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Abstract

We consider the L2-contraction up to a shift for viscous shocks of scalar viscous conservation laws with strictly convex fluxes
in one space dimension. In the case of a flux which is a small perturbation of the quadratic Burgers flux, we show that any viscous
shock induces a contraction in L2, up to a shift. That is, the L? norm of the difference of any solution of the viscous conservation
law, with an appropriate shift of the shock wave, does not increase in time. If, in addition, the difference between the initial value
of the solution and the shock wave is also bounded in L!, the L2 norm of the difference converges at the optimal rate t~1/4. Both
results do not involve any smallness condition on the initial value, nor on the size of the shock. In this context of small perturbations
of the quadratic Burgers flux, the result improves the Choi and Vasseur’s result in [7]. However, we show that the L2-contraction
up to a shift does not hold for every convex flux. We construct a smooth strictly convex flux, for which the L2-contraction does not
hold any more even along any Lipschitz shift.
© 2015 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

This paper is devoted to the study of L2-contraction properties, up to a shift, for viscous shock waves of scalar
viscous conservation laws with smooth strictly convex fluxes A in one space dimension:

QU+ 0, AWU)=0>U, 1>0, xeR,
U0, x) =Up(x). (1.1)
For any smooth strictly convex flux A, and any u_, u, € R with u_ > u, there exists a smooth function S| defined

on R, and o € R, such that S;(x — o¢) is a traveling wave solution of Equation (1.1), connecting u_ at —oo to u at
+00. The function S; satisfies
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—oS1(&) + A(S) (&) =S (6),
lim Sy =us, Sm}g S =0, (1.2)

&E—+o00
where o is the speed of the shock determined by the Rankine—Hugoniot condition:
Aluy) — A(u-)
o=—"-.

(1.3)
Uy —u—
Integrating (1.2), we find
—0o (S —ui)-i-A(Sl)—A(ui):S{, Iim S|=u+. (1.4)
E—+oo

There have been extensive studies on the stability of shock profiles of viscous conservation laws. When initial data
Uy is a small perturbation from the viscous shock Si, the stability estimates have been shown in various way, such as
the maximum principle, Evans function theory and the weighted norm approach based on the semigroup framework.
This kind of results in the scalar case have been obtained by Goodman [12], Hopf [13], Howard [14], Nishihara [25],
but also in the system case by Liu [21,22] and Zumbrun [23], Szepessy and Xin [29] (see also [11]). On the other
hand, Freistiihler and Serre [10] have shown the Ll—stability of viscous shock waves, without smallness condition,
by combining energy estimates, a lap-number argument and a specific geometric observation on attractor of steady
states. Moreover, their stability result still holds for any L? space, 1 < p < oco. This result was improved by Kenig and
Merle [16], with the uniform convergence to the viscous shock with respect to initial datas. The contraction property
of viscous scalar conservation laws with respect to Wasserstein distances, was studied by Bolley, Brenier, and Loeper
in [5], and Carrillo, Francesco and Lattanzio in [6].

In this article, we use the relative entropy method to study contraction properties in L2 for viscous shocks to scalar
viscous conservation laws. This work follows a program initiated in [18,19,28,31,32] concerning the relative entropy
method for the study on the stability of inviscid shocks for the scalar or system of conservation laws verifying a certain
entropy condition. The relative entropy method has been used as an important tool in the study of asymptotic limits to
conservation laws as well. For incompressible limits, see Bardos, Golse, Levermore [1,2], Lions and Masmoudi [20],
Saint Raymond [26]. For the compressible limit, see Tzavaras [30] in the context of relaxation and [3,4,15,24,33] in
the context of hydrodynamical limits.

Our first result is on the L?-contraction up to a shift for viscous shocks of (1.1) with a strictly convex flux A which
has a perturbed form of quadratic function as

A(x):ax2+g(x), a>0, (1.5)

where g is a C2-function satisfying || g” || L®[R) < %a. The following result shows also a rate of convergence toward
the shock waves as r~1/4, as long as the initial perturbation Uy — S is also bounded in L!. Notice that the decay rate
1~ /4 is the same rate as the heat equation. Moreover, our result does not need any assumption on the spatial decay of
the initial data, in contrast with previous works (see for example [13,25]).

