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Abstract

For the nonlinear Dirac equation in (1 + 1)D with scalar self-interaction (Gross–Neveu model), with quintic and higher order 
nonlinearities (and within certain range of the parameters), we prove that solitary wave solutions are asymptotically stable in the 
“even” subspace of perturbations (to ignore translations and eigenvalues ±2ωi). The asymptotic stability is proved for initial data 
in H 1. The approach is based on the spectral information about the linearization at solitary waves which we justify by numerical 
simulations. For the proof, we develop the spectral theory for the linearized operators and obtain appropriate estimates in mixed 
Lebesgue spaces, with and without weights.
© 2015 
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1. Introduction

Models of self-interacting spinor fields have been appearing in particle physics for many years [19,16,15,17]. The 
most common examples of nonlinear Dirac equation are the massive Thirring model [35] (vector self-interaction) 
and the Soler model [30] (scalar self-interaction). The (1 + 1)D analogue of the latter model is widely known as 
the massive Gross–Neveu model [23]. In the present paper, we address the asymptotic stability of solitary waves in 
this model. We require that the nonlinearity in the equation vanishes of order at least five; the common case of cubic 
nonlinearity seems out of reach with the current technology; there is a similar situation with other popular dispersive 
models in one spatial dimension, such as the Schrödinger and Klein–Gordon equations (see [6,7,24,13,20] and the 
references therein).
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We only consider perturbations in the class of “even” spinors (same parity as the solitary waves under consider-
ation). The restriction to this subspace allows us to ignore spatial translations and the ±2ωi eigenvalues which are 
present in the spectrum of the linearization at solitary waves [12]. This paper therefore may be considered as the 
extension of [29] to the translation-invariant systems (in that paper, the potential was needed to obtain the desired 
spectrum of linearization at small amplitude solitary waves).

A similar result – asymptotic stability of solitary waves in the translation-invariant nonlinear Dirac equation in 
three spatial dimensions – is obtained in [3]. Authors base their highly technical approach on a series of assumptions 
about the spectrum of the linearizations at solitary waves; these assumptions cannot be verified yet for a particular 
model. The authors also restrict the perturbations to a certain subspace to avoid spatial translations and issues caused 
by the presence of ±2ωi eigenvalues [12] and only consider the solitary waves with ω > m/3. Contrary to [3], our 
results are obtained for models for which the spectrum is known (albeit numerically); our technical restriction is 
|ω| <m/3.

We briefly review the related research on stability of solitary waves in nonlinear Dirac equation. There have been 
numerous approaches to this question based on considering the energy minimization at particular families of pertur-
bations, but the scientific relevance of these conclusions has never been justified; see the review and references in e.g. 
[2,31]. The linear (spectral) stability of the nonlinear Dirac equation is still being settled. According to [2,11], one 
expects that the linear stability properties of solitary waves in the nonrelativistic limit of the nonlinear Dirac equation 
(solitary waves with ω�m) are similar to linear stability of nonlinear Schrödinger equation; in particular, the stability 
of the ground states (no-node solutions) is described by the Vakhitov–Kolokolov stability criterion [36], ∂ωQ(ω) < 0, 
with Q(ω) = ‖φω‖2

L2 the charge of a solitary wave. Away from the nonrelativistic limit, the border of the instability 
region can be indicated by the conditions ∂ωQ(ω) = 0 or E(ω) = 0 (the value of the energy functional at a solitary 
wave), see [4]. The instability could also develop from the bifurcation of the quadruple of complex eigenvalues from 
the embedded thresholds ±i(m + |ω|) as in [8], which in particular can take place at the collision of thresholds at 
λ = ±im when ω= 0 as in [22]. We do not have a good criterion when such bifurcation takes place.

Let us mention that our results are at odds with the numerical simulations in [31] which are interpreted as instability 
of the cubic Gross–Neveu model (k = 1) for ω ≤ ωc ≈ 0.56, of the quintic model (k = 2) for ω ≤ ωc ≈ 0.92, and of 
the k = 3 model for all ω < m. We expect that the observed instability is related to the boundary effects, when 
certain harmonics, instead of being dispersed, are reflected into the bulk of the solution, where the nonlinearity creates 
higher harmonics; this process keeps repeating, and eventually the space–time discretization becomes insufficient. 
This explanation is corroborated by the fact that the characteristic instability times grow almost proportionally with 
the size of the domain (see the instability times for the one-humped solitary wave with k= 1, ω= 0.5 in [31, Table II]), 
suggesting the link not to the linear instability but to the boundary contribution. Our numerics show no complex 
eigenvalues away from the union of real and imaginary axes in the Gross–Neveu model with 1 ≤ k ≤ 9. The presence 
of real eigenvalues (as on Fig. 2) agrees with the Vakhitov–Kolokolov stability criterion, dQ(ω)/dω > 0.

The approach in our paper is standard, being based on modulation equations, dispersive wave decay estimates, and 
the Strichartz inequalities. Instead of explaining our approach, we provide a detailed outline of the paper, which will 
elucidate the main steps and ideas involved in the proof. In Section 2, we state the Gross–Neveu model, describe the 
standing wave solutions and their properties, and formulate our main result on the asymptotic stability. We provide 
numerics which suggest that, at least for certain range of the parameters, we have a favorable for us spectral picture: 
that is, the absence of unstable spectrum, as well as the absence of marginally stable point spectrum, except at zero. 
In Section 3, we obtain the form of the linearized operator around the solitary wave for the corresponding nonlinear 
evolution and obtain the modulation equations. Section 4 is the most challenging from a technical point of view. 
Therein, we develop the spectral theory for the linearized operator. We use the four linearly independent Jost solutions 
to construct the resolvent explicitly. This allows us to obtain (among other things) a limiting absorption principle for 
the linearized operator (Proposition 4.14), which is crucial for the types of estimates required to establish asymptotic 
stability. (Let us mention a related result [21] on local energy decay for the Dirac equation on one dimension, which we 
will also need.) In Section 5, we use the spectral theory developed in the previous section to establish various dispersive 
estimates for the linearized Dirac evolution semigroup. Namely, we establish weighted decay estimates, which in turn 
imply Strichartz estimates. We also state and prove estimates between Strichartz spaces and weighted L∞

t L
2 spaces 

– in all this, we have been greatly helped by the Christ–Kiselev lemma and Born expansions. In Section 6, we present 
the fixed point argument in the appropriate spaces, which finally shows well-posedness for small data for the equation 
of the residuals.
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2. The model and the main results

2.1. Generalized Gross–Neveu model

The generalized Soler model (classical fermionic field with scalar self-interaction) corresponds to the Lagrangian 
density

L = ψ̄(iγ μ∂μ −m)ψ + F(ψ̄ψ), ψ(x, t) ∈CN, x ∈ Rn, (2.1)

where F ∈ C∞(R), F(0) = 0, ψ̄ is a common notation from the Quantum Field Theory,

ψ̄ =ψ∗γ 0, (2.2)

with ψ∗ being the Hermitian conjugate, and γ μ, 0 ≤ μ ≤ n, are the Dirac gamma-matrices:

γ μγ ν + γ νγ μ = 2hμνIn, 0 ≤ μ, ν ≤ n,
with hμν = diag[1, −1, . . . , −1] (the inverse of) the Minkowski metric tensor and In the identity matrix. The one-
dimensional analogue of (2.1) is called the Gross–Neveu model; from now on, we set

n= 1, N = 2.

The equation of motion corresponding to the Lagrangian (2.1) is then given by the following nonlinear Dirac equation:

i∂tψ =Dmψ − f (ψ∗βψ)βψ, ψ(x, t) ∈ C2, x ∈ R, (2.3)

where f = F ′ ∈ C∞(R), α = γ 0γ 1, β = γ 1, and Dm = −iα ∂
∂x

+ βm is the Dirac operator, with α, β the self-adjoint 
Dirac matrices satisfying

α2 = β2 = I2, αβ + βα = 0.

A particular choice of the Dirac matrices is irrelevant (this is known as the Dirac–Pauli theorem, see e.g. [34, 
Lemma 2.25]). For definiteness, we take

α = −σ2 =
[

0 i

−i 0

]
, β = σ3 =

[
1 0
0 −1

]
.

Without loss of generality, we will also assume that the mass is equal to m = 1. Then one has

Dm = −iα ∂
∂x

+mβ =
[

1 ∂x
−∂x −1

]
. (2.4)

The Hamiltonian density derived from the Lagrangian density (2.1) is given by

E(ψ, ψ̇)= ∂L
∂ψ̇
ψ̇ −L. (2.5)

The value of the energy functional

E(ψ)=
∫
R

E(ψ, ψ̇) dx (2.6)

is (formally) conserved for the solutions to (2.3). Due to the U(1)-invariance of the Lagrangian (2.1), the total charge 
of the solutions to (2.3),

Q(ψ)=
∫
R

ψ∗(x, t)ψ(x, t) dx, (2.7)

is also (formally) conserved.
We mention recent results on local and global well-posedness of nonlinear Dirac equation on one dimension: [33,

25,9,28,18].
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2.2. Existence and properties of solitary waves

Equation (2.3) can be written explicitly as{
i∂tψ1 = ∂xψ2 +ψ1 − f (|ψ1|2 − |ψ2|2)ψ1,

i∂tψ2 = −∂xψ1 −ψ2 + f (|ψ1|2 − |ψ2|2)ψ2.
(2.8)

In the abstract form, we write (2.3) as

i∂tψ =Dmψ + N(ψ), (2.9)

with the Dirac operator

Dm = −iα∂x + β =
[

1 ∂x
−∂x −1

]
and the nonlinearity

N(ψ)=
[−f (|ψ1|2 − |ψ2|2) 0

0 f (|ψ1|2 − |ψ2|2)
]
ψ. (2.10)

Definition 2.1. Solitary waves are solutions of the form

ψω(x, t)= φω(x)e−iωt , φω ∈H 1(R,C2), ω ∈ R. (2.11)

Substituting this Ansatz into (2.9), we see that φω solves

ωφω =Dmφω + N(φω). (2.12)

The existence of solitary waves follows from [14,1]:

Proposition 2.2. Let F be the antiderivative of f ∈ C∞(R) such that F(0) = 0. Assume that for given ω ∈ R, 0 <
ω < 1, there exists Γω > 0 such that

ωΓω = Γω − F(Γω), ω 	= 1 − f (Γω), ωs < s − F(s), for s ∈ (0,Γω).
Then there is a solitary wave solution ψω(x, t) = φω(x)e−iωt to (2.3), with

φω(x)=
[
v(x,ω)

u(x,ω)

]
, v(·,ω), u(·,ω) ∈H 1(R). (2.13)

This solution is unique if we require that v, u are real-valued, v even and positive, and u odd. Both v and u are 
exponentially decaying as |x| → ∞ and satisfy |u(x, ω)| < |v(x, ω)|, x ∈ R.

Moreover, there is cω <∞ such that

|φω(x)| ≤ cωe−δω|x|, x ∈ R, (2.14)

where

δω =
√

1 −ω2. (2.15)

Similarly, there is cω <∞ such that

|∂ωφω(x)| ≤ cω〈x〉e−δω|x|, |∂2
ωφω(x)| ≤ cω〈x〉2e−δω|x|, x ∈R, (2.16)

|∂x∂ωφω(x)| ≤ cω〈x〉e−δω|x|, |∂x∂2
ωφω(x)| ≤ cω〈x〉2e−δω|x|, x ∈ R. (2.17)

Proof. The proof is given in e.g. [1, Lemma 3.2]. The sharp rate of decay (2.14) can be proved as in e.g. [10, Ap-
pendix A]. The bounds (2.16) on |∂ωφω(x)| and |∂2

ωφω(x)| follow from differentiating (2.12) with respect to ω and 
applying similar techniques. Applying ∂ω-derivatives to (2.12) and using the bounds (2.16), one obtains (2.17). �
Remark 2.3. According to Proposition 2.2, for f (s) = αsk with any α > 0 and k ∈N, there are solitary wave solutions 
for ω ∈ (0, 1).
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2.3. Main result

Let

X = {
φ ∈ L2(R,C2); φ1(x)= φ1(−x), φ2(x)= −φ2(−x)

}
. (2.18)

Assumption 2.4. Assume that f ∈C∞(R) is such that f (s) = O(sk) for |s| ≤ 1, with k ≥ 2, and that there is an open 
interval Ω ,

Ω ⊂
(

− 1

3
,

1

3

)
,

such that the following takes place:

(i) For each ω ∈ Ω , there are solitary wave solutions ψω(x, t) = φω(x)e−iωt , φω ∈ H 1(R, C2), to (2.3), with the 
map Ω →H 1, ω �→ φω being C2.

(ii) Non-degeneracy:

∂ωQ(ω) 	= 0, ω ∈Ω.
Here Q(ω) is the value of the charge functional (2.7) evaluated at the solitary wave φω(x)e−iωt .

(iii) The linearization of (2.3) at a solitary wave with ω ∈Ω has no eigenvalues with nonzero real part and no purely 
imaginary eigenvalues λ ∈ iR with eigenfunctions from X (of the same parity as φω), and no resonances at 
λ = 1 ± |ω| with generalized L∞ eigenfunctions of the same parity as φω.

(iv) For ω ∈Ω , the Evans function E(λ, ω) (cf. Definition 4.5) does not vanish at λ ∈ iR with |λ| ≥ 1 − |ω|.

Above, by the generalized L∞ eigenfunction of a differential operator A we mean the nontrivial solution to
(A − λ)u = 0 which has finite L∞-norm. Also, the Evans function is defined Definition 4.5 below.

The following theorem is the main result of our paper.

Theorem 2.5 (Asymptotic stability of solitary waves in nonlinear Dirac equation). Let Assumption 2.4 hold. Let 
ω0 ∈ Ω and φω0(x)e

−iω0t be the corresponding solitary wave with φω0 ∈ X ∩ H 1(R, C2). There exist ε0 > 0 and 
C <∞ such that if ψ0 ∈X satisfies

inf
γ∈[0,2π]

∥∥∥ψ0 − eiγ φω0

∥∥∥
H 1

≤ ε2, with some ε ∈ (0, ε0),

then the solution ψ of (2.3) with ψ |t=0 =ψ0 exists globally in time and there are

ω,γ ∈ C1(R+,R), ϕ ∈X ∩L∞(
R+,H 1(R,C2)

) ∩L4(R+,L∞(R,C2)
)

with ω(t) 
t→∞−−−→ ω∞ ∈Ω and lim

t→∞‖ϕ‖L∞
x

= 0, such that

ψ(x, t)= (
φω(t)(x)+ ϕ(x, t)

)
e−i

∫ t
0 ω(s) ds−iγ (t)

and

|ω0 −ω∞| ≤ ε, ‖γ̇ ‖L1(0,∞) + ‖γ̇ ‖L1(0,∞) ≤ ε, ‖ϕ‖L∞
t H

1
x

+ ‖ϕ‖L4
t L

∞
x

≤ Cε.

Several remarks are in order.

Remark 2.6. The precise structure of the nonlinearity of the Gross–Neveu model, f (ψ∗βψ)βψ , does not play any 
particular role in our considerations. Yet, we choose to base our consideration on this model: being a relativistically 
invariant nonlinear Dirac equation with minimal coupling, it is a ubiquitous model in Physics.

Remark 2.7. The solitary waves to classical Gross–Neveu model (k= 1, cubic nonlinearity) are known to be linearly 
stable [1], but our argument does not apply to this situation. The assumption k ≥ 2 allows us to close the argument 
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in Section 5.2 using the Strichartz estimates, making the argument sufficiently compact. Similar requirements on the 
order of vanishing of the nonlinearity being sufficiently high are common in the research on asymptotic stability of 
solitons in nonlinear Schrödinger equation, starting with the seminal papers [6,7].

Remark 2.8. In the Assumption 2.4, we require that Ω ⊂ (−1/3, 1/3) to avoid the situation when the eigenvalues 
±2ωi become embedded into the essential spectrum (λ ∈ iR, |λ| ≥ 1 − |ω|). In that case, our construction of the 
resolvent in Section 4.2 does not allow us to obtain the necessary estimates (see Remark 3.4 and estimate (4.17)
below). Yet, the restriction to |ω| < 1/3 seems to be merely technical; we still expect that for 1/3 ≤ |ω| < 1, the 
resolvent of the linearized operator restricted to X has the same properties as stated in Proposition 4.14 even in the 
vicinity of the embedded eigenvalues ±2ωi and that the asymptotic stability could be proved.

