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Abstract

Let � be a bounded smooth domain in RN . We study positive solutions of equation (E) −Lμu +uq = 0 in � where Lμ = � + μ

δ2 , 
0 < μ, q > 1 and δ(x) = dist (x, ∂�). A positive solution of (E) is moderate if it is dominated by an Lμ-harmonic function. If 
μ < CH (�) (the Hardy constant for �) every positive Lμ-harmonic function can be represented in terms of a finite measure on ∂�

via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a 
notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the 
subcritical case, 1 < q < qμ,c. (The critical value depends only on N and μ.) For q ≥ qμ,c there exists no moderate solution with 
an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed 
in detail for the linear operator Lμ. These results form the basis for the study of the nonlinear problem.
© 2015 
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1. Introduction

In this paper, we investigate boundary value problem with measure data for the following equation

−�u − μ

δ2
u + uq = 0 (1.1)

in a C2 bounded domain �, where q > 1, μ ∈ R and δ(x) = dist (x, ∂�). This problem is naturally linked to the 
theory of linear Schrödinger equations −LV u = 0 where LV := � +V and the potential V satisfies |V | ≤ cδ−2. Such 
equations have been studied in numerous papers (see [1,2] and the references therein).
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Put

Lμ := � + μ

δ2
. (1.2)

A solution u ∈ L1
loc(�) of the equation −Lμu = 0 is called an Lμ-harmonic function. Similarly, if

−Lμu ≥ 0 or − Lμu ≤ 0

we say that u is Lμ-superharmonic or Lμ-subharmonic respectively. If μ = 0 we shall just use the terms harmonic, 
superharmonic, subharmonic.

Some problems involving equations (1.1) and (1.2) with μ < 1/4 were studied by Bandle, Moroz and Reichel [4]. 
They derived estimates of local Lμ-subharmonic and superharmonic functions and applied these results to study con-
ditions for existence or nonexistence of large solutions of (1.1). They also showed that the classical Keller–Osserman 
estimate [14,24] remains valid for (1.1).

The condition μ < 1
4 is related to Hardy’s inequality. Denote by CH(�) the best constant in Hardy’s inequality, 

i.e.,

CH (�) = inf
H 1

0 (�)

∫
�

|∇u|2dx∫
�
(u/δ)2dx

. (1.3)

By Marcus, Mizel and Pinchover [17], CH(�) ∈ (0, 14 ] and CH (�) = 1
4 when � is convex. Furthermore the infimum 

is achieved if and only if CH(�) < 1/4. By Brezis and Marcus [7], for every μ < 1/4 there exists a unique number 
λμ,1 such that

μ = inf
H 1

0 (�)

∫
�
(|∇u|2 − λμ,1u

2)dx∫
�
(u/δ)2dx

and the infimum is achieved. Thus λμ,1 is an eigenvalue of −Lμ and, by [7, Lemma 2.1], it is a simple eigenvalue. 
We denote by ϕμ,1 the corresponding positive eigenfunction normalized by 

∫
�
(ϕ2

μ,1/δ
2)dx = 1.

The mapping [1/4, ∞) �μ �→ λμ,1 is strictly decreasing. Therefore if μ < CH (�) then λμ,1 > 0. Consequently, in 
this case, ϕμ,1 is a positive supersolution of −Lμ. This fact and a classical result of Ancona [2] imply that for every 
y ∈ ∂�, there exists a positive Lμ-harmonic function in � which vanishes on ∂� \ {y} and is unique up to a constant. 
Denote this function by K�

μ (·, y), normalized by setting it equal to 1 at a fixed reference point x0 ∈ �. The function 
(x, y) �→ K�

μ (x, y), (x, y) ∈ � × ∂�, is the Lμ-Martin kernel in � relative to x0. Further, by [2]:

Representation Theorem. For every ν ∈M+(∂�) the function

K
�
μ [ν](x) :=

∫
∂�

K�
μ (x, y)dν(y) ∀x ∈ � (1.4)

is Lμ-harmonic, i.e., LμK
�
μ [ν] = 0. Conversely, for every positive Lμ-harmonic function u there exists a unique 

measure ν ∈M+(∂�) such that u =K
�
μ [ν].

This theorem implies that – in the present case – the Lμ-Martin boundary of � coincides with the Euclidean 
boundary. (For the general definition of Martin boundary see, e.g. [1]. However this notion will not be used here 
beyond the representation theorem stated above.) The measure ν such that u = K

�
μ [ν] is called the Lμ-boundary 

measure of u. If μ = 0, ν is equivalent to the classical measure boundary trace of u (see Definition 1.1). But if 
0 < μ < CH (�), it can be shown that, for every ν ∈ M+(∂�), the measure boundary trace of K�

μ [ν] is zero (see 
Corollary 2.11 below).

In the case μ = 0, the boundary value problem

−�u + |u|q−1u = 0 in �

u = ν on ∂� (1.5)
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where q > 1 and ν is either a finite measure or a positive (possibly unbounded) measure, has been studied by numerous 
authors. Following Brezis [6], if ν is a finite measure, a weak solution of (1.5) is defined as follows: u is a solution of 
the problem if u and δ|u|q are integrable in � and

∫
�

(−u�ζ + |u|q−1uζ )dx = −
∫
∂�

∂ζ

∂n
dν ∀ζ ∈ C2

0(�) (1.6)

where n is the outer unit normal on ∂�. Brezis proved that, if a solution exists then it is unique. Gmira and Véron [13]
showed that there exists a critical exponent, qc := N+1

N−1 , such that if 1 < q < qc , (1.6) has a weak solution for every 
finite measure ν but, if q ≥ qc there exists no positive solution with isolated point singularity.

Marcus and Véron [20] proved that every positive solution of the equation

−�u + uq = 0 (1.7)

possesses a boundary trace given by a positive measure ν, not necessarily bounded. In the subcritical case the blow-up 
set of the trace is a closed set. Furthermore they showed that, in this case, for every such positive measure ν, the 
boundary value problem (1.5) has a unique solution.

In the case q = 2, N = 2 this result was previously proved by Le Gall [15] using a probabilistic definition of the 
boundary trace.

In the supercritical case the problem turned out to be much more challenging. It was studied by several authors 
using various techniques. The problem was studied by Le Gall, Dynkin, Kuznetsov, Mselati a.o. employing mainly 
probabilistic methods. Consequently the results applied only to 1 < q ≤ 2. In parallel it was studied by Marcus and 
Veron employing purely analytic methods that were not subject to the restriction q ≤ 2. A complete classification of 
the positive solutions of (1.5) in terms of their behavior at the boundary was provided by Mselati [18] for q = 2, by 
Dynkin [11] for qc ≤ q ≤ 2 and finally by Marcus [16] for every q ≥ qc. For details and related results we refer the 
reader to [23,22,21,3,10] and the references therein.

In the case of equation (1.1) one is faced by the problem that, according to the classical definition of measure 
boundary trace, every positive Lμ-harmonic function has measure boundary trace zero. Therefore, in order to classify 
the positive solutions of (1.1) in terms of their behavior at the boundary, it is necessary to introduce a different 
notion of trace. As in the study of (1.7), we first consider the question of boundary trace for positive Lμ-harmonic or 
superharmonic functions.

We recall the classical definition of measure boundary trace.

