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Abstract

The present paper is concerned with the parabolic–parabolic Keller–Segel system

∂tu = div
(
∇uq+1 − u∇v

)
, t > 0 , x ∈ � ,

∂t v = �v − αv + u , t > 0 , x ∈ � ,

(u, v)(0) = (u0, v0) ≥ 0 , x ∈ � ,

with degenerate critical diffusion q = q� := (N − 2)/N in space dimension N ≥ 3, the underlying domain � being either � = R
N

or the open ball � = BR(0) of RN with suitable boundary conditions. It has remained open whether there exist solutions blowing up 
in finite time, the existence of such solutions being known for the parabolic–elliptic reduction with the second equation replaced by 
0 = �v − αv + u. Assuming that N = 3, 4 and α > 0, we prove that radially symmetric solutions with negative initial energy blow 
up in finite time in � = R

N and in � = BR(0) under mixed Neumann–Dirichlet boundary conditions. Moreover, if � = BR(0)

and Neumann boundary conditions are imposed on both u and v, we show the existence of a positive constant C depending only 
on N , �, and the mass of u0 such that radially symmetric solutions blow up in finite time if the initial energy does not exceed −C. 
The criterion for finite time blowup is satisfied by a large class of initial data.
© 2015 
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1. Introduction

This paper is concerned with the generalized parabolic–parabolic Keller–Segel system

∂tu = div
(
∇uq+1 − u∇v

)
, t > 0 , x ∈ � , (1.1)
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τ∂tv = �v − αv + u , t > 0 , x ∈ � , (1.2)

(u, v)(0) = (u0, v0) ≥ 0 , x ∈ � , (1.3)

where τ is a positive constant, and q and α are non-negative parameters. When � is a bounded domain of RN , the 
system (1.1)–(1.3) is supplemented with either Neumann boundary conditions

∂νu
q+1 = ∂νv = 0 , t > 0 , x ∈ ∂� , (1.4)

or mixed Neumann–Dirichlet boundary conditions

∂νu
q+1 − u∂νv = v = 0 , t > 0 , x ∈ ∂� . (1.5)

A salient feature of non-negative solutions to (1.1)–(1.3) satisfying the boundary conditions (1.4) or (1.5) or a suitable 
decay condition at spatial infinity is the conservation of mass of u throughout time evolution, that is,

‖u(t)‖1 = ‖u0‖1 for t ∈ (0, Tmax) , (1.6)

where Tmax is the maximal existence time of the solution and ‖ · ‖p denotes the Lp-norm for p ∈ [1, ∞]. It is sim-
ply obtained by integrating (1.1) over the domain and using Green’s formula, the boundary terms vanishing as a 
consequence of the boundary behavior. Another noteworthy property of (1.1)–(1.3) is that the energy F [u, v] given 
by

F [u,v] :=
∫
�

(
uq+1

q
+ |∇v|2

2
+ α

2
v2 − uv

)
dx , (1.7)

is a Liapunov functional, the term uq+1/q being replaced by u lnu when q = 0.
The system (1.1)–(1.3) with q = 0 and N = 2 supplemented with Neumann boundary conditions (1.4) in a bounded 

domain was originally derived by Keller and Segel [17] as a model of aggregation of cells moving towards higher con-
centration gradients of a chemical substance generated by the cells. From a mathematical viewpoint, the aggregation 
of cells is defined as the blowup of ‖u(t)‖∞ in finite time, that is,

lim sup
t→Tmax

‖u(t)‖∞ = ∞ for some finite Tmax ∈ (0,∞) .

Since it was too difficult to treat the blowup issue in the parabolic–parabolic system, a simplified version with τ = 0
was introduced. Its generalized form reads

∂tu = div
(
∇uq+1 − u∇v

)
, t > 0 , x ∈ � , (1.8)

0 = �v − αv + u , t > 0 , x ∈ � , (1.9)

u(0) = u0 ≥ 0 , x ∈ � , (1.10)

supplemented with the boundary conditions (1.4) or (1.5) when � is a bounded domain of RN . The system (1.8)–(1.10)
is now a parabolic–elliptic system and can actually be reduced to a single nonlocal parabolic equation by expressing 
v in terms of u with the help of the Green function associated to the Laplace operator. This particular feature marks 
a serious difference between the “parabolic–parabolic” and “parabolic–elliptic” versions of the Keller–Segel system 
from a mathematical point of view.

