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Abstract

This paper shows that the long time existence of solutions to the Water Waves equations remains true with a large topography 
in presence of surface tension. More precisely, the dimensionless equations depend strongly on three parameters ε, μ, β measuring 
the amplitude of the waves, the shallowness and the amplitude of the bathymetric variations respectively. In [2], the local existence 
of solutions to this problem is proved on a time interval of size 1

max(β,ε)
and uniformly with respect to μ. In presence of large 

bathymetric variations (typically β � ε), the existence time is therefore considerably reduced. We remove here this restriction and 
prove the local existence on a time interval of size 1

ε under the constraint that the surface tension parameter must be at the same 
order as the shallowness parameter μ. We also show that the result of [5] dealing with large bathymetric variations for the Shallow 
Water equations can be viewed as a particular endpoint case of our result.
© 2015 

Keywords: Water Waves; Cauchy problem; Large time; Bathymetric

1. Introduction

We recall here some classical formulations of the Water Waves problem, with and without surface tension. We then 
shortly introduce the meaningful dimensionless parameters of this problem, and then state the local existence result 
proved by [2]. We discuss the dependence of the size of the time interval with respect to these parameters and then 
explain the strategy adopted in this paper to get an improved local existence result.

1.1. Formulations of the Water Waves problem

The Water Waves problem puts the motion of a fluid with a free surface into equations. We recall here two equiv-
alent formulations of the Water Waves equations for an incompressible and irrotationnal fluid. We then introduce the 
surface tension, and recall a local existence result by [2].
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1.1.1. Free surface d-dimensional Euler equations
The motion, for an incompressible, inviscid and irrotationnal fluid occupying a domain �t delimited below by a 

fixed bottom and above by a free surface is described by the following quantities:

– the velocity of the fluid U = (V , w), where V and w are respectively the horizontal and vertical components;
– the free top surface profile ζ ;
– the pressure P .

All these functions depend on the time and space variables t and (X, z) ∈ �t . There exists a function b :Rd →R such 
that the domain of the fluid at the time t is given by

�t = {(X, z) ∈ R
d+1,−H0 + b(X) < z < ζ(t,X)},

where H0 is the typical depth of the water. The unknowns (U, ζ, P) are governed by the Euler equations:⎧⎪⎨⎪⎩
∂tU + U · ∇X,zU = − 1

ρ
∇P − gez in �t

div(U) = 0 in �t

curl(U) = 0 in �t .

(1.1)

We denote here −gez the acceleration of gravity, where ez is the unit vector in the vertical direction, and ρ the 
density of the fluid. Here, ∇X,z denotes the d + 1 dimensional gradient with respect to both variables X and z.

These equations are completed by boundary conditions:⎧⎪⎨⎪⎩
∂t ζ + V · ∇ζ − w = 0

U · n = 0 on {z = −H0 + b(X)}
P − Patm = σκ(ζ ) on {z = ζ(t,X)}.

(1.2)

In these equations, V and w are the horizontal and vertical components of the velocity evaluated at the surface. The 
vector n in the last equation stands for the normal upward vector at the bottom (X, z = −H0 + b(X)). We denote 
Patm the constant pressure of the atmosphere at the surface of the fluid. The first equation states the assumption that 
the fluid particles do not cross the surface, while the last equation states the assumption that they do not cross the 
bottom. The last boundary condition on the pressure takes into account the surface tension: σ denotes the surface 
tension coefficient (take σ = 0 to get the Euler equations without surface tension), and κ(ζ ) is the mean curvature at 
the surface

κ(ζ ) = −∇ · ( ∇ζ√
1 + |∇ζ |2 ).

The equations (1.1) with boundary conditions (1.2) are commonly referred to as the free surface Euler equations with 
surface tension.

1.1.2. Craig–Sulem–Zakharov formulation
Since the fluid is by hypothesis irrotational, it derives from a scalar potential:

U = ∇X,z
.

Zakharov remarked in [22] that the free surface profile ζ and the potential at the surface ψ = 
|z=ζ fully determine 
the motion of the fluid, and gave a Hamiltonian formulation of the problem. Later, Craig–Sulem, and Sulem ([6]
and [7]) gave a formulation of the Water Waves equation involving the Dirichlet–Neumann operator. The following 
Hamiltonian system is equivalent (see [12] and [1] for more details) to the free surface Euler equations with surface 
tension (1.1) and (1.2) (take σ = 0 to get the Water-Waves equations without surface tension):⎧⎨⎩

∂t ζ − Gψ = 0

∂tψ + gζ + 1 |∇ψ |2 − (Gψ + ∇ζ · ∇ψ)2

2
= −σ

κ(ζ ),
(1.3)
2 2(1+ | ∇ζ | ) ρ
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where the unknowns are ζ (free top profile) and ψ (velocity potential at the surface) with t as time variable and 
X ∈ R

d as space variable. The fixed bottom profile is b, and G stands for the Dirichlet–Neumann operator, that is

Gψ = G[ζ, b]ψ =
√

1 + |∇ζ |2∂n
|z=ζ ,

where 
 stands for the potential, and solves Laplace equation with Neumann (at the bottom) and Dirichlet (at the 
surface) boundary conditions{

�X,z
 = 0 in {(X, z) ∈ R
d ×R,−H0 + b(X) < z < ζ(X)}

φ|z=ζ = ψ, ∂n
|z=−H0+b = 0
(1.4)

with the notation, for the normal derivative

∂n
|z=−H0+b(X) = ∇X,z
(X,−H0 + b(X)) · n
where n stands for the normal upward vector at the bottom (X, −H0 + b(X)). See also [12] for more details.

1.1.3. Dimensionless equations
Since the properties of the solutions depend strongly on the characteristics of the fluid, it is more convenient to 

non-dimensionalize the equations by introducing some characteristic lengths of the wave motion:

(1) The characteristic water depth H0;
(2) The characteristic horizontal scale Lx in the longitudinal direction;
(3) The characteristic horizontal scale Ly in the transverse direction (when d = 2);
(4) The size of the free surface amplitude asurf ;
(5) The size of bottom topography abott.

Let us then introduce the dimensionless variables:

x′ = x

Lx

, y′ = y

Ly

, ζ ′ = ζ

asurf
, z′ = z

H0
, b′ = b

abott
,

and the dimensionless variables:

t ′ = t

t0
, 
′ = 



0
,

where

t0 = Lx√
gH0

, 
0 = asurf

H0
Lx

√
gH0.

After rescaling, five dimensionless parameters appear in the equation. They are

asurf

H0
= ε,

H 2
0

L2
x

= μ,
abott

H0
= β,

Lx

Ly

= γ, B0 = ρgL2
x

σ
,

where ε, μ, β, γ, B0 are commonly referred to respectively as “nonlinearity”, “shallowness”, “topography”, “transver-
sality” and “Bond” parameters.

For instance, the Zakharov–Craig–Sulem system (1.3) becomes (see [12] for more details) in dimensionless vari-
ables (we omit the “primes” for the sake of clarity):⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t ζ − 1

μ
Gμ,γ [εζ,βb]ψ = 0

∂tψ + ζ + ε

2
|∇γ ψ |2 − ε

μ

(Gμ,γ [εζ,βb]ψ + εμ∇γ ζ · ∇γ ψ)2

2(1 + ε2μ | ∇γ ζ |2) = − 1

B0

κγ (ε
√

μζ)

ε
√

μ
,

(1.5)

where Gμ,γ [εζ, βb]ψ stands for the dimensionless Dirichlet–Neumann operator,
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Gμ,γ [εζ,βb]ψ =
√

1 + ε2|∇γ ζ |2∂n
|z=εζ = (∂z
 − μ∇γ (εζ ) · ∇γ 
)|z=εζ ,

where 
 solves the Laplace equation with Neumann (at the bottom) and Dirichlet (at the surface) boundary conditions{
�μ,γ 
 = 0 in {(X, z) ∈R

d ×R− 1 + βb(X) < z < εζ(X)}
φ|z=εζ = ψ, ∂n
|z=−1+βb = 0,

and where the surface tension term is

κγ (ζ ) = −∇γ · ( ∇γ ζ√
1 + |∇γ ζ |2 ).

We used the following notations:

∇γ = t (∂x, γ ∂y) if d = 2 and ∇γ = ∂x if d = 1

�μ,γ = μ∂2
x + γ 2μ∂2

y + ∂2
z if d = 2 and �μ,γ = μ∂2

x + ∂2
z if d = 1

and

∂n
|z=−1+βb = 1√
1 + β2|∇γ b|2 (∂z
 − μ∇γ (βb) · ∇γ 
)|z=−1+βb.

1.2. Main result

Alvarez–Lannes [2] proved the following local existence result. We use the notation

a ∨ b = max(a, b).

Theorem 1.1. Under reasonable assumptions on the initial conditions (ζ 0, ψ0), there exists a unique solution (ζ, ψ)

of the Water Waves equations (1.5) with initial condition (ζ 0, ψ0) on a time interval [0; T
ε∨β

], where T only depends 
on initial data.

For a precise statement, see section 2.3 and see [12] Theorem 9.6 and Chapter 4 for a complete proof. The fact that 
T does not depend on μ allowed the authors to provide a rigorous justification of most of the Shallow Water models 
used in the literature for the description, among others, of coastal flows. In these models, one has β = O(ε) and 
therefore the time scale for the solution is O( 1

ε∨β
) = O( 1

ε
). See also [10] who also rigorously proved the justification 

of the Shallow Water models, without a Nash–Moser scheme (which was used in [2]). There exist however some 
asymptotic models assuming small amplitude surface variation (ε = O(μ)) and large bottom variation β = O(1). 
This is the case of the well-known Boussinesq–Peregrine model [4,3,17] that has been used a lot in applications. For 
such a regime, Theorem 1.1 provides an existence time of order O(1) only (see also [15] for a large time of existence 
on the Boussinesq–Peregrine equation). Our aim is here to improve this result in order to reach an O( 1

ε
) existence 

time. We prove the following result (for a complete and precise statement, see later Theorem 2.2).

Theorem 1.2. The Water Waves equation with surface tension (1.6) admits a solution on a time interval of the form 
[0; T

ε
] where T only depends on B0μ and on the initial data.

In order to prove Theorem 1.2, we use a method inspired by Bresch–Métivier [5] and Métivier–Schochet [16]. The 
only condition we need is that there is a small amount of surface tension. More precisely, we assume that the capillary 
parameter 1

B0
is at the same order as the shallowness parameter μ.

In the context of the method used by [5], we start by rescaling the time by setting t ′ = tε. The Theorem 1.1 now 
gives an existence time of order ε in these new scaled variables. The Craig–Sulem–Zakharov formulation of the Water 
Waves problem in the newly scaled variables is⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t ζ − 1

με
Gψ = 0

∂tψ + 1

ε
ζ + 1

2
| ∇γ ψ |2 − 1

μ

(Gψ + εμ∇γ ζ · ∇γ ψ)2

2(1 + ε2μ | ∇γ ζ |2) = − 1

B ε

κγ (ε
√

μζ)

ε
√

μ
,

(1.6)
0



B. Mésognon-Gireau / Ann. I. H. Poincaré – AN 34 (2017) 89–118 93
where G is a shorthand notation for the Dirichlet–Neumann operator G[εζ, βb] (see also Section 1.3). The difficulty is 
therefore to handle the singular O( 1

ε
) terms of this equation. For the sake of clarity, let us sketch the method of [5,16]

on the example of the Shallow-Water equations, implemented in [5]. The Shallow-Water equations form a typical 
hyperbolic quasilinear system, and can be read in the present setting variables⎧⎪⎪⎨⎪⎪⎩

∂t ζ + 1

ε
∇γ · (hV ) = 0

∂tV + (V · ∇γ )V + 1

ε
∇γ ζ = 0.