Theorem 1.1. Assume the flux A as in (1.5). For any given u_ > u_, let S| be the associated viscous layer of (1.1)
with endpoints u_ and u... Then, for any solution U to (1.1) with initial data Uy satisfying Uy — S1 € L*(R), the
following L?-contraction holds:

U, -+ X(@) = Sill2®) < 100 = Stll 2wy, >0, (1.6)
for the shift X (t) satisfying

2a + ||g" Lo ®)

20— —uy) / U@, x+X@) — S1(x))S; (x)dx,

—00

X(t)=0—

X(0)=0. (1.7)
Furthermore, if Uy — S1 € L' N L*(R), we have the following estimate for all t > 0,

CollUo — Sill 2wy
Co+ 14Uy — Sill 2wy’

U@, -+ X (@) = Sill 2wy < (1.8)
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where Co := C(1+ ||Up — Sillp1g) + 100 — S1 ”iZ(R)) and C is a positive constant only depending on the end points
u_, uy and the flux A.

Remark 1.1. The existence and uniqueness of the curve X are guaranteed by the Cauchy-Lipschitz theorem. More-
over, X is Lipschitz. Indeed, since A” > 0, it follows from (1.4) that S| satisfies uy < S| <u_ and

S1=—0(S1 —ux)+ A(S)) — A(us)

_ Ao) = Alwy) _ Aus) = AS)
== ST T ) <

(1.9)

In particular, since

Aus) — A(S
Aws) =AY ) as St uy.
U+ — S

for some positive constants c4, we have
Aw—) — Aluy)  Alusx) — A(S1)
U_ —uy uy — Sy

(us —51)(

) ~xcir(usr —81) as Sy — uy,

which implies
IS1(§) —u+x| ~exp(—c+|§]) as§ — Foo.
This yields Si € L2(R), therefore, using (1.6), we have

2a + ¢

[X(#) —ol < m||U(f,'+X(l‘)) =8 ||L2(R)||Si||L2(R)

<CIUG@ -+ X®) = Sill 2w
<CllUo = Sill12w)-

As a second result, we construct a strictly convex flux A, for which a viscous shock of (1.1) does not induce a
L?-contraction up to a shift. This is stated in the following theorem.

Theorem 1.2. For any given u_ > u., there is a smooth strictly convex flux A and smooth initial data Uy with
Up— 81 € LZ(R) such that for any Lipschitz shift X, there exists T* > 0, such that the solution U to (1.1) with A and
Uy satisfies

U, -+ X0) = Sill 2@ > 1Uo = Sill 2y, 0<t<T*.
As an application of Theorem 1.1, the contraction (1.6) and decay estimate (1.8) can be applied to the study on the
inviscid limit to the shock waves. In [7], Choi and Vasseur considered the following equation
QU+ 0, A(U) =ed> U®, 1>0, xR,
U?(0, x) = Up(x). (1.10)

They showed that the rate of convergence in L up to a shift, to an inviscid shock, is of order /g log (1/¢). Let us
denote

u_ ifx <0,

uy ifx>0. (1.11)

So(x) = {

Theorem 1.1 improves the rate of convergence, and simplifies the assumptions in their result. Indeed, as a third
result, we show the following theorem.

Theorem 1.3. Under the same hypothesis of Theorem 1.1, the solution U® to (1.10) verifies

IU®(t,) = So(- = YDl 2 < 1Uo = Soll 2 + Ce, >0, (1.12)
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where the shift Y is defined by Y (t) = ¢ X (t/¢) from the shift X defined in (1.7).

Moreover, if

/ ’Uo(x) - So(x))zdx +/ ‘Uo(x) — So)|ax < ce, (1.13)
R R
then we have
. = Y(t)\ |2 ce’/?
HU (z,-)—sl( - ) LS (20 (1.14)

The rest of the paper is organized as follows. In Section 2, we present our framework and the relative entropy
method. The Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we prove Theorem 1.2 by constructing a
specific flux function and initial data. In Section 5, we present the proof for the Theorem 1.3.