Remark 2.9. By [12,4], the assumptions E(ω) 	= 0 and ∂ωQ(ω) 	= 0 guarantee that the generalized null space of the 
linearization at a solitary wave is (exactly) four-dimensional. (Above, E(ω) and Q(ω) are the values of the energy and 
charge functionals (2.6), (2.7) at the solitary wave φωe−iωt .) We do not need to impose the condition E(ω) 	= 0 since 
although the vanishing of E(ω) leads to the increase of the Jordan block of the linearization at a solitary wave, this 
increase is absent when we restrict the operator to the subspace X. More details are in Section 3.1 (see in particular 
Remark 3.4).

Remark 2.10. The Vakhitov–Kolokolov stability condition [36] states that the ground state solution to the NLS
(φ(x)e−iωt with φ > 0 and monotonically decreasing as |x| → ∞) are linearly stable (positive eigenvalues of the 
linearization at a solitary wave are absent) as long as ∂ωQ(ω) < 0. In the NLD context, it could be shown that a 
similar conclusion can be drawn in the nonrelativistic limit, ω � m. In the L2-critical case, while the charge in the 
NLS does not depend on ω, this is “resolved” in the NLD: one now has ∂ωQ(ω) < 0 and consequently the eigenvalue 
λ = 0 does not have additional degeneracy; instead, there are point eigenvalues in the spectrum (see Fig. 1). For k > 2, 
the positive eigenvalues of the linearized operator are only present in the spectrum for ω near m but disappear below 
certain value of ω. This is accompanied by the change in sign of ∂ωQ(ω) (see Fig. 2).

Remark 2.11. We numerically verified Assumption 2.4-(iii) in the following cases:

(i) For the Gross–Neveu model with f (s) = s2 and Ω = (0.23, 0.33) (see Fig. 1);
(ii) For the Gross–Neveu model with f (s) = s3 and Ω = (0.14, 0.33) (see Fig. 2).

We also mention that in the Gross–Neveu model with k = 1, 2, . . . , 9, we found no complex eigenvalues for the 
linearizations at solitary waves with ω= 0.1, 0.2, . . . , 0.9 in the domain 0.0008 < |Reλ| < 0.59, |Imλ| < 2.5. More-
over, according to [2], the bifurcations of point eigenvalues off the imaginary axis could result only from the collision 
of purely imaginary eigenvalues or from eigenvalues embedded into the continuous spectrum, and also from reso-
nances at the embedded thresholds, λ = ±i(m + |ω|) (in one-dimensional case, the resonances correspond to the 
generalized L∞ eigenfunctions). Our numerics show that there are no resonances at the embedded thresholds in the 
Gross–Neveu model with k = 2 and k = 3 for all ω ∈ (0, m), justifying the observed absence of complex eigenvalues 
away from R ∪ iR.

We expect that the Evans function never has zeros at λ ∈ iR, |Imλ| ≥ 1 + |ω|, but could not prove this. Instead, we 
check this assumption numerically; all the zeros of the Evans function which we found are plotted as solid curves on 
Figs. 1 and 2 (these zeros correspond to the point eigenvalues of the linearized operator). The absence of zeros of the 
Evans function for λ → ±i∞ follows from Lemma 4.10.

Let us summarize that most of our assumptions are technical; the only essential assumption is that the spectrum 
of the linearized operator has no eigenvalues in the right half-plane and that the Jordan block of λ = 0 is (exactly) 
four-dimensional. We expect that the presence of purely imaginary eigenvalues does not lead to instability unless these 
eigenvalues are of higher algebraic multiplicity. More generally, we expect that, similarly to the case of the nonlinear 
Schrödinger equation and similar systems, the (dynamic) instability takes place when either there is a linear instability 
or when the eigenvalues on the imaginary axis are of higher algebraic multiplicities (when we are at the threshold of 
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Fig. 1. Gross–Neveu model, k = 2 (the quintic case). Linearization at a solitary wave. Horizontal axis: ω ∈ (0, 1). Vertical axis: spectrum on the 
upper half of the imaginary axis. Solid vertical (green) lines: part of the continuous spectrum between the threshold i(1 − |ω|) and the embedded 
threshold i(1 + |ω|). Solid red curves: eigenvalues with eigenfunctions from X (of the same parity as φω ; see (3.16)), which we cannot ignore; our 
result holds in the regions where such eigenvalues are absent. Solid blue curve (near ω = 0 and λ = i) and the line λ = 2ωi denote eigenvalues with 
eigenfunctions from X⊥ (see (3.17)), which remain orthogonal to our perturbation. Dotted red and blue curves: antibound states of different parity 
(from X and X⊥); we do not mention them in the argument. Antibound states correspond to zeros of Evans functions on the “wrong” Riemann 
sheet, which corresponds to generalized eigenfunctions with exponential growth at infinity. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Gross–Neveu model, k = 3. Hollow red diamonds (on bottom right) denote positive eigenvalues (thus linear instability) present in the spec-
trum for ω ∈ (0.85, 1). These eigenvalues are superimposed on the imaginary axis. Theorem 2.5 on asymptotic stability applies for solitary waves 
with ω such that there are neither hollow red diamonds (linear instability) nor solid red curves (purely imaginary eigenvalues with eigenfunctions 
from X) in the spectrum. Note that the dotted kink indicates collision of antibound states at ωb ≈ 0.1 on the imaginary axis and their bifurcation off 
the imaginary axis for ω < ωb . (Location of these values of λ off the imaginary axis does not lead to instability since the corresponding antibound 
states have infinite L2-norm.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

linear instability). It should be pointed out, though, that the presence of additional point eigenvalues in the spectral 
gap of the linearization at a solitary wave is very likely to considerably increase the difficulty of the analysis, just like 
in the case of the NLS.
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3. Linearization at a solitary wave and modulation equations

3.1. Linearization at a solitary wave

To study stability of a solitary wave φω(x)e−iωt , with φω(x) =
[
v(x,ω)

u(x,ω)

]
∈ R2, we consider the solution in the form

ψ(x, t)= (
φω(x)+ ρ(x, t)

)
e−iωt , ρ(x, t) ∈C2.

Substituting this Ansatz into (2.9), we obtain:

i∂tρ = (Dm −ωI2)ρ + N(φω + ρ)− N(φω). (3.1)

Thus, the linearization at a solitary wave (the linearized equation on ρ derived from (3.1)) can be written as follows:

Ṙ = JLR, R =
[

Reρ
Imρ

]
∈ R4, (3.2)

where

J =
[

0 I2
−I2 0

]
, L(ω)= Dm −ωI4 + W(x,ω), (3.3)

with

W(x,ω)=
[
W1(x,ω) 0

0 W0(x,ω)

]
,

W0(x,ω)=
[−f (v2 − u2) 0

0 f (v2 − u2)

]
, W1(x,ω)=W0(x,ω)− 2f ′(v2 − u2)

[
v2 −vu

−vu u2

]
. (3.4)

The free Dirac operator takes the form

Dm = Jα∂x + β, (3.5)

with

α =
[

Reα − Imα
Imα Reα

]
=

[
0 Imσ2

− Imσ2 0

]
, β =

[
Reβ − Imβ
Imβ Reβ

]
=

[
σ3 0
0 σ3

]
; (3.6)

J, α, and β represent −i, α, and β when acting on 
[

Reψ
Imψ

]
, with ψ ∈C2. We then have

Dm =
[
Dm 0
0 Dm

]
, where Dm =

[
1 ∂x

−∂x −1

]
. (3.7)

Note that since v, u both depend on ω, the potentials W1, W0 also depend on it. We will often omit this dependence 
in our notations.

Lemma 3.1. There is Cω <∞ such that the matrix-valued potential W satisfies

‖W(x,ω)‖C4→C4 ≤ Cωe−2k|x|δω , x ∈R. (3.8)

Proof. This bound is an immediate consequence of the exponential decay of φω in Proposition 2.2 (see (2.14)), the 
assumption f (s) = O(sk) for |s| ≤ 1, and (3.4). �
Lemma 3.2.

σess(JL)= iR\( − i(1 − |ω|), i(1 − |ω|)).
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Proof. This is an immediate consequence of Weyl’s theorem on the essential spectrum. �
Denote

φ(x)= φω(x)=
[

Reφω(x)
Imφω(x)

]
=

[
φω(x)

0

]
. (3.9)

Thanks to the invariance of (2.12) with respect to the phase rotation and the translation, we have

JLJφ = 0, JL∂xφ = 0.

The null space of L is given by

N(L)= (Jφ, ∂xφ) . (3.10)

Remark 3.3. This could be readily justified by analyzing the Jost solutions of

L1(ω)=Dm −ωI2 +W1, L0(ω)=Dm −ωI2 +W0. (3.11)

Namely, for each of L1 and L0, there are two Jost solutions corresponding to λ = 0: one decreasing and one increasing. 
More details on the Jost solutions are in Section 4.1.

Moreover,

JL∂ωφ = Jφ, (3.12)

JL
(
ωxJφ − 1

2
αφ

)
= ∂xφ, (3.13)

where

ωxJφ − 1

2
αφ =

[
0

i
2αφ −ωxφ

]
=

[
0

− i
2σ2φ −ωxφ

]
.

Therefore,{
Jφ, ∂xφ, ∂ωφ, ωxJφ − 1

2
αφ

}
⊂Ng(JL). (3.14)

By [4], if ∂ωQ(ω) 	= 0 and E(ω) 	= 0, then the above vectors form a basis in the generalized null space Ng(JL):

Ng(JL)= Span

(
Jφ, ∂xφ, ∂ωφ, ωxJφ − 1

2
αφ

)
. (3.15)

Following the definition (2.18), we define

X =
{
ψ ∈ L2(R,C4); ψk(x)=ψk(−x), k = 1, 3; ψk(x)= −ψk(−x), k = 2, 4

}
; (3.16)

X⊥ =
{
ψ ∈ L2(R,C4); ψk(x)=ψk(−x), k = 2, 4; ψk(x)= −ψk(−x), k = 1 3

}
. (3.17)

From now on, we shall restrict JL(ω) to X. Noting that Jφ and ∂ωφ (as well as φ) belong to the space X, while ∂xφ, 
xJφ, and αφ belong to X⊥, we conclude that

N(JL|X)= Span (Jφ) , Ng(JL|X)= Span (Jφ, ∂ωφ) . (3.18)

The operator JL acts invariantly in X and in X⊥.

Remark 3.4. The restriction of JL(ω) onto X allows one to exclude certain eigenvalue directions, significantly sim-
plifying the problem. In particular, by [12], one has

JL
[
σ1φ

iσ φ

]
= 2iω

[
σ1φ

iσ φ

]
, JL

[
σ1φ

−iσ φ
]

= −2iω

[
σ1φ

−iσ φ
]
, (3.19)
1 1 1 1
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where σ1 is the Pauli matrix; this shows that ±2ωi ∈ σp(JL(ω)). On the other hand, the restriction of JL to X satisfies 
±2ωi /∈ σd(JL|X).

Let us also mention that while the dimension of the generalized space Ng(JL) would grow if either ∂ωQ(ω) or 
E(ω) vanish [4], the dimension of Ng(JL|X) would grow only if ∂ωQ(ω) vanishes; we no longer have to worry 
whether E(ω) vanishes or not.

Since (JL)∗ = −LJ, it follows from (3.12), (3.13) that the corresponding generalized kernel for the adjoint is

Xg((JL)∗)=Ng((JL)∗)∩ X = {
J∂ωφ,φ

}
.

We decompose the space X as follows:

X = Xg(JL)⊕ Xc(JL), where Xc(JL)= Xg((JL)∗)⊥. (3.20)

The subspaces Xg(JL) and Xc(JL) are invariant under the action of JL, and any R1 ∈ Xg(JL), R2 ∈ Xc(JL) satisfy 
the following symplectic orthogonality condition:

〈JR1,R2〉 = 0.

It then follows that any R ∈ X can be uniquely decomposed into

R = 2
〈φ,R〉
Q′(ω)

∂ωφ + 2
〈J∂ωφ,R〉
Q′(ω)

Jφ +U, U ∈ Xc(JL), (3.21)

where Q(ω) is the charge functional (2.7) evaluated at φωe−iωt . Thus, a vector function U ∈ Xc(JL) satisfies the 
following two symplectic orthogonality conditions:

〈φ,U 〉 = 0, 〈J∂ωφ,U 〉 = 0. (3.22)

Remark 3.5. Note that Q′(ω) 	= 0 by Assumption 2.4.

Let Pd(ω) denote the symplectically orthogonal projection onto the generalized null space of JL(ω) restricted onto 
the space X from (3.16). By (3.21),

Pd(ω)R = 2
〈φ,R〉
Q′(ω)

∂ωφ + 2
〈J∂ωφ,R〉
Q′(ω)

Jφ, (3.23)

while the projection onto Xc is

Pc(ω)= 1 − Pd(ω). (3.24)

3.2. Modulation equations

We consider the solution ψ of equation (2.9) in the form

ψ(x, t)= (
φω(t)(x)+ ρ(x, t)

)
e−iθ(t), with θ(t)=

t∫
0

ω(s) ds + γ (t), x, t ∈R. (3.25)

Substituting this Ansatz into (2.9), we get

i∂tρ = (Dm − I2ω− γ̇ I2)ρ − γ̇ φ − iω̇∂ωφ + N(φ + ρ)− N(φ), (3.26)

with N defined in (2.10). As in (3.2), (3.9), we use the notations

R =
[

Reρ
Imρ

]
, φω =

[
Reφω
Imφω

]
=

[
φω
0

]
.

Then equation (3.26) takes the form

∂tR = JLR − γ̇ JR− γ̇ Jφ − ω̇∂ωφ + JN1, (3.27)
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where

N1(R,ω)=
[

Re
(
N(φ + ρ)− N(φ)

)
Im

(
N(φ + ρ)− N(φ)

)] − WR, (3.28)

with W from (3.4).

Remark 3.6. Let us point out that since we take the initial data of certain parity, ψ |t=0 ∈X, then we also have ψ ∈X
for all t ≥ 0, so that ρ ∈X; therefore, R ∈ X and JN1 ∈ X (see Definitions 2.18, 3.16). Moreover, the operators JL(ω), 
Pd(ω), and Pc(ω) act invariantly in X.

We impose the requirement R(t) ∈ Xc(ω(t)). Together with the symplectic orthogonality condition (3.22), this 
requirement implies that

〈φ,R〉 = 〈J∂ωφ,R〉 = 0. (3.29)

Taking the time derivative of the relations (3.29), we get

〈φ, Ṙ〉 = −ω̇〈∂ωφ,R〉 = −ω̇Re〈ϕ,ρ〉, 〈J∂ωφ, Ṙ〉 = −ω̇〈J∂2
ωφ,R〉 = ω̇ Im〈∂ωϕ,ρ〉, (3.30)

where

ϕω = ∂ωφω.
Coupling (3.27) with φ and with J∂ωφ and using the symplectic relations (3.22) and the relations (3.30), we obtain

A(t)
[
ω̇

γ̇

]
=

[ 〈φ,JN1〉
〈J∂ωφ,N1〉

]
, (3.31)

where

A(t)=
[〈φ, ∂ωφ〉 − 〈∂ωφ,R〉 〈φ,JR〉

−〈J∂2
ωφ,R〉 〈J∂ωφ,Jφ〉 + 〈J∂ωφ,JR〉

]
, (3.32)

where ω and R are evaluated at the moment t .
Define

μ(x) := e−δΩ 〈x〉/(4k), δΩ := inf
ω∈Ω

√
1 −ω2 > 0; (3.33)

by (2.14) and (2.16), there is C <∞ such that for any ω ∈Ω ,

|φω(x)| + |∂ωφω(x)| + |∂2
ωφω(x)| ≤ Cμ(x)2k, x ∈ R, ω ∈Ω. (3.34)

Lemma 3.7. There is ε > 0 such that if 〈μ, |R(t)|〉 < ε, then∥∥∥A(t)−1
∥∥∥< 2

(
inf
ω∈Ω〈φω, ∂ωφω〉

)−1
<∞.

