for elliptic differential operators, J. London Math. Soc. (2) 31 (1985) 91–100.
[37] M. Musso, A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent, Indiana Univ. Math. J. 5

(2002) 541–579.
[38] A. Pistoia, O. Rey, Multiplicity of solutions to the supercritical Bahri–Coron’s problem in pierced domains, Adv. Differential Equations,

in press.
[39] S.I. Pohožaev, On the eigenfunctions of the equation �u + λf (u) = 0, Dokl. Akad. Nauk SSSR 165 (1965) 36–39 (in Russian).
[40] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991) 1155–1167.
[41] O. Rey, The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990)

1–52.
[42] O. Rey, Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989) 19–37.
[43] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353–372.