(1.7)

We denoted h the total height of water:

h(t,X) = 1 + εζ(t,X) − βb(X)

and

V (t,X) = 1

h(t,X)

εζ(t,X)∫
−1+βb(X)

V (t,X, z)dz

the vertical mean of V , the horizontal component of the velocity. The natural energy associated to this equation is

E(ζ,V ) = 1

2
|ζ |22 + 1

2
(hV ,V )2,

where | · |2 is the L2 norm on Rd , and (·, ·)2 denotes the L2 scalar product (see also Section 1.3). By derivating in time 
it is easy to check that E

(
(ε∂t )

kζ, (ε∂t )
kV

)
is uniformly bounded with respect to ε. It is however not the case for Hs

norms of these unknowns with s ≥ 1, because of the commutator with the bottom parametrization which is of order 
β
ε

and therefore singular if β = O(1). Now, to recover an energy uniformly bounded with respect to ε for the spatial 
derivatives, we use the equation (1.7) to write

∇γ ζ = ε∂tV + εR,

where |R|2 ≤ C with C independent of ε. Thus ∇γ ζ is bounded in L2 norm uniformly with respect to ε. It allows 
us to recover a control of |ζ |H 1 . For V , the equation (1.7) gives that |∇γ · (hV )|2 is bounded by |(ε∂t )ζ |2 (bounded 
uniformly), and taking the rotational of the second equation, one has that curl(V ) satisfies a symmetric hyperbolic 
equation of the form

∂tcurlV + V · ∇γ curlV = R

with

|R|L2 ≤ C,

and with C independent of ε, and thus curlV is uniformly bounded in L2 norm. With an ellipticity argument, one 
recovers a uniform bound for V in H 1 norm. By induction, one can recover the same bound for higher order space 
derivatives.

We propose here an adaptation of this method to the Water Waves problem. The structure of the equation is im-

portant for this method. For example, the Water Waves equation (1.6) without surface tension (
1

B0
= 0) can be read 

as: ⎧⎪⎪⎨⎪⎪⎩
∂t ζ − 1

μ
Gμ,γ [εζ,βb]ψ = 0

∂tψ + ζ + ε

2
|∇γ ψ |2 − ε

μ

(Gμ,γ [εζ,βb]ψ + εμ∇γ ζ · ∇γ ψ)2

2(1 + ε2μ | ∇γ ζ |2) = 0.

(1.8)

The equation (1.8) still has the structure of quasilinear hyperbolic symmetric systems, with as energy:

E(ζ,ψ) = 1
(G[εζ,βb]ψ,ψ)2 + 1 |ζ |22.
2μ 2



94 B. Mésognon-Gireau / Ann. I. H. Poincaré – AN 34 (2017) 89–118
Recall that G[εζ, βb] is the Dirichlet–Neumann operator (see the definition in Section 1.3), and is of order one. 
Therefore, ψ is controlled by the energy in “H 1/2 norm”, and not in L2 norm as it was the case for both unknowns of 
the Shallow-Water equations (1.7). For this reason, unlike the Shallow-Water case, space and time derivatives of the 
unknowns does not have the same “order”: for instance, the first equation of (1.8) states that ∂t ζ is only of order 1/2
with respect to the energy, since it’s equal to Gψ and ψ is controlled in H 1/2 norm by the energy. This consideration 
justifies the use of surface tension in the Water-Waves equation (1.6) used. Note that we pay special attention to the 
dependence of the surface tension on the existence time; it is indeed important to get a dependence on Boμ and not 
only on B0 since this weaken our assumption on the size of the capillary effects.

1.3. Notations

We introduce here all the notations used in this paper. All the notations used are coherent with [12].

1.3.1. Operators and quantities
Because of the use of dimensionless variables (see before the “dimensionless equations” paragraph), we use the 

following twisted partial operators:

∇γ = t (∂x, γ ∂y) if d = 2 and ∇γ = ∂x if d = 1

�μ,γ = μ∂2
x + γ 2μ∂2

y + ∂2
z if d = 2 and �μ,γ = μ∂2

x + ∂2
z if d = 1

∇μ,γ = t (
√

μ∂x, γ
√

μ∂y, ∂z) if d = 2 and t (
√

μ∂x, ∂z) if d = 1

∇μ,γ · = √
μ∂x + γ

√
μ∂y + ∂z if d = 2 and

√
μ∂x + ∂z if d = 1

curlμ,γ = t (
√

μγ ∂y − ∂z, ∂z − √
μ∂x, ∂x − γ ∂y) if d = 2.

Remark 1.3. All the results proved in this paper do not need the assumption that the typical wave lengths are the same 
in both direction, i.e. γ = 1. However, if one is not interested in the dependence of γ , it is possible to take γ = 1 in 
all the following proofs. A typical situation where γ �= 1 is for weakly transverse waves for which γ = √

μ; this leads 
to weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili equation (see [14]).

We use the classical Fourier multiplier

�s = (1 − �)s/2 on R
d

defined by its Fourier transform as

F(�su)(ξ) = (1 + |ξ |2)s/2(Fu)(ξ)

for all u ∈ S ′(Rd). The operator P is defined as

P = |Dγ |
(1 + √

μ|Dγ |)1/2
(1.9)

where

F(f (D)u)(ξ) = f (ξ)F(u)(ξ)

is defined for any smooth function of polynomial growth f and u ∈ S ′(Rd). The pseudo-differential operator P acts 
as the square root of the Dirichlet Neumann operator (see later (2.26)).

We denote as before by Gμ,γ , the Dirichlet–Neumann operator, which is defined as follows in the scaled variables:

Gμ,γ ψ = Gμ,γ [εζ,βb]ψ =
√

1 + ε2|∇γ ζ |2∂n
|z=εζ = (∂z
 − μ∇γ (εζ ) · ∇γ 
)|z=εζ ,

where 
 solves the Laplace equation{
�γ,μ
 = 0


|z=εζ = ψ, ∂n
|z=−1+βb = 0.

For the sake of simplicity, we use the notation G[εζ, βb]ψ or even Gψ when no ambiguity is possible.



B. Mésognon-Gireau / Ann. I. H. Poincaré – AN 34 (2017) 89–118 95
1.3.2. The Dirichlet–Neumann problem
In order to study the Dirichlet–Neumann problem (1.4), we need to map �t into a fixed domain (and not on a 

moving subset). For this purpose, we introduce the following fixed strip:

S =R
d × (−1;0)

and the diffeomorphism

�ε
t : S → �t

(X, z) �→ (1 + εζ(X) − βb(X))z + εζ(X).

It is quite easy to check that 
 is the variational solution of (1.4) if and only if φ = 
 ◦ �ε
t is the variational solution 

of the following problem:{∇μ,γ · P(�ε
t )∇μ,γ φ = 0

φz=0 = ψ, ∂nφz=−1 = 0,
(1.10)

and where

P(�ε
t ) = |detJ�ε

t
|J−1

�ε
t

t (J−1
�ε

t
),

where J�ε
t

is the Jacobian matrix of the diffeomorphism �ε
t . For a complete statement of the result, and a proof of 

existence and uniqueness of solutions to these problems, see [12] Chapter 2.
We introduce here the notations for the shape derivatives of the Dirichlet–Neumann operator. More precisely, we 

define the open set � ⊂ Ht0+1(Rd)2 as:

� = {� = (ζ, b) ∈ Ht0+1(Rd)2, ∃h0 > 0,∀X ∈R
d , εζ(X) + 1 − βb(X) ≥ h0}

and, given a ψ ∈ .

H
s+1/2(Rd), the mapping:

G[ε·, β·] : � −→ Hs−1/2(Rd)

� = (ζ, b) �−→ G[εζ,βb]ψ.

One can prove the differentiability of this mapping. See Appendix A for more details. We denote djG(h, k)ψ the 
j -th derivative of the mapping at (ζ, b) in the direction (h, k). When we only differentiate in one direction, and no 
ambiguity is possible, we simply denote djG(h)ψ or djG(k)ψ .

1.3.3. Functional spaces
The standard scalar product on L2(Rd) is denoted by ( , )2 and defined by

(f, g)2 =
∫
Rd

f (x)g(x)dx

and the associated norm | · |2, defined by

|f |2 =
√√√√∫

Rd

|f (x)|2dx.

We will denote the norm of the Sobolev spaces Hs(Rd) by | · |Hs , defined by

|f |Hs = |�sf |2
where �s is the Fourier multiplier defined above.

We introduce the following functional Sobolev-type spaces, or Beppo–Levi spaces:

Definition. We denote Ḣ s+1(Rd) the topological vector space

Ḣ s+1(Rd) = {u ∈ L2
loc(R

d), ∇u ∈ Hs(Rd)}
endowed with the (semi) norm |u|Ḣ s+1(Rd ) = |∇u|Hs(Rd ).
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Just remark that Ḣ s+1(Rd)/Rd is a Banach space (see for instance [8]).
The space variables z ∈ R and X ∈ R

d play different roles in the equations since the Euler formulation (1.1) is 
posed for (X, z) ∈ �t . Therefore, X lives in the whole space Rd (which allows to take fractional Sobolev type norms 
in space), while z is actually bounded. For this reason, we need to introduce the following Banach spaces:

Definition. The Banach space (Hs,k((−1, 0) ×R
d), |.|Hs,k ) is defined by

Hs,k((−1,0) ×R
d) =

k⋂
j=0

Hj((−1,0);Hs−j (Rd)), |u|Hs,k =
k∑

j=0

|�s−j ∂
j
z u|2.

2. Main result

This section is dedicated to the proof of Theorem 1.2. In Section 2.1 we introduce the energy space EN
σ used 

in the Water Waves equations. This energy plays an important role in the proof of the main result, since the key 
point consists in proving that this energy is uniformly bounded with respect to ε. We also recall in this Subsection the 
method used to prove the local existence theorem for the Water Waves equation. The proof of the local existence relies 
on the important assumption that the Rayleigh–Taylor condition holds; this is discussed in Section 2.2. The following 
Section 2.3 states the main result of this paper, that is, the precise statement of Theorem 1.2. The last Section 2.4 is 
dedicated to the proof of this result.

2.1. The energy space

The purpose of this section is to introduce the energy space used in the proof of the local existence result for the 
Water Waves equations. To this purpose, we explain the strategy of this proof. We adapt here the approach of [12] to 
the rescaled in time equations (2.11), pointing out where the singular terms are. We recall that we rescale the time 
variable for the equation (1.5) by setting

t ′ = tε.

The Water Waves equations with surface tension (1.5) in the newly scaled variables are⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t ζ − 1

με
Gψ = 0

∂tψ + 1

ε
ζ + 1

2
| ∇γ ψ |2 − 1

μ

(Gψ + εμ∇γ ζ · ∇γ ψ)2

2(1 + ε2μ | ∇γ ζ |2) = − 1

B0ε

κγ (ε
√

μζ)

ε
√

μ
,

(2.11)

where as usual, G is a shorthand notation for the Dirichlet–Neumann operator G[εζ, βb] (see also Section 1.3).

