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Abstract

Let §2 be a bounded smooth domain in RY . We study positive solutions of equation (E) =L u+u? =0in Q where L, = A+ 5%,
0 <, g > 1 and §(x) =dist(x, 92). A positive solution of (E) is moderate if it is dominated by an L, -harmonic function. If
w1 < Cpy (R2) (the Hardy constant for ) every positive L ,-harmonic function can be represented in terms of a finite measure on 92
via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a
notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the
subcritical case, 1 < g < gy, ¢ (The critical value depends only on N and p.) For ¢ > g, there exists no moderate solution with
an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed
in detail for the linear operator L. These results form the basis for the study of the nonlinear problem.
© 2015 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we investigate boundary value problem with measure data for the following equation
n
—Au—8—2u+uq=0 (1.1)

in a C? bounded domain €2, where g > 1, n € R and §(x) = dist (x, 92). This problem is naturally linked to the
theory of linear Schrodinger equations —L" u = 0 where LY := A 4 V and the potential V satisfies |V | < ¢572. Such
equations have been studied in numerous papers (see [1,2] and the references therein).
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Put
o [
Ly, ._A+82. (1.2)

A solution u € L }OC(Q) of the equation —L u = 0 is called an L, -harmonic function. Similarly, if
—L,u>0 or —L,u<0

we say that u is L -superharmonic or L -subharmonic respectively. If u = 0 we shall just use the terms harmonic,
superharmonic, subharmonic.

Some problems involving equations (1.1) and (1.2) with u < 1/4 were studied by Bandle, Moroz and Reichel [4].
They derived estimates of local L -subharmonic and superharmonic functions and applied these results to study con-
ditions for existence or nonexistence of large solutions of (1.1). They also showed that the classical Keller—-Osserman
estimate [14,24] remains valid for (1.1).

The condition u < JT is related to Hardy’s inequality. Denote by Cy(€2) the best constant in Hardy’s inequality,
ie.,

Vul?d
Cu(Q) = inf Jo|Vul"dx

3 13
Hl@ Jo(u/8)*dx -

By Marcus, Mizel and Pinchover [17], Cy(£2) € (0, %] and Cy(2) = % when 2 is convex. Furthermore the infimum
is achieved if and only if Cy(€2) < 1/4. By Brezis and Marcus [7], for every p < 1/4 there exists a unique number
Ay,1 such that

o Jo(UVul? =y u?)dx

= inf
Hl(©) Jo(u/8)%dx

and the infimum is achieved. Thus A, i is an eigenvalue of —L, and, by [7, Lemma 2.1], it is a simple eigenvalue.

We denote by ¢,1 the corresponding positive eigenfunction normalized by fQ (goi’] /8%)dx = 1.

The mapping [1/4, 00) 5 u +> A, 1 is strictly decreasing. Therefore if & < Cy(£2) then A, 1 > 0. Consequently, in
this case, ¢, 1 is a positive supersolution of —L . This fact and a classical result of Ancona [2] imply that for every
y € 9, there exists a positive L, -harmonic function in £ which vanishes on 92 \ {y} and is unique up to a constant.
Denote this function by K ff(-, y), normalized by setting it equal to 1 at a fixed reference point xo € 2. The function

x, )~ Kff(x, y), (x,y) € Q x 9L, is the L, -Martin kernel in 2 relative to xo. Further, by [2]:

Representation Theorem. For every v € N (3Q) the function

K [v](x) ::/Kff(x,y)dv(y) Vx e Q (1.4)
Q2

is L, -harmonic, i.e., LMKS[\J] = 0. Conversely, for every positive L -harmonic function u there exists a unique
measure v € MT(IQ) such that u = Kff[v].

This theorem implies that — in the present case — the L -Martin boundary of 2 coincides with the Euclidean
boundary. (For the general definition of Martin boundary see, e.g. [1]. However this notion will not be used here
beyond the representation theorem stated above.) The measure v such that u = ]Kff[v] is called the L, -boundary
measure of u. If ©w =0, v is equivalent to the classical measure boundary trace of u (see Definition 1.1). But if
0 < ;< Cy(R), it can be shown that, for every v € MM (9R), the measure boundary trace of Kff[v] is zero (see
Corollary 2.11 below).

In the case u = 0, the boundary value problem

—Au+ulf'u=0 inQ
u=v onadQ (1.5)



M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré — AN 34 (2017) 69-88 71

where g > 1 and v is either a finite measure or a positive (possibly unbounded) measure, has been studied by numerous
authors. Following Brezis [6], if v is a finite measure, a weak solution of (1.5) is defined as follows: u is a solution of
the problem if u and §|u|? are integrable in €2 and

/cmAg+mﬂ4umx=—/g%w V¢ € C3(RQ) (1.6)
Q aQ

where n is the outer unit normal on 9€2. Brezis proved that, if a solution exists then it is unique. Gmira and Véron [13]
showed that there exists a critical exponent, g, := %—ﬂ, such that if 1 < g < g, (1.6) has a weak solution for every
finite measure v but, if ¢ > g, there exists no positive solution with isolated point singularity.

Marcus and Véron [20] proved that every positive solution of the equation

—Au+u?=0 (1.7)

possesses a boundary trace given by a positive measure v, not necessarily bounded. In the subcritical case the blow-up
set of the trace is a closed set. Furthermore they showed that, in this case, for every such positive measure v, the
boundary value problem (1.5) has a unique solution.

In the case ¢ =2, N = 2 this result was previously proved by Le Gall [15] using a probabilistic definition of the
boundary trace.

In the supercritical case the problem turned out to be much more challenging. It was studied by several authors
using various techniques. The problem was studied by Le Gall, Dynkin, Kuznetsov, Mselati a.o. employing mainly
probabilistic methods. Consequently the results applied only to 1 < g < 2. In parallel it was studied by Marcus and
Veron employing purely analytic methods that were not subject to the restriction ¢ <?2. A complete classification of
the positive solutions of (1.5) in terms of their behavior at the boundary was provided by Mselati [18] for ¢ = 2, by
Dynkin [11] for g, < ¢ <2 and finally by Marcus [16] for every g > ¢g.. For details and related results we refer the
reader to [23,22,21,3,10] and the references therein.

In the case of equation (1.1) one is faced by the problem that, according to the classical definition of measure
boundary trace, every positive L, -harmonic function has measure boundary trace zero. Therefore, in order to classify
the positive solutions of (1.1) in terms of their behavior at the boundary, it is necessary to introduce a different
notion of trace. As in the study of (1.7), we first consider the question of boundary trace for positive L,-harmonic or
superharmonic functions.

We recall the classical definition of measure boundary trace.