Definition 1.1. (i) A sequence {Dn} is a C2 exhaustion of � if for every n, Dn is of class C2, Dn ⊂ Dn+1 and 
∪nDn = �. If the domains are uniformly of class C2 we say that {Dn} is a uniform C2 exhaustion.

(ii) Let u ∈ W
1,p

loc (�) for some p > 1. We say that u possesses a measure boundary trace on ∂� if there exists a 
finite measure ν on ∂� such that, for every uniform C2 exhaustion {Dn} and every ϕ ∈ C(�),

lim
n→∞

∫
∂Dn

u|∂DnϕdS =
∫
∂�

ϕdν.

Here u|Dn denotes the Sobolev trace. The measure boundary trace of u is denoted by tr (u).

For β > 0, denote

�β = {x ∈ � : δ(x) < β}, Dβ = {x ∈ � : δ(x) > β}, �β = {x ∈ � : δ(x) = β}.
Put

α± := 1

2
±

√
1

4
− μ. (1.8)

It can be shown (see Corollary 2.11 below) that the classical measure boundary trace of K�
μ [ν] is zero but there 

exist constants C1, C2 such that, for every ν ∈ M(∂�),
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C1 ‖ν‖M(∂�) ≤ 1

βα−

∫
�β

K
�
μ [ν](x)dSx ≤ C2 ‖ν‖M(∂�) (1.9)

for all β ∈ (0, β0) where β0 > 0 depends only on �. In view of this we introduce the following definition of trace.

Definition 1.2. A positive function u possesses a normalized boundary trace if there exists a measure ν ∈ M+(∂�)

such that

lim
β→0

1

βα−

∫
�β

|u −K
�
μ [ν]|dSx = 0. (1.10)

The normalized boundary trace will be denoted by tr∗(u).

Remark. The notion of normalized boundary trace is well defined. Indeed, suppose that ν and ν′ satisfy (1.10). Put v =
(K�

μ [ν − ν′])+ then v is a nonnegative Lμ-subharmonic function, v ≤K[ν + ν′] and tr ∗(v) = 0. By Proposition 2.14, 
v = 0, i.e., K�

μ [ν − ν′] ≤ 0. By interchanging the roles of ν and ν′, we deduce that K�
μ [ν′ − ν] ≤ 0. Thus ν = ν′.

Denote by G�
μ the Green function of −Lμ in � and, for every positive Radon measure τ in �, put

G
�
μ [τ ](x) :=

∫
�

G�
μ(x, y)dτ(y).

Denote by Mf (�), f a positive Borel function in �, the space of Radon measures τ on � satisfying 
∫
�

f d|τ | < ∞
and by M+

f (�) the positive cone of this space.

If τ is a positive measure such that G�
μ [τ ](x) < ∞ for some x ∈ � then τ ∈ Mδα+ (�) and G�

μ [τ ] is finite every-
where in �. The underlying reason for this is the behavior of the Green function at the boundary: for every β > 0
there exists cβ such that

c−1
β δ(x)α+ ≤ G�

μ(x, y) ≤ cβδ(x)α+ ∀x ∈ �β/2, y ∈ Dβ.

For details see Section 2.2 below.
We begin with the study of the linear boundary value problem,

−Lμu = τ in �

tr ∗(u) = ν, (1.11)

where ν ∈ M+(∂�) and τ ∈ M
+
δα+ (�). As usual we look for solutions u ∈ L1

loc(�) and the equation is understood 
in the sense of distributions. The representation theorem implies that if τ = 0 the problem has a unique solution, 
u =K

�
μ [ν].

We list below our main results regarding this problem.

Proposition I.

(i) If u is a non-negative Lμ-harmonic function and tr ∗(u) = 0 then u = 0.
(ii) If τ ∈M

+
δα+ (�) then G�

μ [τ ] has normalized trace zero. Thus G�
μ [τ ] is a solution of (1.11) with ν = 0.

(iii) Let u be a positive Lμ-subharmonic function. If u is dominated by an Lμ-superharmonic function then Lμu ∈
M

+
δα+ (�) and u has a normalized boundary trace. In this case tr ∗(u) = 0 if and only if u ≡ 0.

(iv) Let u be a positive Lμ-superharmonic function. Then there exist ν ∈M+(∂�) and τ ∈M
+
δα+ (�) such that

u =G
�
μ [τ ] +K

�
μ [ν]. (1.12)

In particular, u is an Lμ-potential (i.e., u does not dominate any positive Lμ-harmonic function) if and only if 
tr ∗(u) = 0.

(v) For every ν ∈ M+(∂�) and τ ∈ M
+
δα+ (�), problem (1.11) has a unique solution. The solution is given by (1.12).
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Next we study the nonlinear boundary value problem,

−Lμu + uq = 0 in �

tr ∗(u) = ν (1.13)

where ν ∈ M+(∂�).

Definition 1.3. (i) A positive solution of (1.1) is Lμ-moderate if it is dominated by an Lμ-harmonic function.
(ii) A positive function u ∈ L

q

loc(�) is a (weak) solution of (1.13) if it satisfies the equation (in the sense of distribu-
tions) and has normalized boundary trace ν.

Definition 1.4. Put

X(�) = {ζ ∈ C2(�) : δα−Lμζ ∈ L∞(�), δ−α+ζ ∈ L∞(�)}.
A function ζ ∈ X(�) is called an admissible test function for (1.13).

Following are our main results concerning the nonlinear problem (1.13). Theorems A–D apply to arbitrary exponent 
q > 1.

Theorem A. Assume that 0 < μ < CH (�), q > 1. Let u be a positive solution of (1.1). Then the following statements 
are equivalent:
(i) u is Lμ-moderate.
(ii) u admits a normalized boundary trace ν ∈ M+(∂�). In other words, u is a solution of (1.13).
(iii) u ∈ L

q

δα+ (�) and

u +G
�
μ [uq ] =K

�
μ [ν] (1.14)

where ν = tr ∗(u).
Furthermore, a positive function u is a solution of (1.13) if and only if u/δα− ∈ L1(�), δα+uq ∈ L1(�) and

∫
�

(−uLμζ + uqζ )dx = −
∫
�

K
�
μ [ν]Lμζdx ∀ζ ∈ X(�). (1.15)

Theorem B. Assume 0 < μ < CH (�), q > 1.

I. UNIQUENESS. For every ν ∈M+(∂�), there exists at most one positive solution of (1.13).

II. MONOTONICITY. Assume νi ∈ M+(∂�), i = 1, 2. Let uνi
be the unique solution of (1.13) with ν replaced by νi , 

i = 1, 2. If ν1 ≤ ν2 then uν1 ≤ uν2 .

III. A-PRIORI ESTIMATE. There exists a positive constant c = c(N, μ, �) such that every positive solution u of (1.13)
satisfies,

‖u‖L1
δ−α− (�) + ‖u‖L

q

δα+ (�) ≤ c ‖ν‖M(∂�) . (1.16)

Theorem C. Assume 0 < μ < CH (�), q > 1. If ν ∈ M+(∂�) and K�
μ [ν] ∈ L

q

δα+ (�) then there exists a unique 
solution of the boundary value problem (1.13).

Corollary C1. For every positive function f ∈ L1(∂�) (1.13) with ν = f admits a unique positive solution.

