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Abstract

The main analytical ingredients of the first part of this paper are two independent results: a theorem on approximation of W2,2

solutions of the Monge–Ampère equation by smooth solutions, and a theorem on the matching (in other words, continuation) of 
second order isometries to exact isometric embeddings of 2d surface in R3.

In the second part, we rigorously derive the �-limit of 3-dimensional nonlinear elastic energy of a shallow shell of thickness 
h, where the depth of the shell scales like hα and the applied forces scale like hα+2, in the limit when h → 0. We offer a full 
analysis of the problem in the parameter range α ∈ (1/2, 1). We also complete the analysis in some specific cases for the full range 
α ∈ (0, 1), applying the results of the first part of the paper.
© 2015 

Résumé

On démontre d’abord deux résultats indépendants, l’un sur la densité des fonctions régulières dans l’ensemble des solutions de 
l’équation de Monge–Ampère, l’autre sur la construction d’isométries exactes par continuation à partir d’isométries infinitésimales 
d’ordre 2, pour des surfaces bidimensionelles.

On dérive ensuite un modèle nouveau pour les coques minces peu profondes d’épaisseur h et profondeur de l’ordre de hα

départant de la théorie trois-dimensionnelle de l’élasticité nonlinéaire. Le modèle limite obtenu par la Gamma-convergence consiste 
à minimiser une énergie biharmonique sous une contrainte de type Monge–Ampère. Ce résultat s’applique au cas où les forces sont 
de l’order de hα+2 et 1/2 < α < 1. On peut l’étendre pour α ∈ (0, 1) dans certains cas spécifics, utilisant les résultats de la première 
partie de l’article.
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1. Introduction

The mathematical theory of elastic shells must account for the deformation of thin elastic surfaces of non-zero 
curvature and the associated energetics. The subject thus brings together the differential geometry of surfaces with 
the theory of elasticity appropriately modified to account for the small aspect ratio of these slender elastic structures. 
From a practical engineering perspective, many approximate theories have been proposed for the mechanical behavior 
of elastic shells over the last 150 years [4]. The mathematical foundations for these theories has lagged behind but has 
recently been the focus of much attention [6,5,9] from two perspectives: (i) as a means of understanding the rigorous 
derivation of these theories teaches to understand the limits of their practical applicability, and (ii) as a way to shed 
light on the smoothness of allowable deformations with implications for the properties of elliptic operators that arise 
naturally in differential geometry. Both these questions can be couched in terms of the behavior of the elastic energy 
of the shell as a function of its aspect ratio, i.e. the ratio of its thickness to its curvature and/or lateral extent. For a 
flat sheet with no intrinsic curvature, the stretching energy per unit area of a thin sheet is proportional to its thickness, 
while the bending energy per unit area is proportional to the cube of its thickness. Thus, as the aspect ratio diminishes, 
the bending energy vanishes faster than the stretching or shearing energy. This leads to approximately isometric 
deformations of the sheet when it is subject to external loads, with a concomitant theory known as the Föppl–von 
Kármán theory [15] of elastic plates. For shallow shells with an intrinsic curvature, there is a new small parameter 
corresponding to the product of the intrinsic curvature and the thickness so that there are various possible distinguished 
limits associated with how small or large this parameter is, independent of the aspect ratio of the shell. This leads to 
various theories that penalize non-isometric deformations more or less depending on the relative magnitude of external 
loads that cause the shell to deform.

Over the past few years, we have begun to get a good understanding of the limiting models and the types of 
isometries involved in various similar contexts (e.g. see the review and a conjecture in [21] for thin shells), but each 
separate case enjoys its own peculiarities related to the geometry of the shell (hyperbolic, elliptic, degenerate or of 
mixed type), the order of the relevant approximate isometries on the shell, the linearity or it lack in the PDEs governing 
them and their regularity. For shells of thickness h and depth hα , subject to applied forces that scale with the shell 
depth as hα+2, as the thickness of the shell h → 0, depending on the choice of α, various limiting theories arise. The 
regimes α = 1 and α > 1 can be treated in a similar manner as discussed in another context in [18] and are not of 
interest to us in this paper.

Here, we consider the case when the shell is shallow and the forces weak, but not too weak, i.e. when 0 < α < 1, 
so that nearly isometric deformations might be expected, but implemented via nonlinear constraints, rather than linear 
ones as appearing in the α ≥ 1 regimes. In the vanishing thickness limit, using the basic methods of �-convergence 
which were developed in this context in [8,9], we derive a new thin film model (see also previous results in [17,18]) 
corresponding to a situation where the second order infinitesimal isometries on a shallow shell reference configuration 
are given by the out-of-plane displacement hαv0. In analogy with the results in [9] for plates with flat geometry 
v0 = 0 in the energy scaling regime 2 < β < 4, we recover a Monge–Ampère constraint det∇2v = det∇2v0 as a 
second order isometry constraint on the limiting displacements of Sobolev regularity W 2,2. This emergence of a 
“linearized curvature” constraint is natural from a mechanical point of view since the Laplacian of the strain (which 
is proportional to the Laplacian of the stress for linear stress–strain relations) characterizes local area changes and the 
tensorial isometry condition is softened to a scalar constraint of local area-preservation.

In this paper, we offer a full analysis of the problem in the parameter range α ∈ (1/2, 1) and obtain the required 
�-convergence result which identifies the proper limit model. However, similarly to the previously studied cases 
[9,20], in order to complete the analysis for the full range (0, 1) we need a result on the matching property, i.e. the 
continuation of second order isometries, on shallow shells, to exact isometries (under suitable regularity assumptions), 
and another result on approximating the W 2,2 solutions of the Monge–Ampère equation by smooth solutions. Contrary 
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to [20,12], the constraint here is a fully nonlinear one, and one cannot take advantage of the full degeneracy of 
det∇2v = 0 in [9, Theorems 7 and 10] [28]. Nevertheless, we prove the applicable versions of these results in the case 
det∇2v0 ≡ c > 0.

The outlay of the paper is as follows. In Sections 2 and 4, we present our main results, namely the matching property 
and density results, and the corresponding asymptotic behavior of the elastic energies when h → 0. In Section 3
we discuss the various possible choices of α and the known corresponding limiting theories. In Sections 5–7 we 
present the details of our proofs. Section 6 is dedicated to the study of not necessarily convex W 2,2 solutions of 
the Monge–Ampère equation, using some key observations by Šverák from his unpublished manuscript [31]. These 
results are a necessary ingredient of the density result in Section 6. Sections 9 and 8 contain the construction of the 
recovery sequences for the upper bound in the corresponding �-limit results.

2. The main results I: the matching and density properties

Throughout the paper � ⊂ R
2 will be a domain, i.e. an open, bounded and simply connected set. Our first main 

result regards the matching of isometries on convex weakly shallow shells.

Theorem 2.1. Assume that � is simply connected and let v0 ∈ C2,β(�̄, R) with det∇2v0 > c0 > 0. Let v ∈ C2,β(�̄, R)

satisfy:

det∇2v = det∇2v0 in �. (2.1)

Then there exists a sequence wh ∈ C2,β(�̄, R3) such that:

∀h > 0 ∇(id + hve3 + h2wh)
T ∇(id + hve3 + h2wh) = ∇(id + hv0e3)

T ∇(id + hv0e3) (2.2)

and sup‖wh‖C2,β < +∞.

The condition (2.2) means that each deformation uh : Sh → R
3 of a surface Sh = {x + hv0(x)e3; x ∈ �}, given 

by uh(x + hv0(x)e3) = x + hv(x)e3 + h2wh(x) is an isometry of Sh. In other words, the pull-back metrics from 
the Euclidean metric of Sh and of uh(Sh) = {x + hv(x)e3 + h2wh(x); x ∈ �} coincide. Hence Theorem 2.1 asserts 
that if two convex out-of-plane displacements of first order have the same determinants of Hessians, then they can be 
matched by a family of equibounded higher order displacements (the fields wh) to be isometrically equivalent. For 
other results concerning matching of isometries see [9, Theorem 7], [20, Theorem 1.1], [12, Theorem 3.1] (which is 
comparable with [30, Lemma 3.3] and the remark which follows therein) and [11, Theorem 4.1].

We will put our analysis in a broader context in Remark 2.4. The proof of Theorem 2.1 will be given in Section 5.
Our next main result concerns the density of regular solutions to the elliptic 2d Monge–Ampère equation.

Theorem 2.2. Let � be open, bounded, connected and star-shaped with respect to an interior ball B ⊂ �. For a fixed 
constant c0 > 0, define:

A := {
u ∈ W 2,2(�); det∇2u = c0 a.e. in �

}
.

Then A ∩ C∞(�̄) is dense in A with respect to the strong W 2,2 norm.

The main difficulty to overcome is the absence of convexity assumptions on the W 2,2 solutions of the Monge–
Ampère equation in our context. We first establish the convexity of elements of A in a broader sense, combining 
some key observations by Šverák from his unpublished manuscript [31], with a theorem due to Iwaniec and Šverák 
in [14] (Theorem 6.5) on deformations with integrable dilatation in dimension 2. Namely, we deduce Theorem 2.2 by 
showing first the interior regularity of solutions:

Theorem 2.3. Let u ∈ W 2,2(�) be such that:

det∇2u = f in �, where f : � → R, f (x) ≥ c0 > 0 ∀a.e. x ∈ �. (2.3)

Then u ∈ C1(�) and, modulo a global sign change, u is locally convex in �.