2. Preliminaries
2.1. Moving frame
For simplicity of the proof of the main results, we consider a moving framework along the drift Lipschitz curve X.
More precisely, we employ a new function V as follows:
Vi, x):=U, x+ X)),
where U is a solution to (1.1). Then, we can easily check that V verifies

WV —X(0)dV+8,AV)=02V, t>0, x€R,
V(0, x) = Up(x). 2.1)

2.2. Relative entropy method

In this part, we present the L2-framework as the following lemma, based on the relative entropy method.
Lemma 2.1. Let Sy be a viscous shock given by (1.4). Then, the shock S is a monotone function and y = S1(x) is an
admissible change of variable. If we use w defined by

w(t, S1(x)) ==V (£, x) — 51 (x), (2.2)

then the solution V of (2.1) satisfies
o
d 2
7 |V —S81]°dx + D(t) =0, (2.3)
—0o0

where the dissipation D(t) is given by

u—_

D(t)=2(X(t)—a)/wdy—2/A(u)+y|y)dy

Uy Uy
u—

2 [ (40) = ) =0y o)) By, 2.4

Ut

The remaining part of this section is devoted to the proof of Lemma 2.1. Even though our framework is based
on the L%-norm, we here present the general case of the relative entropy 7(-|-) for a given entropy 1. Then, we will
focus on the quadratic entropy and explain why the choice of quadratic entropy is essential. Concerning the following
relative entropy method, we refer to [9,18] and [32].
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For any strictly convex entropy 7 of (1.1), we define the associated relative entropy function by
n(ulv) =n@) — ) —n' () —v).
Let F(-, -) be the flux of the relative entropy defined by
F(u,v) =G) — G) — ' ()(A) — A(v)),

where G is the entropy flux of 1, i.e., G'=n'A".
We want to investigate the relative entropy between the solution V of (2.1) and the viscous shock S; defined in
(1.4). We first notice that since S; does not depend on ¢,

INVIS =" (V) —n'(S1))3, V.
We add the term concerning S; to the above equation by using (1.2) and 9,7 (u|v) = —n" (v)(u — v), that is,
INVISH ="' (V) =1 (S V + 1" (SHV — S (=0 S + A(S1) — SP).
Then we use (2.1) to get
IM(VISH) =0 (V) =0 (SONX () V — A'(V)3,V + 3, V)
+ 0" (SHV = S)(—aS; + A (S1)S] — ).
If we use the relative flux defined by
Aulv) :=Aw) — Aw) — A'(v)(u —v),
and
WF(V,S1)=n"(V)A(V)a,V —1'(S)HA'(S1)S]
—1"(S1) S (A(v) — A(S1)) — 0" (SDH(A' (V)3 V — A'(S1)S)),
then we have
=0, F(V,8) =" (SNSTAV|S) = =" (V) = ' (S1))A (V)3 V + 1" (S)(V — S A'(S1) S}
Thus we have
am(VIS1) =X (V) = n'(51)0V —on" (SH(V — S1)S] — 9, F(V, S)
=" (SDSTAVIS) + (' (V) = ' (S1))8xx V — 1" (SD(V — S1) ST (2.5)

We now integrate (2.5) in x to get

[e.e]

d
< [ nvisnax
=% [ /)= w s vdr—o [ 'S - spsids
- [wsosiawisas+ [ (00 =r sV = r GO - sosi ). 26)

From now on, we only consider the quadratic entropy 1 («) = u?. This choice ensures that the parabolic term induces
a positive dissipation. Moreover, since

00 00
2X (1) / (V=581 Vdx — 20 / (V —81)Sjdx
—o0

—00

=X(1) / 3 (V — S1)%dx +2(X(1) — o) f (V — 81)S)dx,
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we can reduce (2.6) to

%/|V—Sl|2dx=2(X(t)—a)/(V—Sl)sgdx—zfA(V|sl)sgdx
—2/ 18, (V — S1)[*dx
= —D(®), 2.7

where the D(t) denotes the dissipation term.
We now use the change of variable y = S;(x), which is admissible thanks to (1.9). Thus, if we define w as the
perturbation V — S7 by

w(t, S1(x)) =V, x) — S1(x),
then the dissipation D(z) in (2.7) becomes (2.4). This completes the proof of Lemma 2.1.