Theorem D. Assume 0 < μ < CH (�), q > 1. If u is a positive solution of (1.13) then

lim
x→y

u(x)

K�
μ [ν](x)

= 1 non-tangentially, ν-a.e. on ∂�. (1.17)
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Let

qμ,c := N + α+
N − 1 − α−

. (1.18)

In the next two results we show, among other things, that qμ,c is the critical exponent for (1.13). This means that, 
if 1 < q < qμ,c then problem (1.13) has a unique solution for every measure ν ∈ M+(∂�) but, if q ≥ qμ,c then the 
problem has no solution for some measures ν, e.g. Dirac measure.

In Theorem E we consider the subcritical case 1 < q < qμ,c and in Theorem F the supercritical case.

Theorem E. Assume 0 < μ < CH (�) and 1 < q < qμ,c . Then:

I. EXISTENCE AND UNIQUENESS. For every ν ∈ M+(∂�) (1.13) admits a unique positive solution uν .

II. STABILITY. If {νn} is a sequence of measures in M+(∂�) weakly convergent to ν ∈ M+(∂�) then uνn → uν in 
L1

δ−α− (�) and in Lq

δα+ (�).

III. LOCAL BEHAVIOR. Let ν = kδy , where k > 0 and δy is the Dirac measure concentrated at y ∈ ∂�. Then, under 
the assumptions of Theorem E, the unique solution of (1.13), denoted by ukδy , satisfies

lim
x→y

ukδy (x)

K�
μ (x, y)

= k. (1.19)

Remark. Note that in part III we have ‘uniform convergence’ not just ‘non-tangential convergence’ as in Theorem D.

Theorem F. Assume 0 < μ < CH (�) and q ≥ qμ,c. Then for every k > 0 and y ∈ ∂�, there is no positive solution of 
(1.1) with normalized boundary trace kδy .

In the first part of the paper we study properties of positive Lμ-harmonic functions and the boundary value problem 
(1.11). In the second part, these results are applied to a study of the corresponding boundary value problem for the 
nonlinear equation (1.1). These results yield a complete classification of the positive moderate solutions of (1.1) in the 
subcritical case. They also provide a framework for the study of positive solutions of (1.1) that may blow up at some 
parts of the boundary. The existence of such solutions in the subcritical case has been studied (by different methods) 
in [5]. The boundary trace for positive non-moderate solutions and corresponding boundary value problems will be 
treated in a forthcoming paper.

The main ingredients used in this paper are: the Representation Theorem previously stated and other basic results 
of potential theory (see [1]), a sharp estimate of the Green kernel of −Lμ due to Filippas, Moschini and Tertikas [9], 
estimates for convolutions in weak Lp spaces (see [23, Section 2.3.2]) and the comparison principle obtained in [4].

2. The linear equation

Throughout this paper we assume that 0 < μ < CH (�).

2.1. Some potential theoretic results

We denote by Mδα (�), α ∈R, the space of Radon measures τ on � satisfying 
∫
�

δα(x)d|τ | < ∞ and by M+
δα (�)

the positive cone of Mδα (�). When α = 0, we use the notation M(�) and M+(�). We also denote by M(∂�) the 
space of finite Radon measures on ∂� and by M+(∂�) the positive cone of M(∂�).

Let D be a C2 domain such that D � � and h ∈ L1(∂�). Denote by Sμ(D, h) the solution of the problem
{ −Lμu = 0 in D

u = h on ∂D.
(2.1)

Lemma 2.1. Let u be Lμ-superharmonic in � and D be a C2 domain such that D ��. Then u ≥ Sμ(D, u) a.e. in D.
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Proof. Since u is Lμ-superharmonic in �, there exists τ ∈M+(�) such that −Lμu = τ . Let v be the solution of{ −Lμv = τ in D

v = 0 on ∂D
(2.2)

and put w = Sμ(D, u). Then w ≥ 0 and u|D = v + w ≥ v. �
Lemma 2.2. Let u be a nonnegative Lμ-superharmonic and {Dn} be a C2 exhaustion of �. Then

û := lim
n→∞Sμ(Dn,u)

exists and is the largest Lμ-harmonic function dominated by u.

Proof. By Lemma 2.1, Sμ(Dn, u) ≤ u|Dn , hence the sequence {Sμ(Dn, u)} is decreasing. Consequently, û exists 
and is an Lμ-harmonic function dominated by u. Next, if v is an Lμ-harmonic function dominated by u then v ≤
Sμ(Dn, u) for every n ∈N. Letting n → ∞ yields v ≤ û. �
Definition 2.3. A nonnegative Lμ-superharmonic function is called an Lμ-potential if its largest Lμ-harmonic mino-
rant is zero.

As a consequence of Lemma 2.2, we obtain

Lemma 2.4. Let up be a nonnegative Lμ-superharmonic function in �. If for some C2 exhaustion {Dn} of �,

lim
n→∞Sμ(Dn,up) = 0, (2.3)

then up is an Lμ-potential in �. Conversely, if up is an Lμ-potential, then (2.3) holds for every C2 exhaustion {Dn}
of �.

For easy reference we quote below the Riesz decomposition theorem (see [1]).

Theorem 2.5. Every nonnegative Lμ-superharmonic function u in � can be written in a unique way in the form 
u = up + uh where up is an Lμ-potential and uh is a nonnegative Lμ-harmonic function in �.

The next result is a consequence of the Fatou convergence theorem [1, Theorem 1.8] and the following well-known 
fact: if a function satisfies the local Harnack inequality, fine convergence at the boundary (in the sense of [1]) implies 
non-tangential convergence.

Theorem 2.6. Let up be a positive Lμ-potential and u be a positive Lμ-harmonic function. Assume that up

u
satisfies 

the Harnack inequality. Then

lim
x→y

up(x)

u(x)
= 0 non-tangentially, ν-a.e. on ∂�

where ν is the Lμ-boundary measure of u.

2.2. The action of the Green and Martin kernels on spaces of measures

From [2], for every y ∈ ∂�, there exists a positive Lμ-harmonic function in � which vanishes on ∂� \ {y}. When 
normalized, this function is unique. We choose a fixed reference point x0 in � and denote by K�

μ,y this Lμ-harmonic 
function, normalized by K�

μ,y(x0) = 1. The function K�
μ (·, y) = K�

μ,y(·) is the Lμ-Martin kernel in �, normalized 
at x0.

For ν ∈M(∂�) denote

K
�
μ [ν](x) =

∫
K�

μ (x, y)dν(y).
∂�
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In what follows the notation f ∼ g means: there exists a positive constant c such that c−1f < g < cf in the domain 
of the two functions or in a specified subset of this domain. Of course, in the latter case, the constant depends on the 
subset.

Let G�
μ be the Green kernel for the operator Lμ in � × �. Fix a point x0 ∈ �. It is well known that the function 

x �→ G�
μ(x, x0) behaves like the first eigenfunction ϕμ,1(x) near the boundary, i.e., G�

μ(·, x0) ∼ ϕμ,1 in �β, (0 <
β < δ(x0)).

By [19, Lemmas 5,1, 5.2] (see also [8, Lemma 7] for an alternative proof)

c−1δ(x)α+ ≤ ϕμ,1(x) ≤ cδ(x)α+ . (2.4)

Thus, if 0 < β < δ(x0),

c−1
β δ(x)α+ ≤ G�

μ(x, x0) ≤ cβδ(x)α+ ∀x ∈ �β. (2.5)

Therefore, if τ ∈Mδα+ (�) then

G
�
μ [τ ](x) :=

∫
�

G�
μ(x, y)dτ(y) < ∞ a.e. in �.