Remark 2.1. We recall that

κγ (ζ ) = −∇γ · ( ∇γ ζ√
1 + |∇γ ζ |2 ),

so the surface tension term that appears on the right hand side of the second equation of (2.11) is only of size 
1

ε

(thought at first sight it seems of size 
1

ε2
).

The purpose of the proof of an existence time uniform with respect to ε for this equation in the newly time scaled 
variables, is to get a uniform bound with respect to ε for a good quantity called the energy which controls Sobolev 
norms of the unknowns. By a continuity argument, one can deduce a time existence independent of ε. For the Water 
Waves equation with surface tension (2.11), a natural quantity appears to act as an “energy”. If one looks at the 
linearized equation around the rest state ζ = 0, ψ = 0, one finds a system of evolution equations
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∂tU + 1

ε
Aσ U = 0, with Aσ =

(
0 − 1

μ
G[0, βb]

1 − 1
B0

�γ 0

)
.

This system can be made symmetric if we multiply it by the symmetrizer(
1 − 1

B0
�γ 0

0 1
μ
G[0, βb]

)
,

where U = t (ζ,ψ). In [2,12], G[0, βb] is replaced by G[0, 0] in Aσ . Here, we cannot perform this simplification 
because the error would be of size O(

β
ε
) and therefore singular since β = O(1). This suggests a natural energy of the 

form

|ζ |22 + 1

B0
|∇γ ζ |22 + (

1

μ
G[0, βb]ψ,ψ)2.

The last term is uniformly equivalent to |Pψ |22 where P is defined in (1.9). See later Remark 2.10 for a precise 
statement. Thus, P acts as the square root of the Dirichlet–Neumann operator and is of order 1/2.

This energy has not the sufficient order of derivatives to have a real control of the unknowns. For instance, the 
product |∇γ ψ |2 in the second equation of (2.11) is not defined if ψ is only H 1/2(Rd). To recover a control of the 
unknowns at a higher order, the classical scheme for this kind of method, is to differentiate the equation (2.11) in order 
to get an evolution equation of the unknowns ∂k

Xi
ζ, ∂k

Xi
ψ . For this purpose, we need to use an explicit shape derivative 

formula with respect to the surface for the Dirichlet Neumann operator. It is given in Appendix Theorem A.4:

dG(h)ψ = −εG(hw) − εμ∇γ · (hV )

with

w = Gψ + εμ∇γ ζ · ∇γ ψ

1 + ε2μ|∇γ ζ |2 and V = ∇γ ψ − εw∇γ ζ.

See [12] Chapter 3 for a full proof of this formula. By differentiating N times the first equation of (2.11), following 
the approach of [10] (see also [12] Chapter 4) one finds after some computation that, for |(α, k)| = N ,

∂t ∂
(α,k)ζ + ∇γ · (V ∂(α,k)ζ ) − (

1

με
G(∂(α,k)ψ − εw∂(α,k)ζ )

+ 1

ε

∑
j∈N∗,l1+...+lj +δ=(α,k)

djG(∂l1b, . . . , ∂lj b)∂δψ)) = R,

with, for any d + 1-uplet of integers (α, k) = (α1, . . . , αd, k), |(α, k)| = ∑d
i=1 αi + k, and with the notation

∀(α, k) = (α1, . . . , αd, k) ∈ N
d+1, ∂(α,k)f = ∂

α1
X1

...∂
αd

Xd
(ε∂t )

kf (2.12)

and where, without entering technical details

|R|H 1
σ

≤ C(|ζ |HN
σ

, |Pψ |HN ,
1

B0
)

where:

∀k ∈N, |f |2
Hk

σ
= |f |2

Hk + 1

B0
|∇γ f |2

Hk (2.13)

and C is a non-decreasing function of its arguments which does not depend on ε. This evolution equation can be found 
by differentiating N times the Dirichlet–Neumann operator G[εζ, βb]ψ and thus R contains derivatives of the form

dG(∂l1ζ, . . . , ∂lj ζ, ∂m1βb, . . . , ∂mkβb)∂δψ

where the shape derivatives of G with respect to ζ have an ε factor that cancel the 
1

ε
singularity (see also the definition 

of dG in Section 1.3). Finally, the only singular terms comes from the derivatives of the Dirichlet Neumann operator 
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with respect to the bottom. Up to some extra singular source terms coming from the shape derivatives with respect to 
the bottom, this equation has the same structure as (2.11), with ∂(α,k)ζ and ∂(α,k)ψ − εw∂(α,k)ζ playing the role of ζ
and ψ respectively (recall that ∂(α,k) is defined by (2.12)). These quantities are the so called “Alinhac good unknowns” 
and will be denoted by:

∀|(α, k)| ≥ 1 ζ(α,k) = ∂(α,k)ζ, ψ(α,k) = ∂(α,k)ψ − εw∂(α,k)ζ. (2.14)

An evolution equation for the unknown ψ(α,k) in term of the good unknowns can be also obtained (see later Sec-
tion 2.4).

In the surface tension case, the leading order operator is the surface tension term κγ . This leads to some technical 
complications. For instance, in order to control the time derivatives of κγ , one has to include the time derivatives of 
the unknowns in the energy. This method has been used by [18,11] to study the Water Waves Problem with surface 
tension. Time derivatives and space derivatives play a different role in this proof, and we use the notation

∀k ∈N, ζ(k) = (ε∂t )
kζ, and ψ(k) = (ε∂t )

kψ − εw(ε∂t )
kζ

for time derivatives, and

∀α ∈ N
d,∀k ∈N, ζ(α,k) = (ε∂t )

k∂αζ and ψ(α,k) = (ε∂t )
k∂αψ − εw(ε∂t )

k∂αζ

such that f(α,k) denotes indeed the good unknown defined by (2.14) with index the d + 1-uplet (α, k). See [12]
Chapter 9 for more details about how to handle the time derivative in the energy.

All these considerations explain why we do not use, for the local existence result of the Water Waves equations, an 
energy involving terms of the form ∂k

Xi
ψ but rather the following energy:

EN
σ (U) = |ζ |22 + |Pψ |2

Ht0+3/2 +
∑

(α,k)∈Nd+1,1≤|(α,k)|≤N

|ζ(α,k)|2H 1
σ

+ |Pψ(α,k)|22 (2.15)

where as before (see (2.13))

|f |2
H 1

σ
= |f |22 + 1

B0
|∇γ f |22.

The choice of N is of course purely technical, and made in particular to have the different products of functions 
well-defined in the Sobolev Spaces used. Again, it is very important to note that the time derivatives of order less than 
N appear in the equation.

We consider solutions U = (ζ, ψ) of the Water Waves equations in the following space:

EN
σ,T = {U ∈ C([0, T ] ;Ht0+2 × .

H
2(Rd)),EN

σ (U(.)) ∈ L∞([0, T ])}.

2.2. The Rayleigh–Taylor condition

We explained in Subsection 2.1 that the Water Waves equations (2.11) can be “quasilinearized”. In these quasilin-
earized equations, a quantity appears to play an important role. It is called the “Rayleigh–Taylor coefficient” (see [12]
Chapter 4 and also [19] for more details) and is defined by

a(ζ,ψ) = 1 + ε(ε∂t + εV · ∇γ )w = −ε
P0

ρag
(∂zP )|z=εζ (2.16)

where w = (∂z
)|z=εζ and V = (∇γ 
)|z=εζ are respectively the horizontal and vertical components of the velocity 
U = ∇X,z
 evaluated at the surface.

The condition for strict hyperbolicity of the Water Waves system appears to be the following “Rayleigh–Taylor 
condition”: a > 0. This makes the link with the classical Rayleigh–Taylor criterion

inf
Rd

(−∂zP )|z=εζ > 0

where P is the dimensionless pressure. See [19] for more details. Ebin [9] showed that the Water Waves problem 
(without surface tension) is ill-posed if the Rayleigh–Taylor condition is not satisfied. Wu [21] proved that this condi-
tion is satisfied by any solution of the Water Waves problem in infinite depth. It is proved also in [12] Chapter 4 that 
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this is also true in finite depth for the case of flat bottom. For the surface tension case, the Rayleigh–Taylor condition 
does not need to be satisfied in order to have well-posedness, but the existence time depends too strongly on the 
surface tension coefficient and is then too small for most applications to oceanography.

2.3. Statement of the result

We now state the main result.

Theorem 2.2. Let t0 > d/2, N ≥ t0 + t0 ∨ 2 + 3/2. Let U0 = (ζ 0, ψ0) ∈ EN
0 , b ∈ HN+1∨t0+1(Rd). Let ε, γ, β be such 

that

0 ≤ ε,β, γ ≤ 1,

and moreover assume that:

∃hmin > 0,∃a0 > 0, 1 + εζ 0 − βb ≥ hmin and a(U0) ≥ a0. (2.17)

Then, there exist T > 0 and a unique solution Uε ∈ EN
σ,T to (2.11) with initial data U0. Moreover,

1

T
= C1, and sup

t∈[0;T ]
EN

σ (Uε(t)) = C2

with Ci = C(EN
σ (U0), 

1

hmin
, 

1

a0
, |b|HN+1∨t0+1 , μB0) for i = 1, 2.

It is very important to note that T does not depend on ε for small values of ε. The Theorem 1.2 gives an existence 
time of order ε as ε goes to zero, if β is of order 1. We prove here that it is in fact, of order 1. Note that the topography 
parameter β is fixed in all this study.

Let us now give a result for the Water Waves equation with surface tension (1.5) in the initial time variable. The 
local existence Theorem 1.1 provides an existence time of order 1

ε∨β
to the initial Water Waves equation (1.5) with 

surface tension. After the rescaling in time t ′ = tε, the Theorem 1.1 provides an existence time of order ε
ε∨β

∼ ε
β

as 
ε goes to 0. Now, the main result Theorem 2.2 claims that the existence time is in fact of order 1 in this variable. It 
gives then the following result:

Theorem 2.3. Under the assumptions of Theorem 2.2, there exists a unique solution (ζ, ψ) of the Water Waves equa-
tions (1.6) with initial condition (ζ 0, ψ0) on a time interval [0; T

ε
] where

1

T
= C1, and sup

t∈[0;T ]
EN

σ (Uε(t)) = C2

with Ci = C(EN
σ (U0), 

1

hmin
, 

1

a0
, |b|HN+1∨t0+1 , μB0) for i = 1, 2.

This last result gives a gain of an order 
1

ε
with respect to the time existence provided by Theorem 1.1. It is very 

important to note that the existence time given by Theorem 2.2 depends on the constant B0μ. It implies for instance 
that in the shallow water limit (μ � 0), less on less capillary effects are required (recall that the capillary effects 
are of order 1

B0
). This is the reason why in the limit case μ = 0 corresponding to the shallow water equations and 

investigated in [5], no surface tension is needed. We discuss about the shallow water regime in the Section 2.5.

2.4. Proof of Theorem 2.2

The key point of the proof of Theorem 2.2 is the following proposition:
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Proposition 2.4. Let Uε = (ζ ε, ψε) be the unique solution of the equation (2.11) on the time interval [0; T ε] and

Kε = sup
t∈[0,T ε]

EN
σ (Uε(t)).

Then we have, with the previous notations:

∀t ∈ [0;T ε], EN
σ (Uε)(t) ≤ C0 + C1(K

ε)(t + ε) (2.18)

where C0 = C0(EN
σ (Uε

|t=0)) and C1(K
ε) = C1(K

ε, 
1

hmin
, 

1

a0
, |b|HN+1∨t0+1 , B0μ) are non-decreasing functions of 

their arguments.