These two systems have attracted considerable interest since they not only reproduce qualitatively some observed 
biological phenomena such as the aggregation of cells (also referred to as chemotactic collapse in the literature) 
but also display a wide variety of dynamical behaviors. Indeed, it is by now well-known that, when N ≥ 2, there 
is a critical value q� := (N − 2)/N of the parameter q which separates two different behaviors: when q > q�, the 
diffusion term div

(∇uq+1
)

dominates the attractive drift term −div (u∇v) and the initial value problems (1.1)–(1.3)
and (1.8)–(1.10) are globally well-posed for a large class of integrable and non-negative initial data. When q < q�, 
the dynamics is rather governed by the attractive drift term leading to unbounded solutions, the diffusion term still 
allowing for the existence of global solutions for sufficiently small initial data. The critical case q = q� offers an 
interesting novelty as a new parameter, the mass ‖u0‖1 of the initial condition, comes into play: there is a threshold 
value Mc(N) of this parameter (with Mc(2) = 8π ) below which solutions exist globally and above which finite time 
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blowup is expected to occur, at least for some initial conditions, a proof being only available for the parabolic–elliptic 
reduction (1.8)–(1.10) until recently. We refer to [2,13,25,24] and the references therein for a more complete and 
accurate description of the available results.

For the parabolic–parabolic system (1.1)–(1.3), the global existence issue can be handled in more or less the same 
way as (1.8)–(1.10), see [3,5,9,14,16,19,22,26] and the references therein, though some peculiar phenomenon might 
occur when q = 0 and N = 2 [1]. The occurrence of finite time blowup turns out to be much more difficult, which 
contrasts markedly with the parabolic–elliptic system (1.8)–(1.10). In particular, no valuable information seem to be 

provided directly by the time evolution of the second moment 
∫
�

|x − x0|2u(t, x)dx around some point x0 ∈ � of u

for the parabolic–parabolic system. It also does not seem to be possible to reduce (1.1)–(1.3) to a single equation even 
in the radially symmetric case. These two approaches being at the heart of the blowup results for the parabolic–elliptic 
system (1.8)–(1.10), only a few blowup results are therefore available for the parabolic–parabolic system (1.1)–(1.3). 
Solutions blowing up in finite time have been constructed in the non-critical case q < q� = (N − 2)/N for N ≥ 2
[7,8,27], see also [4,6] for N = 1 with different diffusion coefficients.

In the present paper, we focus on the parabolic–parabolic system (1.1)–(1.3) in the critical case q = q� = (N −
2)/N and first recall that it gives rise to a more complex dynamics, even for the simplified parabolic–elliptic system 
(1.8)–(1.10). More generally, peculiar phenomena generated by the critical relation between the equation and the 
dimension appear in a variety of partial differential equations, and it is shared the common belief that criticality brings 
various difficulties to mathematical treatment.

For many years, the only known solution to (1.1)–(1.3) blowing up in finite time in the critical case q = q� was a 
particular radially symmetric solution with ‖u0‖1 > 8π constructed in [12] for q = 0 and N = 2, which was based on 
their previous result for the corresponding parabolic–elliptic system [11]. Though of great interest, this result is not 
fully satisfactory. According to the biological experiments that motivated the modeling by Keller and Segel [17] and 
the mathematical results already known for the simplified system (1.8)–(1.10), finite time blowup is expected to occur 
for a large class of initial data for the full system (1.1)–(1.3) with q = 0 and N = 2. A positive answer to this issue has 
been recently provided in [20,21] where it is shown that there is a large class of radially symmetric initial data such 
that the corresponding solutions to (1.1)–(1.3) blow up in finite time. Roughly speaking, the proof relies on a detailed 
study of the time evolution of the energy F [u, v] defined in (1.7). The main difference between the non-critical case 
q < q� handled in [7,8,27] and the critical case q = q� considered in [20,21] is that it suffices to estimate the negative 
term of the energy in the former while the interplay between the positive and the negative contributions in the energy 
have to be taken into account in the latter. Let us finally mention that a completely different approach is used in [23]
to identify the blowup profile of radially symmetric blowing up solutions to (1.1)–(1.3) in R2 with q = 0 and N = 2
but the result is restricted to initial data having a mass slightly above the critical mass Mc(2) = 2π .