Indeed, by (2.5) and the symmetry of the Green kernel, for every x ∈ �, the integral over �δ(x)/2 is finite. For 
y ∈ Dδ(x)/4, G�

μ(x, y) ≤ c|x −y|2−N . Therefore the integral is finite over this set as well. Inequality (2.5) also implies 
that, if τ is a positive Radon measure in � and G�

μ [τ ](x) < ∞ for some point x ∈ � then τ ∈ Mδα+ (�) and G�
μ [τ ] is 

finite everywhere in �.
By [9, Theorem 4.11], for every x, y ∈ �, x �= y,

G�
μ(x, y) ∼ min

{
|x − y|2−N , δ(x)α+δ(y)α+ |x − y|2α−−N

}
(2.6)

Since

K�
μ (x, y) := lim

z→y

G�
μ(x, z)

G�
μ(x0, z)

∀x ∈ �

it follows from (2.6) that

K�
μ (x, y) ∼ δ(x)α+|x − y|2α−−N ∀x ∈ �,y ∈ ∂�. (2.7)

Let G� = G�
0 and P � = P �

0 denote the Green and Poisson kernels of −� in �. Then, by (2.7)

K�
μ (x, y)

δ(x)α− ∼ δ(x)

|x − y|N
( |x − y|

δ(x)

)2α−
∼ P �(x, y)

( |x − y|
δ(x)

)2α−
. (2.8)

Denote Lp
w(�; τ), 1 ≤ p < ∞, τ ∈ M+(�), the weak Lp space defined as follows: a measurable function f in �

belongs to this space if there exists a constant c such that

λf (a; τ) := τ({x ∈ � : |f (x)| > a}) ≤ ca−p, ∀a > 0. (2.9)

The function λf is called the distribution function of f (relative to τ ). For p ≥ 1, denote

Lp
w(�; τ) = {f Borel measurable : sup

a>0
apλf (a; τ) < ∞}

and

‖f ‖∗
L

p
w(�;τ)

= (sup
a>0

apλf (a; τ))
1
p . (2.10)

This expression is not a norm, but for p > 1, it is equivalent to the norm

‖f ‖L
p
w(�;τ) = sup

{∫
ω

|f |dτ

τ(ω)1/p′ : ω ⊂ �,ω measurable ,0 < τ(ω)

}
. (2.11)

More precisely,
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‖f ‖∗
L

p
w(�;τ)

≤ ‖f ‖L
p
w(�;τ) ≤ p

p − 1
‖f ‖∗

L
p
w(�;τ)

. (2.12)

Notice that, for every α > −1,

Lp
w(�; δαdx) ⊂ Lr

δα (�) ∀r ∈ [1,p).

For every x ∈ ∂�, denote by nx the outward unit normal vector to ∂� at x.
The following is a well-known geometric property of C2 domains.

Proposition 2.7. There exists β0 > 0 such that
(i) For every point x ∈ �β0 , there exists a unique point σx ∈ ∂� such that |x − σx | = δ(x). This implies x =

σx − δ(x)nσx .
(ii) The mappings x �→ δ(x) and x �→ σx belong to C2(�β0) and C1(�β0) respectively. Furthermore,

limx→σ(x) ∇δ(x) = −nx .

By combining (2.6), (2.7) and [23, Lemma 2.3.2], we obtain

Proposition 2.8. There exist constants ci depending only on N, μ, β, � such that,∥∥G�
μ [τ ]∥∥

L

N+β
N−2
w (�,δβ)

≤ c1 ‖τ‖M(�) , ∀τ ∈ M(�), β > −1, (2.13)

∥∥G�
μ [τ ]∥∥

L

N+β
N−2α−
w (�,δβ−α+ )

≤ c1 ‖τ‖Mδα+ (�) , ∀τ ∈ Mδα+ (�), β > −2α−, (2.14)

∥∥K�
μ [ν]∥∥

L

N+β
N−1−α−
w (�,δβ)

≤ c2 ‖ν‖M(∂�) , ∀ν ∈M(∂�), β > −1. (2.15)

Proof. We assume that τ is positive; otherwise we replace τ by |τ |. We consider τ as a positive measure in RN by 
extending τ by zero outside of �. For a ∈ (0, N), denote �a(x) = |x|a−N . By [23, inequality (2.3.17)],

‖�a ∗ τ‖
L

N+β
N−a
w (�,δβ)

≤ c ‖τ‖M(�) ∀β > max{−1,−a} (2.16)

where c = c(N, a, β, diam(�)). By (2.6),

G�
μ(x, y) ≤ c min{�2(x − y), δ(x)α+δ(y)α+�2α−(x − y)}.

Hence, by (2.16),∥∥G�
μ [τ ]∥∥

L

N+β
N−2
w (�,δβ)

≤ c ‖�2 ∗ τ‖
L

N+β
N−2
w (�,δβ)

≤ c′ ‖τ‖M(�) ∀β > −1,

∥∥G�
μ [τ ]∥∥

L

N+β
N−2α−
w (�,δβ−α+ )

≤ c
∥∥�2α− ∗ (δα+τ)

∥∥
L

N+β
N−2α−
w (�,δβ)

≤ c ‖τ‖Mδα+ (�) ∀β > −2α−.

Next we extend ν by zero outside ∂� and observe that, by (2.7), K�
μ (x, y) ≤ c�1+α−(x−y). Hence K�

μ [ν] ≤ c�1+α− ∗
ν and by (2.16),∥∥K�

μ [ν]∥∥
L

N+β
N−1−α−
w (�,δβ)

≤ c
∥∥�1+α− ∗ ν

∥∥
L

N+β
N−1−α−
w (�,δβ)

≤ c ‖ν‖M(∂�) ∀β > −1. �
Corollary 2.9. Let β > −1.

(i) If {νn} ⊂M+(∂�) converges weakly to ν ∈ M+(∂�) then {K�
μ [νn]} converges to K�

μ [ν] in Lp

δβ (�) for every p

such that 1 ≤ p <
N+β

N−1−α− .

(ii) If {τn} ⊂ M+(�) converges weakly (relative to C0(�̄)) to τ ∈ M+(�) then {G�
μ [τn]} converges to G�

μ [τ ] in 

L
p

δβ (�) for every p such that 1 ≤ p <
N+β
N−2 .

Proof. We prove the first statement. The second is proved in a similar way.
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Since K�
μ (x, .) ∈ C(∂�) for every x ∈ �, {K�

μ [νn]} converges to K�
μ [ν] every where in �. By Holder inequality 

and (2.15), we deduce that {(K�
μ [νn])p} is equi-integrable w.r.t. δβdx for any 1 ≤ p <

N+β
N−1−α− . By Vitali’s theorem, 

K
�
μ [νn] → K

�
μ [ν] in Lp

δβ (�). �
2.3. Estimates related to the normalized trace

Proposition 2.10. There exist positive constants C1, C2 such that, for every β ∈ (0, β0),

C1β
α− ≤

∫
�β

K�
μ (x, y)dSx ≤ C2β

α− ∀y ∈ ∂�. (2.17)

The constants C1, C2 depend on N, �, μ but not on y.
Furthermore, for every r0 > 0,

lim
β→0

1

βα−

∫
�β\Br0 (y)

K�
μ (x, y)dSx = 0 ∀y ∈ ∂�. (2.18)

For r0 fixed, the rate of convergence is independent of y.