Proof of Proposition 2.4. The quantity ε is fixed throughout the proof. We consider a solution Uε = (ζ ε, ψε) on a 
time interval [0; T ε] of (1.5) given by the standard local existence Theorem 1.1. To alleviate the notations, we omit, 
when no ambiguity is possible, the ε in the notation Uε in the following estimates. Moreover, C will stand for any 
non-decreasing continuous positive function. Let us first sketch the proof.

(i) The evolution equation for time derivatives of the unknowns is “skew symmetric” with respect to 
1

ε
terms: these 

large terms cancel one another in energy estimates. This allows us to get the improved estimate (2.18) for time 
derivatives:

|(ε∂t )
kζ |H 1

σ
+ |P(ε∂t )

kψ |2 ≤ C1(K)t + C0; k = 0..N. (2.19)

This is proved in Lemma 2.8.
(ii) To get higher order estimates (with respect to space variables), we use the equation (2.11) to get

1

μ
G((ε∂t )

kψ) = (ε∂t )
k+1ζ + εR

where |R|H 1
σ

≤ C1(K). By the first step of the proof, the term (ε∂t )
k+1ζ satisfies the “good” control (2.19) in H 1

σ

norm. Since G is of order one and elliptic, this should allow us to recover one space derivative for P(ε∂t )
kψ , 

with the desired control (2.18). But there is a little constraint, due to the factor 1
B0

in the definition of the H 1
σ norm 

(2.13):

|f |2
H 1

σ
= |f |22 + 1

B0
|∇γ f |22.

One has to use precisely the definition of the operator P given in (1.9) by

P = |Dγ |
(1 + √

μ|Dγ |)1/2

and the inequality

|Pψ |2 ≤ M

μ
(Gψ,ψ)2

(see below (2.26)) to get that |Dγ |Pψ is bounded in H 1 norm by a constant depending on μB0. One can use the 
same technique to control �γ ζ with (ε∂t )

k+1ψ in H 1
σ norm, and recover again one space derivative for ζ . By 

finite induction, one recovers the control of the form (2.18) for ζ(k) and ψ(k). This is done in Lemma 2.11.

For this proof, we choose (taking smaller time existence if necessary) T ε such that

∀t ∈ [0;T ε], a(t) ≥ a0

2
and h(t) = 1 + εζ(t) − βb ≥ hmin

2
. (2.20)

The first condition may be satisfied given the continuity in time of a (see the definition of a in (2.16)) on the time 
interval [0; T ε], provided that ∂ta ∈ L∞([0; T ε]; Rd) (this is proved in the control of A3 below). The second condition 
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is satisfied by the fact the solution ζ lives in the space C([0; T ε]; Ht0+2(Rd)), and the continuous embedding Ht0 ⊂
L∞(Rd) given t0 > d/2. This gives the continuity in time of h (note that b is also in L∞(Rd)).

Now let us prove the desired estimate (2.18) for time derivatives of ψ and ζ . Because of the energy space introduced 
in (2.15), we want to control quantities like

E(α,k) = |ζ(α,k)|2H 1
σ

+ |Pψ(α,k)|22, |(α, k)| ≤ N

with α = 0. Let k be fixed. We look for the equations for the unknown

Uk = (ζ(k),ψ(k)).

We denote the Rayleigh–Taylor coefficient by

a= 1 + ε(ε∂t + εV · ∇γ )w.

By differentiating k times the equations (2.11) with (ε∂t )
k , following the approach of [10] (see also [12] Chapter 4), 

one finds after some computation the following result:

Lemma 2.5. The unknown U(k) satisfies the following equation:

∂tU(k) + 1

ε
Aσ [U ]U(k) + B[U ]U(k) + Ck[U ]U(k−1) = t (Rk, Sk) (2.21)

with the operators

Aσ [U ] =
(

0 − 1
μ
G

a− 1
B0

∇γ ·K(
√

με∇γ ζ )∇γ 0

)
,

B[U ] =
(

V · ∇γ 0

0 V · ∇γ

)
,

and

Ck[U ] =
(

0 − 1
μ
dG(ε∂t ζ )

1
B0ε

∇γ ·K(k)[ε√μ∇γ ζ ] 0

)
,

and where

K(∇γ ζ ) = (1 + |∇γ ζ |2)Id − ∇γ ζ ⊗ ∇γ ζ

(1 + |∇γ ζ |2)3/2
,

and

K(k)[∇γ ζ ]F = −∇γ ·
[
dK(∇γ ε∂t ζ )∇γ F + dK(∇γ F )∇γ ε∂t ζ

]
.

The residual t (Rk, Sk) satisfies the following control:

|Rk|H 1
σ

+ |PSk|2 ≤ C1(K). (2.22)

Remark 2.6. At first sight, Ck seems to involve a singular 1
ε

factor. By looking more carefully, it is not the case since 
K(k)[ε√μ∇γ ζ ] has an ε factor which cancels the 1

ε
term.

Remark 2.7. Let us explain why the residual has to satisfy an estimate of the form (2.22). The energy for ζ(k), ψ(k) is 
of the form

|Pψ(k)|22 + |ζ(k)|22 + 1

B0
|∇γ ζ(k)|22.

In order to get energy estimate, we differentiate this energy with respect to time, which leads to the control of terms 
of the form
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1

μ
(∂tψ(k),Gψ(k))2, (∂t ζ(k), ζ(k))H 1

σ
.

In order to control these quantities, we replace ∂t (ζ(k), ψ(k)) by their expressions given by the equation (2.21). All 
terms satisfying a control of the form (2.22) are harmless for the energy estimate, since they lead to the control of 
terms such as

1

μ
(Gψ(k), Sk), (ζ(k),Rk)H 1

σ

which is easily done.

Proof of Lemma 2.5. The differentiation of the first equation of (2.11) takes the form (recall that Gψ stands for 
G[εζ, βb]ψ and thus any derivative of G with respect to ζ involves an ε factor):

(ε∂t )
k∂t ζ = 1

με
G(ε∂t )

kψ + 1

με
dG((ε∂t )

kζ )ψ + 1

με
dG(ε∂t ζ )ψ(k−1)

+ 1

με

∑
1≤j1+...+jm+l≤k

1≤l

εj1+...+jmdG((ε∂t )
j1ζ, . . . , (ε∂t )

jmζ )(ε∂t )
lψ.

Using the explicit shape derivative formula with respect to the surface for G given by Proposition A.4, we get that

dG((ε∂t )
kζ )ψ = −εG((ε∂t )

kζw) − εμ∇γ · ((ε∂t )
kζV ),

and thus using the definition of ζ(k), ψ(k) given by (2.14), one gets the following evolution equation:

(ε∂t )
k∂t ζ + ∇γ · (V ζ(k)) − 1

με
Gψ(k) − 1

με
dG(ε∂t ζ )ψ(k−1)

= 1

με

∑
1≤j1+...+jm+l≤k

1≤l

εj1+...+jmdG((ε∂t )
j1ζ, . . . , (ε∂t )

jmζ )(ε∂t )
lψ.

The term dG(ε∂t ζ )ψ(k−1) is controlled in L2 norm, but not in H 1
σ norm. The terms of the right hand side involve 

derivatives of ψ of order less than N − 2 and then can be put in a residual Rk with a control (2.22), using Proposi-
tion A.5. The differentiation of the second equation of (2.11) involves the linearization of the surface tension term

1

ε
√

μ
(ε∂t )

kκγ (ε
√

μζ) = −∇γ ·K(ε
√

μ∇γ ζ )∇γ (ε∂t )
kζ + K(k)[ε√μ∇γ ζ ](ε∂t )

k−1ζ + . . .

The second order operator K(k) is not controlled in H 1/2 norm (or |P · |2 norm). The other terms can be put in 
the residual Sk with a control (2.22). See [12] Chapter 9 for a complete proof of the evolution equation in terms of 
unknowns ψ(k), ζ(k). �

We now show that the singular terms of size O( 1
ε
) are transparent in the energy estimates for the evolution equation 

(2.21). This yields the bounds announced in (2.19).

Proposition 2.8. One has the following estimate for all 0 ≤ k ≤ N :

|ζ(k)|H 1
σ

+ |Pψ(k)|2 ≤ C2(K)t + C0,

where C0 = C(EN
σ (U|t=0)) and C2 = C(

1

hmin
, 

1

a0
, |b|HN+1∨t0+1) are non-decreasing functions of their arguments.

Remark 2.9. An evolution equation can also be obtained for space derivatives, and then takes the form

∂tU(α,k) + 1 Ãσ [U ]U(α,k) + B[U ]U
~(α,k)

+ C(α,k) = t (R(α,k), S(α,k)) (2.23)

ε
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with

Ãσ [U ] =
(

0 − 1
μ
G

a− 1
B0

∇γ ·K(
√

με∇γ ζ ) + ∑
|α|+|δ|≤N dG(∂α1b, . . . , ∂αj b)∂δψ 0

)
,

and

U
~(α,k)

=
d∑

j=1

U(α−ej ),k + U(α,k−1)

with ej the unit vector in the j -th direction. This system is then non-symmetrizable with respect to 
1

ε
terms, and the 

controls are not uniform with respect to ε, due to spatial derivatives of the bottom. This is the reason why we have 
to control the time derivatives first, and then use the structure of the equation to recover higher order derivatives. In 
the case of a flat bottom β = 0, or almost flat bottom β = O(ε), the terms involving space derivatives of b in Ãσ [U ]
can be put in the residual and are easy to control. The proof of Theorem 1.1 as considered in [2] gives then a time 
existence of order 1

ε
.

Proof of Lemma 2.8. The system (2.21) can be symmetrized with respect to main order terms of size 
1

ε
if we multiply 

it by the operator

S1[U ] =
(
a− 1

B0
∇γ ·K(ε

√
μ∇γ ζ )∇γ 0

0 1
μ
G

)
. (2.24)

This suggests to introduce

E0 = 1

2
|ζ |2

H 1
σ

+ 1

2μ
(Gψ,ψ)2 + 1

2B0
(

∇γ ζ√
1 + ε2μ|∇γ ζ |2 ,∇γ ζ )2 k = 0,

Ek = (S1[U ]U(k),U(k))2 k �= 0. (2.25)

The quantity 
N∑

k=0

Ek is uniformly equivalent to the energy EN
σ introduced in (2.15):

Lemma 2.10. There exists M = C( 1
hmin

, |ζ |Ht0+1 , |b|Ht0+1 , 
1
a0

, K) where C is a non-decreasing function of its argu-
ments, such that

1

M
EN

σ ≤
N∑

k=0

Ek ≤ MEN
σ .

Proof of Lemma 2.1. This is proved in [12]; we give here the main steps of the proof for the sake of completeness.

(i) We start to use the following inequalities (see [12] Chapter 3):

(ψ,
1

μ
Gψ)2 ≤ M0|Pψ |22 and |Pψ |22 ≤ M0(ψ,

1

μ
Gψ)2 (2.26)

for all ψ ∈ .