Definition 1.1. (i) A sequence {D,} is a C? exhaustion of Q if for every n, D, is of class C?, D, C Dy+1 and
U, D, = Q. If the domains are uniformly of class C? we say that {D,} is a uniform C? exhaustion.

(ii) Letu € Wli’cp (2) for some p > 1. We say that u possesses a measure boundary trace on 92 if there exists a
finite measure v on 9<2 such that, for every uniform C 2 exhaustion {D,} and every ¢ € C(Q),

lim /M|3Dn(pdS=/(de.
n—0o0
aDy 3

Here u|p, denotes the Sobolev trace. The measure boundary trace of u is denoted by tr (u).

For 8 > 0, denote

Qe={xeQ:0(x) <}, Dg={xeQ:5(x)>p}, Zg={xeQ:5(x)=p}.

L1 ] (1.8)
ai._z 2 uw. .

It can be shown (see Corollary 2.11 below) that the classical measure boundary trace of Kff[v] is zero but there
exist constants Cy, C; such that, for every v € 9(32),

Put
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1
B

Cilvilonea) < /Kf}[u](x)de < C2lvlisnpe) (1.9)
Zp

for all B € (0, Bp) where By > 0 depends only on 2. In view of this we introduce the following definition of trace.

Definition 1.2. A positive function u possesses a normalized boundary trace if there exists a measure v € 9+ (9Q)
such that

o1
éli%,gT / lu — K2 [v]|d Sy =0. (1.10)
Xp

The normalized boundary trace will be denoted by tr* (u).

Remark. The notion of normalized boundary trace is well defined. Indeed, suppose that v and v’ satisfy (1.10). Put v =
(Kff[v —’])+ then v is a nonnegative L ,-subharmonic function, v < K[v + V'] and tr*(v) = 0. By Proposition 2.14,
v=0,ie., Kfj[v — '] < 0. By interchanging the roles of v and v/, we deduce that ]Kff[v/ —v]<0.Thus v =v".

Denote by fo the Green function of — L, in € and, for every positive Radon measure 7 in €2, put

Girlr](x) == f G (x, y)dt(y).
Q
Denote by 9 (£2), f a positive Borel function in €2, the space of Radon measures 7 on 2 satisfying fQ fdlt] < o0
and by 931}'(52) the positive cone of this space.

If 7 is a positive measure such that fo[r](x) < oo for some x € Q then 7 € Moy () and Gf}[r] is finite every-
where in Q. The underlying reason for this is the behavior of the Green function at the boundary: for every 8 > 0
there exists cg such that

g8 <G (x,y) <cpd(x)™ Vx €Qpp, y € Dy

For details see Section 2.2 below.
We begin with the study of the linear boundary value problem,

—Lyju=1t inQ
tr*(u) =v, (L.11)

where v € T (9Q) and 7 € 9)?; + (£2). As usual we look for solutions u € L}OC(Q) and the equation is understood

in the sense of distributions. The representation theorem implies that if 7 = 0 the problem has a unique solution,
u= Kff [v].
We list below our main results regarding this problem.

Proposition 1.

(i) If u is a non-negative L, -harmonic function and tr*(u) =0 then u = 0.
() Ift e 93?;,+ (R2) then fo[r] has normalized trace zero. Thus fo[r] is a solution of (1.11) with v = 0.
(iii) Let u be a positive L, -subharmonic function. If u is dominated by an L -superharmonic function then L, u €
SDT;; + () and u has a normalized boundary trace. In this case tr*(u) = 0 if and only if u = 0.

(iv) Let u be a positive L, -superharmonic function. Then there exist v € MY (ORQ) and T € Em;; + () such that

u=Gylr]+KJv]. (1.12)

In particular, u is an L, -potential (i.e., u does not dominate any positive L -harmonic function) if and only if
tr*(u) =0.
(v) Foreveryve MT(0Q) and T € 9)2;2+ (2), problem (1.11) has a unique solution. The solution is given by (1.12).
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Next we study the nonlinear boundary value problem,
—L,u+u?=0 inQ
tr*(u) =v (1.13)
where v € IMT(IQ).

Definition 1.3. (i) A positive solution of (1.1) is L,-moderate if it is dominated by an L, -harmonic function.

(ii) A positive function u € L;IO -(82) is a (weak) solution of (1.13) if it satisfies the equation (in the sense of distribu-

tions) and has normalized boundary trace v.

Definition 1.4. Put
X(Q)={¢ €C*(Q):8% L, € L¥(R), §7%¢ € L®(Q)).
A function ¢ € X (R2) is called an admissible test function for (1.13).

Following are our main results concerning the nonlinear problem (1.13). Theorems A-D apply to arbitrary exponent
q>1.

Theorem A. Assume that 0 < u < Cgy(R2), g > 1. Let u be a positive solution of (1.1). Then the following statements
are equivalent:

(i) u is L -moderate.

(ii) u admits a normalized boundary trace v € 9T (3R). In other words, u is a solution of (1.13).

(iii) u € L, (Q) and

u+ G =K [v] (1.14)

where v = tr*(u).
Furthermore, a positive function u is a solution of (1.13) if and only if u/8% € L'(RQ), §*u? € L'(Q) and

/(—uLué' +ull)dx = —/Kfj[v]Lﬂgdx Y € X(Q). (1.15)
Q Q

Theorem B. Assume 0 < u < Cy(L2), g > 1.
1. UNIQUENESS. For every v € T (3Q), there exists at most one positive solution of (1.13).

1I. MONOTONICITY. Assume v; € MT(3Q), i = 1,2. Let u,, be the unique solution of (1.13) with v replaced by v;,
i=1,2.Ifvi < vy then u,, < u,,.

III. A-PRIORI ESTIMATE. There exists a positive constant ¢ = c(N, u, 2) such that every positive solution u of (1.13)
satisfies,

”M”L}a_ Q) + ”u”LZ"H— (Q) <c ”VHE);R((’)Q) . (1.16)

Theorem C. Assume 0 < < Cy(Q), g > 1. If v € MT () and Kff[v] € L§a+ (2) then there exists a unique
solution of the boundary value problem (1.13).

Corollary C1. For every positive function f € L' () (1.13) with v = f admits a unique positive solution.

Theorem D. Assume 0 < u < Cy(2), ¢ > 1. If u is a positive solution of (1.13) then
u(x)

xl_r)ny W =1 non-tangentially, v-a.e. on 9S2. (1.17)
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Let

N+(¥+

. 1.18
N—-—1—a_ ( )

Qu.c *=
In the next two results we show, among other things, that g, . is the critical exponent for (1.13). This means that,
if 1 < ¢ < qu.c then problem (1.13) has a unique solution for every measure v € MM*(3) but, if ¢ > g, . then the
problem has no solution for some measures v, e.g. Dirac measure.
In Theorem E we consider the subcritical case 1 < g < g,  and in Theorem F the supercritical case.