Proof. By (2.7),

1

βα−

∫
�β\Br0 (y)

K�
μ (x, y)dSx ≤ cβα+−α− . (2.19)

This implies (2.18).
For the next estimate it is convenient to assume that the coordinates are placed so that y = 0 and the tangent 

hyperplane to ∂� at 0 is xN = 0 with the xN axis pointing into the domain. For x ∈R
N put x′ = (x1, · · · , xN−1). Pick 

r0 ∈ (0, β0) sufficiently small (depending only on the C2 characteristic of �) so that

1

2
(|x′|2 + δ(x)2) ≤ |x|2 ∀x ∈ � ∩ Br0(0).

Then, if x ∈ �β ∩ Br0(0) =: �β,0,

1

4
(|x′| + β) ≤ |x|.

This inequality and (2.7) imply,∫
�β,0

K�
μ (x,0)dSx ≤ c0β

α+
∫

�β,0

(|x′| + β)2α−−NdSx

≤ c1β
α+

∫
|x′|<r0

(|x′| + β)2α−−Ndx′

≤ c2β
α+

r0∫
0

(t + β)2α−−2dt

< c2β
α−

∞∫
1

τ−2α+dτ = c2

2α+ − 1
βα− .

Thus, for β < r0,

1

βα−

∫
�

K�
μ (x,0)dSx ≤ c2

2α+ − 1
. (2.20)
β,0
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Estimates (2.19) and (2.20) imply the second estimate in (2.17). The first estimate in (2.17) follows from (2.8). �
Since (2.17) holds uniformly w.r. to y ∈ ∂�, an application of Fubini’s yields the following.

Corollary 2.11. For every ν ∈ M+(∂�),

C1 ‖ν‖M(∂�) ≤ lim inf
β→0

∫
�β

K
�
μ [ν]

δ(x)α− dSx

≤ lim sup
β→0

∫
�β

K
�
μ [ν]

δ(x)α− dSx ≤ C2 ‖ν‖M(∂�) (2.21)

with C1, C2 as in (2.17).

Proposition 2.12. If τ ∈Mδα+ (�) then

tr ∗(G�
μ [τ ]) = 0 (2.22)

and, for 0 < β < β0,

1

βα−

∫
�β

G
�
μ [τ ]dSx ≤ c

∫
�

δα+d|τ |, (2.23)

where c is a constant depending on μ, �.

Proof. We may assume that τ > 0. Denote v := G
�
μ [τ ]. We start with the proof of (2.23).

By Fubini’s theorem and (2.6),∫
�β

vdSx ≤ c
(∫

�

∫
�β∩B β

2
(y)

|x − y|2−NdSx dτ(y)

+ βα+
∫
�

∫
�β\B β

2
(y)

|x − y|2α−−NdSx δα+(y)dτ(y)
)

= I1(β) + I2(β).

Note that, if x ∈ �β and |x − y| ≤ β/2 then β/2 ≤ δ(y) ≤ 3β/2. Therefore

I1(β) ≤ c1

∫
�β∩B β

2
(y)

|x − y|2−α+−NdSx

∫
�

δ(y)α+ dτ(y)

≤ c′
1

β/2∫
0

r2−α+−NrN−2dr

∫
�

δ(y)α+ dτ(y)

≤ c′′
1βα−

∫
�

δ(y)α+ dτ(y)

and

I2(β) ≤ c2β
α+

∞∫
β/2

r2α−−NrN−2dr

∫
�

δ(y)α+ dτ = c′
2β

α−
∫
�

δ(y)α+ dτ.

This implies (2.23).
Given ε ∈ (0, ‖τ‖M α (�)) and β1 ∈ (0, β0) put τ1 = τχD̄ and τ2 = τ − τ1. Pick β1 = β1(ε) such that
δ + β1
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∫
�β1

δ(y)α+ dτ ≤ ε. (2.24)

Thus the choice of β1 depends on the rate at which 
∫
�β

δα+ dτ tends to zero as β → 0.

Put vi =G
�
μ [τi]. Then, for 0 < β < β1/2,∫

�β

v1 dSx ≤ c3β
α+β

2α−−N

1

∫
�

δα+(y)dτ1(y).

Thus,

lim
β→0

1

βα−

∫
�β

v1 dSx = 0. (2.25)

On the other hand, by (2.23) and (2.24),

1

βα−

∫
�β

v2 dSx ≤ cε ∀β < β0. (2.26)

This implies that tr ∗(v) = 0. �
It is well-known that u is an Lμ-potential if and only if there exists a positive measure τ in � such that u =

G
�
μ [τ ] (see e.g. [1, Theorem 12]). The estimate (2.6) implies that if G�

μ [τ ] �≡ ∞ then τ ∈ Mδα+ (�). Therefore as a 
consequence of the previous proposition:

Corollary 2.13. A positive Lμ-superharmonic function u is a potential if and only if tr ∗(u) = 0.

Remark. Let D � � be a C2 domain and denote by GD
μ and P D

μ the Green and Poisson kernels of Lμ in D. (To avoid 
misunderstanding we point out that, in the formula defining Lμ, δ(x) denotes, as before, the distance from x to ∂�, 
not to ∂D.) As every positive Lμ harmonic function has measure boundary trace zero, there is no Poisson kernel for 
Lμ in �. However, Lμ has a Poisson kernel in every C2 domain D strictly contained in �. This follows from the fact 
that the Green kernel GD

μ exists and behaves like GD
0 .

Proposition 2.14. Let w be a non-negative Lμ-subharmonic function. If w is dominated by an Lμ-superharmonic 
function then Lμw ∈M

+
δα+ (�) and w has a normalized boundary trace ν ∈M+(∂�). If, in addition, tr ∗(w) = 0 then 

w = 0.

Proof. The first assumption implies that there exists a positive Radon measure λ in � such that −Lμw = −λ.
First assume that λ ∈Mδα+ (�). Then v := w +G

�
μ [λ] is a non-negative Lμ-harmonic function and consequently, 

by the representation theorem, v = K
�
μ [ν] for some ν ∈ M+(∂�). By Proposition 2.12, tr ∗(w) = ν. If ν = 0 then 

v = 0 and therefore w = 0. Now let us drop the assumption on λ.
Let vβ be the unique solution of the boundary value problem,

−Lμvβ = −λβ in Dβ, vβ = hβ on ∂Dβ

where λβ is the restriction of λ to Dβ and hβ is the restriction of w to ∂Dβ . (The uniqueness follows from [4, 
Lemma 2.3].) The uniqueness implies that vβ = w�Dβ . By assumption there exists a positive Lμ-superharmonic 
function, say V , such that w ≤ V . Hence

w +G
Dβ
μ [λβ ] = P

Dβ
μ [hβ ] ≤ P

Dβ
μ [V �∂Dβ ] ≤ V.

This implies that G�
μ [λ] = limβ→0 G

Dβ
μ [λβ ] < ∞. For fixed x ∈ �, G�

μ(x, y) ∼ δ(y)α+ . Therefore the finiteness of 
G

�
μ [λ] implies that λ ∈Mδα+ (�). By the first part of the proof w has a normalized trace. �

Remark. See Proposition 2.20 below for a complementary result.
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2.4. Test functions

Denote

X(�) = {ζ ∈ C2(�) : δα−Lμζ ∈ L∞(�), δ−α+ζ ∈ L∞(�)}.

Proposition 2.15. For any ζ ∈ X(�), δα−|∇ζ | ∈ L∞(�).