Proof. From (3.32) and (3.34), we have

A(t)=
[〈φω, ∂ωφω〉 0

0 〈φω, ∂ωφω〉
]

+O
(〈μ2k, |R|〉),

where ω= ω(t); we took into account the bounds (2.14) and (2.16). By Assumption 2.4, one has 2〈φω, ∂ωφω〉 =Q′(ω)
with infω∈Ω |Q′(ω)| > 0; therefore, one can choose ε > 0 so small that A(t) is invertible and satisfies the conclusion 
of the lemma. �

To control ρ (or equivalently R), let us define

Z(t)= Pc(ω0)R(t), (3.35)

so that
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Z(0)= Pc(ω0)R(0)= Pc(ω0)

[
Re

(
�0 − φ0

)
Im

(
�0 − φ0

)] . (3.36)

Since Z = Pc(ω0)R and R = Pc(ω)R, and by (3.23), we have

Z −R = Pc(ω0)R − Pc(ω)R = (
Pd(ω)− Pd(ω0)

)
R =O(ω−ω0)〈μ2k, |R|〉μ2k. (3.37)

Therefore, if |ω− ω0| is sufficiently small, to control R, it suffices to control Z; in particular, it follows from (3.37)
that if either Z or R is from H 1 in x, then so is the other function, and moreover

‖Z−R‖H 1
x

≤C|ω−ω0|〈μ2k, |R|〉, (3.38)

with some constant C < ∞ which depends only on Ω and on the nonlinearity f in (2.3). The weight μ(x)2k =
e−δΩ 〈x〉/2 (cf. (3.33)) comes from the bounds (3.34) on the eigenfunctions that span the generalized null space (3.18)
of the operator JL(ω) and from the explicit form (3.23) of the projector Pd(ω).

4. Spectral theory for the linearized operator

In this section, we consider dispersive estimates for the complexification of the linearized equation (3.2),

∂tR = JLR, R ∈ C4. (4.1)

More precisely, we will show that similarly to the free Dirac evolution, the linear evolution of (4.1) projected onto 
the continuous spectrum of JL scatters the initial data. This phenomena in the related Schrödinger equation context 
manifests itself in a variety of useful estimates; see for example the work of Mizumachi [24].

Before proceeding to specific estimates for the solution of (3.2), let us take a moment to properly define eJLtPc . 
Since

σess(JL(ω))= (−i∞,−i(1 − |ω|)] ∪ [i(1 − |ω|), i∞),
we define eJL(ω)tPc(ω) by the following Cauchy formula:

eJLtPc(ω)f = − 1

2πi

∮
�

RJL(λ)f dλ

= − 1

2πi

⎛⎜⎝ −i(1−|ω|)∫
−i∞

+
i∞∫

i(1−|ω|)

⎞⎟⎠ eλt([R+
JL(λ)−R−

JL(λ)
]
f
)
dλ

= − 1

2π

⎛⎜⎝ |ω|−1∫
−∞

+
+∞∫

1−|ω|

⎞⎟⎠ ei�t([R+
JL(i�)−R−

JL(i�)
]
f
)
d�, (4.2)

where � is a positively-oriented contour around the essential spectrum of JL. For λ ∈ iR the operators

R±
JL(λ) := lim

ε→0+(JL − (λ± ε))−1

are to be interpreted in a certain appropriate sense (for example, as operators from L2
α → L2−α , for certain α > 0, by 

the limiting absorption principle).

4.1. The Jost solutions and the Evans function of the operator JL

The eigenvalue problem for the operator JL(ω) (cf. (3.3), (3.4)),

J(Dm −ω+ W(x,ω))ψ = J(Jα∂x + β −ω+ W(x,ω))ψ = λψ,
can be rewritten as

(∂x − αJβ +ωαJ + αλ− αJW(x,ω)
)
ψ = 0. (4.3)
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The construction of Jost solutions is based on considering solutions to the constant coefficient equation

(∂x −M0(λ,ω)
)
ψ = 0, M0(λ,ω) := αJβ −ωαJ − αλ, (4.4)

and using the Duhamel representation to construct solutions to equation (4.3) with variable coefficients, written in the 
form (

∂x −M(x,λ,ω)
)
ψ = 0, M(x,λ,ω) := M0(λ,ω)+ αJW(x,ω). (4.5)

Lemma 4.1. Let ω ∈ [−1, 1], λ ∈C. Then:

(i)

σ(M0(λ,ω))= {±
√

1 − (ω± iλ)2};
(ii)

sup
λ∈iR

{|Re ζ |; ζ ∈ σ(M0(λ,ω))
} = 1;

(iii)

sup
λ∈σess(JL(ω))

{|Re ζ |; ζ ∈ σ(M0(λ,ω))
} = 2

√
ω−ω2.

Proof. We need to find all z ∈C such that

M0(λ,ω)− z= αJβ −ωαJ − αλ− z= −αλ−ωαJ − z+ αJβ

is degenerate. Multiplying the above matrix in the right-hand side by −αJ, we need to find out when the matrix

Jλ−ω+ αJz+ β

is degenerate. Since αβ anticommutes with both α and β, while det α = det β = 1, one has:

det(Jλ−ω+ αJz+ β)2 = det
(
(Jλ−ω+ αJz+ β)αβ(Jλ−ω+ αJz+ β)βα

)
= det

(
(Jλ−ω+ αJz+ β)(Jλ−ω− αJz− β)

) = det
(
(Jλ−ω)2 − (−z2 + 1)

)
.

Since σ(J) = {±i}, we conclude that the above determinant vanishes (hence z ∈ σ(M0(λ, ω))) if and only if

z2 − 1 + (±iλ−ω)2 = 0.

The conclusion about the spectrum of M0 follows.
Other statements are checked by direct computation. �
Due to the symmetry of the potential W (see (4.6) below), we have the following results.

Lemma 4.2. If ψ(x) solves (4.5) for λ ∈C, then θ(x) = βψ(−x) also solves (4.5) for the same λ ∈C.

Proof. Since v is even and u is odd, and since β = σ3 anticommutes with σ1, there are the relations

W0(x)β = βW0(−x), W1(x)β = βW1(−x), (4.6)

for W0, W1 from the Gross–Neveu model (3.4). (It is convenient to notice that for each of these models, W0 and W1
can be written as linear combinations of the form wa(x)σ1 +wb(x)σ3 +wc(x)I2, with scalar-valued functions wb and 
wc symmetric in x and wa skew-symmetric.) The conclusion follows. �
Lemma 4.3. For any x ∈ R, ω ∈Ω , and λ ∈C, the matrix M from (4.5) satisfies trM(x, λ, ω) = 0.
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Proof. The statement is immediate for all the terms from M0 (cf. (4.4)). The remaining relation tr αJW = 0 is 
checked with the explicit expressions (3.4). �

We now turn to the construction of the Jost solutions, which are defined as eigenfunctions of JL(ω) with the same 
asymptotic behavior as eigenfunctions of J(Dm−ω). To do this, for λ ∈C, we first define

ξ1(λ,ω)=
√
(ω− iλ)2 − 1, ξ2(λ,ω)=

√
(ω+ iλ)2 − 1, (4.7)

so that σ(M0(λ, ω)) = {±ξ1(λ, ω), ±ξ2(λ, ω)} (cf. Lemma 4.1). Without loss of generality, we will only consider 
the case

ω ≥ 0, Reλ≤ 0, Imλ≥ 0; (4.8)

in each of the two square roots in (4.7), we choose the branch that is positive for λ ∈ iR, Imλ � 1.
We define

�1(λ,ω)= 1

c1(λ,ω)

⎡⎢⎢⎣
iξ1

−iλ− 1 +ω
−ξ1

λ− i(1 −ω)

⎤⎥⎥⎦ , H1(λ,ω)= 1

c1(λ,ω)

⎡⎢⎢⎣
iξ1

iλ+ 1 −ω
−ξ1

−λ+ i(1 −ω)

⎤⎥⎥⎦ , (4.9)

�2(λ,ω)= 1

c2(λ,ω)

⎡⎢⎢⎣
iξ2

iλ− 1 +ω
ξ2

λ+ i(1 −ω)

⎤⎥⎥⎦ , H2(λ,ω)= 1

c2(λ,ω)

⎡⎢⎢⎣
iξ2

−iλ+ 1 −ω
ξ2

−λ− i(1 −ω)

⎤⎥⎥⎦ , (4.10)

with the constants

c1(λ,ω) > 0, c2(λ,ω) > 0 (4.11)

chosen so that |�j | = |Hj | = 1, j = 1, 2. Note that Hj = β�j ; j = 1, 2. The plane waves

�1(λ,ω)e
iξ1(λ,ω)x, �2(λ,ω)e

iξ2(λ,ω)x, H1(λ,ω)e
−iξ1(λ,ω)x, H2(λ,ω)e

−iξ2(λ,ω)x

satisfy the equation (J(Dm −ω) − λ)ψ(x) = 0 (and thus (4.4)).
By (4.8), we see that

ξ1 > ξ2 ≥ 0 for λ ∈ iR, |λ| ≥ 1 + |ω|; |ξ2|> |ξ1| for λ ∈ iR, |λ| ≤ 1 − |ω|.
We denote

κ1 = |Im ξ1|, κ2 = |Im ξ2|; (4.12)

then one has

κ2 > κ1 ≥ 0 for λ ∈ iR, |λ| ≤ 1 − |ω|.
Now we introduce the Jost solutions of the operator JL defined in (3.3), (3.4).

Proposition 4.4. Let f ∈ C∞ be such that for |s| ≤ 1 f (s) = O(sk) for |s| ≤ 1 with k ≥ 2. Let φω ∈ H 1(R, C2), 
ω ∈ (−1, 1) be a solitary wave profile, and let the operator JL be defined in (3.3), (3.4). There are the Jost solutions 
fj (x, λ, ω), Fj (x, λ, ω), j = 1, 2, which satisfy the equation (JL(ω) − λ)u = 0 and have the following properties. 
There is c(ω) <∞ such that

• For λ ∈ iR, |λ| ≤ 1 − |ω|,

|eκj xfj (x, λ,ω)−�j(λ,ω)| + |e−κj xFj (x, λ,ω)− Hj (λ,ω)| ≤ c(ω)e−2kδωx, x ≥ 0, j = 1, 2.

(4.13)
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• For λ ∈ iR, 1 − |ω| ≤ |λ| ≤ 1 + |ω|,
|e−iξ1xf1(x,λ,ω)−�1(λ,ω)| + |eiξ1xF1(x,λ,ω)− H1(λ,ω)| ≤ c(ω)e−2kδωx, x ≥ 0,

|eκ2xf2(x,λ,ω)−�2(λ,ω)| + |e−κ2xF2(x,λ,ω)− H2(λ,ω)| ≤ c(ω)e−2kδωx, x ≥ 0.

• For λ ∈ iR, |λ| ≥ 1 + |ω|,
|e−iξj xfj (x, λ,ω)−�j(λ,ω)| + |eiξj xFj (x, λ,ω)− Hj (λ,ω)| ≤ c(ω)e−2kδωx, x ≥ 0, j = 1, 2.

• For λ ∈ iR,

|fj (x, λ,ω)| + |Fj (x, λ,ω)| ≤ c(ω)
(〈x〉 + eκ2|x|), x ≤ 0, j = 1, 2.

• For λ ∈ iR, |λ| ≥ 3,

|fj (x, λ,ω)| + |Fj (x, λ,ω)| ≤ c(ω), x ∈ R, j = 1, 2. (4.14)

Above, δω = √
1 −ω2 (cf. (2.15)).

Using the above proposition, we also define the Jost solutions with appropriate asymptotics as x→ −∞ by

gj (x)= βfj (−x), Gj (x)= βFj (−x), x ∈R, j = 1, 2. (4.15)

Proof. The proof is quite standard. However, since the decay rate of the potential W depends on ω and k (cf. As-
sumption 2.4), we choose to provide the details. Given � ∈ σ(M0(λ, ω)), with ω ∈Ω and λ ∈ iR, let � ∈ C4 be a 
corresponding eigenvector, with |�| = 1. To find a solution ψ(x) ∼�e�x , x→ +∞ of (4.4), we define ξ(x) by

ψ(x)= e�xξ(x), so that ξ |x=+∞ =�;
then ∂xξ = (M0 − �)ξ + αJWξ, and hence we can write

∂x(e
−(M0−�)xξ)= e−(M0−�)xαJWξ.

We construct ξ(x) in the form of the power series ξ(x) = ∑∞
n=0 ξn(x), where ξ0 =� and

∂x(e
−(M0−�)xξn(x))= e−(M0−�)xαJW(x,ω)ξn−1(x), ξn(+∞)= 0, n≥ 1;

hence

ξn(x)= −
+∞∫
x

e(M0−�)(x−y)αJW(y,ω)ξn−1(y) dy, n≥ 1.

Let Pζ denote the Riesz projector onto the eigenspace corresponding to ζ ∈ σ(M0). Then, for x ≥ 0,

|Pζ ξn(x)| ≤
+∞∫
x

∥∥∥Pζ e(M0−�)(x−y)
∥∥∥‖W(y,ω)‖End(C4) |ξn−1(y)|dy

≤ sup
y≥x

|ξn−1(y)|
+∞∫
x

ae(x−y)Re(ζ−�)〈x − y〉Ke−2kδωy dy ≤ ce−2kδωx sup
y≥x

|ξn−1(y)|, (4.16)

for some c = c(ω, K) <∞. Above, we used the bound 
∥∥Pζ e(M0−�)x∥∥ ≤ aex Re(ζ−�)〈x〉, with some a <∞ (which 

depends on ω but does not depend on ζ ), with the factor 〈x〉 due to the possibility of the Jordan block of M0 (when 
ζ = 0). For the convergence of the integration in y, we used the bound (3.8) and the inequalities

|Re ζ | ≤ kδω, |Re�| ≤ kδω, (4.17)

which are trivially satisfied under conditions of Assumption 2.4: one has k ≥ 2, |ω| < 1/3, hence kδω ≥ 2
√

8/9, while 
ζ ∈ σ(M0(λ, ω)) for any λ ∈ iR, ω ∈ (−1, 1), satisfy |Re ζ | ≤ 1 (cf. Lemma 4.1 (ii)).

Then the integration in y in (4.16) can be estimated as follows:
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+∞∫
x

e(x−y)Re(ζ−�)〈x − y〉e−2kδωy dy = e−2kδωx
+∞∫
0

e−zRe(ζ−�)〈z〉e−2kδωz dz

≤ e−2kδωx
( 1

2(k − 1)δω
+ 1

(2(k − 1)δω)2
)
.

We conclude that

sup
y≥x

|ξn(y)| = sup
y≥x

∣∣∣∣∣∣
∑

ζ∈σ(M0)

Pζ ξn(y)

∣∣∣∣∣∣ ≤
∑

ζ∈σ(M0)

sup
y≥x

|Pζ ξn(y)| ≤ 4ce−2kδωx sup
y≥x

|ξn−1(y)|, x ≥ 0.

Therefore, there is C <∞ such that 
∑∞
n=1|ξn(x)| ≤ Ce−2kδωx , for all x ≥ 0, hence

|ξ(x)−�| = Ce−2kδωx, x ≥ 0.

Let us prove the uniform bounds (4.14). Let us write (4.5) in the form

(∂x −M0(λ,ω))ψ = αJW(x,ω)ψ. (4.18)

Using the Green function for the operator ∂x −M0(λ, ω), which is given by

G (x, y,λ,ω)=
(
�1 ⊗ θ∗

1 e
i(x−y)ξ1 +�2 ⊗ θ∗

2 e
i(x−y)ξ2 + H1 ⊗ η∗

1e
−i(x−y)ξ1 + H2 ⊗ η∗

2e
−i(x−y)ξ2

)
�(x − y),

where � is the Heaviside step-function and θj , ηj ∈C4, j = 1, 2, is the basis dual to �j, Hj ∈C4, one can construct 
the solutions fj (x, λ, ω), Fj (x, λ, ω), in the form of the power series

ψ =
∞∑
n=0

ψn, (4.19)

with ψ0(x) = �jeiξj x or ψ0(x) = Hj e−iξj x (according to (4.15), these are asymptotics of fj (x), Fj (x) for x � 1), 
and with ψn(x), n ≥ 1 solving

(∂x −M0(λ,ω))ψn(x)= αJW(x,ω)ψn−1(x).

For definiteness, we will consider f1(x) only (other functions are considered in the same way). For any x ∈ R, the 
series (4.19) converges due to the estimate

|ψn(x)| ≤
∞∫
x

‖W(x1)‖End(C4) |ψn−1(x1)|dx1

≤
∞∫
x

∞∫
x1

∥∥∥W(x1)

∥∥∥
End(C4)

∥∥∥W(x2)

∥∥∥
End(C4)

|ψn−2(x2)|dx1 dx2 ≤ . . .