3. Proof of Theorem 1.1

We first prove the contraction (1.6) for any initial perturbation Uy — S; € L2, then derive decay estimate (1.8), for
which we only need an additional assumption Uy — S} € L'.

3.1. Contraction for viscous shock
In this part, we show the contraction by estimating the dissipation D(¢) to be nonnegative. We consider the per-
turbed quadratic flux A(U) in the sense (1.5), i.e.,
A(U)=aU?+g(U), a=>0, (3.8)

with any C2-function g satisfying " lLom) < %a.
For the flux A in (3.8), the dissipation D(#) in (2.4) becomes

u—

DO =208 o) [wdy =2 [ (aw? + gw+ )~ g0) - ¢ yw)dy

Uy uy

u—
+2a/<u_ — N —up)ldywl*dy
U

u_

=2 f (20— o) - EEELEED o)) g,y
Uu_ —uy

Uyt

4
= ZI"'
k=1

We want to show D(¢) > 0 by using a shift function X defined by (1.7). Then, by (2.2), we have

J

_2a+ 18"l

X o=~

/ V1, x) = S1()S, (¥)dx

Uu—

2 i s
_ a+1g"lL (R)/wdy.
20— —uy)

58
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u—

1
We denote by w the mean of w, i.e., w(t) := — / wdy, where o := u_ — u is the shock strength.
[0

Ut
Thus we have

Ti = Qa+||g" | Lo)aw?.

For 7,, since
2
/ i w
lg(w+y) —g(y)—gWVwl =g ||L°°7,

we have
u_
T > —Qa+11g"llL>) / widy.
Ut

We now combine (3.9) and (3.10) to get
u_ u_
T+ To = Qat g ) (o - / wldy) =~ (2 + ||g”||Loo)/<w — )*dy.
Uy Uy

For Z4, we rewrite J as

J— (g(y) —glu) guy)— g(uf))(y

y—u_ Uy —u_

—u_).

g —gu-)
)—U_

Applying the Taylor theorem to F(y) := and then to g, we have

1
J=F ) —up)(y—u_)= —Eg”(y**)(y —uy)(y—u_),

which yields

u— u—
1Z4| < 2/ T8y widy < llg" Il /(M— — N —up)ldywldy.
U4 U4

Therefore, the dissipation D(f) can be estimated as

D) = —Qa+ 1"l @) / (w — )dy

Uy

u—
+Qa— 18" IL~®) /(u— — N —up)ldywl’dy.

Ut

145

(3.9)

(3.10)

@3.11)

To complete D(t) > 0, we use the weighted Poincaré type inequality in the following lemma. Indeed, applying

Lemma 3.1 to the above estimate, we have

D(t) > x/(u_ — V) —up)dywldy,

where
h=2a—11|g" | L@

Since [|g” || L ®) < %a, we have

(3.12)
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0
d f|v Si?dx =—D(1) <0
dt Hhax= -

which implies the contraction (1.6). Hence it remains to prove the following lemma.

Lemma 3.1. For any u € C'([u, u_]), the following inequality holds.

/(u _ I/—l)zdx < %/(u_ —x)(x —I/l+)|u/|2d-x,

where u is the mean of u over [uy,u_].