Proof. Let ζ ∈ X(�) then there exist a positive constant c1 and a function f ∈ L∞(�) such that |ζ | ≤ c1δ
α+ and

−Lμζ = δ−α−f.

Take arbitrary point x∗ ∈ �β0 and put d∗ = 1
2δ(x∗), y∗ = 1

d∗ x∗, ζ∗(y) = ζ(d∗y) for y ∈ 1
d∗ �d∗ . Note that if x ∈ Bd∗(x∗)

then y = 1
d∗ x ∈ B1(y∗) and 1 ≤ dist (y, ∂( 1

d∗ �d∗)) ≤ 3. In B1(y∗),

−�ζ∗ − μ

dist (y, ∂( 1
d∗ �d∗))2

ζ∗ = d
2−α−∗ dist (y, ∂(

1

d∗
�d∗))

−α−f (d∗y).

By local estimate for elliptic equations [12, Theorem 8.32], there exists a positive constant c2 = c2(N, μ) such that

max
B 1

2
(y∗)

|∇ζ∗| ≤ c2[ max
B1(y∗)

|ζ∗| + max
B1(y∗)

(d
2−α−∗ dist (y, ∂(

1

d∗
�d∗))

−α− |f (d∗y)|].

This implies

d∗ |∇ζ(x∗)| ≤ c3(δ(x∗)α+ + ‖f ‖L∞(�) δ(x∗)2−α−),

where c3 = c3(N, μ, c1). Therefore

|∇ζ(x)| ≤ c4δ(x)α+−1 ∀x ∈ �β0

where c4 = c4(N, μ, c1, ‖f ‖L∞(�)). Thus δ−α−|∇ζ | ∈ L∞(�). �
Definition 2.16. Let x0 ∈ � and denote β̃(x0) = min(β0, 12δ(x0)). We say that G̃�

μ is a proper regularization of G�
μ

relative to x0 if G̃�
μ(x) = G�

μ(x0, x) for x ∈ �β̃(x0)
, G̃�

μ ∈ C2(�) ∩ C(�) and G̃�
μ ≥ 0 in �. Similarly δ̃ is a proper 

regularization of δ relative to x0 if δ̃(x) = δ(x) for x ∈ �β̃(x0)
, δ̃ ∈ C2(�) and δ̃ ≥ 0 in �.

Remark. Using (2.6) and (2.4), it is easily verified that the functions ϕμ,1, G�
μ [η] (for η ∈ L∞(�)), G̃�

μ and δ̃α+

belong to X(�). Moreover, using Proposition 2.15, one obtains,

ζ ∈ X(�) and h ∈ C2(�̄) =⇒ hζ ∈ X(�).

In the proofs of the next two propositions we use the following construction. Let D � � be a C2 domain. The Green 
function for −Lμ in D is denoted by GD

μ . (To avoid misunderstanding we point out that, in the formula defining Lμ, 
δ(x) denotes, as before, the distance from x to ∂�, not to ∂D.) Given x0 ∈ � we construct a family of functions 
G(x0) = {G̃Dβ

μ : 0 < β < 1
2 β̃(x0)} such that, for each β , G̃

Dβ
μ is a proper regularization of G

Dβ
μ (x0, ·) in Dβ and G(x0)

has the following properties:

• For every β ∈ (0, 12 β̃(x0)), G̃
Dβ
μ ∈ C2(Dβ), G̃

Dβ
μ ≥ 0 and G̃

Dβ
μ (x) = G

Dβ
μ (x0, x) for x ∈ Dβ \ Dβ̃(x0)

.

• The sequences {G̃Dβ
μ } and {LμG̃

Dβ
μ } converge to G̃�

μ and LμG̃�
μ respectively, as β → 0, a.e. in �.

•
∥∥∥G̃

Dβ
μ + |LμG̃

Dβ
μ |

∥∥∥
L∞(Dβ)

≤ Mx0 where Mx0 is a positive constant independent of β .

G(x0) will be called a uniform regularization of {GDβ
μ }.

For any function h ∈ C2(∂�), we say that h̃ is an admissible extension of h relative to x0 in � if h̃(x) = h(σ (x))

for x ∈ � ˜ and h̃ ∈ C2(�).
β(x0)
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2.5. Nonhomogeneous linear equations

Here we discuss the boundary value problem (1.11) in �.

Lemma 2.17. Let u ∈ L1
loc(�) be a positive solution (in the sense of distributions) of equation

−Lμu = τ (2.27)

in � where τ is a non-negative Radon measure.
If τ ∈ Mδα+ (�) then

−
∫
�

G
�
μ [τ ]Lμζdx =

∫
�

ζdτ ∀ζ ∈ X(�). (2.28)

Proof. We may assume that τ is positive. By Proposition 2.12, tr ∗(G�
μ [τ ]) = 0. Therefore, given ε > 0, there exists 

β̄ = β̄(ε) < 1
2β0 such that,

1

βα−

∫
�β

G
�
μ [τ ]dSx < ε and

∫
�β

δα+dτ < ε ∀β ∈ (0, β̄]. (2.29)

Let

I (β) :=
∫
Dβ

G
�
μ [τ ]Lμζdx +

∫
Dβ

ζdτ.

To prove (2.28) we show that

lim
β→0

I (β) = 0. (2.30)

Put

τ1 := χD̄β̄
τ, τ2 := χ�β̄

τ

and, for 0 < β < β̄ ,

Ik(β) :=
∫

Dβ

G
�
μ [τk]Lμζdx +

∫
Dβ

ζdτk, k = 1,2.

As |ζ | ≤ cδα+ and |Lμζ | ≤ c
δα− , (2.29) implies,

|I2(β)| ≤ cε ∀β ∈ (0, β̄). (2.31)

For every β ∈ (0, β̄),

−
∫

Dβ

G
�
μ [τ1]Lμζdx =

∫
Dβ

ζdτ1 +
∫
�β

∂G�
μ [τ1]
∂n

ζdSx −
∫
�β

G
�
μ [τ1]∂ζ

∂n
dSx.

Thus

I1(β) = −
∫
�β

∂G�
μ [τ1]
∂n

ζdSx +
∫
�β

G
�
μ [τ1]∂ζ

∂n
dSx =: I1,1(β) + I1,2(β).

By Proposition 2.15 and (2.29),

|I1,2(β)| ≤ cε ∀β ∈ (0, β̄). (2.32)
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Next we estimate I1,1(β) for β ∈ (0, β̄/2). By Fubini,

I1,1(β) = −
∫
�β

∂

∂nx

∫
Dβ̄

G�
μ(x, y)dτ1(y)ζ(x)dSx

= −
∫

Dβ̄

∫
�β

∂G�
μ(x, y)

∂nx

ζ(x) dSxdτ1(y).

For every y ∈ Dβ̄ the function x �→ G�
μ(x, y) is Lμ-harmonic in �β̄ . By local elliptic estimates, for every ξ ∈ �β ,

sup
x∈Bβ/4(ξ)

|∇xG
�
μ(x, y)| ≤ cβ−1 sup

x∈Bβ/2(ξ)

G�
μ(x, y).

By Harnack’s inequality,

sup
x∈Bβ/2(ξ)

G�
μ(x, y) ≤ c′ inf

x∈Bβ/2(ξ)
G�

μ(x, y).