Theorem E. Assume 0 < u < Cy(2) and 1 < q < qy ¢. Then:
1. EXISTENCE AND UNIQUENESS. For every v € T (32) (1.13) admits a unique positive solution u,.

1. STABILITY. If {v,} is a sequence of measures in T (32) weakly convergent to v € M (9Q) then u,, — u, in
Ly (Q)andin Li, ().

I11. LOCAL BEHAVIOR. Let v = kéy, where k > 0 and 8y is the Dirac measure concentrated at y € 02. Then, under
the assumptions of Theorem E, the unique solution of (1.13), denoted by uys,, satisfies

ugs. (x
im ;‘2‘3’7() —k. (1.19)
=y Kp(x, y)

Remark. Note that in part III we have ‘uniform convergence’ not just ‘non-tangential convergence’ as in Theorem D.

Theorem F. Assume 0 < u < Cy(2) and q > q,,,c. Then for every k > 0 and y € 0Q, there is no positive solution of
(1.1) with normalized boundary trace k3.

In the first part of the paper we study properties of positive L ,-harmonic functions and the boundary value problem
(1.11). In the second part, these results are applied to a study of the corresponding boundary value problem for the
nonlinear equation (1.1). These results yield a complete classification of the positive moderate solutions of (1.1) in the
subcritical case. They also provide a framework for the study of positive solutions of (1.1) that may blow up at some
parts of the boundary. The existence of such solutions in the subcritical case has been studied (by different methods)
in [5]. The boundary trace for positive non-moderate solutions and corresponding boundary value problems will be
treated in a forthcoming paper.

The main ingredients used in this paper are: the Representation Theorem previously stated and other basic results
of potential theory (see [1]), a sharp estimate of the Green kernel of —L,, due to Filippas, Moschini and Tertikas [9],
estimates for convolutions in weak L? spaces (see [23, Section 2.3.2]) and the comparison principle obtained in [4].

2. The linear equation
Throughout this paper we assume that 0 < u < Cy (£2).
2.1. Some potential theoretic results

We denote by Mise (2), o € R, the space of Radon measures T on €2 satisfying fQ 8%(x)d|t| < oo and by i)ﬁ;; ()
the positive cone of Mg (). When o = 0, we use the notation 91(Q2) and IMT (). We also denote by M(IQ) the
space of finite Radon measures on 32 and by 9+ (9Q) the positive cone of M(INQ).

Let D be a C2 domain such that D € Q and h € L'(3€2). Denote by S,.(D, h) the solution of the problem

{—LMu =0 in D

u=nh on dD. @.1)

Lemma 2.1. Let u be L, -superharmonic in Q and D be a C? domain such that D € Q. Then u > Su(D,u) a.e.in D.
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Proof. Since u is L, -superharmonic in €2, there exists T € MT () such that —L wi = 7. Let v be the solution of

—Lyv =t in D
v=0 ondD

and put w =S, (D,u). Thenw >0and u|p=v+w>v. O

2.2)

Lemma 2.2. Let u be a nonnegative L -superharmonic and {Dy} be a C 2 exhaustion of Q2. Then
i:= lim S,(Dy,u)
n— 00
exists and is the largest L, -harmonic function dominated by u.
Proof. By Lemma 2.1, S, (Dy, u) < ulp,, hence the sequence {S,(D,,u)} is decreasing. Consequently, & exists

and is an L, -harmonic function dominated by u. Next, if v is an L, -harmonic function dominated by u then v <
S;.(Dp, u) for every n € N. Letting n — oo yields v <#. O

Definition 2.3. A nonnegative L, -superharmonic function is called an L, -potential if its largest L, -harmonic mino-
rant is zero.

As a consequence of Lemma 2.2, we obtain
Lemma 2.4. Let u, be a nonnegative L, -superharmonic function in Q. If for some C 2 exhaustion {D,} of @,
nlingo SM(Dm up) = 0, (2.3)

then up is an Ly -potential in Q. Conversely, if u, is an L, -potential, then (2.3) holds for every C 2 exhaustion {D,}
of Q2.

For easy reference we quote below the Riesz decomposition theorem (see [1]).

Theorem 2.5. Every nonnegative L, -superharmonic function u in Q can be written in a unique way in the form
u=up+uy where u, is an L -potential and uy, is a nonnegative L, -harmonic function in Q.

The next result is a consequence of the Fatou convergence theorem [ 1, Theorem 1.8] and the following well-known
fact: if a function satisfies the local Harnack inequality, fine convergence at the boundary (in the sense of [1]) implies
non-tangential convergence.

Theorem 2.6. Let u, be a positive L -potential and u be a positive L,,-harmonic function. Assume that “7;7 satisfies
the Harnack inequality. Then

lim 2
>y u(x)

=0 non-tangentially, v-a.e. on 92

where v is the L, -boundary measure of u.
2.2. The action of the Green and Martin kernels on spaces of measures

From [2], for every y € 0€2, there exists a positive L, -harmonic function in £ which vanishes on 92\ {y}. When
normalized, this function is unique. We choose a fixed reference point xq in €2 and denote by K f} y this L, -harmonic

function, normalized by K ff y(x0) =L The function K ff(~, y) = Kfﬁ NO) is the L, -Martin kernel in €2, normalized
at xq.
For v € M(92) denote

K2[](x) = / K2(x, y)dv(y).
0Q
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In what follows the notation f ~ g means: there exists a positive constant ¢ such that ¢ ™' f < g < ¢f in the domain
of the two functions or in a specified subset of this domain. Of course, in the latter case, the constant depends on the
subset.

Let fo be the Green kernel for the operator L, in  x Q. Fix a point xo € . It is well known that the function

X fo(x, x0) behaves like the first eigenfunction ¢, 1(x) near the boundary, i.e., fo(-, x0) ~ @u,1 in Qg, (0 <

B < 8(xp)).