48 M. Lewicka et al. / Ann. I. H. Poincaré – AN 34 (2017) 45–67
Some of the results in [31] are known within the community, but for completeness we write the proofs of Theo-
rem 2.3 in full detail in Sections 6 and 7.

Remark 2.4. In [21], the authors put forward a conjecture regarding existence of infinitely many small slope shell 
theories (with no prestrain) each valid for a corresponding range of energy scalings. This conjecture is based on formal 
asymptotic expansions and it is in accordance with the previously obtained results for plates and shells. It predicts the 
form of the 2-dimensional limit energy functional, and identifies the space of admissible deformations as infinitesimal 
isometries of a given integer order N > 0 determined by the magnitude of the elastic energy. Hence, the influence of 
shell’s geometry on its qualitative response to an external force, i.e. the shell’s rigidity, is reflected in a hierarchy of 
functional spaces of isometries (and infinitesimal isometries) arising as constraints of the derived theories.

In certain cases, a given N th order infinitesimal isometry can be modified by higher order corrections to yield an 
infinitesimal isometry of order M > N , a property to which we refer to by “matching property of infinitesimal isome-
tries”. This feature, combined with certain density results for spaces of isometries, cause the theories corresponding 
to orders of infinitesimal isometries between N and M , to collapse all into one and the same theory. The examples of 
such behavior are observed for plates [9], where any second order infinitesimal isometry can be matched to an exact 
isometry (M = ∞), for convex shells [20], where any first order infinitesimal isometry satisfies the same property, and 
for non-flat developable surfaces [30,12] where first order isometries can be matched to higher order isometries (see 
also [11]). The effects of these geometric properties on the elasticity of thin films are drastic. A plate whose boundary 
is at least partially free possesses three types of small-slope theories: the linear theory, the von Kármán theory and the 
linearized Kirchhoff theory, whereas the only small slope theory for a convex shell with free boundary is the linear 
theory [20]: a convex shell transitions directly from the linear regime to the fully nonlinear bending one if the applied 
forces are adequately increased. In other words, while the von Kármán theory describes the buckling of thin plates at 
a body force magnitude of order thickness-cubed, the equivalent, variationally correct theory for buckling of elliptic 
shells is the purely nonlinear bending theory which comes only into effect when the body forces reach to a magnitude 
of order thickness-squared.

Our remaining results concern the variational limits of the elastic energies. We explain the set-up and present our 
findings in the next two sections.

3. Elastic shells of low curvature. The set-up and discussion of past results

For a given out-of-plate displacement v0 ∈ C2(�̄, R), and for a given exponent α > 0, consider a sequence of 
surfaces:

Sh = φh(�) where φh(x) = (
x,hαv0(x)

) ∀x = (x1, x2) ∈ �,

and the family of thin plates �h = � × (−h/2, h/2) and thin shallow shells (Sh)
h:

(Sh)
h = {

φ̃h(x, x3); x ∈ �, x3 ∈ (−h/2, h/2)
} ∀0 < h  1. (3.1)

Above, the Kirchhoff–Love extension φ̃h : �h →R
3 of the parametrization φh, is given by the formula:

φ̃h(x, x3) = φh(x) + x3�nh(x) ∀(x, x3) ∈ �h, (3.2)

while the vector �nh(x) is the unit normal to Sh at φh(x):

�nh(x) = ∂1φh(x) × ∂1φh(x)

|∂1φh(x) × ∂1φh(x)| = 1√
1 + h2α|∇v0|2

( − hα∂1v0(x),−hα∂2v0(x),1
) ∀x ∈ �.

The thickness averaged elastic energy of a deformation uh of (Sh)
h is now given by:

Ih(uh) = 1

h

∫
(Sh)h

W(∇uh) ∀uh ∈ W 1,2((Sh)
h,R3). (3.3)

The energy density W : R3×3 −→ R̄+ above, in addition to being C2 regular in a neighborhood of SO(3), is assumed 
to satisfy the normalization, frame indifference and non degeneracy conditions:
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∃c > 0 ∀F ∈R
3×3 ∀R ∈ SO(3) W(R) = 0, W(RF) = W(F),

W(F) ≥ c dist2(F,SO(3)). (3.4)

where F = ∇u is typically the deformation gradient associated with a mapping u. The following quadratic forms, 
generated by W , will be relevant in the subsequent analysis:

Q3(F ) = D2W(Id)(F,F ), Q2(Ftan) = min{Q3(F̃ ); F̃ ∈R
3×3, (F̃ − F)tan = 0}. (3.5)

The form Q3 is defined for all F ∈ R
3×3, while Q2 is defined on the 2 × 2 principal minors Ftan of such matrices. By 

(3.4), both forms Q3 and all Q2 are nonnegative definite and depend only on the symmetric parts of their arguments.
Let f h ∈ L2((Sh)

h, R3) be a family of loads applied to the elastic shells under consideration. The total energy is 
then:

Jh(uh) = 1

h

∫
(Sh)h

W(∇uh) − 1

h

∫
(Sh)h

f huh ∀uh ∈ W 1,2((Sh)
h,R3). (3.6)

In what follows, we will make the simplifying assumptions:

f h = (0,0, hα′
f ◦ φ̃−1

h )T (3.7)

for some f ∈ L2(�), normalizes so that:∫
�

f = 0 and
∫
�

xf (x)dx = 0. (3.8)

Heuristically, stronger forces (α′ < α + 2) deform the shallow shell beyond the reference shape, while weaker 
forces (α′ > α + 2) leave it undeformed, with an asymptotic behavior of displacements of lower order similar to that 
of a plate. The remaining case where the forces are tuned with the curvature of the mid-surface (shallowness), is given 
by the scaling regime α′ = α + 2.

When α ≥ 1, by a simple change of variables, we see that:

Jh(uh) = 1

h

∫
�h

W
(
(∇vh)(bh)−1

)
detbh − 1

h

∫
�h

hαi f vh
3 detbh,

with vh = uh ◦ φ̃h ∈ W 1,2(�h, R3) and bh = ∇φ̃h. Note that by the polar decomposition of positive definite matrices, 
there holds: bh = R(x, x3)a

h for some R(x, x3) ∈ SO(3) and the symmetric tensor ah = √
(bh)T bh. Therefore, for 

the isotropic energy W i.e. when:

W(FR) = W(F) ∀F ∈ R
3×3 ∀R ∈ SO(3), (3.9)

one obtains:

Ih(uh) = 1

h

∫
�h

W
(
(∇vh)(ah)−1R(x, x3)

−1
)

detbh d(x, x3)

= 1

h

∫
�h

W
(
(∇vh)(ah)−1

)
(1 +O(h)) d(x, x3),

(3.10)

which reduces the problem to studying deformations of the flat plate �h relative to the prestrain tensor ah, see [17,18]
for a discussion of this topic.

When α = 1, we derived in [18] the �-limit Jv0 of the scaled energies 1
h4 Ih. Namely, we showed that the energy 

of the almost minimizing deformations scales like:

infJh ∼ h4,

and that the �-limit (in the general, possibly non-isotropic case) is given by:
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Jv0(w,v) = 1

2

∫
�

Q2

(
sym∇w + 1

2
∇v ⊗ ∇v − 1

2
∇v0 ⊗ ∇v0

)
+ 1

24

∫
�

Q2

(
∇2v − ∇2v0

)
−

∫
�

f v, (3.11)

which is the von Kármán-type functional defined for all out-of-plane displacements v ∈ W 2,2(�, R) and the in-plane 
displacements w ∈ W 1,2(�, R2). In analogy with the theory for flat plates with [9], due to the choice of scaling in 
(3.7), the limit energy is composed of two terms, corresponding to stretching and bending.

In the isotropic case (3.9), the Euler–Lagrange equations of Jv0 are:{
�2	 = −S(det∇2v − det∇2v0)

B(�2v − �2v0) = [v,	] + f
(3.12)

where S is the Young modulus, B the bending stiffness, ν the Poisson ratio (given in terms of the Lamé constants 
μ and λ). A more involved version of the system (3.12) incorporating prestrain was first introduced in [23] using a 
thermoelastic analogy to growth, as a mathematical model of blooming activated by differential lateral growth from an 
initial non-zero transverse displacement field v0 (see also [22,7]). See [18] for the rigorous derivation of that model.

When α > 1, the bending energy takes over the stretching and hence the limiting theory is a variant of the linear 
elasticity as discussed in [9], yielding the Euler–Lagrange equations:

B(�2v − �2v0) = f.

We now turn to the case of interest treated in this paper, namely 0 < α < 1.

4. The main results II: elastic shallow shells

We first state the following lemma, whose proof is similar to [9, Theorem 2-i] and [19, Theorem 2.5], and hence it 
is omitted for brevity of presentation.

Lemma 4.1. Assume (3.7) and (3.8). Then:

(i) For every small h > 0 one has:

0 ≥ inf

{
1

h2α+2
Jh(uh); uh ∈ W 1,2((Sh)

h,R3)

}
≥ −C.