The constants c, c′ are independent of β ∈ (0, β̄/2), y ∈ Dβ̄ and ξ ∈ �β . Therefore we obtain,

|∇xG
�
μ(x, y)| ≤ Cβ−1G�

μ(x, y) ∀x ∈ �β, ∀y ∈ Dβ̄, ∀β ∈ (0, β̄/2). (2.33)

Hence,

|I1,1(β)| ≤ Cβ−1
∫
�β

G
�
μ [τ1]|ζ |dSx.

As |ζ(x)| ≤ cδ(x)α+ it follows that,

|I1,1(β)| ≤ C
1

βα−

∫
�β

G
�
μ [τ1]dSx.

Therefore, by (2.29),

|I1,1(β)| ≤ C′ε ∀β ∈ (0, β̄/2). (2.34)

Finally (2.30) follows from (2.31), (2.32) and (2.34). �
Theorem 2.18. Let ν ∈ M+(∂�) and τ ∈ Mδα+ (�). Then:

(i) Problem (1.11) has a unique solution. The solution is given by

u =G
�
μ [τ ] +K

�
μ [ν]. (2.35)

(ii) There exists a positive constant c = c(N, μ, �) such that

‖u‖L1
δ−α− (�) ≤ c(‖τ‖Mδα+ (�) + ‖ν‖M(∂�)). (2.36)

(iii) u is a solution of (1.11) if and only if u ∈ L1
δ−α− (�) and

−
∫
�

uLμζdx =
∫
�

ζdτ −
∫
�

K
�
μ [ν]Lμζdx ∀ζ ∈ X(�). (2.37)

Proof. (i) Proposition 2.12 implies that (2.35) is a solution of (1.11).
If u and u′ are two solutions of (1.11) then v := (u − u′)+ is a nonnegative Lμ-subharmonic function such that 

tr ∗(v) = 0 and v ≤ 2G�
μ [|τ |] which is a positive Lμ-superharmonic function. By Proposition 2.14, v ≡ 0 and hence 

u ≤ u′ in �. Similarly u′ ≤ u, so that u = u′.
(ii) In view of (2.14) and (2.15), (2.36) is an immediate consequence of (2.35).
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(iii) Let u be the solution of (1.11). By (2.36), u ∈ L1
δ−α− (�) and by Lemma 2.17 and (2.35), u satisfies (2.37).

Conversely, suppose that u ∈ L1
δ−α− (�) and satisfies (2.37). We show that u is a solution of (1.11) or, equivalently, 

of (2.35).
By (2.37) with ζ ∈ C∞

c (�), u is a solution (in the sense of distributions) of the equation in (1.11). It remains to 
show that tr ∗(u) = ν. Put U = u −G�

μ [τ ] −K�
μ [ν] and note that, as −Lμu = τ , U is Lμ-harmonic.

Let z ∈ � and let G(z) be a uniform regularization of {GDβ
μ : 0 < β < 1

2 β̃(z)} (see Section 2.4). Then, for every 

β ∈ (0, 12 β̃(z)), G̃
Dβ
μ ∈ C2

0(Dβ). Recall that G̃
Dβ
μ (x) = G

Dβ
μ (z, x). Therefore, as ∂G

Dβ
μ (z,x)

∂nx
= P

Dβ
μ (z, x), x ∈ �β , we 

obtain

−
∫

Dβ

U(x)LμG̃
Dβ
μ (x)dx =

∫
�β

U(x)P
Dβ
μ (z, x)dSx = U(z). (2.38)

The second equality is a consequence of the fact that U is Lμ-harmonic. But LμG̃
Dβ
μ (x) → LμG̃�

μ(z, x) pointwise and 

the sequence {LμG̃
Dβ
μ } is bounded by a constant Mz. We observe that U ∈ L1(�); in fact by assumption u ∈ L1

δ−α− (�)

and therefore, by Proposition 2.8, U ∈ L1
δ−α− (�). Consequently, by (2.38),

U(z) = −
∫
�

U(x)LμG̃�
μ(z, x)dx.

Since G�
μ(z, ·) ∈ X(�), by (2.37) the right hand side vanishes. Thus U vanishes in �, i.e., u satisfies (2.35). �

Corollary 2.19. Let u be a positive Lμ superharmonic function. Then there exist ν ∈ M+(∂�) and τ ∈ M
+
δα+ (�)

such that (1.12) holds.

Proof. By the Riesz decomposition theorem u can be written in the form u = up + uh where up is an Lμ-potential 
and uh is a non-negative Lμ-harmonic function. Therefore there exists ν ∈M+(∂�) such that uh =K

�
μ [ν]. Since up

is an Lμ-potential there exists a positive Radon measure τ such that up = G
�
μ [τ ] (see e.g. [1, Theorem 12]). This 

necessarily implies that τ ∈Mδα+ (�). �
Proposition 2.20. Let w be a non-negative Lμ-subharmonic function. If w has a normalized boundary trace then it 
is dominated by an Lμ-harmonic function.

Proof. There exist a positive Radon measure τ in � and a measure ν ∈ M+(∂�) such that

−Lμw = −τ in �, tr ∗(w) = ν.

Let uβ be the solution of

−Lμu = −τβ in Dβ, u =K
�
μ [ν] on �β

where τβ := τχDβ . Then,

uβ +G
Dβ
μ [τβ ] =K

�
μ [ν].

Letting β → 0 we obtain,

G
�
μ [τ ] ≤ K

�
μ [ν].

Hence τ ∈ M
+
δα+ (�) and consequently

w +G
�
μ [τ ] =K

�
μ [ν]. � (2.39)
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3. The nonlinear equation

In this section, we consider the nonlinear equation

−Lμu + uq = 0 (3.1)

in � with 0 < μ < CH (�) and q > 1.

Proof of Theorem A. Since u is a positive solution of (1.1), u is Lμ-subharmonic. Assuming (i), u is dominated 
by an Lμ-harmonic function. Therefore, by Proposition 2.14, (i) =⇒ (ii) and u ∈ L

q

δα+ (�). On the other hand, by 
Proposition 2.20 (ii) =⇒ (i).

As mentioned above, (i) implies that u ∈ L
q

δα+ (�) and that there exists ν ∈ M
+
δα+ (∂�) such that tr ∗(u) = ν. 

Therefore, by Theorem 2.18, (1.14) is a consequence of (2.37). Thus (i) =⇒ (iii).
Finally, the implication (iii) =⇒ (i) is obvious.
It remains to prove the last assertion. If u is a positive solution of (1.13) then, by (iii), u ∈ L

q

δα+ (�) and (1.15)
follows from Theorem 2.18.

Conversely, assume that δα+uq, u/δα− ∈ L1(�) and (1.15) holds. Then, by (1.15) with ζ ∈ C∞
c (�), u is a solution 

of (1.1). Taking ζf =G
�
μ [f ] where f ∈ Cc(�) and f ≥ 0 we obtain

∫
�

(K�
μ [ν] − u)f dx =

∫
�

uqζf dx < ∞.

This implies u ≤K
�
μ [ν], i.e., u is Lμ-moderate. Therefore by (i), u is a solution of (1.13). �

Proof of Theorem B.
Uniqueness. Let u1 and u2 be two positive solutions of (1.13). Then v := (u1 − u2)+ is a subsolution of (1.1) and 
therefore an Lμ-subharmonic function. Furthermore, by (iii) in Theorem A, u1, u2 ∈ L

q

δα+ (�) and v ≤ G
�
μ [uq

1 +
u

q

2 ] =: v̄. Obviously v̄ is Lμ superharmonic and tr ∗(v) = 0. Therefore, by Proposition 2.14, v = 0. Thus u1 ≤ u2 and 
similarly u2 ≤ u1.