Proof. Let v :=u — . We start with the fundamental theorem of calculus:
X
v(x) =v(y) + f v'(z)dz.
y

Since v has mean zero, integrating this equality in y, we have
u— x
1
v(x) = - / / v'(2)dzdy. (3.13)
o

To compute the L?-norm of v, we use the indicator function x I(a,b) defined on the interval I (a, b) := [min{a, b},
max{a, b}], i.e.,

V) xay ifa<b,
Xi(a.b) = X[b,a] ifa>b.
Then, we have from (3.13) that

U_ U_ x

/ zdx——/(//v(z)dzdy( dx

Ut Uy y
u— uU—_U_—

1 2
= @/)//Iv’(z)lxm,y)dzdy‘ dx

Uy Uy U4
— u— u—

U_ u_
/ [ wsdzar)( [ [ W@ Papdzdy)ax
Uy Uy Uy Uy Uy

where the last inequality is due to the Cauchy—Schwarz inequality.
Notice that it follows from the definition of ;4 p) that for any integrable function f and fixed x € [u4, u_],

u—_u—

//Xl(x @ f(x,y,2)dzdy = //X](X >)fdde+//X1(x y fdzdy
M+ M+ M+ M+ X M+
//fdzdy+//fdzdy

Uy y

Thus, applying the equality above with f = 1, [v/(z)|? twice, we have
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u—

u— Uu— u— u_
1
E/.<//Xl(x’y)dZdy>(f/|U/(Z)|2X1(x,y)dzdy)dx

Uy Uy Uy Uy Uy
u—y

:%7(f/xldzdy+x/xfldzdy)

Uy Uy y

I

X X u_— y
« / / W () Pdzdy + f / /@) Pdzdy )dsx.

ug y

11

We use the Fubini’s theorem to compute

X Z U_ u_—
11://|v’(z>|2dydz+//|v’(z)|2dydz
X Z

Uy U4

= /(Z —u+)|v/(z)|2dz+/(u_ — )V (2)*dz.

Since

;o Gmuy)? L@ —u_>2’

2 2

we have

u_ U_ x

1
/vzdx < 352 // ((x - u+)2 + (x — u_)2>(z - u+)|v/(z)|2dzdx
U4 Ut U4

+ glz /f ((x —up)’ + (x - u_)z)(u_ — )|V (2)Pdzdx
Uy X

=T +1.

Using the Fubini’s theorem again, we have

1 u_— u_
n=0s [ ( / (= + (=D )z =)l )Pz
Z

Ut

J

Since the simple computation yields

J= /(2x2 — 2+ +u_)x+ (ui +u?))dx

z

1

= §(u_ —2) (2(u2_ +u_z+2%)— 3y +u_)(u—+2z)+ 3(u3_ + u2_)>
1 2 2 2

= g(u_ —2)QuZ +3uy +27" —3u_uy —3uyz—u-_3),

we have

147

(3.14)
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u_
1
I = 2 /(2u2_ + ?>u_2|r +272 — Bu_uy —3uyz—u_z)(u_ —z)(z — u+)|v’(z)|2dz.
Ut

By using symmetry of Z; and Z,, we can easily get

u_
1
T = P /(3u2_ + 2ui_ +272 — B3u_uy —usrz —3u_z)(u_ —z)(z — u+)|v’(z)|2dz.
Ut

Indeed, if we use the notation

b
I(a,b):= /((x — @) + (x = b))z — @)V (2))2dx,

the Z; in (3.14) can be written as 7| = # f;; I (u4,u_)dz. Then we use the Fubini’s theorem to get

—L [ _ 2 _ 2 _ ’ 2
L= | [ (@ =up)’+ & —u))u- =9 @) dxdz

Uy U4
u—_
1
= 702 T(u_,uy)dz.
Ut

Finally, we combine Z; with Z, above to have

u— Uu—_

1

[ ar= s [ (s =0 44 - w6 =) - 9 - wol @ Pz
6

Uy Uy

7 4 2
< gf(u, ~DE—ulV@Pdz = — [ (- =@ —up) W@ dz
Uy U+

u_
5 / 2
SE (u——2)(z—up)v (2)|dz. a
U
Remark 3.1. This kind of inequality has been handled in a more general setting [8], but does not provide a generic
constant concretely as %(< 1) in our inequality.
3.2. Convergence toward viscous shock

In this part, we derive the decay estimate (1.8). First of all, since A > 0 in (3.12) by the assumption ||g" || Lo®) <
%a, we have a positive dissipation as