≤
∫

· · ·
∫

x<x1<···<xn<∞

( n∏
l=1

‖W(xl)‖End(C4)

)
|ψ0(xn)|dx1 . . . dxn

≤ 1

n!
∫

x1>x

· · ·
∫

xn>x

( n∏
l=1

‖W(xl)‖End(C4)

)
|ψ0(xn)|dx1 . . . dxn ≤ (

∫ ∞
x

‖W(y)‖End(C4) dy)
n

n! ,

where we represented the integration over the simplex x < x1 < · · · < xn <∞ in Rn as a fraction of the integra-
tion over the quadrant xl > x, 1 ≤ l ≤ n, and substituted |ψ0(xn)| = |�1| = 1. Therefore, |ψ(x)| ≤ ∑

n≥0|ψn(x)| ≤
exp

(∫
R

‖W(y)‖End(C4) dy
)
, for any x ∈ R. This proves (4.14).

Finally, Lemma 4.2 allows us to use (4.15) to obtain the Jost solutions with required asymptotic behavior at 
−∞. �
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Definition 4.5. We define the Evans function by

E(λ,ω)= det
[
f1(x,λ,ω), f2(x,λ,ω),g1(x,λ,ω),g2(x,λ,ω)

]
. (4.20)

We note that, by Liouville’s formula and by Lemma 4.3,

∂

∂x
ln

(
det

[
f1, f2,g1,g2

]) = trM = 0,

hence the right-hand side of (4.20) does not depend on x ∈R.
The following lemma gives the relation between the eigenvalues and the zeros of the Evans function.

Lemma 4.6. Fix ω ∈Ω .

(i) Let λ ∈ iR, |λ| ∈ (1 − |ω|, 1 + |ω|). Then E(λ, ω) = 0 at some λ ∈ iR, |λ| ∈ (1 − |ω|, 1 + |ω|), if and only if λ is 
an L2 eigenvalue of JL.

(ii) At λ = ±i(1 + |ω|), one has E(λ, ω) = 0 if and only if there is a generalized L∞-eigenfunction corresponding to 
λ, which has the asymptotics ψ ∼ a�2 as x→ +∞, ψ ∼ bH2 as x→ −∞.

Remark 4.7. The statement of the lemma at the thresholds is non-trivial since at the threshold points the solution to 
(JL − λ)ψ = 0 which is bounded for x→ +∞ could be linearly growing as x→ −∞.

Proof. Let us start with the easy “if” statements. For the “if” statement of Part 1, we consider the case ±λ ∈
i(1 − |ω|, 1 + |ω|). If ψ is an eigenfunction (L2 solution to (4.5)), then, due to the asymptotics of the Jost solutions 
(Proposition 4.4), ψ = Cf2 = C′g2 for some nonzero C, C′ ∈ C, hence f2 and g2 are linearly dependent, resulting in 
E(λ, ω) = 0. The proof of the “if” part of Part 2 is similar. Let λ = ±i(1 + |ω|). If ψ is a generalized L∞ eigenfunc-
tion of (4.5) with the asymptotics as assumed in Part 2 of the lemma, due to the asymptotics of the Jost solutions (f1
and Fj , 1 ≤ j ≤ 2, are not small when x→ +∞; g1 and Gj , 1 ≤ j ≤ 2, is not small when x→ −∞), one again has 
ψ = Cf2 = C′g2 for some nonzero C, C′ ∈ C, hence f2 and g2 are linearly dependent, thus E(λ, ω) = 0.

Let us prove the “only if” statement of Part 1. If det[f1, f2, g1, g2] = 0 for some λ ∈ iR, then there are 
a1, a2, b1, b2 ∈C, not all of them equal to zero, one has

Φ(x) :=
2∑
j=1

aj fj (x, λ,ω)=
2∑
j=1

bjgj (x, λ,ω), x ∈R. (4.21)

Since fj are linearly independent, and so are gj , the function Φ thus defined is not identically zero.
Define

Σ = iJ =
[

0 iI2
−iI2 0

]
.

Let us consider the auxiliary Dirac equation

iΣ∂t� = L�, �(x, t) ∈C4, x ∈R, (4.22)

where L = Jα∂x + β + W −ω. This is a Hamiltonian system with the Hamiltonian density

h=�∗L� =�∗(Jα∂x + β + W −ω)�
and the Lagrangian density

l =�∗(iΣ∂t − L)�.

If Φ ∈ C1(R, C4) satisfies λΦ = JLΦ , which we write as (iλ)(iJ)Φ = −λJΦ = LΦ , then we have

 ΣΦ = LΦ,  := iλ ∈R.

Thus, �(x, t) =Φ(x)e−i t is a “solitary wave solution” to (4.22), except that Φ is not necessarily in L2.
Equation (4.22) conserves the Krein charge; its density is
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σ(x, t)=�∗Σ� =Φ∗ΣΦ, (4.23)

while the density of the corresponding current is

j(x, t)=�∗Σα� =Φ∗ΣαΦ. (4.24)

Remark 4.8. We call the quantity 〈�, Σ�〉 the “Krein charge” in view of its relation to the Krein index considera-
tions. Namely, the relation JLΦ = λΦ implies that 〈Φ, LΦ〉 = −λ〈Φ, JΦ〉, with 〈Φ, LΦ〉 real and 〈Φ, JΦ〉 purely 
imaginary; hence Reλ 	= 0 leads to 〈Φ, JΦ〉 = 0, 〈Φ, LΦ〉 = 0. Thus, the Krein signature is zero (L is not sign-
definite on the corresponding eigenspace) for any eigenvalue away from the imaginary axis. (The above could also be 
interpreted as follows. We could say that if � = Φ(x)e−i t (with   = iλ) is a solitary wave solution to (4.22) and 
Im  = Reλ 	= 0, then the conservation of the “Krein charge” 〈�(t), Σ�(t)〉 = 〈Φ, ΣΦ〉e2 Im t requires that this 
charge is zero, 〈Φ, ΣΦ〉 = 0.) It follows that purely imaginary eigenvalues λ ∈ iR \ 0 with nonzero Krein signature, 
〈Φ, iJΦ〉 	= 0, cannot bifurcate off the imaginary axis into the complex plane.

Since the Krein charge density does not depend on time, the local conservation of the Krein charge in the sys-
tem (4.22) leads to the equality of the Krein current (4.24) evaluated at the endpoints of the interval (−l, l), l > 0. 
Therefore, taking into account that

Σ�1 = −�1, Σ�2 =�2, ΣH1 = −H1, ΣH2 = H2,

under the assumption that E(λ, ω) = 0, we compute for Φ from (4.21):

0 = lim
l→+∞Φ

∗ΣαΦ|l−l = lim
l→+∞

(
(a1�1e

iξ1x + a2�2e
−κ2x)∗α(−a1�1e

iξ1x + a2�2e
−κ2x)

)|x=l
− lim
l→+∞

(
(b1H1e

−iξ1x + b2H2e
−κ2|x|)∗α(−b1H1e

−iξ1x + b2H2e
−κ2|x|)

)|x=−l

= lim
l→+∞

(
(a1�1e

iξ1x + a2�2e
−κ2x)∗α(−a1�1e

iξ1x + a2�2e
−κ2x)

)|x=l
− lim
l→+∞

(
(b1�1e

−iξ1x + b2�2e
−κ2|x|)∗α(b1�1e

−iξ1x − b2�2e
−κ2|x|)

)|x=−l . (4.25)

In the last relation, we took into account that Hj = β�j and that β anticommutes with α. Taking into account that 
�∗

1α�2 =�∗
2α�1 = 0, we rewrite the above as

0 = (|a1|2 + |b1|2)�∗
1α�1 + (|a2|2 + |b2|2)�∗

2α�2 lim
l→+∞ e

−2κ2l . (4.26)

For Part 1, when λ ∈ iR and 1 − |ω| < |λ| < 1 + |ω|, one has κ2 > 0, hence the second term in the right-hand side of 
(4.26) vanishes. On the other hand,

�∗
1α�1 = 4i(λ− i(1 −ω))ξ1

c2
1

> 0 for λ ∈ iR, Imλ > 1 − |ω|.

Then it follows from (4.26) that a1 = b1 = 0, and we conclude that Φ is exponentially decaying for x→ ±∞, so that 
λ is an L2 eigenvalue. This finishes the proof of Part 1 of the lemma.

Finally, let us prove the “only if” statement of Part 2. When λ = ±(1 + |ω|)i, one has κ2 = 0 = ξ2, and, using 
(4.10), one computes

�∗
2α�2 = 4i(λ+ i(1 −ω))ξ2

c2
2

= 0;

therefore, the assumption E(λ, ω) = 0 which leads to (4.26) results in a1 = b1 = 0. �
For λ ∈ iR, |λ| > 1 +|ω|, the solutions f1(λ, ω), f2(λ, ω), F1(λ, ω), F2(λ, ω) are linearly independent, constituting 

a fundamental set of solutions to (4.5); hence, there are A(λ, ω), B(λ, ω) ∈C4×4, locally bounded in λ, ω, such that

gj (x, λ,ω)=
2∑

fk(x,λ,ω)Akj (λ,ω)+
2∑

Fk(x,λ,ω)Bkj (λ,ω), j = 1, 2. (4.27)

k=1 k=1
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We note that, by (4.15), applying β to (4.27) and flipping x, we also have

fj (x, λ,ω)=
2∑
k=1

gk(x,λ,ω)Akj (λ,ω)+
2∑
k=1

Gk(x,λ,ω)Bkj (λ,ω), j = 1, 2. (4.28)

Lemma 4.9. For each ω ∈Ω , the matrices A(λ, ω), B(λ, ω) from (4.27) satisfy

lim
λ→±i∞‖A(λ,ω)‖End(C4) = 0, lim

λ→±i∞B(λ,ω)= B∞(ω), (4.29)

with ‖B∞(ω)‖End(CN) <∞. Moreover,

detB∞(ω)= 1. (4.30)

Proof. The bound (4.14) (which is also valid for gj , Gj in view of (4.15)), together with (4.27) and with the asymp-
totic behavior of f, F for x� 1 (Proposition 4.4) and linear independence of �j , Hj , 1 ≤ j ≤ 2, leads to

lim
λ→±i∞(‖A(λ,ω)‖End(C2) + ‖B(λ,ω)‖End(C2)) <∞.

Following the proof of (4.14) from Proposition 4.4 and using the stationary phase method, which yields

∞∫
x

�j ⊗ θ∗
k e
i(x−y)ξjW(y)Hle−iyξl dy =O( 1

ξj
)→ 0 as λ→ ±i∞,

one shows that ‖A(λ,ω)‖End(C4) → 0 as λ → ±i∞.
Let us show that detB∞(ω) = 1. First, we note from (4.9), (4.10) that

lim
λ→±i∞�1(λ,ω)=M lim

λ→±i∞ H2(λ,ω), lim
λ→±i∞�2(λ,ω)=M lim

λ→±i∞ H1(λ,ω),

where M =
[
I2 0
0 −I2

]
. Therefore, taking into account that for each x ∈R one has limλ→±i∞|x||ξ1 − ξ2| → 0, we have 

limλ→±i∞
∥∥(f1, f2)−M(F2,F1)e

2iξ1x
∥∥
C4×C4 → 0, for each fixed x � 1, and hence (due to continuous dependence 

of solutions to (4.18) on the initial data) for each fixed x ∈R:

lim
λ→±i∞

∥∥∥(f1(x,λ,ω), f2(x,λ,ω))−M(F2(x,λ,ω),F1(x,λ,ω))e
2iξ1x

∥∥∥
C4×C4

= 0, x ∈ R.

Similarly, comparing asymptotics for x� −1, we conclude that

lim
λ→±i∞

∥∥∥(G1(x,λ,ω),G2(x,λ,ω))−M(g2(x,λ,ω),g1(x,λ,ω))e
2iξ1x

∥∥∥
C4×C4

= 0, x ∈ R.

Therefore, besides (4.27), which yields limλ→±i∞ ‖(g1,g2)− (F1,F2)B‖L∞
x

= 0 (due to (4.29)), we also have

lim
λ→±iλ‖(G1(x,λ,ω),G2(x,λ,ω))− (f1(x,λ,ω), f2(x,λ,ω))B(λ,ω)‖C4×C4 = 0, x ∈ R.

On the other hand, from (4.28), taking into account (4.29), we also have

lim
λ→±i∞‖(f1(x,λ,ω), f2(x,λ,ω))− (G1(x,λ,ω),G2(x,λ,ω))B(λ,ω)‖C4×C4 = 0, x ∈R. (4.31)

It follows that limλ→±i∞B(λ, ω)2 = I2, hence limλ→±i∞ detB(λ, ω) = ±1. The conclusion limλ→±i∞ detB(λ, ω)
= 1 can be made by substituting the “interaction term” W with sW, s ∈ [0, 1], and using the continuity argument 
when changing s from 0 to 1. �
Lemma 4.10. For each ω ∈Ω , one has limλ→±i∞|E(λ, ω)| = 1.

Proof. Using (4.9) and (4.10), we compute:

det[�1,�2,H1,H2] = 1 +O(|λ|−1), λ→ ±i∞. (4.32)



176 A. Comech et al. / Ann. I. H. Poincaré – AN 34 (2017) 157–196
On the other hand, by (4.27),

E(λ,ω)= det[f1, f2,g1,g2] = det[f1, f2,

2∑
j=1

FjBj1,

2∑
j=1

FjBj2] = detB(λ,ω) det[f1, f2,F1,F2]

= detB(λ,ω) lim
x→+∞ det[f1, f2,F1,F2] = detB(λ,ω) det[�1,�2,H1,H2],

where we used the asymptotics of fj , Fj from Proposition 4.4. Therefore, by Lemma 4.9 and (4.32),

lim
λ→±i∞E(λ,ω)= lim

λ→±i∞ detB(λ,ω) lim
λ→±i∞ det[�1,�2,H1,H2] = 1.

This finishes the proof. �
Remark 4.11. For ω ∈ Ω , λ ∈ iR with |λ| > 1 + |ω|, the Jost solutions fj , Fj , j = 1, 2 (and similarly gj , Gj , 
j = 1, 2) are linearly independent (since so are the vectors �j , Hj , j = 1, 2 from (4.9), (4.10)); hence there is a 
“scattering matrix” S(λ, ω) ∈C4×4 such that(

g1(x,λ,ω),g2(x,λ,ω),G1(x,λ,ω),G2(x,λ,ω)
)

= (
f1(x,λ,ω), f2(x,λ,ω),F1(x,λ,ω),F2(x,λ,ω)

)
S(λ,ω).

Taking into account the relations (4.15) between fj and gj and between Fj and Gj , we conclude that one also has

(f1, f2,F1,F2)= (g1,g2,G1,G2)S,

hence S2 = I , detS = ±1. Taking into account that S →
[

0 I2
I2 0

]
in the limit of zero interaction (when W(x, ω) in 

(4.3) is substituted by zero), we conclude that detS = 1.

4.2. Explicit construction of the resolvent of the operator JL

In this section, we will not restrict JL onto X and give a general construction of the resolvent in the case when 
E(λ, ω) 	= 0.

Remark 4.12. Although for applications to asymptotic stability we will only need the resolvent of JL(ω) for λ in the 
essential spectrum, we will make our construction for all λ ∈ iR.

Definition 4.13. For 1 ≤ p ≤ ∞ and s ∈ R, we will use the weighted Lp spaces with polynomial weights:

‖f ‖Lps := ‖〈·〉sf ‖Lp .
For f (x, t), we will denote

‖f ‖(Lps )x := ‖f (·, t)‖Lps = ‖〈·〉sf (·, t)‖Lp .

Proposition 4.14. Fix ω ∈Ω . Assume that λ ∈ iR, |λ| ≥ 1 − |ω|, is such that E(λ, ω) 	= 0.