By [19, Lemmas 5,1, 5.2] (see also [8, Lemma 7] for an alternative proof)
cT18)™ < @ua(x) < ed(x)*. (2.4)
Thus, if 0 < 8 < §(x0),
CEIS(x)‘” < fo(x, x0) <cgd(x)*r  Vx e Qg. (2.5)
Therefore, if T € Mgt () then

GRlr](x) :=fo}(x,y)dr(y) <00 ae.inQ.
Q

Indeed, by (2.5) and the symmetry of the Green kernel, for every x € €, the integral over $25(y)/2 is finite. For
Y € Ds(xy/4, fo (x,y) < clx — y|>*~ V. Therefore the integral is finite over this set as well. Inequality (2.5) also implies

that, if t is a positive Radon measure in €2 and fo[r](x) < oo for some point x € Q2 then t € Mot () and Gf}[r] is
finite everywhere in 2.
By [9, Theorem 4.11], for every x,y € Q, x # y,

G2, y) ~min flx =y 500 8™ fx =y} 2.6)

Since
G%(x,2)
K%(x,y):=1lim 42— VxeQ
" =y G2(x0,2)

it follows from (2.6) that

K, y) ~80)* x =y N VxeQ, yeoQ. (2.7)
Let G = G(S)2 and P9 = POQ denote the Green and Poisson kernels of —A in 2. Then, by (2.7)
KQ X, S _ 200 _ 200
PO 8@ (=N e (= Y\ 08
3(x)%- Ix —yIV\ 8(x) 8(x)

Denote L{Z,(Q; 1), 1 < p <00, T € MM (Q), the weak L? space defined as follows: a measurable function f in 2
belongs to this space if there exists a constant ¢ such that

rpat)y=t({xeQ:|f(x)|>a}) <ca™’, Va>0. (2.9)
The function A ¢ is called the distribution function of f (relative to 7). For p > 1, denote

L1 (2; t) = { f Borel measurable : supa’A s (a; 1) < 0o}
a>0

and
1
* — p . v
11} ey = (uPGT s (@ )7 (2.10)
This expression is not a norm, but for p > 1, it is equivalent to the norm

dt
M'a)CQ,wmeasurable,0<1:(a))}. (2.11)

I lLs @iy = S“P{ @7

More precisely,
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11 0y = W g@ie) < = 11 gy (2.12)

Notice that, for every o > —1,
LP(Q;8%x) C L5 (2) Vrell, p).

For every x € 02, denote by n, the outward unit normal vector to 92 at x.
The following is a well-known geometric property of C> domains.

Proposition 2.7. There exists Bo > 0 such that

(i) For every point x € §/30, there exists a unique point oy € 02 such that |x — oy| = §(x). This implies x =
oy —8(X)ng,.

(ii) The mappings x +— 8(x) and x — o, belong to C 2(§ﬂ0) and C 1(@,30) respectively. Furthermore,
limy 5 () VO(x) = —ny

By combining (2.6), (2.7) and [23, Lemma 2.3.2], we obtain

Proposition 2.8. There exist constants c; depending only on N, i, B, 2 such that,

IGRT| n+s <caltloe. YreM(Q), B>-1, (2.13)
N—Z (Q,(S/S)
|GRtel] wss <cilltllome, @, V7 € Mot (), B> 2o, (2.14)
LY (@, 58+
K| v <calvlmee. Vv eMER). f> 1. (2.15)

Ly~ (@,88)

Proof. We assume that 7 is positive; otherwise we replace T by |t|. We consider T as a positive measure in RV by
extending 7 by zero outside of Q. For a € (0, N), denote I';, (x) = |x|*~N. By [23, inequality (2.3.17)],

ICq x|l w+p <cltllop@ VB> max{—1,—a} (2.16)
LY (,88)

where ¢ = c(N, a, B, diam(2)). By (2.6),
Gi(x,y) < emin{Ta(x — ), 8(x)*+8(y)** Tag_ (x — )}
Hence, by (2.16),
|G| L= SC”FZ*T”L%’z‘m,m
<ltlme VYB>-1,
||G r]H <c || T * (8% T) || _N+B

N—=2a_

T (Q.8P) Lo (©Q.68)
SC”T”EDTBO(+(Q) VB > —2a_.
Next we extend v by zero outside d€2 and observe that, by (2.7), Kff (x,y) <cli4o_(x—y).Hence Kf}[v] <cTiye *
v and by (2.16),

||KQ[V]|| B <c|Tija_*v| s =clvlomeey VB>-1. O
(@) Ly 7% (@,86)

Corollary 2.9. Let 8 > —1.

(i) If {v,} C IMT(3Q) converges weakly to v € M (dQ) then {KQ[U,,]} converges to KQ[I)] in L 5(S2) for every p
suchthatl§p<Nivlt’3a_. i
(i) If {7} C M (Q) converges weakly (relative to Co(RQ)) to T € MT(Q) then {(Gf}[rn]} converges to (Grf}[r] in

Lpﬁ (2) for every p suchthat 1 < p < N+ﬁ

Proof. We prove the first statement. The second is proved in a similar way.
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Since Kﬁz (x,.) € C(0R) for every x € 2, {Kff[vn]} converges to Kff[v] every where in Q2. By Holder inequality

and (2.15), we deduce that {(Kf}[vn])f’} is equi-integrable w.r.t. 8Pdx for any 1 < p < #Jr_ﬁm By Vitali’s theorem,

K [v,] — K [v] in Lg’ﬁ(sz). O
2.3. Estimates related to the normalized trace

Proposition 2.10. There exist positive constants C1, Co such that, for every B € (0, Bo),

Cip% < f K2(x,y)dSy < C2p* VyedQ. (2.17)
Xp

The constants C1, Ca depend on N, 2, i but not on y.
Furthermore, for every ro > 0,

/ K3 (x,y)dS, =0 VyeQ. (2.18)
2\Bry ()

For ry fixed, the rate of convergence is independent of y.

lim
B—0 ﬂa,

Proof. By (2.7),

1
— K3 (x, y)dS; < cp+ . (2.19)

Zp\Bry ()
This implies (2.18).
For the next estimate it is convenient to assume that the coordinates are placed so that y = 0 and the tangent

hyperplane to 9 at 0 is xy = 0 with the xy axis pointing into the domain. For x € RN put x’ = (x, --- , xy_1). Pick
ro € (0, Bo) sufficiently small (depending only on the C? characteristic of £2) so that

l ) 2 2
2(|x [“4+8(x)7) < |x|© Vx e QN B,(0).
Then, if x € Xg N B, (0) =: X0,
1(| 1+ B8) < Ix|
2 <|x|.
This inequality and (2.7) imply,
/ K$(x,0)dS, < cof™ f (x| + B2~V dS,
g0 %80
<cip” / (/I + By Nax’

|x"|<ro

ro
< p™ / (t + )2~ 2dt
0

e ¢]

_ 2
<op% |t dr =

o_
2(X+ — 1'3 ’
Thus, for 8 < ry,
1
ﬂo(_

e
2(¥+ — 1

/ K (x,0)dS, < (2.20)

28,0



M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré — AN 34 (2017) 69-88 79

Estimates (2.19) and (2.20) imply the second estimate in (2.17). The first estimate in (2.17) follows from (2.8). O
Since (2.17) holds uniformly w.r. to y € €2, an application of Fubini’s yields the following.

Corollary 2.11. For every v € M (),
Q

K/ ]

8(x)*-

C a9y < liminf
1viloroae) < imin / x
Zp

Q

~limsu /K“[U]ds <Gl (221)
= fHOP S 0= 2 M(3) .

Zp
with C1,Cy as in (2.17).