0 u_
d
& v =sitar =i fw - no - uopubay. (3.15)
—00

U

We see that (1.4) and (1.5) yield that
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a/(u_ — V) —up)dywl*dy

U+
u—

= [ (40 = A = o3~ ) )13, wPdy

U
# [ (800 = gty = EELZED o) way.
u_ —uy4

Moreover, using the change of variable (2.2) and (3.11), we have

u_ o0

1

@+ Eng”nmR))/w — DO —upldywlPdy > f 19, (V — $1)dx,
U+ —00

which together with (3.15) implies that
o0 o0
d 2 2
o |V —81)%dx < —« [0, (V — SD|“dx, (3.16)
—00 —00

where
A
= >
a+ 118" lLmw)
To get the decay estimate, we will use the Gagliardo—Nirenberg interpolation inequality:
2/3 1/3

”V - Sl ||L2(]R) S C”V - Sl “LI(R)”aX(V - Sl)"LZ(R). (317)
To this end, we first control ||V — S1/11(r) as follows.
3.2.1. L'-uniform bound of V — S
We here use the Lemma 3.2 below for the L!-contraction result to get the L'-estimate of V — Sj.
For that, we decompose V — S| as a sum of two parts:
Ve = $1@) = (V) = SiG =0+ X@) + (81— o+ X(0) = 1)
=wi + wy, (3.18)

where o is the velocity of S; and X is the shift satisfying (1.7).
To show L!-uniform bound of w;, we use the following lemma on the L!'-contraction for solutions to the scalar
viscous conservation laws. We refer to [27] for its proof based on Kruzkhov entropy pair (see also [17]).

Lemma 3.2. Let u and v be solutions to (1.1) with Lipschitzian flux A. If the initial data ug, vg satisfy ug —vo € L' (R),
then the following L'-stability holds:

lu —vllprgy < lluo —voll 1wy, ¢ >0. (3.19)

Applying (3.19) to our solutions U (¢, x) and S;(x — ot) of the Burgers equation (1.1), we get
U = S1(- —oDllp1w) < 1Uo = StllL1(w)-
Since U (t,x) =V (t,x — X(t)), we use the assumption Uy — §; € L! to have
lwillgr =1V, = X(@) = Si1(- —oD)lp
=[U@ ) —=Si(—on)lp
<1Uo—Silpr. (3.20)
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If we denote
t(t)=ot— X(1),
we have
wa(t, x) =81 (x — (1)) — S1(x).

Since S is decreasing, w»(t, x) has the same sign as 7(¢) and
[ unlax = senceon [ (5166 = 70 = 5160 )
R R

—1(t)
:sgn(r(t))/ / 0yS1(x + y)dydx
R 0
[z()]
=—/ / dyS1(x +y)dydx.
R 0

Then, we use the Fubini’s theorem and S (+00) = u4 to get

/ lwaldx = |t ()[(u— —uy) =lot = X —uy).
R

We now need to show the L*°-bound of X (t) — ot to get the L!-uniform bound of w,.

3.2.2. L*®-bound of X(t) — o't
We start with

lwa ()17, = / 1S1(x = 7) = S1(x) P dx =: F(1),
R

for T = ot — X (¢). The function F, as function of the variable 7, is even (as it can be proven by the change of variable
y =x — t in the integral). For T > 0, we have

oF 051
—@=2[S1x—1) =S )]| ——— | (x —1)dx
Jat 0x
R
0S 0S
=2 2 (y)dy il (x —1)dx
ay ax
R x—1

X+t

zzf / (=8)) (0 (=S}) (¥) dy dx >0,
R x

which is positive since (—S/) is positive. Moreover for t > 1, we have

x+1
oF
a—r(r) > 2/ / (=S (=SD(x)dydx = > 0.
R x
Hence, for 7 > 1

F)zF()+p(x-D=p(x -1,

and
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F
|T| S ﬂ + 17
B
which is still true for T < 1, since this is obvious for 7 € (—1, 1), and F is even.
For |7| = |ot — X (¢)|, this gives

IX(t) —ot| < %/|w2(t,x)|2dx +1.
R

We now use
2 2 2
[V =817 = (w1 +w2)” = wy — 2|wiwa|,

and (1.6), (3.20) and ||S1||p> =u— —u4 to get

IX(t) —ot| < %/lwz(t,x)|2dx+l
R

—_

IV = S1017, + 2llwiwall 1) + 1

=

< —(1Uo = Sil172 + 2wzl lwill 1) + 1

< 5o~ Sill72 +4@— —u)|Uo = Sill) + 1.