(ii) If uh ∈ W 1,2((Sh)
h, R3) is a minimizing sequence of 1

h2α+2 Jh, that is:

lim
h→0

(
1

h2α+2
Jh(yh) − inf

1

h2α+2
Jh

)
= 0, (4.1)

then 1
h2α+2 Ih(uh) is bounded.

We now note, by a straightforward calculation, that ah in (3.10), pertaining to the isotropic case (3.9), becomes:

ah = Id + 1

2
h2α(∇v0 ⊗ ∇v0)

∗ − hαx3(∇2v0)
∗ + o(h2α) + x3o(hα)

where the uniform quantities in o(h2α), o(hα) are independent of x3. Following the proof of Theorem 1.3 in [17], we 
actually obtain in the general (possibly non-isotropic) case:

Theorem 4.2. Assume that uh ∈ W 1,2((Sh)
h, R3) satisfies Ih(uh) ≤ Ch2α+2, where Ih is given in (3.3) and 0 < α < 1. 

Then there exists rotations R̄h ∈ SO(3) and translations ch ∈ R
3 such that for the normalized deformations:

yh(x, t) = (R̄h)T (uh ◦ φ̃h)(x,ht) − ch : �1 −→R
3 (4.2)

defined by means of (3.2) on the common domain �1 = � × (−1/2, 1/2) the following holds:

(i) yh(x, t) converge in W 1,2(�1, R3) to x.
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(ii) The scaled displacements V h(x) = h−α
∫ 1/2
−1/2 yh(x, t) − x dt converge (up to a subsequence) in W 1,2(�, R3) to 

(0, 0, v)T where v ∈ W 2,2(�, R) and:

det∇2v = det∇2v0. (4.3)

(iii) Moreover: lim infh→0 h−(2α+2)J h(uh) ≥ Jv0(v) where:

Jv0(v) = 1

24

∫
�

Q2

(
∇2v − ∇2v0

)
−

∫
�

f v. (4.4)

The constraint (4.3) in the assertion (ii) follows by observing that h−αsym∇V h converges in L2(�) to F =
1
2 (∇v0 ⊗ ∇v0 − ∇v ⊗ ∇v), and hence F = sym∇w for some w : � → R

2. Consequently curlT curlF = 0, which 
implies (4.3).

We now have the following:

Theorem 4.3. Fix α ∈ (1/2, 1). Then, for every v ∈ W 2,2(�, R) with det∇2v = det∇2v0, there exists a sequence of 
deformations uh ∈ W 1,2((Sh)

h, R3) such that:

(i) The rescaled sequence yh(x, t) = uh(x + hαv0(x)e3 + ht �nh(x)) converges in W 1,2(�1, R3) to x.
(ii) The scaled displacements V h as in (ii) Theorem 4.2 converge in W 1,2 to (0, 0, v).

(iii) limh→0 h−(2α+2)J h(uh) = Jv0(v).

The proof of Theorem 4.3 will be given in Section 9. Theorems 4.2 and 4.3 can be stated together, by identifying 
the linearized Kirchhoff-like energy (4.4) (4.3) as the �-limit of the rescaled energies h−(2α+2)J h(uh), in the regime 
corresponding to α ∈ (1/2, 1). We conjecture that the same holds for all α ∈ (0, 1). Note that this result is established 
in [9] for the degenerate case v0 ≡ 0 and hence our model can be considered as a generalization of the linearized 
Kirchhoff model discussed in [9]. Also, note that when � is not simply connected, one must replace (4.3) with a more 
general variant which states that ∇v0 ⊗ ∇v0 − ∇v ⊗ ∇v is a symmetric gradient.

We are able to prove our conjecture in the specific case when det∇2v0 is constant. Its proof relies on Theorems 2.1
and 2.2 and it will be given in Section 8. Namely, we have:

Theorem 4.4. Assume that � is open, bounded and star-shaped with respect to an interior ball B ⊂ �. Assume that:

det∇2v0 ≡ c0 > 0 in �.

Fix α ∈ (0, 1). Then, for every v ∈ W 2,2(�, R) with det∇2v = det∇2v0, there exists a sequence of deformations 
uh ∈ W 1,2((Sh)

h, R3) such that the conclusions (i), (ii) and (iii) in Theorem 4.3 hold.

Remark 4.5. We expect that the C2,β scalar fields v are dense in the set of the W 2,2 fields with any prescribed, strictly 
positive but not necessarily constant det∇2 of C0,β regularity. With such a result, it would follow that for all convex 
shells of sufficient regularity, the linearized Kirchhoff-type energy (4.4) is the rigorous variational limit on weakly 
shallow shells, in the same spirit as the matching and density of first order isometries on convex shells [20] resulted 
in that the only small slope theory for an elastic convex shell is the linear theory. The latter problems, when posed 
for surfaces of arbitrary geometry, are more difficult. One could hope to prove similar results for strictly hyperbolic 
surfaces S. In the general case, however, such problems reduce to the study of nonlinear PDEs of mixed types for 
which not so many suitable methods are at hand.

5. The matching property on convex shallow shells: proof of Theorem 2.1

Remark 5.1. Writing wh = wh,tan + w3
he3 where wh,tan(x) ∈ R

2 and w3
h(x) ∈ R, equation (2.2) becomes:

Id + h2(2sym∇wh,tan + ∇v ⊗ ∇v) + 2h3sym(∇v ⊗ ∇w3
h)

+ h4((∇w )T ∇w + ∇w3 ⊗ ∇w3) = Id + h2∇v ⊗ ∇v .
(5.1)
h,tan h,tan h h 0 0
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Recall that (2.1) is equivalent to curlT curl(∇v ⊗ ∇v − ∇v0 ⊗ ∇v0) = 0, and hence to: ∇v ⊗ ∇v − ∇v0 ⊗ ∇v0 =
sym∇w for some w ∈ C2,β(�̄, R2) since � is simply connected. Hence the constraint (2.1) is necessary and sufficient 
for matching the lowest order (h2) terms in (5.1).

Our result states that actually it is possible to perturb w by an equibounded 3d displacement wh −w so that the full 
equality (5.1) holds. A natural way for proving this is by implicit function theorem. Indeed, this is how we proceed, and 
the ellipticity assumption det∇2v0 > 0 is precisely a sufficient condition for the invertibility of the implicit derivative 
L(p) : C2,β

0 (�̄, R) −→ C0,β(�̄, R), L(p) = −cof∇2v : ∇2p where p is the variation in w3
h. An extra argument for the 

uniform boundedness of wh,tan in C2,β concludes the proof.

Proof of Theorem 2.1.
1. By a direct calculation, (2.2) is equivalent to:

∇(id + h2wh,tan)
T ∇(id + h2wh,tan) = Id + h2∇v0 ⊗ ∇v0 − h2(∇v + ∇zh) ⊗ (∇v + ∇zh), (5.2)

where wh,tan ∈ C2,β(�̄, R2) and zh = hw3
h ∈ C2,β(�̄, R) so that wh = wh,tan +w3

he3 is the required correction in (2.2).
We shall first find the formula for the Gaussian curvature of the 2d metric in the right hand side of (5.2):

gh(zh) = Id + h2∇v0 ⊗ ∇v0 − h2(∇v + ∇zh) ⊗ (∇v + ∇zh). (5.3)

Lemma 5.2. Let v0, v ∈ C2,β(�̄, R) and consider the C1,β regular metrics on � of the type:

g = [gij ]i,j=1,2 = Id + h2(∇v0 ⊗ ∇v0 − ∇v1 ⊗ ∇v1).

Then, for any h > 0 small, the Gaussian curvature κ(g) of g is C0,β regular and it is given by the formula:

κ(g) = h2

[
det(∇2v0 − [�k

ij ∂kv0]ij )(
1 − h2(gij ∂iv0∂j v0)

)2
detg

−
(
1 − h2(gij ∂iv0∂j v0)

)2(
1 − h2|∇v1|2

)2
det∇2v1

]
, (5.4)

where the Christoffel symbols of g, the inverse of g, and its determinant are:

�k
ij = 1

2
gkl

(
∂jgil + ∂igjl − ∂jgij

)
, (5.5)

g−1 = [gij ] = 1

det[gij ]cof[gij ], (5.6)

detg = 1 − h4|(∇v0)
⊥ · ∇v1|2 + h2(|∇v0|2 − |∇v1|2).

Proof. Assume first that v0 and v1 are in fact smooth. By Lemma 2.1.2 in [10], we have:

κ
(
Id − h2∇v1 ⊗ ∇v1

) = −h2 det∇2v1(
1 − h2|∇v1|2

)2

κ
(
g − h2∇v0 ⊗ ∇v0

) = 1(
1 − h2(gij ∂iv0∂j v0)

)2

[
κ(g) − h2det(∇2v0 − [�k

ij ∂kv0]ij )(
1 − h2(gij ∂iv0∂j v0)

)2detg

]
.

Since the two metrics above are equal, the formula (5.4) follows directly. The formula for detg is obtained by a direct 
calculation, via det(A + B) = detA + cofA : B + detB , valid for 2 × 2 matrices A, B .