• There are resolvents G±(x, y, λ, ω) of the operator JL = −α(∂x −M(x, λ, ω)) which satisfy

−α(∂x −M(x,λ± 0,ω))G±(x, y,λ± 0,ω)= δ(x − y)I4, (4.33)

and for some C(λ, ω) <∞ (locally bounded in λ and ω) one has

|G±(x, y,λ,ω)| ≤ C(λ± 0,ω)min(〈x〉, 〈y〉)〈y〉, (x, y) ∈R2. (4.34)

• For each ω ∈Ω , there is C(ω) <∞ such that

lim sup
�→±∞

∥∥G±(x, y, i�± 0,ω)
∥∥

End(CN) ≤ C(ω), (x, y) ∈R2. (4.35)
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• For every s > 3 and K > 0, there is a constant Cs,K,ω <∞ such that for all λ ∈ iR with |λ| <K one has

sup
λ∈iR±0, |λ|<K

‖(JL(ω)− λ)−1‖L2
s→L2−s ≤ Cs,K,ω. (4.36)

• There is a constant Cω <∞ such that

lim sup
λ∈iR±0, |λ|→∞

‖(JL(ω)− λ)−1‖L2
1→L2−1

≤ Cω. (4.37)

Proof. We will only provide a construction of G−; see Remark 4.19 below.
Recall that f1, f2 are Jost solutions decaying (or oscillating) for x → +∞, while F1, F2 are the growing ones 

(or oscillating ones). f1, F1 have κ1 as the rate of decay and growth, respectively; f2 and F2 have the rate κ2, with 
κ2 > κ1 ≥ 0 (cf. (4.12)). Similarly with g1, g2, G1, G2, for x→ −∞.

Recall that if ξj = 0, then Fj = fj , hence the set {f1, f2, F1, F2} is no longer linearly independent. To overcome 
this issue, let us modify Fj . For ξj 	= 0, denote

F̃j (x, λ,ω)= Fj (x, λ,ω)+ fj (x, λ,ω)− Fj (x, λ,ω)
2iξj

, j = 1, 2; (4.38)

G̃j (x, λ,ω)= Gj (x, λ,ω)+ gj (x, λ,ω)− Gj (x, λ,ω)
2iξj

. j = 1, 2. (4.39)

Note that by (4.15) one has G̃(x, λ, ω) = βF̃ (−x, λ, ω).
For λ ∈ iR such that ξj (λ, ω) = 0, we define Fj (x, λ, ω) by the pointwise limit:

F̃j (x, λ,ω)= Fj (x, λ,ω)+ lim
λ′→λ; ξj (λ)>0

{ fj (x, λ′,ω)− Fj (x, λ′,ω)
2iξj (λ′)

}
,

and similarly for G̃j ; then one has F̃j (x, λ, ω) ∼�j 〈x〉 for x� 1 and G̃j (x, λ, ω) ∼ Hj 〈x〉 for x� −1.
By Proposition 4.4, we have the following asymptotics for F̃j , G̃j :

Lemma 4.15. For each ω ∈Ω , λ ∈ iR, one has:

|F̃j (x, λ,ω)| ≤ C(ω)〈x〉eκj x, x ≥ 0, j = 1, 2,

|G̃j (x, λ,ω)| ≤ C(ω)〈x〉eκj |x|, x ≤ 0, j = 1, 2,

where C(ω) is locally bounded in ω.

Remark 4.16. In Lemma 4.15, the estimates remain true when λ is above the corresponding threshold, so that ξj > 0
while κj = 0 (cf. definition (4.12)).

Proof. This follows from Proposition 4.4 and definitions (4.38), (4.39). �
Abusing the notations (cf. (4.27)), we assume that A(λ, ω), B(λ, ω) ∈C4×4 are such that

gk(x,λ,ω)=
2∑
j=1

fj (x, λ,ω)Ajk(λ,ω)+
2∑
j=1

F̃j (x, λ,ω)Bjk(λ,ω), k = 1, 2,

which we write as

(g1,g2)= (f1, f2)A+ (F̃1, F̃2)B. (4.40)

Multiplying (4.40) by β, flipping the sign of x, and using (4.15), we arrive at

(f1, f2)= (g1,g2)A+ (G̃1, G̃2)B, (4.41)

with the same A, B as in (4.40).
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Lemma 4.17. If E(λ, ω) 	= 0, then the matrix B(λ, ω) is non-degenerate.

Proof. By (4.40), E(λ, ω) = det[f1, f2, g1, g2] = det[f1, f2, (f1, f2)A + (F̃1, F̃2)B] = det[f1, f2, F̃1, F̃2] detB . �
If λ is neither an eigenvalue nor a resonance, so that the Jost solutions{

f1(x,λ,ω), f2(x,λ,ω), g1(x,λ,ω), g2(x,λ,ω)
}

(4.42)

are linearly independent, we define:

G(x,y,λ,ω)= −α
2∑

j,k=1

[
�(x− y)fj (x)�jk(λ,ω)⊗ g∗

k(y)+�(y− x)gj (x)�jk(λ,ω)⊗ f∗k(y)
]
"(y,λ,ω)−1,

(4.43)

where � is the Heaviside step-function, the Jost solutions also depend on (λ, ω) (this is not explicitly indicated), the 
matrix �(λ, ω) is defined by

�(λ,ω)= 1√|B21|2 + |B22|2
[ |B22| |B21|e−is
|B21|eis −|B22|

]
, (4.44)

so that det� = −1; here s ∈R is chosen so that

2∑
j=1

B2j�j1 = B21�11 +B22�21 = B21|B22| +B22|B21|eis√|B21|2 + |B22|2
= 0. (4.45)

(This choice of � is justified later by the need to have appropriate estimates on G(x, y, λ, ω).) The matrix "(y, λ, ω)
in (4.43) is defined by

"(y,λ,ω)= fj (y, λ,ω)�jk(λ,ω)⊗ g∗
k(y,λ,ω)− gj (y, λ,ω)�jk(λ,ω)⊗ f∗k(y,λ,ω). (4.46)

Since det� 	= 0, the matrix (4.46) is invertible as long as {f1, f2, g1, g2} are linearly independent. Moreover,

det"(y,λ,ω)= |E(λ,ω)|2. (4.47)

The relation (4.47) follows from the following identity:

Lemma 4.18. For any uj , vj ∈ CN , 1 ≤ j ≤N , A ∈ CN×N , one has

det
( N∑
j, k=1

ujAjk ⊗ v∗
k

)
= detAdet[u1, . . . , uN ]det[v1, . . . , vN ]. (4.48)

Proof. If vj are linearly dependent, the rank of the matrix in the left-hand side is smaller than N , and both sides in 
(4.48) vanish. Otherwise, the proof follows from computing the determinants of both sides of the identity

( N∑
j, k=1

ujAjk ⊗ v∗
k

)([v1, . . . , vN ]∗)−1 =
⎡⎣ N∑
j=1

ujAj1, . . . ,

N∑
j=1

ujAjN

⎤⎦ . �

Applying Lemma 4.18 to (4.46), thus setting [u1, . . . , u4] = [v1, . . . , v4] = [f1, f2, g1, g2] and A =
[

0 �
−� 0

]
, one 

derives:

det"(y,λ,ω)= (
det�(λ,ω)

)2∣∣det[f1(y,λ,ω), f2(y,λ,ω),g1(y,λ,ω),g2(y,λ,ω)]
∣∣2,

arriving at (4.47).
As follows from the definition, one has

−α(∂x −M(x,λ,ω))G(x, y,λ,ω)= δ(x − y)I4.
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Remark 4.19. At this point, we need to recall that the limit of the Green function is not uniquely defined at the 
essential spectrum. Since the expression (4.43) has the asymptotics ∼ eiξx , ξ ≈ −iλ for λ ∈ iR, Imλ � 1 (cf. (4.7)
and our convention that ξ1, ξ2 are positive for λ ∈ iR, Imλ � 1), we conclude that (4.43) will remain bounded for λ
near iR with Reλ < 0; thus, (4.43) corresponds to the limit G−(x, y, λ, ω) :=G(x, y, λ − 0, ω) of the Green function 
to the left of the upper branch of the essential spectrum (this is consistent with (4.8)). To define the limit on the right 
of the essential spectrum, one would need to interchange in the above considerations fj ∼ eiξj x and Fj ∼ e−iξj x , as 
well as gj and Gj (this is assuming that Imλ is large enough so that ξj > 0, hence fj , Fj with particular j oscillate 
as x→ +∞).

Let us now find the bounds on G(x, y, λ, ω). Our goal is to show that (4.43) does not grow exponentially when 
x and or y go to infinity. For example, when y → +∞, the fastest growing term is F̃2(y). We need to show that 
when (4.43) is written solely in terms of fj , F̃k , then in the combinations fj (x) ⊗ F̃ ∗

k (y) one always has x ≥ y, and 
moreover the coefficient at the term f1(x) ⊗ F̃∗

2(y) vanishes (this is the only problematic term, when the decay of fj (x)
with x ≥ y, x � 1, y � 11, does not compensate for the growth of F̃k(y)). We claim that the choice of � in (4.44)
specifically guarantees this.

For x ≥ y, we only need to consider the first term from (4.43):∑
j,k

fj (x)�jk ⊗ g∗
k(y), x ≥ y. (4.49)

It is enough to consider the following two (intersecting) cases: (1) x ≥ y, y ≤ 0 and (2) x ≥ y, x ≥ 0. (In the intersec-
tion, one has x ≥ 0, y ≤ 0, hence (4.49) is uniformly bounded.)

Let us consider the case x ≥ y, x ≥ 0. By (4.40), the factor at f1(x) in (4.49) is given by∑
k

�1kg∗
k(y)=

∑
j,k

(
fj (y)Ajk�̄1k + F̃j (y)Bjk�̄1k

)∗ =
∑
j,k

(
fj (y)Ajk�̄1k

)∗ +
∑
k

(
F̃1(y)B1k�̄1k

)∗; (4.50)

in the last equality, we took into account (4.44) and (4.45):∑
k

B2k�̄1k = B21�̄11 +B22�̄12 = B21�11 +B22�21 = 0.

It follows that when we rewrite (4.49) in terms of f, F̃ only, then the only term which can become exponentially large 
for x ≥ y, x ≥ 0, namely f1(x) ⊗ F̃2(y)

∗, drops out! Hence, (4.49) is bounded by C(λ, ω)〈y〉 for x ≥ 0, x ≥ y. The 
linear growth in y may come from fj (x) ⊗ F̃j (y)∗ when 0 � y ≤ x, whenever λ ∈ iR is near i(1 ±|ω|), so that ξj ≈ 0.

Let x ≥ y, y ≤ 0. By (4.41), the factor at g∗
1(y, λ, ω) in (4.49) is given by∑

j

fj (x)�j1 =
∑
j,k

(
gk(x)Akj + G̃k(x)Bkj

)
�j1 =

∑
j,k

gk(x)Akj�j1 +
∑
j

G̃1(x)B1j�j1; (4.51)

in the last equality, we took into account that the coefficient at G̃2(x) ⊗ g∗
1(y) is given by B21�11 + B22�21 = 0, by 

(4.45). Thus, when we rewrite (4.49) in terms of g and G̃, the coefficient at the term G̃2(x) ⊗ g∗
1(y), the only one out 

of G̃j (x) ⊗ g∗
k(y) which can be exponentially large for x ≥ y, y→ −∞, drops out. It follows that (4.49) is bounded 

by C(ω)〈x〉 for y ≤ 0, x ≥ y. The linear growth in x may come from G̃j (x) ⊗ gj (y) for y ≤ x � 0 (when writing 
(4.49) as a linear combination of gj ⊗ g∗

k , G̃j ⊗ g∗
k , via the substitution (4.41)), whenever λ is near i(1 ± |ω|) so 

that the corresponding ξj is near zero. By (4.14), as |λ| → ∞, 
∥∥fj (·, λ,ω)

∥∥
L∞ and 

∥∥gj (·, λ,ω)
∥∥
L∞ are bounded by 

c(ω) <∞.
We summarize the cases x ≥ y, y ≤ 0 and x ≥ y, x ≥ 0: Thus, for some c(λ, ω) <∞,∥∥∥∑

j,k

�jkfj (x)⊗ g∗
k(y)

∥∥∥
End(C4)

≤ c(λ,ω)min(〈x〉, 〈y〉), x ≥ y. (4.52)

The case x ≤ y follows from the above once we notice that "(−y, λ, ω) = β"(y, λ, ω)β and then

G(−x,−y,λ,ω)= −βG(x,y,λ,ω)β;
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we arrive at the same bound but now for x ≤ y:∥∥∥∑
j,k

�jkgj (x)⊗ f∗k(y)
∥∥∥

End(C4)
≤ c(λ,ω)min(〈x〉, 〈y〉), x ≤ y. (4.53)

Let us study the contribution of the matrix "(y, λ, ω) defined in (4.46). By (4.52) and (4.53), "(y, λ, ω) satisfies

‖"(y,λ,ω)‖End(C4) ≤ c(λ,ω)〈y〉, (4.54)

with the linear growth only for x ≈ ±i(1 ±ω).
By (4.47) and (4.54), there is C(λ, ω) <∞ such that∥∥∥"(y,λ,ω)−1

∥∥∥
End(C4)

≤C(λ,ω)〈y〉. (4.55)

(Here, we need to argue that the minors of " cannot grow faster than 〈y〉; at most one of G̃j (y) ⊗ gj (y)∗, j = 1, 2
can grow linearly at a given value of λ, hence, in the appropriate basis, only one element of " grows linearly while 
others are bounded uniformly in y ∈ R.) Combining (4.52) and (4.53) with (4.55), we arrive at the bound (4.34).

Let us now study the behavior of G(x, y, λ, ω) for λ ∈ iR, |λ| → ∞. By Proposition 4.4, the Jost solutions fj , 
F̃j , gj , G̃j are bounded uniformly in x as long as |λ| is sufficiently large. By Lemma 4.10 and (4.47), for λ ∈ iR, 
|λ| → ∞, one has |det"(y, λ, ω)| → 1, while the components of "(y, λ, ω) are uniformly bounded for λ → ±i∞. 
It follows that the components of the matrix G(x, y, λ, ω) defined in (4.43) are bounded uniformly in x and y as long 
as |λ| is sufficiently large.

Finally, the bounds (4.36) and (4.37) follow from the pointwise estimates (4.34) and (4.35) for Green’s function. 
This concludes the proof of Proposition 4.14. �
5. Dispersive estimates for the semigroup

In this section, we develop set of dispersive estimates, which will be useful in the sequel for controlling the radiation 
portion of the perturbation.

5.1. Weighted decay estimates

We start with an estimate, which is typical in this context, namely etJL(ω)Pc(ω) : L2 → L∞(〈x〉−3L2
t ).

Proposition 5.1. Let ω ∈Ω . Then there exists C <∞ such that for all t > 0, the following estimates hold:

sup
x

〈x〉−3
∥∥∥[etJL(ω)Pc(ω)f ](x)

∥∥∥
L2
t

≤ C ‖f ‖L2
x
,

‖
∞∫

−∞
etJL(ω)Pc(ω)F (t, ·) dt‖L2

x
≤ C‖F‖(L1

3)xL
2
t
.

Remark 5.2.

(i) The estimates in Proposition 5.1 can be upgraded to include derivatives. For example,

sup
x

〈x〉−3
∥∥∥∂x[etJLPc(ω)f ](x)

∥∥∥
L2
t

≤ C ‖f ‖H 1
x
.

Note that the last estimate presents a challenge, since ∂xetJL 	= etJL∂x . Nevertheless, since

L(ω)= Dm −ωI4 + W(x,ω),

with Dm from (3.5), we may essentially commute the derivative with etJL modulo low order error terms, whence 
the result generalizes to include derivatives.
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(ii) Interestingly, Proposition 5.1 fails for the free Dirac operator. This is due to an essentially resonant behavior of 
the free Dirac operator close to the edges of the continuous spectrum. We have an alternative estimate for the free 
Dirac operator in Lemma 5.4.

Proof of Proposition 5.1. Clearly, the two estimates in the claim of Proposition 5.1 are dual to each other, so it 
suffices to establish the first one.

Pick an even function χ ∈ C∞
comp(R) such that

suppχ ⊂ [−4,4], χ(�)= 1 for |�| ≤ 3. (5.1)

Decompose the evolution into two pieces:

etJLPc(ω)f = χ(iJL)etJLPc(ω)f + (1 − χ(iJL))etJLPc(ω)f,

with the terms in the right-hand side defined in view of (4.2) as the inverse Fourier transforms in time of the functions

−χ(�)([R+
JL(i�)−R−

JL(i�)]f
)
(x), −(1 − χ(�))([R+

JL(i�)−R−
JL(i�)]f

)
(x). (5.2)

The required estimate will follow from

sup
x

‖(1 − χ(iJL))etJLPc(ω)f ‖L2
t
≤ C‖f ‖L2

x
, (5.3)

sup
x

〈x〉−3‖χ(iJL)etJLPc(ω)f ‖L2
t
≤ C‖f ‖L2

x
. (5.4)

Using the Fourier transforms (5.2), we see that (5.3) will follow from

sup
x

‖(1 − χ(�))R±
JL(i�)f (x)‖L2

�
≤ C‖f ‖L2

x
. (5.5)

Similarly, (5.4) will follow from

sup
x

〈x〉−3‖χ(�)R±
JL(i�)f (x)‖L2

�
≤ C‖f ‖L2

x
. (5.6)

We now prove (5.5) and (5.6).