Therefore, for all ¢, we have
X (1) —ot] < C(L+ Uo = Sill72+ U0 — Sill 1),

where C > 0 is a generic constant only depending on ©_, u4 and the flux A.
Hence we have from (3.18) and estimates above that

V=Sl =CA+ U — Slll%z +1Uo = Sillp1)-
For convenience, we put
Co:=C(1+Uo— Sill72 + U0 — Sl 1)
We now get from (3.17) that

IV = S113, < CIV = S112, 182 (V = SD I 12 < C3 1 (V — SD I 2.

Thus it follows from (3.16) that
L1y = S112, = —alldu(V = SOIE < =51V = Sil5.
dt L L Cé L
This inequality implies the decay estimate
cUo— Sil1t,
Co+1tlUo—Silf,

IV =S$ill}, <

Using the inequality 2(a + B)1/* > a!/* 4+ g1/4, we have
CollUo — S}, >1/4
C3+11Uo — S1lI%,
2C -
- ollUo = Sill 2 P
Co +t1/4|Up — Sl 2

IV =il = (

which completes the decay estimate (1.8).

151

(3.21)
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4. Proof of Theorem 1.2

In this section, we construct a strictly convex flux A and initial data Uy as a small perturbation of viscous shock
S1 in order to make the dissipation D to be negative for very short time, which definitely complete the proof. Without
loss of generality, we only consider the simple case when two endpoints are given by uy = —a, u_ = a for given
a > 0. Since we may construct the convex flux A satisfying A(—a) = A(a) = 0 below, the shock speed o = 0. Thus
the associated dissipation D in (2.4) becomes

D(t)_ZX(t)/wdy 2/A(w—|—y|y)dy 2/A(y)|8yw|2dy 4.22)

4.1. Small perturbation of S

For a given ¢ > 0, we consider an initial e-perturbation w(0, y) of Sy, that is, we replace w(0, y) by e¢(y), where
¢ is a function of order O(1). Doing the Taylor expansion of A, the relative flux A(e¢ + y|y) in (4.22) can be written
as

Aep +yly) = Alep +y) — A(y) — A'(y)e¢p
= %A”(y)82¢>2 +0(&%).

Thus, under the e-perturbation framework, the initial dissipation in (4.22) becomes

a

D) =2X(0) f egdy —2 f Aled + yly)dy —2 f A)led/IPdy

=2X(0) / sdy -2 ( [ A 0ioPdy+2 [ 409 Py +0). @.23)

4.2. Construction of A and Uy

For given « € (0, a), we first define two continuous functions Aa and ¥, by

—a—x if—-a<x<-—-a+a,
Ag(x) =1 —«a if—a+o<x<a-—a,
xX—a ifa—a<x<a,

—x+a f—a<x<-—-a+a,
Ya(x) = VLR if—at+a<x<a-—a,

Ja—x ifa—a<x<a.

First of all, we compute formally

a

/ AL Wa () Py = / Oata + Sa—a) ValPdy

—a

= Yo (—a +a)* + |¥a(a — @)* =20,

a a—

[ Zemsray=-2 [« ray+ /(y—a)(
0

—a

J_)zdy]

202 o

a—a 2
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Then, we choose o, < % small enough so that

a a
f Al (D Wa, Pdy +2 / A, 1Y, 17dy > 0. (4.24)
—da —da

Since the inequality (4.24) is strict, we can consider the smooth approximations of Aa* and v, , for which the
inequality (4.24) is still true by rigorous computation. More precisely, by using the Gaussian mollifier, there exists the
smooth approximations A and ¢ of A,, and v, respectively, such that

a a
A">0, /¢dy = / Va,dy =0,
—a —a
and the inequality (4.24) still holds as
a a
[ arieray+2 [ acig Py »o.
—a —a