Proposition 2.12. If T € Mot () then

r*(GH[r]) =0 (2.22)
and, for 0 < B < By,
ﬁi_ /Gf}[r]dsx 5c/8“+d|z|, (2.23)
2/3 Q

where c is a constant depending on ., Q.

Proof. We may assume that ¢ > 0. Denote v := Gf}[t]. We start with the proof of (2.23).
By Fubini’s theorem and (2.6),

/ v, <c( / / x = yPNds, de(y)

g Q EﬁﬂBg )

e / / Ix — y?-"Nds, 8“+(y)dt(y)) =11(B) + L(B).

Q Eﬁ\Bg (62

Note that, if x € g and [x — y| < /2 then /2 < §(y) < 38/2. Therefore

I(B) <ci / |x—y|2*“+*NdSX/5(y)“+ dz(y)

ZﬂﬂBg(y) Q
B/2
<d / P2 NN 2y f 8(y)*+ d(y)
0 Q
<c|B* /S(y)"’+ dz(y)
Q
and
o0
L) < cap | r2* "NV 2ar / B dt = chp* / B(y)** dr.
B/2 Q Q

This implies (2.23).
Given € € (0, ||‘L'||gﬁsa+ @) and B € (0, Bo) put 1 = TXby, and tp = t — 11. Pick 81 = B1(¢) such that



80 M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré — AN 34 (2017) 69-88

/ 8(y)*+dt <e. (2.24)
Qp,

Thus the choice of 81 depends on the rate at which fQﬁ 8%t dt tends to zero as 8 — 0.
Put v; = G[;]. Then, for 0 < 8 < /2,

/Ulde SCsﬂ‘”ﬂlz(x:N/3a+(y)d71(y)-
g Q
Thus,
. 1
lim = / v dS, =0. (2.25)

xp
On the other hand, by (2.23) and (2.24),

/vz dS, <ce VB < po. (2.26)
]

1
‘Ba,
This implies that tr*(v) =0. O

It is well-known that u is an L, -potential if and only if there exists a positive measure 7 in £ such that u =
Gg[‘t] (see e.g. [1, Theorem 12]). The estimate (2.6) implies that if (fo[t] = oo then t € Mot (). Therefore as a
consequence of the previous proposition:

Corollary 2.13. A positive L, -superharmonic function u is a potential if and only if tr*(u) = 0.

Remark. Let D € Q be a C2 domain and denote by G 5 and Plf) the Green and Poisson kernels of L, in D. (To avoid
misunderstanding we point out that, in the formula defining L, 5(x) denotes, as before, the distance from x to 9€2,
not to dD.) As every positive L, harmonic function has measure boundary trace zero, there is no Poisson kernel for
L, in Q. However, L, has a Poisson kernel in every C 2 domain D strictly contained in €. This follows from the fact
that the Green kernel G E exists and behaves like G(? .

Proposition 2.14. Let w be a non-negative L -subharmonic function. If w is dominated by an L, -superharmonic
function then L, w € 9)?;2+ () and w has a normalized boundary trace v € MY (9K). If, in addition, tr*(w) = 0 then
w=0.

Proof. The first assumption implies that there exists a positive Radon measure A in € such that —L,w = —A.
First assume that A € Mge+ (). Then v :=w + GS [A] is a non-negative L, -harmonic function and consequently,

by the representation theorem, v = Kff[v] for some v € MT(9K2). By Proposition 2.12, tr*(w) = v. If v = 0 then
v = 0 and therefore w = 0. Now let us drop the assumption on A.
Let vg be the unique solution of the boundary value problem,

—Lyvg=—MAg in Dg, vg=hg on dDg

where Ag is the restriction of A to Dg and hg is the restriction of w to dDg. (The uniqueness follows from [4,
Lemma 2.3].) The uniqueness implies that vg = w|p,. By assumption there exists a positive L, -superharmonic
function, say V, such that w < V. Hence

D D D
w+ G Al =Pu  [hg] <P, [V 0aps] < V.

This implies that fo [A] =1limg_,o Ggﬂ [Ag] < oo. For fixed x € €2, fo(x, y) ~ &(y)¥+. Therefore the finiteness of
Gf} [A] implies that A € Miser (2). By the first part of the proof w has a normalized trace. O

Remark. See Proposition 2.20 below for a complementary result.



M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré — AN 34 (2017) 69-88 81

2.4. Test functions

Denote
X(Q)={te CZ(Q) : 8"‘—LM§ € L®(Q),8 % e L®(Q)).

Proposition 2.15. For any ¢ € X(2), % |V{| € L™ (RQ).

Proof. Let ¢ € X (2) then there exist a positive constant ¢1 and a function f € L°°(€2) such that |¢| < ¢18%t and
—Lug=56"f.

Take arbitrary point x, € Qp, and put di = 58(x), s = 7-%x, £ (¥) = {(day) for y € 7-Qq,. Note that if x € By, (x.)

then y = 7-x € B1(y:) and 1 <dist(y, d(3-R4,)) <3.In Bi(ys),

Ce — 12
T dist(y, 0(Q4,))?

2—a_ . 1 _
Go= i dist (v, (-4, f (diy).
*
By local estimate for elliptic equations [12, Theorem 8.32], there exists a positive constant ¢y = c2(N, @) such that

o . 1 —
max [V, SCz[m(aX |l + max (df a*dlst(y,a(d—ﬁd*)) 1@
*

By O B1(ys) By (yx
This implies
i [VE ()] < e3(8(x)™ + 1 | oy 8 ()2,
where ¢3 = ¢3(N, u, c1). Therefore
IVE()| < esd ()™~ Vx € Qp,
where ¢4 = ca(N, , c1, | [l poo(g))- Thus 37|V e L®(RQ). O

Definition 2.16. Let xg € 2 and denote B (x0) = min(By, %S(xo)). We say that Gﬁ is a proper regularization of fo
relative to xg if (N}ff(x) = Gg(xo, x) for x € Qﬁ(}fo)’ fo € C3(Q2)NC(Q) and fo > 0 in . Similarly § is a proper
regularization of 8 relative to xq if 5(x) = §(x) for x € [TF 7 §€C?(Q)and 5 >0in Q.

Remark. Using (2.6) and (2.4), it is easily verified that the functions ¢, 1, Gf}[n] (for n € L®°(R)), fo and §%+
belong to X (€2). Moreover, using Proposition 2.15, one obtains,

{€X(Q) and heCHQ) = hl € X(Q).