Proof of (5.5). For brevity, we denote

RW(�) := (Dm −ωI4 −�J−1 + W)−1.

From the resolvent identity, we have RW = R0 − RWWR0 = R0 − R0WRW, whence the following Born expansion 
holds:

RW =R0 −R0WR0 +R0WRWWR0. (5.7)

Observe that R0 =
[
(Dm−(ω+�)I2)−1 0

0 (Dm−(ω−�)I2)−1

]
. The restrictions imposed by the cut-off (1 − χ) (cf. (5.1)) im-

plies that |ω±�| > 3. It follows that it is enough to show that

sup
x

∞∫
3

|(Dm −μI2)−1f (x)|2dμ≤ C‖f ‖2
L2
x
; (5.8)

sup
x

∞∫
3

|(Dm −μI2)−1Wν(Dm −μI2)−1f (x)|2dμ≤ C‖W‖2
L1
x
‖f ‖2

L2
x
; (5.9)

sup
x

∞∫
3

|(Dm −μI2)−1WνRWWν(Dm −μI2)−1f (x)|2dμ≤C‖〈x〉αW‖2
L2
x
‖f ‖2

L2
x
. (5.10)

Above, α > 3/2 and Wν is either of the potentials W1, W0. Similar estimates were shown in [29, Section VIII], but 
we provide the details here for completeness. Note that
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(Dm −μI2)−1 = (1 − ∂2
x −μ2)−1

(
1 +μ ∂x
−∂x μ− 1

)
.

Thus, setting μ = √
k2 + 1, the operator (Dm − μI2)−1 is represented as a linear combination of operators with the 

following kernels:

e±ik|x| sgn(x),
e±ik|x|

k
,

e±ik|x|
√
k2 + 1

k
.

Clearly, for the purposes of showing (5.8), (5.9), (5.10), it is enough to consider the operator with kernel e±ik|x| sgn(x).
For the proof of (5.8), we have by Plancherel’s

sup
x∈R

∞∫
√

8

∣∣∣∣∫ e±ik|x−y| sgn(x − y)f (y) dy
∣∣∣∣2 k dk√

k2 + 1

≤ 2 sup
x∈R

∞∫
√

8

⎧⎨⎩∣∣∣ x∫
−∞

e∓ikyf (y) dy
∣∣∣2 +

∣∣∣ ∞∫
x

e±ikyf (y) dy
∣∣∣2
⎫⎬⎭ dk ≤ 4‖f ‖2

L2 .

Similarly, for (5.9) we have (by Minkowski’s)

sup
x

∞∫
√

8

∣∣∣∣∫ e±ik|x−y| sgn(x − y)W(y)[R0(
√

1 + k2)f ](y) dy
∣∣∣∣2 k dk√

k2 + 1

≤
∞∫

√
8

∣∣∣∣∫ |W(y)|
∣∣∣[R0(

√
1 + k2)f ](y)

∣∣∣dy∣∣∣∣2 dk

≤
⎛⎜⎝∫

|W(y)|
⎛⎜⎝ ∞∫

√
8

|[R0(
√

1 + k2)f ](y)|2 dk
⎞⎟⎠

1/2

dy

⎞⎟⎠
2

≤ ‖W‖2
L1 sup

y

∞∫
√

8

∣∣∣[R0(
√

1 + k2)f ](y)
∣∣∣2 dk ≤C‖W‖2

L1‖f ‖2
L2 .

This shows (5.9). Finally, for (5.10), we estimate

sup
x

∞∫
√

8

∣∣∣∣∫ e±ik|x−y| sgn(x − y)W(y)RW[WR0f ](y) dy
∣∣∣∣2 dk

≤ ‖〈y〉3W(y)‖2
L2

∞∫
√

8

‖〈y〉−3RW〈y〉−3[〈y〉3W(y)[R0(
√

1 + k2)f ](y)‖2
L2
y
dk

≤ ‖〈y〉3W(y)‖4
L2‖RW‖2

(L2
3)x→(L2−3)x

sup
y

∞∫
√

8

∣∣∣R0(
√

1 + k2)f ](y)
∣∣∣2 dk

≤ C‖〈y〉3W(y)‖4
L2‖f ‖2

L2
x
.

In the last estimate, we have used the estimates from Proposition 4.14 which are uniform for large � (for large values 
of the spectral parameter � >

√
8), RW :L2

3(R) → L2−3(R).

Proof of (5.6). The statement for low frequencies follows from the following result:



A. Comech et al. / Ann. I. H. Poincaré – AN 34 (2017) 157–196 183
Lemma 5.3. Let C0(R) be the space of continuous, compactly supported functions. Define A : C0(R) → C(R × R)

by

u �→Au(x,�)= χ(�)
∫
R

G(x,y, i�,ω)u(y)dy. (5.11)

Then A extends to a continuous operator L2(R) → L∞
loc(R, L

2
�(R)), and moreover there is C <∞ such that

sup
x

〈x〉−3 ‖Au(x, ·)‖L2
�

≤ C ‖u‖L2 . (5.12)

Proof. Let u ∈ L2(R, C4). Without loss of generality, we assume that suppu ⊂R+, so that in (4.43) we have y ≥ 0.

The case x ≥ 0. We use the expression (4.43) for G(x, y, i�, ω); expressing in (4.43) the Jost solutions gj in terms 
of fj and F̃j , we see that it suffices to check that the expressions

∞∫
0

�(±(x − y))fj (x)f∗k(y)u(y) dy,
∞∫

0

�(y − x)F̃j (x)f∗k(y)u(y) dy,
∞∫

0

�(x − y)fj (x)F̃∗
k(y)u(y) dy,

(5.13)

with j, k = 1, 2, are bounded in L2 as functions of �, with an appropriate bound on the growth with x. Above, we 
omitted the weight χ(�) present in (5.11); this weight will become important when we will integrate by parts.

In (5.13) and in the rest of the proof, the Jost solutions are evaluated at λ = i� and ω, which we usually do not 
indicate explicitly to shorten the notations. The first two terms in (5.13) are analyzed similarly; the more difficult 
being the second one, so we focus on it.

• Assume that fk(y, i�, ω) is exponentially decaying, so that

fk(y, i�,ω)∼ e−κky, y� 1,

with κk > 0 (cf. (4.12)).
When F̃j (x, i�, ω) remains bounded or grows linearly in x for x� 1,∣∣∣∣∣∣

∞∫
0

F̃j (x)f∗k(y)u(y) dy

∣∣∣∣∣∣ ≤ C〈x〉
∞∫

0

|fk(y)||u(y)|dy ≤ C〈x〉 ‖�(·)fk‖‖u‖ ≤ C〈x〉√
κk

‖u‖ .

Note that κ−1/2
k is L2 in � near the thresholds � = ±(1 ±ω).

When F̃j (x, i�, ω) is exponentially growing, by Lemma 4.15, we have |F̃j (x)| ≤ C(�, ω)〈x〉eκj x for x ≥ 0, and 
moreover we only need to consider terms with κj ≤ κk due to our construction of G in Proposition 4.14 (the term 
F̃2(x)f∗1(y) is absent in the expansion of G(x, y) over fj (x)f∗k(y), F̃j (x)f∗k(y), and fj (x)F̃∗

k(y)), and with C(�, ω)
locally bounded in � and ω, with lim sup�→±∞C(�, ω) ≤ C(ω) <∞. Then, again,∣∣∣∣∣∣

∞∫
0

�(y − x)F̃j (x)f∗k(y)u(y) dy
∣∣∣∣∣∣ ≤C〈x〉

∞∫
x

eκj xe−κky |u(y)|dy ≤ C〈x〉√
κk

‖u‖ .

• Assume that fk(y, i�, ω) ∼ eiξky is oscillating:

|�±ω|> 1, ξk(i�,ω)=
√
(�±ω)2 − 1> 0. (5.14)

(According to the construction of the Green function, since fk is oscillating, we only need to consider the terms in 
(5.13) with F̃j (x) also oscillating: ξj > 0.) In this case, the integration in spatial variables becomes possible after 
integrating by parts with the aid of the operator L� = 1

i(y−z) ∂�; we only give a sketch, substituting the Jost solutions 

by their asymptotic behavior fk(x) ∼ eiξkx and F̃j (x) ∼ e−iξj x + e
iξj x−e−iξj x

2iξj
(cf. (4.38)). Then the integration by parts 

yields
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∣∣∣∣∣∣
∫
R

χ(�)d�

∫
R×R

|F̃j (x)|2f∗k(z)u(z)f
∗
k(y)u(y) dy dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R

χ(�)d�

∫
R×R

|F̃j (x)|2L2
�

(
f∗k(z)u(z)f

∗
k(y)u(y)

)
dy dz

∣∣∣∣∣∣
≤ 〈x〉2

∫
R

χ(�)d�

∫
R×R

C|u(y)||u(z)|dy dz
1 + |μj (x,�,ω)−1(y − z)∂�ξk|2 ≤ C〈x〉2

∫
R

χ(�)d�
μj (x,�,ω)‖u‖2

|∂�ξk| . (5.15)

Above,

μj (x,�,ω) := Cmax
(

1, |x||∂�ξj |, |∂2
�ξj |

|∂�ξj |
)

(5.16)

is the bound on the contribution of ∂� during the integration by parts (the last term in (5.16) is the contribution from 
the derivative falling onto ∂�ξj during the second integration by parts). In the last inequality in (5.15), we used the 
Schur test. Due to (5.14), one has

∂�ξj = �±ω
ξj

, |∂2
�ξj | ≤

C〈�〉2

ξ3
j

;

hence, (5.16) can be continued as follows:

μj (x,�,ω)= Cmax
(

1, |x||∂�ξj |, |∂2
�ξj |

|∂�ξj |2
)

≤Cmax
(

1,
〈x〉
ξj

)
.

It follows that

μj (x,�,ω)

|∂�ξk| ≤ C〈x〉
ξk(i�,ω)

is locally integrable in � ∈ suppχ (and such that |� ± ω| > 1), and moreover 〈x〉−3
∫ 〈x〉2 μj (x,�,ω)

|∂�ξk | χ(�) d� is 

bounded uniformly in x. The factor 〈x〉2 under the integral comes from the bound |F̃j (x, λ, ω)| ≤ C〈x〉 which remains 
valid uniformly in ξj > 0 when ξj → 0+ (cf. Lemma 4.15). This leads to (5.12).

Let us analyze the last term in (5.13). When F̃k(y) is oscillating, we use the same consideration as above, in the 
case when fk(y) was oscillating. Let us consider the situation when F̃k(y) is exponentially growing as y → +∞. 
Since this growth is compensated by the decay of �(x − y)fj (x) due to the choice of Bjk(λ, ω) in (4.44) (as we 
mentioned above, the construction of G is such that we only need to treat terms with κk ≤ κj ), it suffices to consider 
the terms �(x − y)fj (x)F̃∗

k(y) which are bounded by �(x − y)〈x〉e−κj |x|eκk |y|, with κj ≥ κk . We have:

〈x〉
∫
�(x − y)e−κj |x|eκk |y||u(y)|dy ≤ C〈x〉

x∫
0

|u(y)|dy ≤ C〈x〉3/2 ‖u‖ ,

which immediately leads to (5.12).

The case x ≤ 0. This case is in fact much simpler. In this case, from (4.43), we only need to consider the contribution 
from 

∑2
j,k=1 gj (x)�jkf∗k(y); we need to prove that the expressions∫

R+

gj (x)�jkf∗k(y)u(y) dy,

with j, k = 1, 2, are L2-bounded in �, for � ∈ suppχ . Since gj (x) are bounded for x ≤ 0, the proof follows the lines 
of our argument for the case x ≥ 0, except that we do not need to worry whether the decay of fk(x) compensates the 
growth gj (x) since the latter terms are bounded for x ≤ 0. This finishes the proof. �
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This completes the proof of Proposition 5.1. �
Next, we state and prove the estimate for the “free” Dirac operator, which is reminiscent of Proposition 5.1. As we 

have pointed out before, Proposition 5.1 does not hold for Dm, unless one adds a derivative correction that takes care 
of the low frequency component of f .

Lemma 5.4. We have the following estimate for the evolution of the “free” Dirac operator:

sup
x

∥∥∥etJL0f

∥∥∥
L2
t

≤ ‖Mf ‖L2
x
, (5.17)

‖
∫
etJL0F(t, ·) dt‖ ≤ C‖MF‖L1

xL
2
t
, (5.18)

where M = √〈∇〉/|∇| or more precisely M̂g(ξ) = (1+ξ2)1/4

|ξ |1/2 ĝ(ξ). In addition, by a simple duality argument, there is 
also

‖
∫
etJL0F(t, ·) dt‖L2

x
≤ C‖MF‖L1

xL
2
t
. (5.19)

Proof. Clearly, (5.18) is just a dual to (5.17), so we concentrate on (5.17). Due to the block-diagonal structure of Dm, 
the problem iut = Dmu reduces to the following linear system:

i∂th=Dmh, h|t=0 = h0,

which in the components of h ∈C2 takes the following form:⎧⎨⎩
i∂th1 = h1 + ∂xh2,

i∂th2 = −∂xh1 − h2,

h1(0)= h0
1, h2(0)= h0

2.

It follows that h1, h2 both satisfy the Klein–Gordon equation ∂tth1,2 − ∂xxh1,2 + h1,2 = 0 with the corresponding 
initial data. Thus, (5.17) reduces to

sup
x

‖eit〈∇〉f ‖L2
t
≤ C‖Mf ‖L2,

where 〈̂∇〉g(ξ) = √
1 + ξ2ĝ(ξ). Changing the variables κ = sgn(ξ)

√
1 + ξ2 and using Plancherel’s theorem, we have:

‖eit〈∇〉f ‖2
L2
t
=

∫ ∣∣∣ ∫ eit
√

1+ξ2
f̂ (ξ)eiξxdξ

∣∣∣2dt
=

∫ ∣∣∣ ∫
|κ|>1

eitκ f̂ (
√
κ2 − 1)eix

√
κ2−1 κ dκ√

κ2 − 1

∣∣∣2dt
=

∫
|κ|>1

|f̂ (√κ2 − 1)|2κ2 dκ

κ2 − 1
=

∫ |f̂ (ξ)|2√1 + ξ2

|ξ | dξ = ‖Mf ‖2
L2 . �

Note that it becomes clear in the proof that the term ‖eit〈∇〉f ‖L2
t

is actually a constant in x. Thus, adding weights 
(as in Proposition 5.1) would not have salvaged a statement in Proposition 5.1, if we insist on having ‖f ‖L2

x
on the 

right hand side. One indeed needs to have instead ‖Mf‖L2 as we have established above.
Next, we present an estimate for the retarded term in the Duhamel representation, in the spirit of Proposition 5.1.

Lemma 5.5. Let ω ∈Ω . There exists C <∞ so that

sup
x

〈x〉−3‖
t∫

0

e−(t−τ)JLPc(ω)F (τ, ·) dτ‖L2
t
≤ C‖F‖(L1

3)xL
2
t
. (5.20)
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Proof. It is well-known that these type of estimates are essentially dual estimates to the one presented in Proposi-
tion 5.1. In fact, recall that from Proposition 5.1,

‖
∞∫

0

eτJLPc(ω)F (τ, ·) dτ‖L2
x
≤ C‖F‖(L1

3)xL
2
t
.

Thus, if one deals with the related quantity 
∫ ∞

0 e−(t−τ)JLPc(ω)F (τ, ·) dτ , we have, by virtue of Proposition 5.1 and 
its dual estimate,

‖〈x〉−3

∞∫
0

e−(t−τ)JLPc(ω)F (τ, ·) dτ‖L∞
x L

2
t
= ‖〈x〉−3e−tJL

∞∫
0

eτJLPc(ω)F (τ, ·) dτ‖L∞
x L

2
t

≤ C‖
∞∫

0

eτJLPc(ω)F (τ, ·) dτ‖L2
x
≤ C‖F‖(L1

3)xL
2
t
.