We can still choose sufficiently small &g > 0 such that

/ A |pPdy +2 / AW Pdy + O(eo) > 0. 4.25)

Since f_aa ¢dy =0, it follows from (4.23) and (4.25) that
a a
DO =~e3( [ A" 0ioPdy +2 [ A Py + Oen)) <0. (4.26)
~a —a
If we consider an initial data Uy constructed by Up(x) = 9@ (S1(x)) + S1(x), then we have
Uo(x) — S1(x) = €0 (S1(x)) = 0 (y) = w(0, y),

which implies that D(0) < O from (4.26) for the flux A and the initial data Uj.
Since D(t) is smooth for ¢ > 0, for any Lipschitz function X (), there exists a small time 7* depending on the
Lipschitz constant of X (¢) such that D(¢) < 0, for 0 <t < T*. Hence we conclude the proof.

5. Proof of Theorem 1.3

In this section, we prove the Theorem 1.3. We begin by recalling the inviscid problem
QU+ 0, A(U) =ed> U®, >0, xR,
U®(0, x) = Up(x). (5.27)
We here present two kinds of improvements. The first improvement (1.12) is based on the contraction (1.6) and the
second improvement (1.14) is related to the decay estimate (1.8).

5.1. Improvement based on the contraction

For a solution U¢ to (5.27), we consider
U(t,x) :=U°®(et, ex),
then U is a solution to
QU+ 0, AU)=03>U, 1t>0, xeR,
U0, x) =Upy(ex).
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We now use the contraction property (1.6) to get
U@, ) =81 =X 2wy < 100 — Sill2wy, >0,

where the shift X (¢) verifies (1.7).
Then, by rescaling t — é and x — % ie.,

t
f|U(t x) = Si(x — X(0)2dx = - f‘U“f(; ) — 85 ()) dx, (5.28)
where the shift ¥ is defined by Y () =X (t/¢), we get
Y(t) :
US(t,)— S ‘ ” e .
oty = s L = 1O
Therefore we have
1U°(t, ) = So- = YOl 2w
Y(t) Y ()
&
- —So(-—Y
=|vra -2, = - s -],
Up — Si1(- C
= [Uo 1(8)‘L2(R)+ Ve
<|vo—s HS — 8- c
=< ||Uo 0L2(R)+ 0 1(8) L2(]R)+ NG
Up— S C
=< | Uo OL2<R)+ NG

where we have used the fact that for any function g of ¢,

— B
)

5125 = 50—

- VelISt = Soll2w)-
5.2. Improvement based on the decay estimate

For the other improvement, we use the decay estimate (1.8) to get
U, ) = Si¢ = X @)l 2
- CIU©,) = Sill2(1+ U0, ) = Sill 1 + U0, ) = S11%,)
- L+ 1/41U0, ) = Sill 2 '

Then, by the rescaling (5.28), we get
(t)

IUE@. ) — Si(——) .2

B Cs3/4||Uo = S1(D 2+~ (100 = S1(D) g1 + 1Uo = S1()1175))
- e+ 114Uy — S1(2)l 2 '

If we consider the small initial perturbation as
1Uo — Soll 1 + 1Uo — Soll7» < Cie, (5.29)
we have

Uy — sl(é)nu <Uo— Soll 1 + 1150 — Sl(;)uu <Ce,

100 = S1()72 < 100 = Soll 2 + 150 = $1(D)7 = Ce,

which yields
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Y@

e Ce2|Uo — $1()112,
L2 = &3/2 1112y — Sl(g)”iz
C85/2
j .
2+ 12(81(5) — Soll2 — 100 — Sol12,)

U, ) — Si(-

If we consider some constant C in (5.29) such that

1 .
C1 <181 — Soll?, = SIS - Soll2,

then we have
C85/2
32 +112(||S) = Soll3, — Ci)e

C83/2
= el/2 4 41/2°

Y@

IUE (. ) — Si(- =
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