In the proofs of the next two propositions we use the following construction. Let D €  be a C? domain. The Green
function for —L, in D is denoted by GE . (To avoid misunderstanding we point out that, in the formula defining L ,,
8(x) denotes, as before, the distance from x to 9€2, not to dD.) Given xo € 2 we construct a family of functions
G(xp) = {Gf’g :0<B< %E(Xo)} such that, for each 8, G,?ﬂ is a proper regularization of Gf’g (x0, +) in Dg and G (xo)
has the following properties:

e For every B € (0, %B(XO)), Gfﬁ € Cz(ﬁﬂ), G,?ﬂ >0 and Gfﬁ(x) = G/lt)ﬂ (x0, x) for x € Dp \ Dprpy-
o The sequences {Ggﬂ } and {L Mégﬂ } converge to fo and L MGE respectively, as f — 0, a.e. in Q.

~D, ~D . " .
‘Guﬂ + |LuGuf‘ | HLM(Dﬁ) < My, where M, is a positive constant independent of .

G(xp) will be called a uniform regularization of {G,lz’s }.

For any function~h e C? LB ), we say that h is an admissible extension of h relative to xo in Q if fz(x) =h(o(x))
for x € QE(XO) and h € C%(Q).
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2.5. Nonhomogeneous linear equations
Here we discuss the boundary value problem (1.11) in €.

Lemma 2.17. Let u € L}

loc

L=t (2.27)

(R2) be a positive solution (in the sense of distributions) of equation

in Q where T is a non-negative Radon measure.
If T € Mser () then

—/GS[I]Lﬂgdxzfgdr Vi € X(Q). (2.28)
Q Q

Proof. We may assume that t is positive. By Proposition 2.12, tr*(GS[r]) = 0. Therefore, given & > 0, there exists
B=pB) < %ﬂo such that,

1
B

/fo[r]de <¢& and /5“+dt <e VBe(0, B]. (2.29)
zp $2p
Let
1(B) ::/.fo[r]Lufdx—i-/g“dr.
Dg Dg
To prove (2.28) we show that
lim 1(B) =0. 2.30
s (B) (2.30)

Put
Tl :ZXDBT’ %) :ZXQBT
and, for 0 < 8 < B,
I (B) :=foj[rk]LM;dx+/gdrk, k=1,2.
Dg Dg
As [¢] < 8% and |L,¢| < 50—, (2.29) implies,
|L(B)| <ce VBe(O,p). (2.31)
For every B € (0, B),

IG[r1] ¢
—/Gf}[n]Lwa=/gdn +/gT§de—/fo[r1]£de.
Dg Dg Zp Zp
Thus
3G (1] d
I1(ﬂ)=—/ “—1;dsx+/G,?[n]a—fldsx = 1.1(8)+ N208).

an
Xp Xp

By Proposition 2.15 and (2.29),
112(B) <ce VBe(0,RB). (2.32)
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Next we estimate 11 1(8) for 8 € (0, 8/2). By Fubini,

d
La(B)=- / - / Gt (x, AT ()L (x)d S,

Xp DE
9G2(x. y)
=—f/Tc(x)dsxdrl(y).
ny
DE Eﬁ

For every y € Dg the function x fo(x, y) is L,-harmonic in © 5By local elliptic estimates, for every & € Xg,

sup  [ViGi(x. )| <cB™' sup  GH(x.y).
xE€Bg4(§) x€Bg/»(§)

By Harnack’s inequality,

Q / : Q
sup G (x,y)<c inf G}/ (x,y).
x€Bg/(§) a x€Bg2(§) H

The constants ¢, ¢’ are independent of 8 € (0, B /2),y € Dﬁ and & € Xg. Therefore we obtain,
IVeGR(x,y)| < CB'GR(x.y) VxeZp VyeDj VBe(0.4/2). (2.33)
Hence,
11 (B)] sc;a—l/G,il[nnudsx.
Zp

As [£(x)| < c8(x)¥t it follows that,

1
1@l = C o [ Gmas.
g

Therefore, by (2.29),
Ih1(B<C'e YBe(0,B/2). (2.34)
Finally (2.30) follows from (2.31), (2.32) and (2.34). O

Theorem 2.18. Let v € MT(0Q) and t € Mser (Q). Then:
(i) Problem (1.11) has a unique solution. The solution is given by

u=Gr]+ K7l (2.35)
(ii) There exists a positive constant ¢ = c(N, u, Q) such that

”“”L;w_ @ = cUltllone, @ + Ivilmee)- (2.36)

(iii) u is a solution of (1.11) if and only if u € Lé_a_ (2) and

—/uLM{dx = /{dt - /Kf}[v]Lu{dx Vi € X(RQ). (2.37)
Q Q Q

Proof. (i) Proposition 2.12 implies that (2.35) is a solution of (1.11).

If u and u’ are two solutions of (1.11) then v := (u — u’)4 is a nonnegative L, -subharmonic function such that
tr*(v) =0and v < 2Gf}[|r|] which is a positive L -superharmonic function. By Proposition 2.14, v = 0 and hence
u <u'in Q. Similarly u’ < u, so that u = u’.

(i) In view of (2.14) and (2.15), (2.36) is an immediate consequence of (2.35).
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(iii) Let u be the solution of (1.11). By (2.36), u € Lé_a_ (2) and by Lemma 2.17 and (2.35), u satisfies (2.37).

Conversely, suppose that u € L;,a_ (€2) and satisfies (2.37). We show that u is a solution of (1.11) or, equivalently,
of (2.35).

By (2.37) with ¢ € CZ°(2), u is a solution (in the sense of distributions) of the equation in (1.11). It remains to
show that tr*(u) =v. Put U = u — Gf}[t] — Kf}[u] and note that, as —L,u =1, U is L, -harmonic.

Let z € Q2 and let G(z) be a uniform regularization of {G,Ifﬁ 0< B < % ,5 (z)} (see Section 2.4). Then, for every

D
3G,” %)

Dg
T P, (z,x), x € g, we

Be(0,18(2)), G € C3(Dp). Recall that G” (x) = G1” (z, x). Therefore, as
obtain

—/U(x)LM(;,ﬁ’f‘(x)dx=/U(x)P,f"‘(z,x)dsx —U(2). (2.38)
Dg 2p

The second equality is a consequence of the fact that U is L, -harmonic. But L Méllfﬁ (x)— L Méff(z, x) pointwise and

the sequence {L MG,’fﬁ } is bounded by a constant M. We observe that U € LY(Q); in fact by assumptionu € L é,a_ ()
and therefore, by Proposition 2.8, U € L;,O_ (£2). Consequently, by (2.38),

U(z) = —/ U(x)LMfo(z,x)dx.
Q

Since fo(z, ) € X(R2), by (2.37) the right hand side vanishes. Thus U vanishes in €2, i.e., u satisfies (2.35). O

Corollary 2.19. Let u be a positive L,, superharmonic function. Then there exist v € MMT(32) and t € 93?}; + ()
such that (1.12) holds.