However, as one observes quickly, we have to deal with 
∫ t

0 in the retarded term in the Duhamel representation, instead 
of 

∫ ∞
0 in our previous consideration. This is a non-trivial issue, which has been resolved in the literature, see [24, 

Lemma 11] and [29, Lemma 2]. In short, these results allows one to write for F(t, x) = g1(t)g2(x),

U(t, ·)= 2

t∫
0

e(t−τ)JLPc(ω)F (τ, ·) dτ +
⎛⎝ 0∫

−∞
−

∞∫
0

⎞⎠ e(t−τ)JLPc(ω)F (τ, ·) dτ,

U(t, x)= i√
2π

∞∫
−∞

e−it�ǧ1(�)
([
R+

JL(i�)+R−
JL(i�)

]
g2

)
(x) d�.

Since we have already shown the estimates for the term 
∫ ∞

0 . . . (and the estimates for 
∫ 0
−∞ . . . are similar), it remains 

to show the appropriate estimates for U . By the Plancherel theorem in the t -variable,

‖U(t, ·)‖(L∞−3)xL
2
t
=

∥∥∥〈x〉−3‖ǧ1(�)[R+
JL(i�)+R−

JL(i�)]g2‖L2
�

∥∥∥
L∞
x

≤ C‖ǧ1‖L2
�

sup
�∈R

∥∥R±
JL(i�)

∥∥
L1

3→L∞−3
‖g2‖(L1

3)x
≤ C‖g1‖L2

t
‖g2‖(L1

3)x
.

All in all, we have shown the required estimate (5.20) for the case F = g1(t)g2(x). Note however that the domain 
space (L1

3)xL
2
t may be embedded in the bigger space (M3)xL

2
t , where M3 is the space of Borel measures with the 

weight 〈x〉3. By the Krein–Milman theorem, elements of this space may be represented as weak* limits of linear 
combinations of Dirac masses of the form δ(x − a)g(t). Thus, to show bounds of the form T : (M3)xL

2
t → Y for 

any linear operator T and Banach space Y , it suffices to prove such an estimate for elements F = g2(x)g1(t), with 
g2 ∈ M3, g1 ∈ L2 as we have done above. �
5.2. Further linear estimates for etJL

We will now state and derive the Strichartz estimates.

Definition 5.6. We say that a pair (q, r) is Strichartz-admissible (for the Dirac equation in one spatial dimension), if

q ≥ 2, r ≥ 2,
2

q
+ 1

r
≤ 1

2
.

Equivalently, the admissible set is a triangle in the ( 1
q
, 1
r
) plane, with endpoints corresponding to (q, r) = (4, ∞) and 

(q, r) = (∞, 2).
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In view of the representation of the Strichartz-admissible set as a triangle in the ( 1
q
, 1
r
) coordinates, we will state 

the estimates only at the vertices, with the estimates in the interior of the triangle obtained by interpolation.
Next, before we can state our Strichartz type estimates, we need a variant of the well-known Christ–Kiselev lemma, 

an abstract result which allows one to pass between estimates for dual operators and retarded terms in the Duhamel 
representation. We state a version which is due to Smith and Sogge [32].

Lemma 5.7. Let X, Y be Banach spaces and K : Lp(R; X) → Lq(R, Y) be a bounded linear operator such that 
Kf (t) = ∫ ∞

−∞K(t, s)f (s) ds. Then the operator

K̃f (t)=
t∫

0

K(t, s)f (s) ds (5.21)

is bounded from Lp(R; X) to Lq(R, Y), provided that p < q . Moreover, there is Cp,q > 0 such that

‖K̃‖Lp(R;X)→Lq(R,Y ) ≤ Cp,q‖K‖Lp(R;X)→Lq(R,Y ).

Lemma 5.8. Let (q, r) be a Strichartz-admissible pair. Then, for any ε > 0 and s ≥ 0, there is Cε <∞ so that∥∥etJLPc(ω)f
∥∥
L4
t L

∞
x

≤ C‖f ‖H 3/4+ε , (5.22)∥∥etJLPc(ω)f
∥∥
L∞
t H

s
x

≤ C‖f ‖Hs , (5.23)

∥∥∥ ∞∫
−∞

eτJLPc(ω)F (τ, ·)
∥∥∥
L∞
t H

1
x∩Lqt Lrx

≤ ‖F‖L1
t H

1
x
, (5.24)

∥∥∥ t∫
0

e(t−τ)JLPc(ω)F (τ, ·)
∥∥∥
L∞
t H

1
x∩Lqt Lrx

≤ ‖F‖L1
t H

1
x
. (5.25)

Proof. We start with the estimates (5.22) and (5.23). Let us note that we can easily upgrade (5.22) to add derivatives 
on the evolution. An interpolation between these two estimates then yields (cf. (5.27) below for the free Dirac case):

‖etJLPc(ω)f ‖Lqt Ws,r
x

≤ Cε‖f ‖
H
s+ 1

2 + 1
q − 1

r +ε , (5.26)

for s ≥ 0 and for all Strichartz-admissible pairs (q, r).
The proof of (5.25) is based on an application of the dual to (5.26) and Lemma 5.7. Thus, it remains to show (5.22)

and (5.25). The approach follows what has become standard in recent years: we employ the available results for the 
“free” Dirac operator, in addition to the weighted decay estimates that we have proved in the previous section, namely 
Proposition 5.1 and Lemma 5.5. In fact, we follow closely the approach in [29, Lemma 4].

Let us recall first the estimates for the free Dirac operator. Let us prove the Strichartz estimates for eitDm in the 
form (5.22), (5.23), (5.25). The corresponding linear equations

i∂th1 = h1 + ∂xh2, i∂th2 = −∂xh1 − h2

reduce to the Klein–Gordon equation for each component h1, h2, as we have shown in the proof of Lemma 5.4. Thus, 
the “free” Dirac estimates follow from the respective estimates for the Klein–Gordon equation, which can be found 
in the recent work of Nakamura–Ozawa, [26, Lemma 2.1] (where one takes θ = 1, � = 3/2, n = 1). These estimates 
read as follows: for every ε > 0,

‖e−itDmf ‖Lqt Ws,r
x

≤Cε‖f ‖
H
s+ 1

2 + 1
q − 1

r +ε . (5.27)

These are of course the variants of the estimates (5.22) and (5.23); the estimate (5.25) holds in a similar manner for 
the free Dirac case. One important improvement of (5.27), which is implicit in [26],3 concerns the low frequency 
component of f . Namely, for the particular case q = 4, r = ∞, we have:

3 This is the estimate (2.15) in [26], which holds with the homogeneous Besov spaces version.
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‖e−itDmf ‖L4
t L

∞
x

≤ Cε‖|∂x |3/4f ‖Hε . (5.28)

Let us now consider JL = J(L0 + W), with a potential W of Schwartz class. We may write the perturbed evolution 
in terms of the free evolution as follows:

etJLf = etJL0f +
t∫

0

e(t−s)JL0JWesJLf ds.

We now have to deal with the two endpoint cases of Strichartz pairs: (q, r) = (4, ∞) and (q, r) = (∞, 2). We only 
present the first case, the second being similar. To that end, let W(x) = V1(x)V2(x), with V1(x) = e−δΩ 〈x〉 and V2(x) =
eδΩ 〈x〉W(x), with

δΩ = inf
ω∈Ω δω = inf

ω∈Ω
√

1 −ω2 > 0 (5.29)

so that V2(x) is also exponentially decaying (cf. (3.8)). For f ∈H 3
4 +ε , we have:

‖etJLPc(ω)f ‖L4
t L

∞
x

≤ ‖etJL0f ‖L4
t L

∞
x

+
∥∥∥∥∥∥
t∫

0

e(t−s)JL0JV1V2e
sJLPc(ω)f ds

∥∥∥∥∥∥
L4
t L

∞
x

≤ Cε‖f ‖
H

3/4+ε
x

+
∥∥∥∥∥∥
t∫

0

e(t−s)JL0JV1V2e
sJLPc(ω)f ds

∥∥∥∥∥∥
L4
t L

∞
x

.

We now use the Christ–Kiselev lemma (Lemma 5.7) with K(t, s) = e(t−s)JL0JV1 : L2
t H

3
4 +ε → L4

t L
∞
x . Following 

(5.21),

K̃[V2e
sJLPc(ω)f ] =

t∫
0

e(t−s)JL0JV1V2e
sJLPc(ω)f ds.

According to Lemma 5.7, we have

‖
t∫

0

e(t−s)JL0JV1V2e
sJLPc(ω)f ds‖L4

t L
∞
x

= ‖K̃[V2e
sJLPc(ω)f ]‖L4

t L
∞
x

≤ C‖K‖
L2
t H

3
4 +ε→L4

t L
∞
x

‖V2e
tJLPc(ω)f ‖

L2
t H

3
4 +ε .

From the interpolation between the cases s = 0 and s = 1, the decay and smoothness properties of V2 and the weighted 
decay estimate from Proposition 5.1, we conclude that ‖V2e

tJLPc(ω)f ‖L2
t H

s
x

≤ C‖f ‖Hs , and we arrive at the estimate 

‖V2e
tJLPc(ω)f ‖

L2
t H

3
4 +ε ≤ C‖f ‖

H
3
4 +ε .

It remains to obtain the appropriate estimate for ‖K‖
L2
t H

3
4 +ε→L4

t L
∞
x

. We have again by the Strichartz estimates for 

the free Dirac evolution (more precisely, the version of (5.28)):

‖
∞∫

−∞
e(t−s)JL0JV1G(s, ·) ds‖L4

t L
∞
x

= ‖etJL0

∞∫
−∞

e−sJL0JV1G(s, ·) ds‖L4
t L

∞
x

≤ C‖|∂x |3/4
∞∫

−∞
e−sJL0JV1G(s, ·) ds‖Hε .

From Lemma 5.4 (and more precisely from (5.18)), we have
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‖|∂x |3/4
∞∫

−∞
e−sJL0JV1G(s, ·) ds‖Hε ≤ C‖|∂x |3/4M[JV1G(s)]‖L1

xH
ε .

Note that in the low frequencies, |∂x |3/4M ∼ |∂x |1/4 is not singular anymore, while in the high frequencies one has 
|∂x |3/4M ∼ |∂x |3/4. Thus, with V1 in the Besov space B1,1

2 , we have

‖|∂x |3/4M[JV1G(s)]‖L1
xH

ε
s

≤ C‖V1‖B1,1
2

‖G‖L2
xH

3/4+ε .

With that, Lemma 5.8 is proved in full. �
Our next lemma is another essential component of the fixed point arguments to be presented in Section 6. Namely, 

it connects the Strichartz estimates to the weighted decay estimates.

Lemma 5.9. There is C <∞ such that

‖
t∫

0

e(t−τ)JLPc(ω)F (τ, ·) dτ‖L∞
t H

1
x∩L4

t L
∞
x

≤ C[‖F‖(L1
3)xL

2
t
+ ‖∂xF‖(L1

3)xL
2
t
], (5.30)

sup
x

〈x〉−3‖
t∫

0

e(t−τ)JLPc(ω)F (τ, ·) dτ‖L2
t
≤ C‖F‖L1

t L
2
x
. (5.31)

Proof. For the proof of (5.30), by Lemma 5.7, we may consider the Duhamel’s operator in the form 
∫ ∞
−∞ . . ., instead 

of the retarded term with 
∫ t

0 . . . in the Duhamel representation. By (5.22) and (5.23),

∥∥∥ ∞∫
−∞

e(t−τ)JLPc(ω)F (τ, ·) dτ
∥∥∥
L∞
t H

1
x∩L4

t L
∞
x

=
∥∥∥etJLPc(ω)

∞∫
−∞

e−τJLF(τ, ·) dτ
∥∥∥
L∞
t H

1
x∩L4

t L
∞
x

≤
∥∥∥ ∞∫
−∞

e−τJLPc(ω)F (τ, ·) dτ
∥∥∥
H 1
x

.

To prove (5.30), we need to estimate two terms: one with a derivative and one without a derivative. The term without 
a derivative is dealt with by Proposition 5.1:

∥∥∥ ∞∫
−∞

e−τJLPc(ω)F (τ, ·) dτ
∥∥∥
L2
x

≤C‖F‖(L1
3)xL

2
t
. (5.32)

For the term ‖ 
∫ ∞
−∞ ∂x[e−τJLPc(ω)F (τ, ·)]dτ‖L2

x
, we are facing a difficulty since ∂xe−τJL 	= e−τJL∂x . Nevertheless, 

due to the fact that L = Dm −ωI4 + W, we use the L2
x estimate (5.32) to derive

∥∥∥ ∞∫
−∞

∂x
[
e−τJLPc(ω)F (τ, ·)

]
dτ

∥∥∥
L2
x

≤
∥∥∥ ∞∫
−∞

(
L − β +ωI4 − W

)[
e−τJLPc(ω)F (τ, ·)

]
dτ

∥∥∥
L2
x

≤C
{
‖LF‖(L1

3)xL
2
t
+ (

1 + |ω| + ‖W‖L∞
x

)‖F‖(L1
3)xL

2
t

}
. (5.33)

Taking into account the specific form of JL, it follows from (5.32) and (5.33) that

∥∥∥ ∞∫
e−τJLg1(τ )Pc(ω)g2dτ

∥∥∥
H 1
x

≤ C[‖F‖(L1
3)xL

2
t
+ ‖∂xF‖(L1

3)xL
2
t
].
−∞
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We now turn to proving (5.31) Because of the weak* density of linear combinations {δ(t − τ0)G(x) : τ0 ∈ R1, G ∈
L2
x(R

1)} in L1
t L

2
x , it suffices to prove (5.31) for F(x) = δ(t − τ0)G(x). By Proposition 5.1,

sup
x

〈x〉−3
∥∥∥ t∫

0

e(t−τ)JLPc(ω)δ(τ − τ0)G(x)dτ

∥∥∥
L2
t

= sup
x

〈x〉−3‖e(t−τ0)JLPc(ω)G(x)‖L2
t

= sup
x

〈x〉−3‖etJLPc(ω)G(x)‖L2
t
≤ C‖G‖L2

x
. �

6. Proof of the main theorem

In this section, the constants C may change from one instance to another; they all depend only on Ω and on the 
nonlinearity f in (2.3). We analyze the modulation equations (3.31) and the PDE (6.6). Let ε > 0 be sufficiently small 
and

ψ0e
iθ0 = φω0 + ρ0, ρ0 ∈ Xc(ω0), θ0 ∈R, ‖ρ0‖H 1 ≤ ε2.

Without loss of generality, we assume that θ0 = 0.

Definition 6.1. For fixed N > 10 and T > 0, let

‖Z‖XT = ‖Z‖L4
t L

∞
x

+ ‖Z‖L∞
t H

1
x

+
∥∥∥〈x〉−NZ

∥∥∥
L∞
x L

2
t

+
∥∥∥〈x〉−N∂xZ

∥∥∥
L∞
x L

2
t

,

‖F‖YT = inf
F=A+B

[
‖A‖L1

t H
1
x

+
∥∥∥〈x〉NB

∥∥∥
L1
xL

2
t

+
∥∥∥〈x〉N∂xB

∥∥∥
L1
xL

2
t

]
,

where Lαt = Lα[0, T ] and Lαx = Lα(R).

Lemma 6.2. There is C < ∞ such that for each ω0 ∈ Ω there is ε1 ∈ (
0, dist(ω0, ∂Ω)

)
such that if ω and Z ∈

H 1(R, C4) satisfy |ω−ω0| < ε1, 
∥∥〈x〉−NZ∥∥

H 1
x

≤ ε1 with N > 10 from Definition 6.1, then

|〈φ,JN1(R,ω)〉| + |〈J∂ωφ,N1(R,ω)〉| ≤ C〈μ, |Z|2〉,
where N1(R, ω) is from (3.28), R = Pc(ω0)R, and Z = Pc(ω0)R.