The purpose of this paper is to study the blowup issue for the generalized parabolic–parabolic Keller–Segel system 
(1.1)–(1.3) in the critical case q = q� = (N − 2)/N in higher space dimensions N ≥ 3 which has not been considered 
yet as far as we know. Then q = q� > 0 and the degeneracy of the diffusion term seems to prevent the use of the 
approach developed in [11,12] to construct a solution blowing up in finite time since it relies on the linearization 
of the system. In the present paper, we instead use the energy F [u, v] defined by (1.7) as done in [20,21]. Since the 
energy has a different form for q = q� and N ≥ 3 and the way to evaluate it in [20,21] was based on properties peculiar 
to q = 0 and N = 2 a different approach is required in our situation. In fact, when N = 2, the regularity of the second 
component v of a solution (u, v) to (1.1)–(1.3) which is derived from (1.2) and the boundedness of ‖u‖1 is much 
better than that in N ≥ 3. Indeed it follows from standard parabolic regularity theory that for any 1 < p < 2 and s > 0
there exist constants C1 = C1(p, ‖u0‖1, ‖v0‖1) > 0, C2 = C2(s, ‖u0‖1, ‖v0‖1) > 0 such that

‖v(t)‖W 1,p ≤ C1 and ‖v(t)‖s ≤ C2 for 0 < t < Tmax.

Moreover in the radial case, for each κ > 0 there exists C3 = C3(κ, ‖u0‖1, ‖v0‖1) > 0 such that

v(t, r) ≤ C3r
−κ for r = |x| > 0 and 0 < t < Tmax.

This higher regularity is of great advantage in the process of evaluating the energy F [u, v] as it allows one to easily 
dominate terms including v except ‖∇v‖2. When N ≥ 3, lack of adequate regularity of v prevents us from bounding 
terms related to v as seen in our proof in the subsequent sections. We have not completely cleared the difficulty because 
we assume N = 3, 4. One would need further devices to overcome the restriction of spatial dimension. Differently 
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from the case of non-critical degeneracy of diffusion [8], the effect of less regularity is serious in the delicate estimates 
in the critical case that we treat in this paper. Furthermore the following identity was essentially used to estimate the 
energy in [20,21]:

r2u(t, r) = 2U(t, r) − 1

2
U2(t, r) +

r∫
0

ρu(t, ρ)V (t, ρ)dρ −
r∫

0

ρu(t, ρ)F (t, ρ)dρ

+
r∫

0

ρ2
√

u(t, ρ)

(
∂ru(t, ρ)√

u(t, ρ)
−√u(t, ρ)∂rv(t, ρ)

)
dρ

for r > 0 and 0 < t < Tmax, where

U(t, r) :=
r∫

0

ρu(t, ρ)dρ , V (t, r) :=
r∫

0

ρv(t, ρ)dρ , F (t, r) := −
r∫

0

ρ∂tv(t, ρ)dρ

for r > 0 and 0 < t < Tmax. The important value r0 = r0(t) of r is such that U(t, r0) = 4, which means that the mass 
of u in the ball Br0(0) equals the threshold value 8π between finite time blowup and global existence of solutions. 
As is easily seen the first two terms in the right-hand side vanish at r = r0 and turn out to be negative for r > r0. 
This fact was very useful not only to evaluate the energy but also to show that, if the energy is initially negative, then 
the solution blows up in finite time. However, it seems difficult to derive a similar identity in the case of degenerate 
diffusion. Therefore we must take a different way from the method in [20,21].

More specifically, we assume throughout this paper that

N ≥ 3 , q = q� = N − 2

N
∈ (0,1) , τ = 1 , α > 0 , (1.11)

and, in order to handle simultaneously the case of the whole space RN and the case of the ball BR(0), we set

�R := BR(0) for R ∈ (0,∞) and �∞ := R
N .