H
1/2(Rd), where M0 is a constant of the form C( 1

hmin
, |ζ |Ht0+1 , |b|Ht0+1). The same inequality stands 

for space and time derivatives.
(ii) Thanks to the Rayleigh–Taylor condition (2.20), we have also:

1

M

1

2
|ζ |2 ≤ 1

2
(ζ,aζ )2 ≤ M

1

2
|ζ |2,

with M a constant of the form C( 1 , K). The same inequality stands for space and time derivatives.

a0
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(iii) At last, K(ε
√

μ∇γ ζ ) is a d × d symmetric matrix uniformly bounded with respect to time and ε,

1

M
|ζ(k)|H 1

σ
≤ (K(ε

√
μ∇γ ζ )∇γ ζ(k),∇γ ζ(k))2 ≤ M|ζ(k)|H 1

σ

where M is a constant of the form C1(K). �
Because the term Ck[U ]U(k−1) which appear in the equation (2.21) contains order two derivatives with respect to 

ζ(k−1), the time derivatives of the energies Ek are actually not controlled by the energy EN
σ . To overcome this problem, 

we slightly adjust the twisted energy Ek for k = N by defining

Fk = ε(S2[U ]U(k−1),U(k))2 if k = N,

= 0 if k �= N,

where

S2[U ] =
( 1

B0
K(k)(ε

√
μ∇γ ζ ) 0

0 1
μ
dG(ε∂t ζ )

)
.

The presence of the ε in Fk is a consequence of the first time scaling t ′ = tε. The matrix operator S2[U ] symmetrizes 
the subprincipal term Ck . One derives with respect to time this “energy”. Our goal is to have, for all 0 ≤ k ≤ N

d

dt
(Ek + Fk) ≤ C1(K).

We will at the end recover a similar estimate for the energy Ek by using a Young inequality in the control of Fk by 
the Ej .

Control of d
dt

E0

One gets, using the symmetry of G:

dE0

dt
= (∂t ζ, ζ )2 + 1

B0
(

∇γ ζ√
1 + ε2μ|∇γ ζ |2 ,∇γ ∂t ζ )2 + 1

μ
(Gψ,∂tψ)2 + A1,

where, the commutator terms [G, ∂t ] and [ 1√
1+ε2μ|∇γ ζ |2 , ∂t ] are

A1 = −( 1

2B0

(ε2μ∇γ ζ · ∂t∇γ ζ )∇γ ζ

(1 + ε2μ|∇γ ζ |2)3/2
,∇γ ζ

)
2 + 1

2μ
(dG(ε∂t ζ )ψ,ψ)2.

Using the equations (2.11) to replace ∂t ζ and ∂tψ in this equality, one can write

dE0

dt
= 1

με
(Gψ,ζ )2 − 1

με
(Gψ,ζ )2

+ 1

με

1

B0
(

∇γ ζ√
1 + ε2μ|∇γ ζ |2 ,∇γ Gψ)2 − 1

με

1

B0
(

∇γ ζ√
1 + ε2μ|∇γ ζ |2 ,∇γ Gψ)2

+ A1 + B1 + B2,

where

B1 = − 1

2μ
(|∇γ ψ |2,Gψ)2,

B2 = 1

μ

( (Gψ + μ∇γ (εζ ) · ∇γ ψ)2

2(1 + ε2μ|∇γ ζ |2) ,
1

μ
Gψ

)
2.

The large terms of order 
1

ε
cancel one another, thanks to the symmetry of the equation. One must now control A1, B1

and B2 in order to get the desired estimate for E0.
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– Control of A1 Let us start with the first term of A1. We use the fact that |ε∂t ζ |H 1
σ

and |ζ |H 1
σ

are bounded by 
C2(K), since N ≥ 2. Moreover, since N ≥ t0 + 1, one has that ∇γ ζ ∈ L∞(Rd) with a control by C2(K), and thus one 
can write, using Cauchy–Schwarz inequality,

|−( 1

2B0

(ε2μ∇γ ζ · ∂t∇γ ζ )∇γ ζ

(1 + ε2μ|∇γ ζ |2)3/2
,∇γ ζ

)
2| ≤

1

2
|ε∂t ζ |H 1

σ
|ζ |H 1

σ
|∇γ ζ |2

L∞(Rd )

≤ C2(K).

To control the second term of A1, we use the Proposition A.5 in the Appendix with s = 0 to write

| 1

2μ
(dG(ε∂t ζ )ψ,ψ)2| ≤ M0|ε∂t ζ |Ht0+1 |Pψ |2|Pψ |2,

where M0 is a constant of the form C( 1
hmin

, |ζ |Ht0+1 , |b|Ht0+1). Moreover, ε∂t ζ is controlled in Ht0+1 norm by C2(K), 
since N ≥ t0 + 2 and thus, one has

| 1

2μ
(dG(ε∂t ζ )ψ,ψ)2| ≤ C2(K).

– Control of B1 One has to remark that ∇γ ψ is in L∞(Rd). Indeed, one has

|�t0∇γ ψ |2 ≤ C|Pψ |Ht0+3/2,

where C does not depends on μ nor ψ . Since this last term is controlled by the energy, one has that ∇γψ ∈ L∞(Rd)

with a control by C2(K). Thus, one can write

| 1

2μ
(|∇γ ψ |2,Gψ)2| ≤ |∇γ ψ |L∞(Rd )

1

μ
|Gψ |2|∇γ ψ |2

≤ C2(K).

Now, using the second point of Proposition A.1 with s = 1/2, one gets that

| 1

2μ
(|∇γ ψ |2,Gψ)2| ≤ C2(K)M(3/2)|Pψ |H 1

where M(3/2) is a constant of the form C(
1

h0
, |ζ |Ht0+1 , |b|Ht0+1 , |ζ |H 3/2, |b|H 3/2). Just note that the first point of 

Proposition A.1 does not suffice here, since we want a control of 1
μ
Gψ and not only of 1

μ3/4 Gψ . This is the interest 
of the second point of this proposition: the Dirichlet–Neumann operator G has to be seen as a 3/2 order operator in 
order to be controlled uniformly with respect to μ.

– Control of B2 We already noticed in the previous controls that ∇γ ζ and ∇γ ψ were in L∞(Rd) with a C2(K)

control. Moreover, by Proposition A.1 with s = t0 + 1/2, one gets

1

μ
|�t0Gψ |2 ≤ M(t0 + 3/2)|Pψ |Ht0+1/2

≤ C2(K)

and thus 1
μ
Gψ is in L∞(Rd) with a C2(K) control. Then, we write, using Cauchy–Schwarz inequality,

B2 ≤ 1

μ
(|Gψ |L∞(Rd ) + εμ|∇γ ζ |L∞(Rd )|∇γ ψ |L∞(Rd ))

(
|∇γ ψ |L∞(Rd )ε|∇γ ζ |2 + |Gψ |2

)
1

μ
|Gψ |2

≤ C2(K)

where we used again Proposition A.1 to control 1
μ
Gψ in L2 norm.

– Synthesis To conclude, we proved that

dE0 ≤ C2(K),

dt
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which gives, by integrating in time, the following inequality:

∀t ∈ [0;T ε], E0(t) ≤ C2(K)t + C0

where C0 only depends on the norm of the initial data.

Control of d
dt

(Ek + Fk) for k �= 0

We deal here with the case k = N (if k < N , there is no term of order more than N that appears in the derivative of 
the energy). Recall that for k = N , we have

Ek + Fk = (S1[U ]U(k),U(k))2 + ε(S2[U ]U(k−1),U(k))2.

Therefore, by derivating in time, and using the symmetry of S1[U ] we get

d

dt
(Ek + Fk) = (S1[U ]U(k), ∂tU(k))2 + ε(S2[U ]U(k−1), ∂tU(k))2

+ ([
∂t ,S1[U ]]U(k),U(k)

)
2 + (∂t (S2[U ]U(k−1)),U(k))2.

We replace ∂tU(k) by its expression given in the quasilinear system (2.21). One gets

d

dt
(Ek + Fk) = (S1[U ]U(k),−1

ε
Aσ [U ]U(k) − B[U ]U(k) − Ck[U ]U(k−1))2

+ ε(S2[U ]U(k−1),−1

ε
Aσ [U ]U(k) − B[U ]U(k) − Ck[U ]U(k−1))2

+ ([
∂t ,S1[U ]]U(k),U(k)

)
2 + (∂t (S2[U ]U(k−1)),U(k))2

+ (S1[U ]U(k),
t (Sk,Rk))2 + ε(S2[U ]U(k−1),

t (Sk,Rk))2.

Thanks to the symmetry, the large terms of size 
1

ε
cancel one another, i.e.

1

ε
(S1[U ]U(k),Aσ [U ]U(k))2 = 0.

This is fundamental and based on the fact that the evolution equation for the unknown U(k) is still symmetrizable with 
respect to 1

ε
terms. Again, it is not the case for the evolution equation in term of spatial derivatives U(α,k). Then, the 

commutators between U(k) and subprincipal terms of Ck , which are not controlled by the energy (mainly because of 
the order two operators) also cancel one another, because of the choice of Fk. More precisely, one gets

−(S1[U ]U(k),Ck[U ]U(k−1))2 − (S2[U ]U(k−1),Aσ [U ]U(k))2 = 0.

One can also check that

ε(S2[U ]U(k−1),Ck[U ]U(k−1))2 = 0.

To conclude, we proved that

d

dt
(Ek + Fk) = A1 + A2 + A3 + A4 + B1 + B2 + B3 + B4 + B5 + B6,

where 
([

∂t , S1[U ]]U(k), U(k)

)
2 = A1 + A2 + A3 with

A1 = 1

2μ
(dG(ε∂t ζ )ψ(k),ψ(k))2,

A2 = 1

2B0

(
∂t

(
K(ε

√
μ∇γ ζ )

)∇γ ζ(k),∇γ ζ(k)

)
2
,

A3 = 1

2
((∂ta)ζ(k), ζ(k))2.

The term (∂t (S2[U ]U(k−1)), U(k))2 = A4 is given by



B. Mésognon-Gireau / Ann. I. H. Poincaré – AN 34 (2017) 89–118 107
A4 = 1

μ
(ε∂t

(
dG(ε∂t ζ )(ψ(k−1))

)
,ψ(k))2 + 1

B0
(ε∂t

(
K(k)[√μ∇γ ζ ]ζ(k−1)

)
, ζ(k))2.

We denote the terms coming from the evolution equation contained in −(S1[U ]U(k) − B[U ]U(k))2 by

B1 = (−V ∇γ · ζ(k),aζ(k))2 − 1

B0
(∇γ (V · ∇γ ζ ),K(

√
με∇γ ζ )∇γ ζ(k))2

and

B5 = −(V · ∇γ ψ(k),
1

μ
Gψk)

and the term −ε(S2[U ]U(k−1), B[U ]U(k))2 is

B2 = −ε
1

μ
(dG(∂t ζ )ψ(k−1), V · ∇γ ψ(k))2 − 1

B0
ε(K(k)[√μ∇γ ζ ]ζ(k−1), V · ∇γ ζ(k))2.

Finally, the residual terms (S1[U ]U(k), t (Sk,Rk))2 + ε(S2[U ]U(k−1), t (Sk,Rk))2 which are the most easy terms to 
control are denoted by

B3 = (Rk,aζ(k))2,

B4 = +ε
1

μ
(dG(∂t ζ )ψ(k−1), Sk)2 + ε(K(k)[√μ∇γ ζ ]ζ(k−1),Rk)2

and

B6 = (Sk,
1

μ
Gψ(k))2.

We then need to control all these terms by a constant of the form C2(K) in order to get the desired estimate. These con-
trols requires bounds for quantities such as dG(h, k)ψ or Gψ , which can be obtained by the use of Propositions A.1, 
A.3 and A.5.