Proof. From (3.28), Taylor’s expansion, and Young’s inequality, we see that

N1 = N(φ + ρ)− N(φ)− WR =O
(|φ|2k−1|R|2 + |R|2k+1). (6.1)

Note that the above makes sense pointwise in x ∈R since Z ∈H 1(R, C4), and by (3.38) one also has R ∈H 1(R, C4).
By (3.34), this leads to

〈φ, |N1|〉 ≤C〈μ, |R|2〉(1 + ∥∥μR
∥∥2k−1
L∞
x
)
) ≤ C〈μ, |Z|2〉(1 + ∥∥μZ

∥∥2k−1
H 1
x
)
)
. (6.2)

Let us explain the last inequality. By (3.37) and the triangle inequality,∣∣|Z| − |R|∣∣ ≤ |(Pd(ω)− Pd(ω0))R|, x ∈ R;
multiplying the above by |R| + |Z| and coupling the result with μ, we have

|〈μ, |Z|2〉 − 〈μ, |R|2〉| ≤ C|ω−ω0|〈μ, |R|(|R| + |Z|)〉 ≤ 2C|ω−ω0|〈μ, |R|2 + |Z|2〉,
with some C > 0. It follows that if |ω−ω0| is sufficiently small, then

1

2
〈μ, |Z|2〉 ≤ 〈μ, |R|2〉 ≤ 2〈μ, |Z|2〉.

Since 
∥∥〈x〉−NZ∥∥

H 1
x

≤ ε1, we have 
∥∥μZ

∥∥
H 1
x

≤ C; therefore, the inequality (6.2) finishes the proof. �
Applying the projection Pc(ω0) to equation (3.27), we obtain:
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∂tZ − JL(ω0)Z + (
γ̇ (t)+ω(t)−ω0

)
Pc(ω0)JZ

= Pc(ω0)
(
J(W(ω)− W(ω0))R − γ̇ Jφ − ω̇∂ωφω + JN1

)
. (6.3)

We denote

α(t)= γ̇ (t)+ω(t)−ω0 (6.4)

and

F0(t)= J
(
W(ω)− W(ω0)

)
R − γ̇ Jφ − ω̇∂ωφω + JN1; (6.5)

then (6.3) takes the form

∂tZ − JL(ω0)Z + α(t)JZ = Pc(ω0)F0 + α(t)[J,Pc(ω0)]Z. (6.6)

We assume that there exist T > 0 and C0 > 1 depending on ω0 such that the solution (ω(t), γ (t), Z(t)) to the modu-
lation equations (3.31) and the PDE (6.6) exists on [0, T ] and

‖ω̇‖L1[0,T ] + ‖γ̇ ‖L1[0,T ] ≤C0ε, ‖Z‖XT ≤ C0ε. (6.7)

Lemma 6.3. Assume that (6.7) holds. If ε > 0 is sufficiently small, then the estimates (6.7) can be improved as follows:

‖ω̇‖L1[0,T ] + ‖γ̇ ‖L1[0,T ] ≤ ε, ‖Z‖XT ≤ ε. (6.8)

Proof. By (3.31), the invertibility of A(t) (cf. Lemma 3.7), and the bounds from Lemma 6.2, we conclude that

|γ̇ | + |ω̇| ≤ C〈μ, |Z(t)|2〉,
hence, for small enough ε > 0,

‖ω̇‖L1
t [0,T ] + ‖γ̇ ‖L1

t [0,T ] ≤C
T∫

0

〈μ, |Z(t)|2〉dt ≤C
∥∥∥μ1/3Z

∥∥∥2

L∞
x L

2
t

≤ C ‖Z‖2
XT ≤ CC2

0ε
2 ≤ ε; (6.9)

we used the bound on ‖Z‖XT from (6.7). This proves the first estimate in (6.8).
With (6.9), we also have

‖ω−ω0‖L∞
t [0,T ] ≤ ‖ω̇‖L1

t [0,T ] ≤ C ‖Z‖2
XT ≤ CC2

0ε
2 ≤ ε. (6.10)

It follows from (6.6) with the initial data (3.36), (6.10), and from Lemma A.1 below that if ε > 0 is sufficiently small, 
then

‖Z‖XT ≤C
[
‖Z(0)‖H 1 + ‖F‖YT

]
, F (t) := Pc(ω0)F0(t)+ α(t)[J,Pc(ω0)]Z(t). (6.11)

From the definition (6.5) of F0, we see that

‖F0 − JN1‖YT ≤ C
[
‖ω−ω0‖L∞

t [0,T ] ‖Z‖XT + ‖γ̇ ‖L∞
t [0,T ] + ‖ω̇‖L∞

t [0,T ]
]
. (6.12)

We used the bound ‖R‖XT ≤ C ‖Z‖XT which follows from (3.38). Noting that [J, Pc(ω0)] is localized in space and 
recalling that α(t) = γ̇ (t) +ω(t) −ω0, we also have

‖Pc(ω0)(F0 − JN1)+ α(t)[J,Pc(ω0)Z]‖YT
≤C

[
(‖γ̇ ‖L∞

t [0,T ] + ‖ω−ω0‖L∞
t [0,T ])‖Z‖XT + ‖γ̇ ‖L∞

t [0,T ] + ‖ω̇‖L∞
t [0,T ]

]
. (6.13)

By Lemma 6.2,

|ω̇(t)| + |γ̇ (t)| ≤ C ‖Z(t)‖2
L2
x
≤ C ‖Z‖2

XT ≤ CC2
0ε

2 ≤ ε, 0 ≤ t ≤ T , (6.14)

as long as ε > 0 is sufficiently small. Applying (6.14) and (6.10) in (6.13), we conclude that there is C <∞ such that

‖Pc(ω0)(F0 − JN1)+ α(t)[J,Pc(ω0)]Z‖Y ≤ C ‖Z‖2
X . (6.15)
T T
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By (3.38) and (6.1), using Young’s inequality, we see that

N1 =O(|φ|2k−1|R|2 + |R|2k+1)=O
(|φ|2k−1|Z|2 + |Z|2k+1 + μ|ω−ω0|2〈μ2k, |R|〉2).

Then, it follows from (3.37) and (6.10) that

‖N1‖YT ≤ C
(∥∥∥|φ|2k−1|Z|2

∥∥∥
YT

+
∥∥∥|Z|2k+1

∥∥∥
YT

+C ‖Z‖4
XT

)
. (6.16)

On the other hand, from the definitions of ‖·‖XT , ‖·‖YT (cf. Definition 6.1), we observe that∥∥∥|φ|2k−1|Z|2
∥∥∥
YT

≤ C
∥∥∥〈x〉n|φ|2k−1|Z|2

∥∥∥
L1
xL

2
t

+C
∥∥∥〈x〉N∂x[|φ|2k−1|Z|2]

∥∥∥ ≤ C ‖Z‖2
XT ≤ C ‖Z‖2

XT . (6.17)

Similarly, we have∥∥∥|Z|2k+1
∥∥∥
YT

≤ C
∥∥∥|Z|2k+1

∥∥∥
L1
t H

1
x

≤ C
∥∥∥(|Z| + |∂xZ|)|Z|2k

∥∥∥
L1
t L

2
x

≤ C ‖Z‖L∞
t H

1
x
‖Z‖2k

L2k
t L

∞
x

.

We note that ‖Z‖L∞
t H

1
x

≤ ‖Z‖XT ; since k ≥ 2, we arrive at

‖Z‖L2k
t L

∞
x

≤ ‖Z‖2/k
L4
t L

∞
x

‖Z‖1−2/k
L∞
t L

∞
x

≤C ‖Z‖XT .
Therefore,∥∥∥|Z|2k+1

∥∥∥
YT

≤ C ‖Z‖2k+1
XT . (6.18)

In summary, it follows from (6.15), (6.16), (6.17), and (6.18) that there is C <∞ such that

‖Pc(ω0)F0 + α(t)[J,Pc(ω0)]Z‖YT ≤ C ‖Z‖2
XT .

From this and (6.11), we infer that if ε > 0 is sufficiently small, then we have

‖Z‖XT ≤ C[‖Z(·,0)‖H 1 + ‖Z‖2
XT ] ≤ C[1 +C0]ε2 ≤ ε. (6.19)

This proves the second estimate in (6.8), completing the proof of the lemma. �
From Lemma 6.3 and the local existence theory [28], it follows that there exists unique global solution to equa-

tion (2.9),

ψ(x, t)= (
φω(t)(x)+ ρ(x, t)

)
e
−i

(∫ t
0 ω(s) ds+γ (t)

)
, t ≥ 0,

with ω, γ , and Z = Pc(ω0) 
([

Re ρ
Im ρ

])
satisfying the estimates

‖ω̇‖L1(R+) + ‖γ̇ ‖L1(R+) ≤ ε, ‖Z‖X∞ ≤ ε.
From this, we infer that there exist ω∞, γ∞ ∈ R such that

lim
t→∞ω(t)= ω∞, lim

t→∞γ (t)= γ∞, lim
t→∞‖Z(t)‖L∞

x
= 0.

The last relation is due to ‖Z‖L4
t L

∞
x

≤ ‖Z‖X∞ . Due to (3.38) and (6.10), assuming that ε > 0 is sufficiently small, we 
also have

lim
t→∞‖ρ(t)‖L∞

x
= 0.

This completes the proof of the main theorem.
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Appendix A. Estimates for the linear perturbed equation

This subsection proves the estimate (6.11) on Z. We recall that Xc(ω0) is defined in (3.20), J, and L are defined in 
(3.3). Also, we denote X = XT , Y = YT , where XT and YT are defined in Definition 6.1 for some T ∈ (0, ∞]. The 
main result is the following lemma:

Lemma A.1. Fix ω0 ∈Ω and assume that the Assumption 2.4 holds. Let Z(t) ∈ Xc(ω0) be a solution to the equation{
∂tZ − JL(ω0)Z + α(t)JZ = F, t ∈ (0, T ),
Z(0)=Z0 ∈ Xc(ω0).

Then there exist c0 > 0 and C <∞ independent on T such that if ‖α‖L∞((0,T )) ≤ c0, we have

‖Z‖X ≤ C
[
‖Z(0)‖H 1 + ‖F‖Y

]
.

Proof. It follows from our linear estimates in Section 5 that Lemma A.1 holds when α = 0. The proof therefore is 
a perturbative argument. We base our argument on [27, Appendix B], which originates in [5]. In the perturbation 
argument, instead of using the free operator as in [5,27], we shall make use of the operator

Lν =
[
Hν 0
0 Hν

]
, with Hν :=Dm −ω0 + Vν,

where Vν is a fixed matrix-valued potential which is sufficiently small and decays exponentially, and such that the 
point spectrum σd(Hν) of Hν is empty and there is no resonance at thresholds � = ±m −ω0. The advantage of using 
Lν is that it has stronger decay estimates (A.6) which essentially follow from [21, Theorem 3.7].

We now denote Wν = L(ω0) − Lν , the exponentially decaying matrix potential; thus,

L(ω0)= Lν + Wν.

For fixed � > 0 and for Pd(ω0) := Id − Pc(ω0), we consider the auxiliary equation

∂t� − JL(ω0)Pc(ω0)� + �Pd(ω0)� + αJPc(ω0)� = F, �(0)=Z(0). (A.1)

We note that Z = Pc(ω0)� , therefore it suffices to prove the estimate for � . Let us denote

β(t)=
t∫

0

α(s) ds, U(t)= eβ(t)J, �(t)=U(t)%.

Then it follows from (A.1) that

∂t%+U−1(−JL(ω0)+ �Pd(ω0))U%=G, G :=U−1F + α(t)U−1JPd(ω0)U%.

Since J commutes with Lν , we obtain

∂t%− JLν%= −U−1(W − JL(ω0)Pd(ω0)+ �Pd(ω0))U%+G. (A.2)

Now, we choose V2 a smooth, exponentially decaying, invertible matrix potential such that the matrix

V1 = (W − JLPd + �Pd)V −1
2

is also smooth and exponentially decaying. Then, note that %(0) =�(0), and Lν commutes with J. Therefore, apply-
ing U(t) to both sides of equation (A.2), we infer that

�(t)=U(t)e−tJLν�(0)+
t∫

0

e−(t−s)JLν
[
U(t)U−1(s)V1V2�(s)−U(t)G(s)

]
ds

=U(t)e−tJLν�(0)+
t∫

0

e−(t−s)JLνU(t)U−1(s)
[
(V1 − α(s)JPd(ω0)V

−1
2 )V2� − F(s)

]
ds. (A.3)
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On the other hand, it follows from [29, Section VIII] that

‖�‖X ≤ C
[
‖�(0)‖H 1 + ‖F‖Y + ‖V2�‖L2

t H
1
x

+ ‖α‖L∞ ‖Pd�‖Y
]
.

Note that ‖Pd�‖Y ≤C ‖�‖X . Therefore, if ‖α‖L∞ is sufficiently small, we obtain

‖�‖X ≤ C
[
‖�(0)‖H 1 + ‖F‖Y + ‖V2�‖L2

t H
1
x

]
. (A.4)

Next, we need to control ‖V2�‖L2
t H

1
x

. We denote

T0f (t)= V2

t∫
0

e−(t−s)JLνU(t)U−1(s)V1f (·, s) ds.

From Lemma A.2 below, we see that the mapping I − T0 : L2
t H

1
x → L2

t H
1
x is invertible and there exists C <∞ such 

that 
∥∥(I − T0)

−1
∥∥
L2
t H

1
x→L2

t H
1
x

≤ C. By (A.3), we see that

(I − T0)V2� = V2U(t)e
−tJLν�(0)− V2

t∫
0

e−(t−s)JLνU(t)U−1(s)[F(s)+ α(s)JPd�(s)]ds. (A.5)

Therefore, using again the linear estimates from [29], we obtain:

‖V2�‖L2
t H

1
x

≤
∥∥∥V2U(t)e

−tJLν�(0)
∥∥∥
L2
t H

1
x

+
∥∥∥∥∥∥V2

t∫
0

e−(t−s)JLνU(t)U−1(s)[F(s)+ α(s)JPd�(s)]ds
∥∥∥∥∥∥
L2
t H

1
x

≤ C
[
‖�(0)‖H 1

x
+ ‖F‖Y + ‖α‖L∞ ‖�‖X

]
.

From this and (A.4), we see that there is c0 > 0 sufficiently small such that if ‖α‖L∞ ≤ c0, then one has ‖�‖X ≤
C
[
‖�(0)‖H 1 + ‖F‖Y

]
. Since Z = Pc(ω0)� , this completes the proof of the lemma. �

Lemma A.2. For k = 0, 1, the map I − T0 : L2
t H

k
x �→L2

t H
k
x is invertible and therefore there exists C <∞ such that∥∥∥(I − T0)

−1
∥∥∥
L2
t H

k
x→L2

t H
k
x

≤ C.

Proof. First, note that it follows from the linear estimates in [29, Section VIII] that T0 is well-defined as an operator 
from L2

t H
k
x to L2

t H
k
x , with k = 0, 1. We now let

T1f (t)= V2

t∫
0

e−(t−s)JLν V1f (·, s) ds.

It follows from our linear estimates in Section 5 that T1 is also well-defined from L2
t H

1
x to L2

t H
1
x . Also, note that

(T1 − T0)f = V2

t∫
0

e−(t−s)JLν
(
eJ

∫ s
t α(τ) dτ − 1

)
V1f (·, s) ds.

By [21, Theorem 3.7], we have∥∥∥e−tJLν
∥∥∥
L2
σ→L2−σ

≤Cσ 〈t〉−3/2, σ > 5/2.

From this, we further infer that 
∥∥Lνe−tJLν f

∥∥
L2−σ

≤ Cσ 〈t〉−3/2 ‖Lνf ‖L2
σ

. Since ‖f ‖H 1
x

∼ ‖f ‖L2 + ‖Lνf ‖L2 , we see 
that
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∥∥∥e−tJLν
∥∥∥
Hkσ→Hk−σ

≤Cσ 〈t〉−3/2, σ > 5/2, k = 0, 1. (A.6)

Using (A.6) and the fact that∣∣∣eJ
∫ s
t α(τ) dτ − 1

∣∣∣ ≤ min (1, ‖α‖L∞ (t − s)) ,
we obtain:∥∥∥V2e

−(t−s)JLν
[
eJ

∫ s
t α(τ) dτ − 1

]
V1f (·, s) ds

∥∥∥
Hk

≤ C ‖α‖1/4
L∞ 〈t − s〉−5/4 ‖f (·, s)‖Hk .

Thus, if ‖α‖L∞ is sufficiently small, we see that

‖T1 − T0‖L2
t H

k
x→L2

t H
k
x

≤ C ‖α‖1/4
L∞ < 1.

Therefore, it suffices to prove that I − T1 is invertible. The lemma then follows exactly as in [27, Lemma B.2] by 
using the linear estimates on e−tJL(ω0) from Section 5. �
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