In the general case when v0, v1 are only C2,β regular, one may approximate them by smooth sequences vn
0 , vn

1 . 
Then, each κn = κ

(
Id + h2(∇vn

0 ⊗ vn
0 − ∇vn

1 ⊗ vn
1 )

)
is given by the formula in (5.4), and the sequence κn converges 

in C0,β to the right hand side in (5.4). On the other hand, κn converges in D′(�) to κ(g), which follows from the 
definition of Gauss curvature κ = R1212/detg. Hence the lemma is proven. �
2. Applying Lemma 5.2 to v1 = v + zh, we now see that for small h, the Gauss curvature of metric gh(zh) vanishes:

κ(gh(zh)) = 0 (5.7)

if and only if:
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	(h, zh) = 0, (5.8)

where:

	(h, z) =(
1 − h2|∇v + ∇z|2)2det

(∇2v0 − [�k
ij ∂kv0]ij

)
− (

1 − h2(gij ∂iv0∂j v0)
)4

d(h, z)det(∇2v + ∇2z).

Here:

d(h, z) = 1 − h4|(∇v0)
⊥ · ∇(v + z)|2 + h2(|∇v0|2 − |∇v + ∇z|2)

and �k
ij and gij are given by (5.5) and (5.6) for the metric g = Id + h2∇v0 ⊗ ∇v0 − h2(∇v + ∇z) ⊗ (∇v + ∇z). We 

shall consider:

	 : (−ε, ε) × C2,β

0 (�̄,R) −→ C0,β(�̄,R)

and seek for solutions zh ∈ C2,β

0 (�̄, R) of (5.8) with zero boundary data. It is elementary to check that 	 is continu-
ously Frechet differentiable at (0, 0) and that

	(0,0) = det∇2v0 − det∇2v = 0.

Moreover, the partial Frechet derivative L = ∂	/∂z(0, 0) : C2,β

0 (�̄, R) −→ C0,β(�̄, R) is a linear continuous operator 
of the form:

∀z ∈ C2,β

0 L(z) = lim
ε→0

1

ε
	(0, εz) = lim

1

ε

(
det∇2v0 − det(∇2v + ε∇2z)

)
= lim

1

ε

( − ε2 det∇2z − εcof∇2v : ∇2z
) = −cof∇2v : ∇2z.

Clearly, L is invertible to a continuous linear operator, because of the uniform ellipticity of the matrix field ∇2v which 
follows from the convexity assumption of det∇2v = det∇2v0 being strictly positive. Thus, invoking the implicit 
function theorem we obtain the solution operator:

Z : (−ε, ε) −→ C2,β

0 (�̄,R)

such that zh =Z(h) satisfies (5.8). Moreover, Z is differentiable at h = 0 and:

Z ′(0) = L−1 ◦
(

∂	

∂h
(0,0)

)
= 0,

because:

∂	

∂h
(0,0) = (

cof∇2v0
) :

[
(

∂

∂h
�k

ij )∂kv0

]
ij

+ ∂

∂h
det[�k

ij ∂kv0]ij −
(

∂

∂h
d(0,0)

)
det∇2v = 0.

Consequently:

‖w3
h‖C2,β = 1

h
‖zh‖C2,β → 0 as h → 0. (5.9)

3. In conclusion, we have so far obtained a uniformly bounded sequence of C2,β

0 out-of-plane displacements w3
h =

zh/h such that the Gauss curvature (5.7) of the metric gh(zh) in the right hand side of (5.2) is 0. By the result in 
[26] it follows that for each small h there exists exactly one (up to fixed rotations) orientation preserving isometric 
immersion φh ∈ C2(�̄, R2) of gh(zh):

∇φT
h ∇φh = gh(zh) and det∇φh > 0. (5.10)

What remains to be proven is that, in fact, φh = id + h2wh,tan with some wh,tan uniformly bounded in C2,β(�̄, R2).
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It is a well known calculation (see [6,26]) that (5.10) implies (is actually equivalent to):

∇2φh − [�k
ij ∂kφh]ij = 0, (5.11)

where �k
ij are the Christoffel symbols (5.5) of the metric g = gh(zh) in (5.3). By (5.10) ‖∇φh‖L∞ ≤ C, and by (5.11)

‖∇2φh‖L∞ ≤ C, hence ‖φh‖C2,β ≤ C. But �k
ij are uniformly bounded (with respect to small h) in C0,β so by (5.11)

‖∇2φh‖C0,β ≤ C and thus:

‖φh‖C2,β (�̄,R2) ≤ C.

Note now that ‖�k
ij‖C0,β ≤ Ch2 in view of the particular structure of the metrics gh(zh). Hence, by (5.11):

‖∇2φh‖C0,β ≤ Ch2. (5.12)

Therefore, for some Ah ∈ R
2×2 we have:

‖∇φh − Ah‖C1,β ≤ Ch2. (5.13)

We now prove that the matrix Ah in the inequality above can be chosen as a rotation and hence, without loss of 
generality, Ah = Id. For each x ∈ � there holds:

dist(Ah,SO(3)) ≤ |Ah − ∇φh(x)| + dist(∇φh(x),SO(3)). (5.14)

To evaluate the last term above, write: 
√

∇φT
h (x)∇φh(x) = QDQT for some Q ∈ SO(3) and D = diag(λ1, λ2) with 

λ1, λ2 > 0. Since det∇φh > 0, it follows by polar decomposition theorem that:

dist(∇φh(x),SO(3)) = |
√

∇φT
h (x)∇φh(x) − Id| ≤ C|D − Id|

= C max
i

{|λi − 1|} ≤ C max
i

{|λ2
i − 1|} ≤ C|D2 − Id|

= C|QT ∇φT
h (x)∇φh(x)Q − Id| ≤ C|∇φT

h ∇φh(x) − Id| ≤ Ch2.

By the above and (5.14), (5.13) we see that dist(Ah, SO(3)) ≤ Ch2. Hence, without loss of generality, ‖∇φh −
Id‖C1,β ≤ Ch2 and:

‖φh − id‖C2,β ≤ Ch2.

Consequently, φh = id + h2wh,tan with ‖wh,tan‖C2,β ≤ C. This concludes the proof of Theorem 2.1, in view of (5.2)
which is equivalent to (2.2). �
Remark 5.3. The above proof is somewhat similar to [10, Theorem 4.1.1]. In analogy, note the similarity between the 
proof of the matching property in [20] and the Weyl problem by Nirenberg in [29].

6. Šverák’s arguments: proof of Theorem 2.3

In this section we provide a self-contained proof of Theorem 2.3. Observe first the following:

Example 6.1. Let B1 be the unit disk in R2 and let u ∈ C1(B1) be given by:

u(x, y) =
{

x2ey2/2 if x ≥ 0

−x2ey2/2 otherwise.

Note that u(0, y) = 0 and ∇u(0, y) = 0 for all y ∈ (−1, 1). Indeed, we have ux = ±2xey2/2, uy = ±yx2ey2/2, uxx =
±2ey2/2, uxy = uyx = ±2xyey2/2, uyy = ±(x2ey2/2 + y2x2ey2/2) and �u = ±ey2/2(2 + x2 + y2x2), respectively for 
x > 0 and x < 0.

As a consequence u ∈ W 2,∞(B1), u is strictly convex in {(x, y) ∈ B1; x > 0} and strictly concave in {(x, y) ∈
B1; x < 0}. On the other hand det∇2u = 2x2ey2

(1 − y2) ∈ C∞(B1) and it is positive if x �= 0 and y2 < 1. We right 
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away note that u /∈ C2(B1) although it solves the Monge–Ampère equation with smooth non-negative right hand side, 
a.e. in its domain.

Finally, our example shows that the assumption of strict positivity in Theorem 2.3 (and also Theorem 6.5 and 
Theorem 7.1) cannot be relaxed to det∇2u > 0 a.e., even assuming a better W 2,∞ regularity for u.

Definition 6.2. We say that a mapping v ∈ C0(�, R2) is connectedly locally one-to-one iff it is locally one-to-one 
outside of a closed set S ⊂ � of measure zero, for which � \ S is connected.

Definition 6.3. Let v ∈ W 1,2(�, R2) and let det∇v ≥ 0 a.e. in �. We say that v has integrable dilatation iff:

∀a.e. x ∈ � |∇v|2(x) ≤ K(x)det∇v(x)

with some function K ∈ L1(�).

For the proof of Theorem 2.3, the first result we propose is essentially a combination of arguments in Šverák’s 
unpublished paper [31]. In this section, we will gather all the details of its proof.

Theorem 6.4 (Šverák). If u ∈ W 2,2(�) satisfies:

det∇2u(x) > 0 ∀a.e. x ∈ �, (6.1)

then u ∈ C1(�). If additionally v = ∇u is connectedly locally one-to-one, then modulo a global sign change, u is 
locally convex in �. In particular, when � is convex then u is either convex or concave in the whole �.

We quote now the result, which will be crucial for the proof of Theorem 6.4:

Theorem 6.5. (See Iwaniec and Šverák [14].) Let v ∈ W 1,2(�, R2) be as in Definition 6.3. Then there exists a home-
omorphism h ∈ W 1,2(�′, �) and a holomorphic function ϕ ∈ W 1,2(�′, R2 =C) such that:

v = ϕ ◦ h−1.

In particular, v is either constant or connectedly locally one-to-one, and in the latter case the singular set S =
h((∇ϕ)−1{0}) is at most countable and it is finite on every subset compactly contained in �.