Let R ∈ (0, ∞] and (u0, v0) be non-negative and radially symmetric functions satisfying

u0 ∈ L1(�R; (1 + |x|2)dx) ∩ Lq+1(�R) , v0 ∈ W 1,1(�R) ∩ H 1(�R) , (1.12)

as well as

u0 ∈ L∞(�R) , ∇u
q+1
0 ∈ L2(�R) , v0 ∈ W 1,∞(�R) . (1.13)

The conditions (1.12) and (1.13), that are imposed in [14–16], are likely to be too strong for the local existence of 
a weak solution. However we assume them here for simplicity since our main interest is the finite time blowup and 
not finding optimal conditions on the initial data guaranteeing the local existence of weak solutions. Let us emphasize 
here that the proof of the finite time blowup given below only requires the regularity (1.12) on (u0, v0). Consider a 
radially symmetric weak solution (u, v) to (1.1)–(1.3) supplemented with the boundary conditions (1.4) or (1.5) if 
R < ∞ and let Tmax be its maximal existence time, see Definition 2.1. Assume further that (u, v) satisfies the energy 
inequality

d

dt
F[u(t), v(t)] +D[u(t), v(t)] ≤ 0 , t ∈ [0, Tmax) , (1.14)

where r := |x|,

F[u,v] :=
R∫

0

(
uq+1

q
+ |∂rv|2

2
+ α

v2

2
− uv

)
rN−1dr (1.15)

and
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D[u,v] :=
R∫

0

(
u

∣∣∣∣q + 1

q
∂ru

q − ∂rv

∣∣∣∣
2

+ |∂tv|2
)

rN−1dr ≥ 0 . (1.16)

The main result of this paper then reads:

Theorem 1.1. Let N = 3, 4, q = 1 − 2/N , and R ∈ (0, ∞]. Let IR be the class of pairs (u0, v0) of non-negative and 
radially symmetric functions satisfying (1.12) and (1.13). There is a non-negative constant C0 depending only on N , 
α, and R such that, if (u0, v0) ∈ IR satisfies

F[u0, v0] < −C0‖u0‖2
1 , (1.17)

then a corresponding radially symmetric weak solution (u, v) to the parabolic–parabolic system (1.1)–(1.3) supple-
mented with (1.4) or (1.5) if R < ∞ blows up in finite time. Furthermore, if R = ∞ or R < ∞ and the boundary 
conditions are the mixed Neumann–Dirichlet ones (1.5), then one can take C0 = 0 in (1.17).

When R = ∞, the outcome of Theorem 1.1 combined with the analysis performed in [3] confirms the thresh-
old phenomenon already alluded to previously. Indeed, according to [2, Proposition 3.4], there is a critical mass 
Mc = Mc(N) > 0 depending only on N such that F[u0, v0] > 0 for all non-negative and radially symmetric initial 
data (u0, v0) satisfying (1.12) as well as ‖u0‖1 < Mc and there is a global weak solution to (1.1)–(1.3) emanating from 
(u0, v0) by [3, Theorem 1]. On the opposite, there are non-negative and radially symmetric initial data (u0, v0) satis-
fying (1.12) as well as ‖u0‖1 > Mc and F[u0, v0] < 0 and Theorem 1.1 guarantees that a weak solution to (1.1)–(1.3)
emanating from (u0, v0) blows up in finite time.

That there are indeed initial data to which Theorem 1.1 applies is guaranteed by the next result.

Theorem 1.2. Let N = 3, 4, q = 1 − 2/N , R ∈ (0, ∞], and M > Mc(N). Then there exist (u∗
0, v

∗
0) ∈ IR with 

‖u∗
0‖1 = M and ε > 0 such that if (u0, v0) ∈ IR satisfies ‖(u0, v0) − (u∗

0, v
∗
0)‖Lq+1(�R)×W 1,2(�R) < ε then a corre-

sponding radially symmetric weak solution to (1.1)–(1.3) supplemented with (1.4) or (1.5) if R < ∞ blows up in finite 
time. Furthermore the class of initial data for which a corresponding radially symmetric weak solution to (1.1)–(1.3)
supplemented with (1.4) or (1.5) if R < ∞ blows up in finite time is dense in IR with respect to the weaker topology 
of Lp(�R) × W 1,σ (�R) with 0 < p < 1 and 1 < σ < N/(N − 1).

Remark 1.3. Theorems 1.1 and 1.2 are likely to be valid also for α = 0. It is actually rather clear that the proof given 
below readily extends to α = 0 when R < ∞ and (1.1)–(1.3) is supplemented with the Neumann–Dirichlet boundary 
conditions (1.5). In the other cases, handling the case α = 0 seems to require some technical adaptations to remedy 
the lack of coercivity of the Laplace operator.