Proof. By the Riesz decomposition theorem u can be written in the form u = u, + u where u, is an L, -potential
and uy, is a non-negative L, -harmonic function. Therefore there exists v € MT(3Q) such that uy, = Kff[v]. Since u

is an L, -potential there exists a positive Radon measure t such that u, = Gf}[r] (see e.g. [1, Theorem 12]). This
necessarily implies that T € Mses+ (). O

Proposition 2.20. Let w be a non-negative L, -subharmonic function. If w has a normalized boundary trace then it
is dominated by an L, -harmonic function.

Proof. There exist a positive Radon measure 7 in  and a measure v € 9+ (9R2) such that
—Lyaw=-1t inQ, tr'(w)=v.
Let ug be the solution of
—Lyu=—1t5 inDg, u=K[v] onZg
where 15 := TXDy- Then,
Dg _ R
ug + Gll« ['L’ﬂ] = Kﬂ [v].
Letting 8 — 0 we obtain,
Gl <KJ[vl.
Hence 7 € sm;, + (£2) and consequently

w+ fo[t] = Kf}[v]. m) (2.39)
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3. The nonlinear equation

In this section, we consider the nonlinear equation
—Lyu+u?=0 (3.1
inQwithO<u <Cy() and g > 1.

Proof of Theorem A. Since u is a positive solution of (1.1), u is L,-subharmonic. Assuming (i), u is dominated
by an L, -harmonic function. Therefore, by Proposition 2.14, (i) = (ii) and u € Lgo, +(£2). On the other hand, by
Proposition 2.20 (ii)) = (i).

As mentioned above, (i) implies that u € Lga +(£2) and that there exists v € 9)?; 4 (0€2) such that tr*(u) = v.
Therefore, by Theorem 2.18, (1.14) is a consequence of (2.37). Thus (i) = (iii).

Finally, the implication (iii) = (i) is obvious.

It remains to prove the last assertion. If u is a positive solution of (1.13) then, by (iii), u € Lg’a +(£2) and (1.15)
follows from Theorem 2.18.

Conversely, assume that §*+u9, u /8% € L'(€2) and (1.15) holds. Then, by (1.15) with ¢ € C2°(2), u is a solution
of (1.1). Taking ¢ = G f] where f € Cc(R) and f > 0 we obtain

/(Kﬁ[v] —u)f dx:/u‘fgf dx < 0.
Q

Q

This implies u < Kff[v], i.e., u is L, -moderate. Therefore by (i), u is a solution of (1.13). O

Proof of Theorem B.
Uniqueness. Let u; and uy be two positive solutions of (1.13). Then v := (u; — u2)+ is a subsolution of (1.1) and
therefore an L, -subharmonic function. Furthermore, by (iii) in Theorem A, uy, u; € Lga +(2) and v < Gf}[u? +

ug] =:v. Obviously v is L, superharmonic and tr *(v) = 0. Therefore, by Proposition 2.14, v = 0. Thus u; < u> and
similarly uy < u;.

Monotonicity. As before, v := (u1 — uz)4 is L,-subharmonic and it is dominated by an L ,-superharmonic function.
Since v; < v, tr*(v) = 0. Hence by Proposition 2.14, v = 0.

A-priori estimate. Suppose that u is a positive solution of (1.13). Then (1.15) with ¢ = Gf}[l] implies (1.16). (Recall
that G2[1] ~ %) O

For the proof of the next theorem we need

Lemma 3.1. Let D € Q be a C? domain and q > 1. If h is a positive function in L' (3 D) then there exists a unique
solution of the boundary value problem,
—L,u+u?=0 inD
u=h onoD. (3.2)

Proof. First assume that % is bounded. Let Plf) denote the Poisson kernel of —L, in D and put ug := Pg [A]. Thus ug
is bounded. We show that there exists a non-increasing sequence of positive functions {u,,}7°, dominated by u¢, such
that u,, is the solution of the boundary value problem,
—Av+v? = a%u,,,l in D
v=h ondD n=1,2,... (3.3)

As usual § denotes the distance to €2, not to d D. For n = 1, u is a supersolution of the problem and, obviously v =0
is a subsolution. Consequently there exists a unique solution #. By induction, for n > 1,
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0 w
—Auy_1 + MZ_I = (3_21,{”72 = 8_214}171'
Thus v = u,_ is a supersolution of (3.3) and it is bounded. It follows that there exists 0 < u, < u,_1 such that

—Au, +ul = (';L—zun_l inD, wu,=hondD.

As the sequence is monotone we conclude that ¥ =limu,, is a solution of (3.2).

If h € L'(3D), we approximate it by a monotone increasing sequence of non-negative bounded functions {/;}. If
v is the solution of (3.2) with & replaced by £y then {v;} increases (by the comparison principle [4, Lemma 3.2]) and
v = lim vy, is a solution of (3.2).

Uniqueness follows by the comparison principle. O

Proof of Theorem C. Put ug := Kff[v] and hpg :=uolx,. Let ug be the solution of (3.2) with h replaced by hg,
B € (0, Bo). Since ug is a supersolution of (1.1) it follows that {ug} decreases as 8 | 0. Therefore u :=limg_,qug is
a solution of (1.1).

We claim that tr*(x) = v. Indeed,

D D
up + Gy’ gl =P, [hg] = uo. (3.4)
Furthermore, in Dg, ug <ug € LZ‘, + (§2). Therefore
D

G, [uf]— G ul].
Hence, by (3.4),

u+ Gt =ug =K [v].
By Proposition 2.12, tr*(u) = v.

By Theorem B the solution is unique. O

Proof of Corollary C1. By the previous theorem, if v = f where f is a positive bounded function then (1.13) has
a solution. If 0 < f € L'() then it is the limit of an increasing sequence of such functions. Therefore, once again
problem (1.13) with v = f has a solution.

Proof of Theorem D. Put v = Kff[v] — u. By the comparison principle v > 0. Clearly v is L -superharmonic in £
and, by definition tr*(v) = 0. By Proposition I(iv) v is an L, potential. Consequently, by Theorem 2.6,
v(x)

im —o
=y Ki/[v]

This implies (1.17). O

=0 non-tangentially, v a.e. on 92.

Proof of Theorem E. By Proposition 2.8, specifically inequality (2.15), Kf}[v] € L§a+ (2) for every g € (1, qu.c)
and v € MM (3Q). Therefore the first assertion of the theorem is a consequence of Theorem C.

We turn to the proof of stability. Put v, = K$}[v,]. By Proposition 2.8, {v,} is bounded in L., (Q) for every
g € (1,qu,) and in Lg—a, () for every p € (I, %). In addition v, — v pointwise in €. This implies that
{vl8%} and {v,/8%} are uniformly integrable in . Since u,, < v, it follows that this conclusion applies also
to {uy,}.