– Control of A1 Using Proposition A.5 with s = 0, one gets

| 1

2μ
(dG(ε∂t ζ )ψ(k),ψ(k))2| ≤ M0|ε∂t ζ |Ht0+1 |Pψ(k)|22

≤ C2(K)

since N ≥ t0 + 2.

– Control of A2 We start to check that ∂t (K(ε
√

μ∇γ ζ )) is bounded in L∞(Rd) by C2(K):

∂t (K(ε
√

μ∇γ ζ )) = 2ε2μ∇γ ζ · ∂t∇γ ζ Id − ε2μ(∇γ ζ ⊗ ∇γ ∂t ζ + ∇γ ∂t ζ ⊗ ∇γ ζ )

(1 + ε2μ|∇γ |2)3/2

− 3

2

(1 + ε2μ|∇γ ζ |2Id − ε2μ∇γ ζ ⊗ ∇γ ζ )(2ε2μ∂t∇γ ζ · ∇γ ζ )

(1 + ε2μ|∇γ ζ |2)5/2
.

Because of the energy expression given by (2.15), one has that ∇γ ζ ∈ L∞(Rd) (since N ≥ t0 +1), ε∂t∇γ ζ ∈ L∞(Rd)

(since N ≥ t0 + 2) and thus we get

|∂t (K(ε
√

μ∇γ ζ ))|L∞(Rd ) ≤ C2(K).

Thus, one can write∣∣∣∣ 1

2B0

(
∂t

(
K(ε

√
μ∇γ ζ )

)∇γ ζ(k),∇γ ζ(k)

)
2

∣∣∣∣ ≤ C2(K)
1

B0
|∇γ ζ(k)|2

≤ C2(K).
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– Control of A3 We prove that

|∂ta|L∞(Rd ) ≤ C2(K).

Recall that

a= 1 + ε(ε∂t + εV · ∇γ )w.

By derivating with respect to time, one gets

∂ta= (ε∂t )
2w + (ε∂t )V · ∇γ w + V · ∇γ (ε∂t )w.

We need to use an explicit expression of the horizontal and vertical component of the velocity at the surface V and 
w here:

w = Gψ + εμ∇γ ζ · ∇γ ψ

1 + ε2μ|∇γ ζ |2 , and V = ∇γ ψ − εw∇γ ζ.

If one takes brutally the ε∂t and (ε∂t )
2 derivatives of these expressions, one has to deal with terms of the form

d2G((ε∂t )
2ζ )ψ, d2G(ε∂t ζ, ε∂t ζ )ψ, dG(ε∂t ζ )(ε∂tψ), G(ε∂t )

2ψ.

For the first and second terms, we use Proposition A.6 with s = t0 + 1/2 to get

|d2G(ε∂t ζ, ε∂t ζ )ψ |Ht0 ≤ M0μ
3/4|(ε∂t )

2ζ |2
Ht0+1 |Pψ |Ht0+1/2

≤ C2(K)

since N ≥ t0 + 3. For the third term, we apply the same result to get

|dG(ε∂t ζ )(ε∂tψ)|Ht0 ≤ M0μ
3/4|ε∂t ζ |Ht0+1 |Pε∂tψ |Ht0+1/2 .

There is a bit more work to achieve in order to control the term |Pε∂tψ |Ht0+1/2 . We write, noticing that N ≥ t0 + 3/2,

|Pε∂tψ |Ht0+1/2 ≤
∑

β∈Nd ,|β|≤N−1

|Pε∂t ∂
βψ |2

≤
∑

β∈Nd ,|β|≤N−1

|Pψ(β,1) +Pεwζ(β,1)|2

using the definition of ψ(α,k) given by (2.14). Using the fact that |Pf |2 ≤ Cμ−1/4|f |H 1/2 , we get

|Pε∂tψ |Ht0+1/2 ≤
∑

β∈Nd ,|β|≤N−1

|Pψ(β,1)|2 + μ−1/4ε|wζ(β,1)|H 1/2

≤
∑

β∈Nd ,|β|≤N−1

|Pψ(β,1)|2 + μ−1/4ε|w|Ht0 C2(K)

where we used the Sobolev estimate |fg|1/2 ≤ C|f |Ht0 |g|H 1/2 to derive the last inequality. At last, we use Proposi-
tion A.1 with w (see the remark at the end of this proposition) and with s = t0 + 1/2 to get

|Pε∂tψ |Ht0+1/2 ≤
∑

β∈Nd ,|β|≤N−1

|Pψ(β,1)|2 + εμ1/2M(t0 + 1)|Pψ |Ht0+1C2(K)

≤ C2(K)

and finally we proved

|dG(ε∂t ζ )(ε∂tψ)|Ht0 ≤ C2(K).

It remains |G(ε∂t )
2ψ |Ht0 to be controlled. We use Proposition A.1 to write, with s = t0 + 1/2,

|G(ε∂t )
2ψ |Ht0 ≤ μ3/4M(t0 + 1)|P(ε∂t )

2ψ |Ht0+1

and we use the previous technique to prove that |P(ε∂t)
2ψ |Ht0+1 ≤ C2(K).
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Combining all these results, one can control all term of ∂ta in L∞ norm by C2(K), and one get the desired result:

|∂ta|L∞(Rd ) ≤ C2(K).

It is now easy to get

|1

2
((∂ta)ζ(k), ζ(k))2| ≤ C2(K)|ζ(k)|22

≤ C2(K).

– Control of A4 The fact that we get an ε∂t derivative here, and not only a ∂t derivative is essential here. The first 
term involves terms of the form

(dG(ζ(j))ψ(l),ψ(k))2

with j, l ≤ N and the Proposition A.5 with s = 0 allows to control them by C2(K). The second term of A4 involves 
1
B0

∇γ ζ(k) and ζ(k) terms, which are controlled in L2 norm, and other L∞ terms (see the control of A2 for example). 
There is no other difficulty than computation, to control A2 by C2(K).

– Control of B1 The control of the first term requires a classical symmetry trick. We write, by integrating by parts,

(V · ∇γ ζ(α),aζ(α))2 = −(ζ(α),∇γ · (aζ(α)V ))2

= −(ζ(α),∇γ · (aV )ζ(α))2 − (ζ(α),aV · ∇γ ζ(α))2

and thus one gets

(V · ∇γ ζ(α),aζ(α))2 = −1

2
(ζ(α),∇γ · (aV )ζ(α))2.

We can use the same technique as in the control of A3 to get

|∇γ · (aV )|L∞(Rd ) ≤ C2(K)

and we then get that

|(V · ∇γ ζ(α),aζ(α))2| ≤ |∇γ · (aV )|L∞(Rd )|ζ(k)|22
≤ C2(K).

It is the same trick for the second term. Using the symmetry of K, we write

1

B0
(V ∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )∇γ ζ(k))2 = 1

B0
(∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )V · ∇γ ζ(k))2

and, by integrating by parts,

1

B0
(V ∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )∇γ ζ(k))2 = − 1

B0
(∇γ ζ(k),∇γ · (K(ε

√
μ∇γ ζ )V )∇γ ζ(k))2

− 1

B0
(∇γ ζ(k),K(ε

√
μ∇γ ζ )V ∇γ · (∇γ ζ(k)))2

= − 1

B0
(∇γ ζ(k),∇γ · (K(ε

√
μ∇γ ζ )V )∇γ ζ(k))2

− 1

B0
(V ∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )∇γ ζ(k))2

and thus

1

B0
(V ∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )∇γ ζ(k))2 = − 1

2B0
(∇γ ζ(k),∇γ · (K(ε

√
μ∇γ ζ )V )∇γ ζ(k))2.

We can then use the same type of computation as for the control of A2 to show that

∇γ · (K(ε
√

μ∇γ ζ )V ) ∈ L∞(Rd)
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with a C2(K) bound, and finally we get, by Cauchy–Schwarz’s inequality

| 1

B0
(V ∇γ · (∇γ ζ(k)),K(ε

√
μ∇γ ζ )∇γ ζ(k))2| ≤ C2(K)

1

B0
|∇γ ζ(k)|2

≤ C2(K).

– Control of B2 For the first term, we write

(V · ∇γ ψ(k),
1

μ
dG(ε∂t ζ )ψ(k−1)) = (

∇γ

(1 + √
μ|Dγ |)1/2

ψ(k), (1 + √
μ|Dγ |)1/2(V

1

μ
dG(ε∂t )ψ(k−1))

and we deduce with Cauchy–Schwarz inequality that this quantity is bounded in absolute value by

|V |Ht0 |Pψ(k)|2( 1

μ
|dG(ε∂t ζ )ψ(k−1)|2 + μ−3/4|dG(ε∂t ζ )|H 1/2).

We now use Proposition A.6 to control this term by C2(K). The second term of B2 is controlled by using Cauchy–
Schwarz inequality.

– Control of B3 We use the control |a|L∞(Rd ) ≤ C2(K) and the control over Rk given by (2.22) to get, with 
Cauchy–Schwarz inequality

|(Rk,aζ(k))2| ≤ |a|L∞(Rd )|Rk|2|ζ(k)|2
≤ C2(K).

– Control of B4 It is a direct use of Cauchy–Schwarz inequality and Proposition A.5, and the control over Rk and 
Sk given by (2.22).

– Control of B5 To control this term, we use a direct application of Proposition A.7 to write

|(V · ∇γ ψ(k),
1

μ
Gψ(k))2| ≤ M|V |W 1,∞|Pψ(k)|22

≤ C2(K).

– Control of B6 We use Proposition A.3 with s = 0 to get

|(Sk,
1

μ
Gψ(k))2| ≤ μM0|PSk|2|Pψ(k)|2

≤ C2(K)

where we used the control over Sk given by (2.22) to derive the last inequality.

– Synthesis We proved that

d

dt
(Ek + Fk) ≤ C2(K)

and thus we get by integrating in time:

∀t ∈ [0;T ε], (Ek + Fk)(t) ≤ C2(K)t + C0

where C0 only depends on the initial energy. It is easy to get that

|Fk| ≤ C2(K)ε

and thus

∀t ∈ [0;T ε], Ek(t) ≤ C2(K)(t + ε) + C0.

Thanks to the equivalence between Ek and the initial energy for this problem Ek
σ , introduced for Theorem 2.2 by 

(2.15), proved in Remark 2.10, we conclude to the desired result:

∀t ∈ [0;T ε],∀0 ≤ k ≤ N, |ζ(k)|H 1 + |Pψ(k)|2 ≤ C2(K)(t + ε) + C0 �

σ
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The Proposition 2.8 gives the desired estimate of the form (2.18) for time derivatives (more precisely, for |ζ(k)|H 1
σ
+

|Pψ(k)|2). We want to recover the same estimate for space derivatives, using directly the equation (2.11). To this 
purpose, one has to make precisely the link between the H 1 norm of Pψ(k) and the H 1

σ norm of ζ(k+1). This is the 
point of the following lemma.

Lemma 2.11. For all 0 ≤ |α| ≤ N , one has:

|Pψ(α,k)|2 + |ζ(α,k)|H 1
σ

≤ C1(K)(t + ε) + C0

where C0 only depends on the initial energy of the unknowns, for all 0 ≤ k ≤ N − |α|.