Without having Theorem 6.5 at hand, Šverák proved in [31] that if u ∈ W 2,2(�) satisfies det∇2u > 0 a.e. in �, 
then there exists a closed set S ⊂ � of measure zero such that on each component of � \ S, u is either locally convex 
or locally concave. In fact, the main step in the proof is to show that any such map is locally one-to-one outside a 
set of measure zero, which Šverák has achieved by using consequences of a version of Lemma 6.10 below and the 
classical degree theory.

Combining Theorem 6.4 with Theorem 6.5 one directly obtains:

Corollary 6.6. Let u ∈ W 2,2(�) satisfy (6.1) and be such that ∇u has integrable dilatation. Then u ∈ C1(�) and 
modulo a global sign change, u is locally convex in �.

Theorem 2.3 is then, obviously, a particular case of the above corollary, where the displacement u trivially satisfies 
its assumptions. In the remaining part of this section, we will prove Theorem 6.4. We first remind a key result on the 
modulus of continuity of 2d deformations in W 1,2 with positive Jacobian:

Theorem 6.7. (See Vodopyanov and Goldstein [34].) Assume that v ∈ W 1,2(�, R2) and that det∇v > 0 a.e. in �. 
Then v is continuous in �, and for any B(x, δ) ⊂ B(x, R) ⊂ � we have:

oscB(x,δ)v ≤ √
2π(ln

R

δ
)−1/2‖∇v‖L2(B(x,R)). (6.2)
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Proof. By a result of Vodopyanov and Goldstein [34] v is continuous (see also [25,32]). In fact, a key ingredient of 
this result is to show that φ is a monotone map, i.e. for Bρ = B(x, ρ):

oscBρ v = osc∂Bρ v, (6.3)

and hence v has the asserted modulus of continuity by [27, Theorem 4.3.4] (see also [25]). We sketch the last part of 
the proof for the convenience of the reader. By Fubini’s theorem v belongs to W 1,2(∂Bρ) for almost every ρ ∈ (δ, R). 
Hence the Morrey’s theorem of embedding of W 1,2 into C0 for the one-dimensional set ∂Bρ yields:

∀a.e. ρ ∈ (δ,R) oscBδv ≤ oscBρ v = osc∂Bρ v ≤ √
2πρ

( ∫
∂Bρ

|∇v|2
)1/2

.

To conclude, one squares both sides of the above inequality, divides by ρ and integrates from δ to R, in order to 
deduce (6.2). �
Corollary 6.8. Assume that vn ∈ W 1,2(�, R2) is a bounded sequence such that det∇vn > 0 a.e. in �. Then, up to 
a subsequence, vn converges locally uniformly and also weakly in W 1,2 to a continuous mapping v ∈ W 1,2(�, R2)

satisfying det∇v ≥ 0 a.e. in �.

Proof. The uniform convergence of a subsequence follows by Ascoli–Arzelá theorem in view of Theorem 6.7. Noting 
that det∇v = −∇v1 · ∇⊥v2, the Div-Curl Lemma implies then that the desired inequality is satisfied for the limit 
mapping v. �
Corollary 6.9. Let un ∈ W 2,2(�) be a bounded sequence such that det∇2un ≥ c0 ∈ R a.e. in �. Then, up to a 
subsequence, un converges weakly in W 2,2, as well as it converges locally uniformly together with its gradients, to a 
C1 function u ∈ W 2,2(�, R2) satisfying det∇2u ≥ c0 a.e. in �.

Proof. Let vn(x) = ∇u(x) + (|c0| + 1)1/2x⊥, where x⊥ = (x1, x2)
⊥ = (−x1, x2). Clearly, vn ∈ W 1,2(�, R2) and, 

since ∇2un is a symmetric matrix, we get:

det∇vn(x) = det∇2un(x) + |c0| + 1 > 0 ∀a.e. x ∈ �.

The convergence assertion follows by Corollary 6.8. Again, the Div-Curl Lemma applied to sequence ∇un implies 
the desired inequality for the limit function u. �

A consequence of Theorem 6.7 is the following assertion about W 2,2 functions whose Hessian determinants are 
uniformly controlled from below:

Lemma 6.10. Assume that u ∈ W 2,2(�) satisfies:

det∇2u(x) ≥ c0 ∈R ∀a.e. x ∈ �. (6.4)

Then u ∈ C1(�). Moreover, if x0 ∈ � is a Lebesgue point for ∇2u, i.e. for some A ∈R2×2
sym :

ω(r) := 1

|B(x0, r)|
∫

B(x0,r)

|∇2u − A|2dx → 0 as r → 0+, (6.5)

then for all ε > 0 there exists r0 > 0 such that:

∀r < r0 ∀a ∈ Dr = B(x0, r) ‖∇u(x) − ∇u(a) − A(x − a)‖C0(Dr )
≤ 1

2
εr,

‖u(x) − u(a) − ∇u(a) · (x − a) − 1

2
(x − a) · A(x − a)‖C0(Dr )

≤ εr2. (6.6)



M. Lewicka et al. / Ann. I. H. Poincaré – AN 34 (2017) 45–67 57
Proof. Following Kirchheim [16] we set v = ∇u and we write φ(x) = v(x) + (|c0| + 1)1/2x⊥. Trivially φ ∈
W 1,2(�, R2) and, as before:

det∇φ = det∇2u + |c0| + 1 > 0 ∀a.e. x ∈ �.

Applying Theorem 6.7 to φ shows that v is continuous and so u ∈ C1(�).
In what follows, we assume without loss of generality that x0 = 0, u(0) = 0 and v(0) = ∇u(0) = 0 (otherwise it is 

sufficient to translate � and to modify u by its tangent map at 0). For r sufficiently small and for all x ∈ B2 = B(0, 2)

we define:

vr(x) := 1

r
v(rx), φr(x) := vr(x) + (|c0| + 1)1/2x⊥,

so that:

∀x ∈ B2 ∇vr(x) = ∇v(rx) = ∇2u(rx), ∇φr(x) = ∇2u(rx) + (|c0| + 1)1/2
[

0 −1
1 0

]
,

det∇φr(x) = det∇vr(x) + (|c0| + 1) > 0.

Since φr ∈ W 1,2(B2, R2), we can apply (6.2) to x ∈ B1 and δ < R = 1, to obtain for r < r0 small enough:

oscB(x,δ)φr ≤ √
2π(ln

1

δ
)−1/2

( ∫
B(x,1)

|∇φr |2
)1/2

≤ √
2π(ln

1

δ
)−1/2

(
2(|m| + 1)1/2|B1| + (

∫
B(x,1)

|∇2u(ry)|2 dy)1/2
)

≤ C ln(
1

δ
)−1/2

(
(|m| + 1)1/2 + 1

r
‖∇2u‖B(0,2r)

)
≤ C ln(

1

δ
)−1/2,

where C = C(m, |A|) > 0. Above we used the fact that B(x, 1) ⊂ B2 and that 0 is a Lebesgue point for ∇2u. Now, 
given ε > 0 we choose δ > 0 such that:

ln(
1

δ
)−1/2 < ε/C.

Consequently:

∀x, y ∈ D1 ∀r < r0 |x − y| < δ =⇒ |φr(x) − φr(y)| < ε.

Since vr − φr is a given linear deformation, we conclude that the family:

F = {vr : D1 → R
2; r < r0}

is equicontinuous. On the other hand:∫
D1

∣∣∣∇vr − A

∣∣∣2 = πω(r) → 0 as r → 0.

Let ṽr = vr − −
∫
B1

vr and apply the Poincaré inequality to obtain that

ṽr → Ax in W 1,2(�,R2) as r → 0.

Now, equicontinuity of F and vr(0) = 0 yield, by Arzelà–Ascoli theorem, that a subsequence of vr (which we do not 
relabel) converges uniformly to a continuous function V on D1. Since vr − ṽ is constant, we deduce that V (x) −Ax =
c is constant too. But then, evaluating at 0 gives c = 0. Hence, vr uniformly converges to Ax on D1.

Let us fix ε > 0 and choose r0 so that:

∀r < r0 ‖vr(x) − Ax‖C0(D1)
≤ 1

ε.

4
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This implies:

‖∇u(x) − Ax‖C0(Dr )
≤ 1

4
εr.

Fixing a ∈ Dr we get:

‖∇u(x) − ∇u(a) − A(x − a)‖C0(Dr )
≤ 1

2
εr,

giving the first estimate in (6.6). Since diamDr = 2r , the second estimate follows. �
We now prove a simple useful lemma whose statement we quote from [31]:

Lemma 6.11. (See [31], Lemma 2.) Let u ∈ C1(�̄) and fix a ∈ �. Suppose that:

u(x) ≥ u(a) + ∇u(a) · (x − a) ∀x ∈ ∂� (6.7)

and that ∇u(x) �= ∇u(a) for all x ∈ � \ {a}. Then u has a supporting hyperplane at a, i.e. (6.7) holds for all x ∈ �. 
In particular, if � is convex then:

(Cu)(a) = u(a)

where Cu denotes the convexification of the function u over �̄:

(Cu)(a) = sup
{
T (a); T : � → R is affine and T (x) ≤ u(x) ∀x ∈ �̄

}
.