Monotonicity. As before, v := (u1 − u2)+ is Lμ-subharmonic and it is dominated by an Lμ-superharmonic function. 
Since ν1 ≤ ν2, tr ∗(v) = 0. Hence by Proposition 2.14, v = 0.

A-priori estimate. Suppose that u is a positive solution of (1.13). Then (1.15) with ζ = G
�
μ [1] implies (1.16). (Recall 

that G�
μ [1] ∼ δα+ .) �

For the proof of the next theorem we need

Lemma 3.1. Let D � � be a C2 domain and q > 1. If h is a positive function in L1(∂D) then there exists a unique 
solution of the boundary value problem,

−Lμu + uq = 0 in D

u = h on ∂D. (3.2)

Proof. First assume that h is bounded. Let P D
μ denote the Poisson kernel of −Lμ in D and put u0 := P

D
μ [h]. Thus u0

is bounded. We show that there exists a non-increasing sequence of positive functions {un}∞1 , dominated by u0, such 
that un is the solution of the boundary value problem,

−�v + vq = μ

δ2
un−1 in D

v = h on ∂D n = 1,2, . . . (3.3)

As usual δ denotes the distance to ∂�, not to ∂D. For n = 1, u0 is a supersolution of the problem and, obviously v = 0
is a subsolution. Consequently there exists a unique solution u1. By induction, for n > 1,
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−�un−1 + u
q

n−1 = μ

δ2
un−2 ≥ μ

δ2
un−1.

Thus v = un−1 is a supersolution of (3.3) and it is bounded. It follows that there exists 0 ≤ un ≤ un−1 such that

−�un + u
q
n = μ

δ2
un−1 in D, un = h on ∂D.

As the sequence is monotone we conclude that u = limun is a solution of (3.2).
If h ∈ L1(∂D), we approximate it by a monotone increasing sequence of non-negative bounded functions {hk}. If 

vk is the solution of (3.2) with h replaced by hk then {vk} increases (by the comparison principle [4, Lemma 3.2]) and 
v = limvk is a solution of (3.2).

Uniqueness follows by the comparison principle. �
Proof of Theorem C. Put u0 := K

�
μ [ν] and hβ := u0��β . Let uβ be the solution of (3.2) with h replaced by hβ , 

β ∈ (0, β0). Since u0 is a supersolution of (1.1) it follows that {uβ} decreases as β ↓ 0. Therefore u := limβ→0 uβ is 
a solution of (1.1).

We claim that tr ∗(u) = ν. Indeed,

uβ +G
Dβ
μ [uq

β ] = P
Dβ
μ [hβ ] = u0. (3.4)

Furthermore, in Dβ , uβ ≤ u0 ∈ L
q

δα+ (�). Therefore

G
Dβ
μ [uq

β ] → G
�
μ [uq ].

Hence, by (3.4),

u +G
�
μ [uq ] = u0 =K

�
μ [ν].

By Proposition 2.12, tr ∗(u) = ν.
By Theorem B the solution is unique. �

Proof of Corollary C1. By the previous theorem, if ν = f where f is a positive bounded function then (1.13) has 
a solution. If 0 ≤ f ∈ L1(�) then it is the limit of an increasing sequence of such functions. Therefore, once again 
problem (1.13) with ν = f has a solution.

Proof of Theorem D. Put v = K
�
μ [ν] − u. By the comparison principle v ≥ 0. Clearly v is Lμ-superharmonic in �

and, by definition tr ∗(v) = 0. By Proposition I(iv) v is an Lμ potential. Consequently, by Theorem 2.6,

lim
x→y

v(x)

K�
μ [ν] = 0 non-tangentially, ν a.e. on ∂�.

This implies (1.17). �
Proof of Theorem E. By Proposition 2.8, specifically inequality (2.15), K�

μ [ν] ∈ L
q

δα+ (�) for every q ∈ (1, qμ,c)

and ν ∈ M+(∂�). Therefore the first assertion of the theorem is a consequence of Theorem C.
We turn to the proof of stability. Put vn = K

�
μ [νn]. By Proposition 2.8, {vn} is bounded in Lq

δα+ (�) for every 

q ∈ (1, qμ,c) and in Lp

δ−α− (�) for every p ∈ (1, N−α−
N−1−α− ). In addition vn → v pointwise in �. This implies that 

{vq
nδα+} and {vn/δ

α−} are uniformly integrable in �. Since uνn ≤ vn it follows that this conclusion applies also 
to {uνn}.

By the extension of the Keller–Osserman inequality due to [4], the sequence {uνn} is uniformly bounded in every 
compact subset of �. Therefore, by a standard argument, we can extract a subsequence, still denoted by {uνn} that 
converges pointwise to a solution u of (1.1). In view of the uniform convergence mentioned above we conclude that

uνn → u in L
q

δα+ (�) and in L1
δ−α− (�).

By Theorem A,

uνn +G
�
μ [uq

ν ] =K
�
μ [νn].
n
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In view of the previous observations, passing to the limit as n → ∞, we obtain,

u +G
�
μ [uq ] =K

�
μ [ν].

Again by Theorem A it follows that u is the (unique) solution of (1.13). Because of the uniqueness we conclude that 
the entire sequence {uνn} (not just a subsequence) converges to u as stated in assertion II. of the theorem.

Finally we prove assertion III. By Theorem A

ukδy +G
�
μ [uq

kδy
] = kK�

μ (·, y). (3.5)

Combining (2.7), (2.6) and the fact ukδy ≤ kK�
μ (·, y), we obtain

G
�
μ [uq

kδy
](x)

K�
μ (x, y)

≤ kq
G

�
μ [(K�

μ (., y)q ](x)

K�
μ (x, y)

≤ ckq |x − y|N+α+−q(N−1−α−).

Since 1 < q < qμ,c , it follows that

lim
x→y

G
�
μ [uq

kδy
](x)

K�
μ (x, y)

= 0.

Therefore, by (3.5), we obtain (1.19). �
Proof of Theorem F. Let y ∈ ∂�. By negation, assume that there exists a positive solution u of (1.13) with ν = kδy for 
some k > 0. By Theorem A, u ≤ kK�

μ(., y) and u ∈ L
q

δα+ (�). Let γ ∈ (0, 1) and denote Cγ (y) = {x ∈ � : γ |x − y| ≤
δ(x)}. By Theorem D,

lim
x∈Cγ (y),x→y

u(x)

K�
μ (x, y)

= k.

This implies that there exist positive numbers r0, c such that

u(x) ≥ cK�
μ (x, y) ∀x ∈ Cγ (y) ∩ Br0(y). (3.6)

By (2.7),

Jγ := ∫
Cγ (y)∩Br0 (y)

(K�
μ (x, y))qδ(x)α+dx

≥ c′ ∫
Cγ (y)∩Br0 (y)

δ(x)α+(q+1)|x − y|(2α−−N)qdx

≥ c′γ α+(q+1)
∫
Cγ (y)∩Br0 (y)

|x − y|α+−q(N−1−α−)dx.

Since q ≥ qμ,c the last integral is divergent. But (3.6) and the fact that u ∈ L
q

δα+ (�) imply that Jγ < ∞. We reached 
a contradiction. �
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