Proof of Lemma 2.11. The proof is done by induction on |α|. For |α| = 0 it is the Lemma 2.8.
Assume that the result is true for |α| − 1, with |α| ≥ 1. Let 0 ≤ k ≤ N − |α|. We start to give an evolution equation 

in term of unknowns ζ(α,k) and ψ(α,k):⎧⎪⎪⎨⎪⎪⎩
∂t ζ(α,k) + V · ∇γ ζ(α,k) − 1

με
Gψ(α,k) − 1

με

∑
dG(∂l1βb, . . . , ∂li βb, ∂m1εζ, . . . , ∂mj εζ )∂δψ

∂tψ(α,k) + V · ∇γ ψ(α,k) + 1

ε
aζ(α,k) − 1

εB0
∇γ ·K(

√
μ∇γ ζ )∇γ ζ(α,k) +K(α)[ε√μ∇γ ζ ]qζ(α,k) = Sk

(2.27)

where the summation in the first equation is over the index (i, j, l1, . . . , lj , m1, . . . , mj , δ) satisfying

1 ≤ i + j, |l1 + . . . + li + m1 + . . . + mj | + δ = |α| + k.

We used the notation

qζ(α,k) = (ζ(qα1), . . . , ζ(qαd), ζ(α,k−1))

with qαj = α − ej , where ej denote the unit vector in the j -th direction of Rd , and where

|PSk|2 ≤ C1(K).

This system is very similar to the evolution equation (2.21) in term of unknowns ζ(k), ψ(k), except that the space 
derivatives of the bottom b appears from the derivation of Gψ , and the same goes for the space derivatives of ζ in the 
derivation of the surface tension term κγ . Now, using (2.26), one can write:

|Pψ(α,k)|22 + |ζ(α,k)|2H 1
σ

≤ C1(K)
1

μ

(
(Gψ(α,k),ψ(α,k))2 + (aζ(α,k) − 1

B0
∇γK(

√
με∇γ ζ )∇γ ζ(α,k), ζ(α,k))2

)
We now use the evolution equation (2.27) in order to express ψ(α,k) and ζ(α,k) with respect to time derivatives plus 
over terms of size ε:

|Pψ(α,k)|22 + |ζ(α,k)|2H 1
σ

≤ C1(K)

(
ε∂t ζ(α,k) + εV · ∇γ ζ(α,k)

− 1

μ

∑
dG(∂l1βb, . . . , ∂li βb, ∂m1εζ, . . . , ∂mj εζ )∂δψ,ψ(α,k)

)
2

+
(

−ε∂tψ(α,k) − εV · ∇γ ψ(k) − ε

B0
K(α, k)[√μ∇γ ζ ]qζ(α,k) + Sk, ζ(α,k)

)
2
. (2.28)

Let us control the first term of the r.h.s. of (2.28). One has to express this term with respect to Pψ(α,k). To this 
purpose, we assume for convenience that α1 �= 0 (recall that |α| ≥ 1). One computes:

|(ε∂t ζ(α,k),ψ(α,k))2| = |(∂αζ(k+1),ψ(α,k))2|
= |(∂α−e1ζ(k+1), ∂

e1ψ(α,k))2|
≤ (|ζ(α−e1,k+1)|, ||Dγ |ψ(α,k)|)2

≤
∣∣∣∣∣∣ (1 + √

μ|Dγ |)1/2

(1 + 1√
B

|Dγ |) (1 + 1√
B0

|Dγ |)ζ(α−e1,k+1)

∣∣∣∣∣∣
∣∣∣∣ |Dγ |
(1 + √

μ|Dγ |)1/2
ψ(α,k)

∣∣∣∣
2

0 2
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Now, remark that

(1 + √
μ|Dγ |)1/2

(1 + 1√
B0

|Dγ |) ≤ C(B0μ)

where C(B0μ) is a constant that only depends on B0μ (recall here that 0 ≤ γ ≤ 1 and the definition of |Dγ | given in 
section 1.3). It comes:

(ε∂t ζ(α,k),ψ(α,k))2 ≤ C1(K)|ζ(α−e1,k+1)|H 1
σ
|Pψ(α,k)|2

≤ (C1(K)(t + ε) + C0)|Pψ(α,k)|2
where we used the induction assumption to control |ζ(α−e1,k+1)|H 1

σ
, since |α − e1| ≤ |α| − 1.

For the control of the third term of the r.h.s. of (2.28), one can prove, using Proposition A.5 that for j �= 0, one has 
(see also [12] Chapter 4 for details):

1

μ
(dG(∂l1βb, . . . , ∂li βb, ∂m1εζ, . . . , ∂mj εζ )∂δψ,ψ(α,k))2 = εR

with

R ≤ C1(K).

For j = 0, we use again Proposition A.5 to write:

1

μ
(dG(∂l1βb, . . . , ∂li βb)∂δψ,ψ(α,k))2 ≤ C1(K)|∂l1βb|Ht0 ...|∂li βb|Ht0 |P∂δψ |2|Pψ(α,k)|2.

Now, recall that b ∈ HN+1∨t0+1. In order to prove that this last term is controlled by C1(K)(t +ε) +C0, one computes, 
using the definition of ψ(α) given by (2.14):

|P∂δψ |2 ≤ |Pψ(δ)|2 + ε|Pwζ(δ)|2
≤ |Pψ(δ)|2 + ε|w|Ht0 |ζ(δ)|H 1

where we used the identity |Pf |2 ≤ |f |H 1 . Now, the Proposition A.1 gives |w| ≤ μ3/4C1(K)|Pψ |Ht0+3/2 . One can 
use the induction assumption, because the term ψ(δ) only contains spatial derivatives of ψ of order less than |α| − 1
due to the fact that i ≥ 1 (the only term with spatial derivative of order |α| of ψ that appears in the system (2.27) is 
Gψ(α,k)). One gets:

|P∂δψ |2 ≤ C1(K)(t + ε) + C0,

and finally

(dG(∂l1βb, . . . , ∂li βb, ∂m1εζ, . . . , ∂mj εζ )∂δψ,ψ(α,k))2 ≤ (
C1(K)(t + ε) + C0

)|Pψ(α,k)|.
Now, we focus on the most difficult remaining term of (2.28), which is (−ε∂tψ(α,k), ζ(α,k))2. One uses the definition 

of ψ(α,k) given by (2.14) ψ(α,k) = ∂α(ε∂t )
kψ − εw∂α(ε∂t )

kζ to write:

|(ε∂tψ(α,k), ζ(α,k))2| = |(∂1ψ(α−e1,k+1), ζ(α,k))2 + (ε(∂1w)ζ(α−e1,k+1) − (ε∂t )(εw)ζ(α,k), ζ(α,k))2|
≤ |Pψ(α−e1,k+1)|2|(1 + √

μ|Dγ |)1/2

1 + 1√
B0

|Dγ | (1 + 1√
B0

|Dγ |)ζ(α,k)|2 + εC1(K).

We now use the induction assumption to control |Pψ(α−e1,k+1)|2 by C1(K)(t + ε) + C0, and the identity

(1 + √
μ|Dγ |)1/2

(1 + 1√
B0

|Dγ |) ≤ C(B0μ)

where C(B0μ) is a constant that only depends on B0μ. One gets:

|(ε∂tψ(α,k), ζ(α,k))2| ≤ (C1(K)(t + ε) + C0)(1 + |ζ(α,k)|H 1).

σ
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To conclude, we proved:

|ψ(α,k)|2 + |ζ(α,k)|2H 1
σ

≤ (C1(K)(t + ε) + C0)(1 + |ψ(α,k)|2 + |ζ(α,k)|H 1
σ
)

and one can use the Young’s inequality to get the desired estimate, and the Lemma 2.11 is true at rank |α|. �
According to the definition of EN

σ (U) given by (2.15), there is a remaining term to be controlled: it is |Pψ |Ht0+3/2 . 
The control can be done as follows: let r0 be such that t0 + 3/2 ≤ r0 ≤ N − 1. We have, for all r ∈N

d+1, |r| = r0,

|P∂rψ |2 ≤ |Pψ(r)|2 + ε|Pw∂rζ |2
with the definition of ψ(r). The first term of the right hand side is controlled by previous estimates. For the second 
term, we use again the same technique as in the control of A4 to write

|P∂rψ |2 ≤ C1(K)t + C0 + εμ−1/4|w∂rζ |H 1/2

≤ C1(K)t + C0 + εμ−1/4|w|Ht0+1/2 |ζ |HN

≤ C1(K)t + C0 + εμ−1/4μ3/4|Pψ |Ht0+1

≤ C1(K)t + C0 + εC1(K).

The result then comes from the identity

|Pψ |Ht0+3/2 ≤ |Pψ |Hr0 � |Pψ |2 +
∑

|r|=r0

|P∂rψ |2.

Finally, we proved

EN(U)(t) ≤ C0 + C1(K)(t + ε)

for all t in [0; Tε], which ends the proof of Proposition 2.4. �
We can now prove Theorem 2.2 by constructing an existence time for all solutions Uε of the system (2.11), which 

does not depend on ε.

Proof of Theorem 2.2. We define

ε0 = 1

2C1(2C0)
.

Let fix a ε ≤ ε0. Let us consider

T ∗
ε = sup

t>0
{t,Uε exists on [0, t] and EN(Uε)(t) ≤ 2C0,1 + εζ(t) − βb ≥ hmin/2,a(t) ≥ a0/2 on [0, t]}.

We know that T ∗
ε exists and that Uε , solution to (1.5) exists on 

[
0, T ∗

ε

]
. The Proposition 2.4 gives the following 

estimate:

Eα(Uε)(t) ≤ C1(K)(t + ε) + C0 ∀t ∈ [
0, T ∗

ε

]
.

We then consider

T0 = 1

2C1(2C0)
inf{1, hmin}.

Let us show that T0 ≤ T ∗
ε . Suppose T ∗

ε < T0. First of all, let us prove that the condition over the height 1 + εζ − βb

is satisfied. One can write for all 0 ≤ t ≤ T0
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(1 + εζ − βb)(t) = (1 + εζ − βb)(0) +
t∫

0

∂t (1 + εζ − βb)(s)ds

≥ (1 + εζ − βb)(0) − t sup
s∈[0;t]

|∂t (1 + εζ − βb)|L∞(Rd )

≥ (1 + εζ − βb)(0) − tC1(K)

≥ hmin − T0C(2C0)

≥ hmin

2
.

One can do the same for the Rayleigh–Taylor condition a(t) ≥ a0
2 . Now, for the energy condition, we would have for 

all t ∈ [
0, T ∗

ε

]
:

Eα(Uε)(t) ≤ C0 + C1(K)(t + ε)

≤ C0 + C1(2C0)(T
∗
ε + 1

2C1(2C0)
)

< C0 + C1(2C0)(T0 + 1

2C1(2C0)
)

< 2C0

using the monotony of C and the definition of T ∗
ε . We can therefore continue the solution to an interval 

[
0, T̃ ∗

ε

]
such 

that

Eα(Uε)(t) ≤ 2C0, ∀t ∈ [
0, T̃ ∗

ε

]
which contradicts the definition of T ∗

ε . We then have T0 ≤ T ∗
ε .