Proof. Consider the tangent map T (x) = u(a) + ∇u(a) · (x − a). We now claim that T (x) ≤ u(x) for all x ∈ �̄. For 
otherwise, the continuous function g(x) = u(x) − T (x) would assume a negative minimum on �̄ at some c ∈ � \ {a}. 
Hence ∇g(c) = 0, which is a contradiction with the second assumption as ∇u(c) = ∇T (c) = ∇u(a). �

We are ready to prove the key theorem of this section:

Proof of Theorem 6.4.
1. The C1 regularity of u is an immediate consequence of Theorem 6.7. Recall the properties of the singular set 

S from Definition 6.2. Since det∇2u > 0 a.e. in �, modulo a global change of sign for u we can choose x0 ∈ � \ S

a Lebesgue point of ∇2u as in (6.5), such that the matrix A is positive definite. Hence there exists λ > 0 for which 
ξ · Aξ ≥ λ|ξ |2 for all ξ ∈ R2. By Lemma 6.10 for all r < r0 the estimate (6.6) holds true with ε = 1

4λ, and without 
loss of generality ∇u is also one-to-one on Dr = B(x0, r) ⊂ � \ S. By (6.6) it follows that:

∀x ∈ ∂Dr u(x) − u(x0) − ∇u(x0) · (x − x0) ≥ 1

2
(x − x0) · A(x − x0) − εr2 ≥ λ

4
r2 > 0.

In view of Lemma 6.11, u therefore admits a supporting hyperplane at x0 on Dr .

2. Our next claim is that u is locally convex in � \S. Since � \S is open and connected, it is also path-wise connected. 
Therefore, for a fixed x ∈ � \S, there exists a continuous path within � \S connecting x and x0, which can be covered 
with a finite chain of open balls Bi ⊂ � \ S, i = 1, 2 . . . n, such that x0 ∈ B1, Bi ∩ Bi+1 �= ∅ and x ∈ Bn. We now need 
the following strong theorem due to J. Ball:

Theorem. (See [1], Theorem 1.) Let � ⊂ R
n be open and convex, and let u ∈ C1(�). The necessary and sufficient 

condition for u to be strictly convex on � is:

(i) ∇u is locally one-to-one, and
(ii) there exists a locally supporting hyperplane for u at some point of �:

∃x0 ∈ � ∀ρ > 0 ∀x ∈ B(x0, ρ) u(x) ≥ u(x0) + ∇u(x0) · (x − x0).
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Applying this result consecutively to each ball Bi , we deduce that u is strictly convex on Bn, hence it is locally 
convex at x.

3. To finish the proof, we fix a direction in R2 and consider the family of straight lines parallel to that direction. For 
almost every such line L, the 1-dimensional Lebesgue measure of L ∩ S is zero and u ∈ W 2,2(L ∩ �). Also, u is 
locally convex on (L ∩�) \S in view of the previously proven claim. We now state the following easy lemma to show 
that u is convex on connected components of L ∩ �:

Lemma. Let I ⊂R be an open bounded interval, φ ∈ W 2,1(I ) and assume that φ is locally convex on I \ S, where S
is a set of measure 0. Then φ is convex on I .

The proof is elementary. Since φ ∈ C1(I ) and φ is locally convex on a full measure open subset of I , we deduce 
that φ′′ ≥ 0 a.e. in I . But this immediately implies that φ′ is increasing in I , hence φ is globally convex.

We have previously shown that u is convex on connected components of L ∩ �, for almost all straight lines L
in any direction. By continuity of u, the same must hold, in fact, for all lines, by approaching any given line with a 
selected sequence of ‘good’ lines and passing to the limit in the convexity inequality. This implies that actually u is 
convex on any convex subset of � and the proof is done. �

For completeness, we now note another corollary of Lemma 6.10 and Lemma 6.11:

Lemma 6.12. Let u ∈ W 2,2(�) satisfy (6.4). Assume that x0 is a Lebesgue point for ∇2u with A in (6.5) being positive 
definite. Assume that ∇u is one-to-one in a neighborhood of x0. Then u is locally convex at x0.

Proof. There exists λ > 0 for which ξ · Aξ ≥ λ|ξ |2 for all ξ ∈ R
2. By Lemma 6.10 for all r < r0 and all a ∈ Dr =

B(x0, r), estimate (6.6) holds true with ε = λ/4. Without loss of generality, ∇u is one-to one on Dr and, by (6.6):

∀a ∈ B(x0, r/2) ∀x ∈ ∂B(x0, r/2)

u(x) − u(a) − ∇u(a) · (x − a) ≥ 1

2
(x − a) · A(x − a) − εr2 ≥ λ

4
r2 > 0.

The assumptions of Lemma 6.11 are satisfied and hence u(a) = (Cu)(a) for all a ∈ B(x0, r/2). The claim is 
proved. �
Remark 6.13. In proving Theorem 2.3 we only used the conclusion of Theorem 6.5 that v is locally one-to-one 
on a connected set of full measure. Therefore, the assumptions of Theorem 2.3 could potentially be relaxed (as in 
Theorem 6.4), but not to det∇2u > 0 a.e. Indeed, let v = ∇u be as in Example 6.1. Then v is not of integrable 
dilatation because:

|∇v|2
det∇v

(x, y) ≥ 2

x2(1 − y2)
,

and also the singular set S = {(0, y); y ∈ (−1, 1)} coincides with the vanishing set of v where v is obviously not 
locally one-to-one. On the other hand, Theorem 6.4 can be also applied to the cases where det∇2u ∈ C0(�) is positive 
a.e. and � \ f −1(0) is connected.

7. Density and regularity for elliptic 2-dimensional Monge–Ampère equation: proof of Theorem 2.2

As a consequence of Theorem 2.3 and of the monotonicity property by Vodopyanov and Goldstein which we quote 
in Theorem 6.7, we obtain:

Theorem 7.1. Let f ∈ Ck,β(�) be a positive function. Then any W 2,2(�) solution of det∇2u = f , is Ck+2,β regular, 
locally in �.
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Proof. 1. We first note that u is a generalized Aleksandrov solution to (2.3). Since u is locally convex, it is twice 
differentiable in the classical sense a.e. in �, and its gradient agrees with f . By Lemma 2.3 in [33], the regular part 
of the Monge–Ampère measure μu equals (det∇2u)dx = f dx. It suffices now to prove that there is no singular part 
of μu, i.e. that μu is absolutely continuous with respect to the Lebesgue measure dx.

Call v = ∇u. By Theorem 2.3 we have u ∈ C1(�) and hence:

μu(ω) = |v(ω)| for every Borel set ω ⊂ �.

We thus need to show that v satisfies Luzin’s condition (N):

|v(ω)| = 0 ∀ω ⊂ �; |ω| = 0.

The above claim follows directly from Theorem A in [24], in view of v ∈ W 1,2(�, R2) and the monotonicity property 
(6.3) of v due to Vodopyanov and Goldstein.

2. Since f ∈ C0,α(�̄), then Theorem 5.4 in [13] implies that u is locally C2,α . We note that this statement is the 
well-known result due to Caffarelli [2]. Indeed, fix x0 ∈ �. By Remark 3.2 in [33] which gives an elementary proof of 
a result by Aleksandrov and Heinz, the displacement u as above must be strictly convex in some B(x0, ε). By adding 
an affine function to u, we may without loss of generality assume that u = 0 on the boundary of the convex set:

�0 = {x ∈ �; u(x) ≤ u(x0) + δ} ⊂ B(x0, ε),

for a sufficiently small δ > 0. Therefore, the statement of Theorem 5.4 in [13] can be directly applied. Once the C2,β

regularity is established, the Ck+2,β regularity follows as in Proposition 9.1 in [3]. �
Proof of Theorem 2.2. Without loss of generality we assume that � is starshaped with respect to B = B(0, r) ⊂ �. 
Let u ∈A and define uλ(x) = 1

λ2 u(λx) for 0 < λ < 1. Then:

det∇2uλ(x) = c0 ∀a.e. x ∈ �

and:

‖uλ‖L2(�) = λ−3‖u‖L2(λ�), ‖∇uλ‖L2(�) = λ−2‖u‖L2(λ�), ‖∇2uλ‖L2(�) = λ−1‖u‖L2(λ�).

As a consequence, uλ ∈ A for all λ ∈ (0, 1), and uλ → u strongly in W 2,2(�) as λ → 1−.
So far we have used only the fact that � is starshaped with respect to the origin 0. Now, since � is star-shaped 

with respect to an open ball B , we have λ�̄ ⊂ � for all 0 < λ < 1. Hence, in view of Theorem 7.1, uλ ∈ C∞(�̄) ∩A, 
which proves the claim. �
8. Recovery sequence for the range α ∈ (0, 1) in view of the matching property: proof of Theorem 4.4

It is enough to prove Theorem 4.4 for v ∈ C2,β(�̄) satisfying det∇2v = det∇2v0. In the case of v ∈ W 2,2(�) sat-
isfying the same constraint, the result follows then by a diagonal argument in view of the density property established 
in Theorem 2.2.

1. We now recall the useful change of variable φ̃h ∈ C1,β(�h, R3) between thin plates �h = � × (−h/2, h/2) and 
thin shallow shells (Sh)

h:

φ̃h(x, x3) = x + hαv0(x)e3 + x3�nh(x) ∀(x, x3) ∈ �, (8.1)

where �nh is the unit normal vector to the midsurface Sh, given as the image of the map φh(x) = x + hαv0(x)e3:

�nh(x) = ∂1φh(x) × ∂2φh(x)

|∂1φh(x) × ∂2φh(x)| = 1√
1 + h2α|∇v0|2

(−hα(∇v0)
∗ + e3

)
.