By the extension of the Keller—-Osserman inequality due to [4], the sequence {u,,} is uniformly bounded in every
compact subset of 2. Therefore, by a standard argument, we can extract a subsequence, still denoted by {u,,} that
converges pointwise to a solution u# of (1.1). In view of the uniform convergence mentioned above we conclude that

wy, = u in L, () andin L}, ().
By Theorem A,

v, +Gluf, 1 =K [v].
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In view of the previous observations, passing to the limit as n — 0o, we obtain,
Qr.q1 _ 1w
u+ G, u?1=K;v]

Again by Theorem A it follows that u is the (unique) solution of (1.13). Because of the uniqueness we conclude that
the entire sequence {u,, } (not just a subsequence) converges to u as stated in assertion II. of the theorem.
Finally we prove assertion III. By Theorem A

urs, + G lufs 1= kK2, y). (3.5)
Combining (2.7), (2.6) and the fact uys, < kKELZ(-, y), we obtain
Giilugs )0 GRIKZC »T)
KZ(x,y) ~ K2(x,y)

Since 1 < g < gy ¢, it follows that

S qu|.x _ y|N+C{+—q(N—l—Ol,).

 GRlufs 1)
im ————— =
=y K(x,y)
Therefore, by (3.5), we obtain (1.19). O
Proof of Theorem F. Let y € 9K2. By negation, assume that there exists a positive solution u of (1.13) with v = k4, for

some k > 0. By Theorem A, u < kaf(., y)andu € LZ(H (2). Let y € (0, 1) and denote Cy, (y) ={x € Q:y|x —y| <
8(x)}. By Theorem D,

u(x)
m 97 =K.
xeCy(y),x—>y Kﬂ (X, y)

This implies that there exist positive numbers rg, ¢ such that
u(x)chff(x,y) Vx € Cpy(y) N By (y). (3.6)
By (2.7),
By = Jey iy o (K0 »)7800 dx
> ¢! ny(y)ﬂB,-O(y) 5(x)¢¥+(q+l)|x _ y|(2a7—N)qu

’ +1 —q(N—1—a_
> ya+(q )ny(y)ﬂBrO(y) Ix — y|o+ q( ) dy.

Since g > g, the last integral is divergent. But (3.6) and the fact that u € Lga + (2) imply that J,, < oo. We reached
a contradiction. 0O

Conflict of interest statement

No conflict of interest.
Acknowledgements

This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and
Humanities, through grant 91/10. Part of this research was carried out, by the first author, during a visit at the Isaac
Newton Institute, Cambridge as part of the FRB program. He wishes to thank the institute for providing a pleasant

and stimulating atmosphere. The second author was also partially supported by a Technion fellowship.
The authors wish to thank Professor Pinchover for many useful discussions.



88 M. Marcus, P-T. Nguyen / Ann. I. H. Poincaré — AN 34 (2017) 69-88

References

[1] A. Ancona, Theorié¢ du potentiel sur les graphes et les variétés, in: Ecole d’été de Probabilités de Saint-Flour XVIII-1988, in: Springer Lecture
Notes in Math., vol. 1427, 1990, pp. 1-112.
[2] A. Ancona, Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. Math. (2) 125 (1987) 495-536.
[3] A. Ancona, M. Marcus, Positive solutions of a class of semilinear equations with absorption and Schrodinger equations, J. Math. Pures Appl.
104 (2015) 587-618.
[4] C. Bandle, V. Moroz, W. Reichel, Boundary blowup type sub-solutions to semilinear elliptic equations with Hardy potential, J. Lond. Math.
Soc. 2 (2008) 503-523.
[5] C. Bandle, M. Marcus, V. Moroz, Boundary singularities of solutions to elliptic equations with Hardy potential, preprint.
[6] H. Brezis, Une équation semilinéaire avec conditions aux limites dans L! , unpublished note, 1972.
[7] H. Brezis, M. Marcus, Hardy inequalities revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 25 (1997) 217-237.
[8] J. Davila, L. Dupaigne, Hardy-type inequalities, J. Eur. Math. Soc. 6 (2004) 335-365.
[9] S. Filippas, L. Moschini, A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains, Commun.
Math. Phys. 273 (2007) 237-281.
[10] E.B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc., Providence, RI, 2002.
[11] E.B. Dynkin, Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 2004.
[12] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer, Berlin, 1983.
[13] A. Gmira, L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991) 271-324.
[14] J.B. Keller, On solutions of Au = f(u), Commun. Pure Appl. Math. 10 (1957) 503-510.
[15] J.E. Le Gall, The Brownian snake and solutions of Au = 42 in a domain, Probab. Theory Relat. Fields 102 (1995) 393-432.
[16] M. Marcus, Complete classification of the positive solutions of —Au 4+ u4 =0, J. Anal. Math. 117 (2012) 187-220.
[17] M. Marcus, V.J. Mizel, Y. Pinchover, On the best constant for Hardy’s inequality in RN , Trans. Am. Math. Soc. 350 (1998) 3237-3255.
[18] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equations, Mem. Am. Math. Soc.
168 (798) (2004).
[19] M. Marcus, L. Shafrir, An eigenvalue problem related to Hardy’s L? inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 29 (2000) 581-604.
[20] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. Anal.
144 (1998) 201-231.
[21] M. Marcus, L. Véron, Removable singularities and boundary trace, J. Math. Pures Appl. 80 (2001) 879-900.
[22] M. Marcus, L. Véron, Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion, J. Eur. Math. Soc. 6 (2004)
483-527.
[23] M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter Series in Nonlinear Analysis and Applica-
tions, 2013.
[24] R. Osserman, On the inequality Au > f(u), Pac. J. Math. 7 (1957) 1641-1647.


http://refhub.elsevier.com/S0294-1449(15)00091-8/bib416E31s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib416E31s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib416E32s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib416E4D61s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib416E4D61s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib424D52s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib424D52s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib42724D61s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib444432s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib464D54s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib464D54s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4479626F6F6B31s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4479626F6F6B32s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4754s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4756s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4B65s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4C4731s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D61s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D4D50s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D7365s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D7365s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D61536861s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D5631s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D5631s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D5633s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D5634s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D5634s1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D56626F6F6Bs1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4D56626F6F6Bs1
http://refhub.elsevier.com/S0294-1449(15)00091-8/bib4F7373s1

	Moderate solutions of semilinear elliptic equations with Hardy potential
	1 Introduction
	2 The linear equation
	2.1 Some potential theoretic results
	2.2 The action of the Green and Martin kernels on spaces of measures
	2.3 Estimates related to the normalized trace
	2.4 Test functions
	2.5 Nonhomogeneous linear equations

	3 The nonlinear equation
	Conﬂict of interest statement
	Acknowledgements
	References