Conclusion: the solution Uε exists on the time interval [0; T0]. �
2.5. Shallow Water limit

We discuss here the size of the existence time for solutions of the Water Waves equation (1.6) when the shallowness 
parameter μ goes to zero. This regime corresponds to the Shallow Water model:{

∂t ζ + ∇γ · (hV ) = 0

∂tV + ∇γ ζ + ε(V · ∇γ )V = 0
(2.29)

where h = 1 +εζ −βb is the height of the Water. Using the existence time given by Theorem 2.2, one can deduce eas-
ily the following long time existence result for the Shallow Water problem, proved in [5], in the case of an irrotational 
initial condition:

Theorem 2.12. Let t0 > d/2, and N ≥ t0 + t0 ∨ 2 + 3/2. Let (V 0, ζ0) ∈ HN(Rd)d+1 be such that curl(V 0) = 0. Then, 
there exist T > 0 and a unique solution (V , ζ ) ∈ C([0; T

ε
]; Ht0+1(Rd)d+1) to the Shallow Water equation (2.29) with 

initial condition (V 0, ζ0), with

1

T
= C1, and sup

t∈[0; T
ε
]
|(ζ,V )(t)|Ht0+1(Rd )d+1 = C2

where Ci = C( 1
hmin

, |(ζ0,V 0)|Ht0+1(Rd )d+1) is a non-decreasing function of its arguments.

The result of [5] can therefore be understood as a particular endpoint of our main result, if the initial data V 0 is 
irrotational. For the general case, one should prove a large existence time for the Water-Waves equation with vorticity 
(see [13]). It is important to notice that the time existence provided here for the solutions of Shallow Water equations 
does not depend on the bathymetric parameter β .
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Proof. Let us fix ε > 0 during all the proof. We also set μB0 = 1. We define ψ0 by ∇γ ψ0 = V 0 (which is possible 
since V 0 is irrotational). We recall that Theorem 2.2 gives a solution Uμ = (ζμ, ψμ) to the Water Waves equation 
(1.6), with initial condition (ζ0, ψ0) on a time interval [0; T

ε
] with

1

T
= C1 and sup

t∈[0; T
ε
]

∑
|(α,k)|≤N

|Pψ
μ

(α,k)|2 + |ζμ

(α,k)|2 = C2 (2.30)

where Ci = C(EN
σ (U0), 1

hmin
, 1

a0
, |b|HN+1∨t0+1 , μB0) is a non decreasing function of its arguments.

We now need an asymptotic expansion of ∇γ ψμ and Gψμ with respect to the vertical mean of the horizontal 
component of the velocity V = ∇γ 
 in shallow water:

Gψμ = −μ∇γ · (hμV μ) and ∇γ ψμ = V μ + μR, (2.31)

with |R|Ht0+1 ≤ C2 (recall that N ≥ t0 + t0 ∨ 2 + 3/2 with t0 > d/2) and V μ = 1

hμ

εζ∫
−1+βb

V μ(z)dz. For a complete 

proof of this latter result, see [12] Chapter 3. Now, we take the first equation of (1.6), and the gradient of the second 
equation of (1.6) and we replace Gψμ and ∇γ ψμ by the expressions given by (2.31). The surface tension term 
is of size μ since 1

B0
= μ. One can check that we get the following equation, satisfied in the distribution sense of 

D′([0; T
ε
] ×R

d):{
∂t ζ

μ + ∇γ · (hμV μ)

∂tV
μ + εV μ · ∇γ V μ + ∇γ ζμ = μR

(2.32)

with |R|Ht0+1 ≤ C2. It is then easy to show that the sequences (V μ)μ and (ζμ)μ are bounded in W 1,∞([0; T
ε
];

Ht0+1(Rd)), using the bound given by (2.30). Therefore, up to a subsequence we get the weak convergence of 
(V μ, ζμ)μ and (ζμ)μ to an element (V , ζ ) ∈ C([0; T

ε
]; Ht0+1(Rd)d+1), with (V , ζ )(0) = (V 0, ζ0). The weak con-

vergence of the linear terms of the equation (2.32) does not raise any difficulty. Since Ht0+1(Rd) is embedded in 
C1(Rd), we also get the convergence of the non-linear terms in the equation (2.32). Finally, the limit (V , ζ ) satisfies 
the Shallow Water equations (2.29) in the distribution sense of D′([0; T

ε
] × R

d). The uniqueness is classical for this 
kind of symmetrizable quasi-linear hyperbolic system, and is done for instance in [20] Chapter XVI. �

Let us give a qualitative explanation of this latter result. We recall that Proposition 2.10 claims that

1

M0
|Pψ |2 ≤ (ψ,

1

μ
Gψ)2 ≤ M0|Pψ |22

where

P = |Dγ |
(1 + √

μ|Dγ |)1/2

and therefore 1
μ
G acts like an order one operator with respect to ψ . The idea of the proof for Theorem 2.2 is to get a 

“good” energy estimate for time derivatives:

1

2
|∂tPψ |2 + 1

2
|∂t ζ |2 ≤ C(K)tε + C0

and then use the equation to recover the same estimate for space derivatives. Using the first equation ∂tζ = 1
μ
Gψ , 

and the ellipticity of the order one operator 1
μ
G would only provide us a gain of half a space derivative for ψ (we 

already have an estimate for Pψ where P is of order 1/2). This is why we need surface tension which provides an 
additional estimate for 1

B0
|∂t∇γ ζ |2, which leads to recover exactly one space derivative in the estimate of ψ . In the 

shallow water regime, using (2.31), one gets that 1 Gψ ∼ −∇γ · (h∇γ ψ) as μ goes to zero. Therefore, when μ goes 

μ
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to zero, 1
μ
Gψ goes to an order one operator with respect to V = ∇γ ψ . 1 Therefore, if one has a “good” estimate for 

time derivatives like
1

2
|∂t ζ |2 + 1

2
|∂tV |2 ≤ Ctε + C0

with C independent of ε, one can recover, using the first equation, a “good” estimate for ∇γ · (V ). Using the second 
equation to get the same good estimate for curlV , one can recover exactly one space derivative of V in the estimates. 
And therefore, we does not need surface tension in this case. Moreover, the surface tension term of size 1

B0
= μ

vanishes as μ goes to zero.
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Appendix A. The Dirichlet Neumann operator

Here are for the sake of convenience some technical results about the Dirichlet Neumann operator, and its esti-
mates in Sobolev norms. See [12] Chapter 3 for complete proofs. The first two propositions give a control of the 
Dirichlet–Neumann operator.

Proposition A.1. Let t0 > d/2, 0 ≤ s ≤ t0 + 3/2 and (ζ, β) ∈ Ht0+1 ∩ Hs+1/2(Rd) such that

∃h0 > 0,∀X ∈R
d , εζ(X) − βb(X) + 1 ≥ h0.

(1) The operator G maps continuously 
.

H s+1/2(Rd) into Hs−1/2(Rd) and one has

|Gψ |Hs−1/2 ≤ μ3/4M(s + 1/2)|Pψ |Hs ,

where M(s + 1/2) is a constant of the form C( 1
h0

, |ζ |Ht0+1 , |b|Ht0+1 , |ζ |Hs+1/2 , |b|Hs+1/2).

(2) The operator G maps continuously 
.

H
s+1(Rd) into Hs−1/2(Rd) and one has

|Gψ |Hs−1/2 ≤ μM(s + 1)|Pψ |Hs+1/2,

where M(s + 1) is a constant of the form C( 1
h0

, |ζ |Ht0+1 , |b|Ht0+1 , |ζ |Hs+1 , |b|Hs+1).

1 Another way to see it is that in the limit μ → 0, P must be seen as a first order operator (P ∼ |Dγ |) and the control of Pψ gives the control 
of a full derivative of ψ .

mailto:benoit.mesognon-gireau@ens.fr
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Moreover, it is possible to replace Gψ by w in the previous result, where w = Gψ+εμ∇γ ζ ·∇γ ψ

1+ε2μ|∇γ ζ |2 (vertical component 
of the velocity U = ∇X,z
 at the surface).

Remark A.2. In all this paper, we consider the Water-Waves problem in finite depth. This is crucial for all these 
regularity results on G. For instance, in the linear case ζ = b = 0, the Dirichlet–Neumann operator is |Dγ | tanh(|Dγ |)
in finite depth, while it is |Dγ | in infinite depth. The low frequencies are therefore affected differently.

Proposition A.3. Let t0 > d/2, and 0 ≤ s ≤ t0 + 1/2. Let also ζ, b ∈ Ht0+1(Rd) be such that

∃h0 > 0,∀X ∈R
d ,1 + εζ(X) − βb(X) ≥ h0.

Then, for all ψ1, ψ2 ∈ .

H
s+1/2(Rd), we have

(�sGψ1,�
sψ2)2 ≤ μM0|Pψ1|Hs |Pψ2|Hs ,

where M0 is a constant of the form C( 1
h0

, |ζ |Ht0+1 , |b|Ht0+1).

The second result gives a control of the shape derivatives of the Dirichlet–Neumann operator. More precisely, we 
define the open set � ⊂ Ht0+1(Rd)2 as:

� = {� = (ζ, b) ∈ Ht0+1(Rd)2, ∃h0 > 0,∀X ∈R
d , εζ(X) + 1 − βb(X) ≥ h0}

and, given a ψ ∈ .

H
s+1/2(Rd), the mapping:

G[ε·, β·] : � −→ Hs−1/2(Rd)

� = (ζ, b) �−→ G[εζ,βb]ψ.
(A.33)

We can prove the differentiability of this mapping. The following theorem gives a very important explicit formula for 
the first-order partial derivative of G with respect to ζ :

Theorem A.4. Let t0 > d/2. Let � = (ζ, b) ∈ � and ψ ∈ .

H
3/2(Rd). Then, for all h ∈ Ht0+1(Rd), one has

dG(h)ψ = −εG(hw) − εμ∇γ · (hV ),

with

w = Gψ + εμ∇γ ζ · ∇γ ψ

1 + ε2μ|∇γ ζ |2 , and V = ∇γ ψ − εw∇γ ζ.

The following result gives estimates of the derivatives of the mapping (A.33).

Proposition A.5. Let t0 > d/2, 0 ≤ s ≤ t0 + 1/2 and (ζ, β) ∈ Ht0+1(Rd) such that:

∃h0 > 0,∀X ∈R
d , εζ(X) − βb(X) + 1 ≥ h0.

Then, for all ψ1, ψ2 ∈ .

H
s+1/2(Rd), for all (h, k) ∈ Ht0+1(Rd) one has

|(�sdjG(h, k)ψ1,�
sψ2)| ≤ μM0

j∏
m=1

|(εhm,βkm)|Ht0+1 |Pψ1|s |Pψ2|s ,

where M0 is a constant of the form C( 1
h0

, |ζ |Ht0+1 , |b|Ht0+1).

The following proposition gives the same type of estimate that the previous one:

Proposition A.6. Let t0 > d/2 and (ζ, b) ∈ Ht0+1 be such that

∃h0 > 0,∀X ∈R
d , εζ(X) − βb(X) + 1 ≥ h0.

Then, for all 0 ≤ s ≤ t0 + 1/2,
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|djG(h, k)ψ |Hs−1/2 ≤ M0μ
3/4

j∏
m=1

|(εhm,βkm)|Ht0+1 |Pψ |Hs

The following commutator estimate is useful (see [12] Proposition 3.30):

Proposition A.7. Let t0 > d/2 and ζ, b ∈ Ht0+2(Rd) such that:

∃h0 > 0,∀X ∈R
d , εζ(X) − βb(X) + 1 ≥ h0.

For all V ∈ Ht0+1(Rd)2 and u ∈ H 1/2(Rd), one has

((V · ∇γ u),
1

μ
Gu) ≤ M|V |W 1,∞|Pu|22,

where M is a constant of the form C( 1
h0

, |ζ |Ht0+2 , |b|Ht0+2).
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