By Theorem 2.1, there exists an equibounded sequence wh ∈ C2,β(�̄, R3) such that the deformations ξh(x) = x +
hαv(x)e3 + h2αwh(x) are isometrically equivalent to id + hαv0e3:

∀0 < h  1 (∇ξh)
T ∇ξh = ∇(id + hαv0e3)

T ∇(id + hαv0e3). (8.2)
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Define now the recovery sequence uh ∈ C1,β((Sh)
h, R3) by:

uh(φ̃h(x, x3)) = ūh(x, x3) = ξh(x) + x3 �Nh(x) + x2
3

2
hαdh(x),

where �Nh is the unit normal vector to the image surface ξh(�):

�Nh(x) = ∂1ξh(x) × ∂2ξh(x)

|∂1ξh(x) × ∂2ξh(x)| = (−hα(∇v)∗ + e3
) +O(h2α),

while the ‘warping’ vector fields dh ∈ C1,β(�̄, R3), approximating the effective warping d ∈ C0,α(�̄, R3) are defined 
so that:

hα‖dh‖C1,β ≤ C and lim
h→0

‖dh − d‖L∞ = 0,

Q2
(∇2v0 − ∇2v

) = min
{
Q3(F ); F ∈ R

3×3, Ftan = ∇2v0 − ∇2v
}

=Q3
(
(∇2v0 − ∇2v)∗ + sym(d ⊗ e3)

)
.

(8.3)

For F ∈ R
3×3, by Ftan we denote the principal 2 × 2 minor of F . Recall also that the quadratic form Q3 is given by 

Q3(F ) = D2W(Id)(F, F).

2. Because of the first condition in (8.3), the statements in Theorem 4.4 (i), (ii) easily follow. In order to compute the 
energy limit in (iii), we write:

Ih(uh) = 1

h

∫
�h

W
(
(∇ūh)(bh)−1

)
det∇φ̃h = 1

h

∫
�h

W
(√

Kh
)

detbh, (8.4)

where:

bh = ∇φ̃h

while the frame invariance of W justifies the second equality in (8.4) with:

Kh(x, x3) = (bh)−1,T (∇ūh)T (∇ūh)(bh)−1.

We will now compute the entries of the symmetric matrix field Kh, up to terms of order o(hα+1). In what follows we 
adopt the convention that all equalities hold modulo quantities which are uniformly o(hα+1). Call Mh = (∇ūh)T ∇ūh. 
Since:

∇tanū
h = ∇ξh + x3∇ �Nh + o(hα+1), ∂3ū

h = �Nh + x3h
αdh,

we obtain, in view of (8.2):

Mh
tan = ∇(id + hαv0e3)

T ∇(id + hαv0e3) + 2x3sym
(
(∇ξh)

T ∇ �Nh
)

= Id2 + h2α∇v0 ⊗ ∇v0 − 2x3h
α∇2v + o(hα+1),

Mh
13,23 = (Mh)T13,23 = x3h

αdh
tan + o(hα+1),

Mh
33 = | �Nh + x3h

αdh|2 = 1 + 2x3h
αdh

3 + o(hα+1).

Further, by a direct calculation, one obtains:(
bh

)
tan = Id2 − x3h

α∇2v0 + o(hα+1),(
bh

)T

13,23 = hα∇v0 + o(hα+1),
(
bh

)
13,23,33 = �nh,

and the inverse matrix (bh)−1 has the following structure:(
(bh)−1)

tan = A + o(hα+1),(
(bh)−1) = hαA∇v0 + o(hα+1),

(
(bh)−1)T = �nh.
13,23 13,23,33
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where the principal minor A(x) ∈R
2×2 of (bh(x))−1 is the symmetric matrix:

A = (
Id2 + h2α∇v0 ⊗ ∇v0 − x3h

α∇2v0
)−1

. (8.5)

3. We now compute,(
(bh)−1,T Mh

)
tan = Id + x3h

αA(∇2v0 − 2∇2v) + x3h
α �nh

tan ⊗ �dh
tan + o(hα+1)

= Id2 + x3h
α(∇2v0 − 2∇2v) + o(hα+1)(

(bh)−1,T Mh
)T

13,23 = hα(Id + h2α∇v0 ⊗ ∇v0)A∇v0 + x3h
αdh

tan + o(hα+1)

= hα∇v0 + x3h
αdh

tan + o(hα+1)(
(bh)−1,T Mh

)
13,23 = x3h

αdh
tan + �nh

tan + o(hα+1)(
(bh)−1,T Mh

)
33 = �nh

3 + 2x3h
αdh

3 + o(hα+1),

where we used that A
(
Id + h2α∇v0 ⊗ ∇v0 − 2x3h

α∇2v
) = Id + x3h

αA(∇2v0 − 2∇2v) and that hα
(
Id + h2α∇v0 ⊗

∇v0
)
A = hα(Id + x3h

α∇2v0A) = hαId + o(hα+1). Consequently:

Kh
tan = A + x3h

α(∇2v0 − 2∇2v) + �nh
tan ⊗ �nh

tan + o(hα+1)

= A
(
Id + x3h

α(∇2v0 − 2∇2v) + �nh
tan ⊗ �nh

tan + h4α|∇v0|2
1 + h2α|∇v0|2 ∇v0 ⊗ ∇v0

) + o(hα+1)

= A
(
Id + x3h

α∇2v0 − 2x3h
α∇2v + h2α∇v0 ⊗ ∇v0

) + o(hα+1)

= Id2 + 2x3h
αA(∇2v0 − ∇2v) + o(hα+1)

= Id2 + 2x3h
α(∇2v0 − ∇2v) + o(hα+1)

Kh
13,23 = hαA∇v0 + x3h

αdh
tan + �nh

3 �nh
tan + o(hα+1)

= hαA∇v0 + x3h
αdh

tan − hα

1 + h2α|∇v0|2 ∇v0 + o(hα+1)

Kh
33 = h2α〈A∇v0,∇v0〉 + 2x3h

αdh
3 + |�nh

3 |2 + o(hα+1)

= 1 + h2α〈A∇v0,∇v0〉 + 2x3h
αdh

3 − h2α|∇v0|2
1 + h2α|∇v0|2 + o(hα+1),

where we used that �nh
tan ⊗ �nh

tan = h2α

1+h2α |∇v0|2 ∇v0 ⊗ ∇v0. Observe that:

hαA∇v0 − hα

1 + h2α|∇v0|2 ∇v0

= hα

1 + h2α|∇v0|2 A
(
(1 + h2α|∇v0|2)∇v0 − ∇v0 − h2α|∇v0|2∇v0

) + o(hα+1)

= o(hα+1).

Therefore, in fact:

Kh
13,23 = x3h

αdh
tan + o(hα+1), Kh

33 = 1 + 2x3h
αdh

3 + o(hα+1).

Concluding, we get:

Kh = Id3 + 2x3h
α
(
(∇2v0 − ∇2v)∗ + sym(dh ⊗ e3)

) + o(hα+1).

4. Taylor expanding W at Id3 and using (8.3) we now see that:

W(
√

Kh) = W
(
Id3 + x3h

α((∇2v0 − ∇2v)∗ + sym(dh ⊗ e3)) + o(hα+1)
)

= 1
x2

3h2αQ3
(
(∇2v0 − ∇2v)∗ + sym(dh ⊗ e3)

) + o(h2α+2).

2
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Note that ∇φ̃h = 1 +O(hα). By this fact, recalling (8.4) and the convergence in (8.3), it follows that:

lim
h→0

1

h2α+2
Ih(uh) = lim

h→0

1

h2α+2

1

h

∫
�h

W(
√

Kh)(1 +O(hα))

= lim
h→0

1

2h3

∫
�h

x2
3Q3

(
(∇2v0 − ∇2v)∗ + sym(d ⊗ e3)

)

= lim
h→0

1

2h3

( h/2∫
−h/2

x2
3 dx3

)∫
�

Q2
(∇2v0 − ∇2v

)
dx

= 1

24

∫
�

Q2
(∇2v0 − ∇2v

)
dx.

Since, clearly ūh
3 = hαv +O(h2α), we obtain:

lim
h→0

1

h2α+2

1

h

∫
�h

hα+2f vh
3 detbh = lim

h→0

1

h2α+2

1

h

∫
�h

hα+2f (hαv +O(h2α)) =
∫
�

f v dx.

The proof of Theorem 4.4 is complete. �
9. Recovery sequence in the general case for the range α ∈ (1/2, 1): proof of Theorem 4.3

Let d(F ) ∈ R3 be the unique vector so that:

Q2(F ) =Q3

(
F ∗ + sym(d ⊗ e3)

)
.

The mapping d : R2×2
sym → R

3 is well-defined and linear.

1. Let the given out-of-plane displacement v be as in Theorem 4.3. The Monge–Ampére constraint on v can be 
rewritten as:

curlT curl(∇v ⊗ ∇v) = curlT curl(∇v0 ⊗ ∇v0).

Recall that a matrix field B ∈ L2(�, R2×2
sym) is in the kernel of the linear operator curlT curl if and only if B = sym∇w

for some w ∈ W 1,2(�, R2). Hence, we conclude that:

sym∇w = −1

2
∇v ⊗ ∇v + 1

2
∇v0 ⊗ ∇v0.

By the Sobolev embedding theorem in the two-dimensional domain �, v ∈ W 2,2(�) implies that: ∇v ∈ W 1,q (�, R2)

for all q < ∞. Consequently:

sym∇w ∈ W 1,p(�,R3×3) ∀1 ≤ p < 2.

Fix 1 < p < 2 such that: γ > 2/p and that W 1,p(�) embeds in L8(�). This is possible since γ < 2 and so p can 
be chosen as close to 2 as we wish. Using Korn’s inequality and through a possible modification of w by an affine 
mapping, we can assume that:

w ∈ W 2,p ∩ W 1,8(�,R2).

Call λ = 1/p and observe that:

2 − γ

2(p − 1)
< λ <

γ

2
. (9.1)

Following [9, Proposition 2], by partition of unity and a truncation argument, as a special case of the Lusin-type 
result for Sobolev functions, there exist sequences vh ∈ W 2,∞(�) and wh ∈ W 2,∞(�, R2) such that:
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lim
h→0

‖vh − v‖W 2,2(�) + ‖wh − w‖W 2,p(�,R2) = 0,

‖vh‖W 2,∞(�) + ‖wh‖W 2,∞(�,R2) ≤ Ch−λ,

lim
h→0

h−2λ
∣∣∣{x ∈ �; vh(x) �= v(x)

}∣∣∣ + h−pλ
∣∣∣{x ∈ �; wh(x) �= w(x)

}∣∣∣ = 0.

(9.2)

Hence, � is partitioned into a disjoint union � = Uh ∪ Oh, where:

Uh =
{
x ∈ �; vh(x) = v(x)

}
∩

{
x ∈ �; wh(x) = w(x)

}
,

|Oh| = o(hpλ) + o(h2λ) = o(hpλ).

(9.3)

We observe that the second order stretching s(vh, wh) satisfies:

s(vh,wh) = sym∇wh + 1

2
∇vh ⊗ ∇vh − 1

2
∇v0 ⊗ ∇v0 in Uh.

Now, a similar argument as in [19, Lemma 6.1] yields:

‖s(vh,wh)‖L∞(�) = o(hλ(p/2−1)) and ‖s(vh,wh)‖2
L2(�)

= o(h2λ(p−1)). (9.4)

2. We now define the recovery sequence, using notation and formulas in (8.1) (8.4):

∀(x, x3) ∈ �h uh(φ̃h(x, x3)) = ūh(x, x3) =
[

x

0

]
+

[
h2αwh(x)

hαvh(x)

]

+ x3

[ −hα∇vh(x)

1

]
+ h2αx3d

0,h(x) + 1

2
hαx2

3d1,h(x), (9.5)

where the Lipschitz continuous fields d0,h ∈ W 1,∞(�, R3) are given by:

d0,h =
(

1 − 1

2
|∇vh|2

)
e3 + d

(
sym∇wh + 1

2
∇vh ⊗ ∇vh − 1

2
∇v0 ⊗ ∇v0

)
,

while the smooth fields d1,h obey:

lim
h→0

√
h‖d1,h‖W 1,∞(�) = 0, (9.6)

lim
h→0

d1,h = e3 + d
(

− ∇2v + ∇2v0

)
in L2(�). (9.7)

The convergence statements (i) and (ii) are now verified by a straightforward calculation. In order to establish (iii), 
we calculate the deformation gradient of ūh:

∇ūh = Id + h2α(∇wh)∗ + hαDh − hαx3(∇2vh)∗ + h2α
[
x3∇d0,h d0,h

] + hα
[

1
2x2

3∇d1,h x3d
1,h

]
,

where the skew-symmetric matrix field Dh is given as:

Dh =
[

0 −(∇vh)T

∇vh 0

]
.

Call Sg = 1
2 (∇v0 ⊗ ∇v0)

∗ + e3 ⊗ e3 and Bg = −(∇2v0)
∗ + e3 ⊗ e3. Write: Ah = Id + h2αSg + hαx3Bg . We hence 

obtain:

(∇ūh)(Ah)−1 = Id3 + Fh

where, using λ < γ/2 < 1:

Fh = h2α((∇wh)∗ − Sg) + hαDh − hαx3((∇2vh)∗ + Bg) + h2α
[
x3∇d0,h d0,h

]
+ hα

[
1
2x2

3∇d1,h x3d
1,h

] − h2αSg − hαx3Bg

+O(h4α)(|∇wh| + |d0,h|) +O(h3α)|Dh| +O(h1+2α)

= o(1).

(9.8)
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Hence:

(Ah)−1,T (∇ūh)T (∇ūh)(Ah)−1 = Id3 + 2symFh + (F h)T Fh = Id + Kh + qh, (9.9)

where:

Kh = 2h2αsym
(
(∇wh)∗ − 1

2
(Dh)2 − Sg + d0,h ⊗ e3

)
+ 2hαx3 sym

(
− (∇2vh)∗ − Bg + d1,h ⊗ e3

)
,

and:

qh =O(hα)
(|∇wh| + |∇wh|2|d0,h|) +O(h3α)|Dh|(1 + |∇wh| + |Dh| + |d0,h|)

+O(h1+2α−λ)
(
1 + |∇wh|2 + |Dh|2 + |d0,h|2) +O(h(2α+3)/2)

=o(1).

Note that (Dh)2 = −(∇vh ⊗ ∇vh)∗ − |∇vh|2(e3 ⊗ e3). Therefore:

sym

(
(∇wh)∗ − 1

2
(Dh)2 − Sg + d0,h ⊗ e3

)

=
(

sym∇wh + 1

2
∇vh ⊗ ∇vh − (Sg)2×2

)∗
+ sym

((
d0,h − e3) + 1

2
|∇vh|2e3

) ⊗ e3

)

= s(vh,wh)∗ + sym
(
d(s(vh,wh)) ⊗ e3

)
.

Call:

b(vh) = sym
(
−(∇2vh)∗ − Bg + d1,h ⊗ e3

)
=

(
−∇2vh − (Bg)2×2

)∗ + sym
(
(d1,h − e3)) ⊗ e3

)
.

We therefore obtain:

Kh = 2hαx3b(vh) +O(h2α)|s(vh,wh)| = o(1).

Note also that:

lim
h→0

b(vh) =
(
−∇2v − (Bg)2×2

)∗ + sym
(
d

(
−∇2v − (Bg)2×2

)
⊗ e3

)
in L2(�). (9.10)

3. We now observe the following convergence rates:

Lemma 9.1. We have:

(i) h−1‖qh‖2
L2(Uh×(− h

2 , h
2 ))

= o(h2α+2),

(ii) h−1‖ |qh| |Kh|‖
L1(Uh×(− h

2 , h
2 ))

= o(h2α+2).

Proof. Recall that vh and wh are uniformly bounded in W 1,8(�). To prove (i) observe that:

1

h
‖qh‖2

L2(Uh×(− h
2 , h

2 ))
≤ ‖Ch‖L1(�)O(h8α + h6α + h2(1+2α−λ) + h2α+3) = o(h2α+2),

where we collected all the terms involving |Dh|, |∇wh| and |d0,h| ≤ C(1 +|∇wh| +|Dh|2) in the quantity Ch, which 
can be shown to be uniformly bounded in L1(�).

To see (ii), we estimate:

1

h
‖ |qh| |Kh|‖

L1(Uh×(− h
2 , h

2 ))
≤ h−1/2‖qh‖L2

(
h(2α+2)/2‖b(vh)‖L2(�) + h2α‖s(vh,wh)‖L2(�)

)
= o(h(2α+2)/2)

[
hα+1 + o(h2α+λ(p−1))

]
= o(h2α+2) + o(h3α+λp−λ+1) = o(h2α+2),

where we used (i), (9.4) and (9.10). �
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Now we observe that, since Fh = o(1) in (9.8), the matrix field Id3 + Fh is uniformly close to SO(3) for appropri-
ately small h, and hence it has a positive determinant. By (9.9) and in view of the polar decomposition theorem, there 
exists an SO(3) valued field Rh : �h →R

3×3 such that:

Id3 + Fh = Rh
√

Id + Kh + qh in �h.

We hence obtain, by Taylor expanding the square root operator around Id3, and using frame invariance:

W
(
∇ūh(Ah)−1

)
= W

(
Rh(

√
Id3 + Kh + qh)

)
= W

(
Id3 + 1

2
(Kh + qh) +O(|Kh + qh|2)

)
.

Note that, used the fact that |Kh| + |qh| = o(1), one gets:

W
(
∇ūh(Ah)−1

)
≤ Q3

(
1

2
Kh

)
+O

(
|Kh| |qh| + |qh|2

)
+ o(1)|Kh|2,

Now let bh = ∇φ̃h as in the previous section. We have:

((bh)T bh)1/2 = Ah + o(hα+1),

and we conclude from above calculations that:

(bh)−1,T (∇ūh)T (∇ūh)(bh)−1 = (Ah)−1,T (∇ūh)T (∇ūh)(Ah)−1 + o(hα+1).

In view of (8.4), the energy Ih can now be estimated exactly as in Step 4 of the proof of Theorem 4.4 in Section 8. 
This proves the desired limit (iii) in Theorem 4.3. �
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