The main ingredient in the proof of Theorem 1.1 is to prove that, if a solution (u, v) exists globally in time, then 
t �→F[u(t), v(t)] is bounded below in (0, ∞). Once the boundedness of the energy is shown, we combine it with the 
evolution of the second moment when R = ∞ to complete the proof of Theorem 1.1 while Lemma 2.5 plays a crucial 
role through a combination with the boundedness of the energy when R < ∞. In the next section, we first state the 
existence of a weak solution to (1.1)–(1.3) along with its properties, see Section 2.1. We next derive in Section 2.2 a 
differential inequality for −F [u, v] which reads

d

dt
(−F [u,v]) ≥ C (−F [u,v])(2N−2)/(2N−3) − 1 ,

see Proposition 2.3, and eventually leads to the boundedness of the energy for global solutions since 2N − 2 > 2N −
3 > 0. When R = ∞, the analysis of the evolution of the second moment is performed in Section 3.1 where we also 
prove Theorem 1.1. We also give a different approach without using the second moment. The proof of Theorem 1.1
for R < ∞ is next given in Section 3.3. The last section is devoted to the proof of Theorem 1.2 and we collect some 
useful properties of the Bessel potentials in the appendix.
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2. Free energy and its dissipation

2.1. Weak solutions

We first recall the definition of a weak solution.

Definition 2.1. Let R ∈ (0, ∞] and (u0, v0) be non-negative initial conditions satisfying (1.12) and (1.13) and let 
T > 0. A weak solution to (1.1)–(1.3) (supplemented with the boundary conditions (1.4) or (1.5) when R < ∞) is a 
couple (u, v) of non-negative functions such that

(u, v) ∈ C([0, T ];Lq+1(�R) × H 1(�R)) , uq+1 ∈ L2(0, T ;H 1(�R)) ,

and (u, v)(0) = (u0, v0), which satisfies (1.1)–(1.2) (as well as either (1.4) or (1.5) when R < ∞) in a weak sense and 
the energy inequality (1.14).

The existence of a local weak solution to (1.1)–(1.3) with homogeneous Neumann boundary conditions (1.4) in a 
ball is shown in [16, Theorem 1.1]. A similar result does not seem to be available for (1.1)–(1.3) in RN or in the ball 
with the mixed Neumann–Dirichlet boundary conditions but can nevertheless be proved by adapting arguments from 
[2,14,16,26]. Summarizing, one has the following existence result:

Proposition 2.2. Let R ∈ (0, ∞] and (u0, v0) be non-negative initial conditions satisfying (1.12) and (1.13). There 
are Tmax ∈ (0, ∞] and a couple (u, v) of non-negative functions defined on [0, Tmax) × �R such that (u, v) is a weak 
solution to (1.1)–(1.3) (supplemented with the boundary conditions (1.4) or (1.5) when R < ∞) on [0, T ] in the sense 
of Definition 2.1 for all T < Tmax. Moreover, it satisfies the alternative:

either Tmax = ∞ or Tmax < ∞ with lim
t→Tmax

‖u(t)‖∞ = ∞ .

In addition, (u(t), v(t)) are radially symmetric for all t ∈ (0, Tmax) if (u0, v0) are radially symmetric.

From now on, we fix R ∈ (0, ∞], a pair of non-negative radially symmetric initial conditions (u0, v0) satisfying 
(1.12) and (1.13), and a non-negative radially symmetric weak solution (u, v) to (1.1)–(1.3) (supplemented with the 
boundary conditions (1.4) or (1.5) when R < ∞) given by Proposition 2.2. We assume in addition that

F[u0, v0] < 0 (2.1)

and recall that

‖u(t)‖1 = M := ‖u0‖1 , t ∈ [0, Tmax) , (2.2)

while (1.14), (2.1), and the non-negativity of D guarantee that

F[u(t), v(t)] ≤F[u0, v0] < 0 , t ∈ [0, Tmax) . (2.3)

2.2. A differential inequality for the free energy

As announced in the introduction, the cornerstone of the proof of Theorem 1.1 is the following differential inequal-
ity for the energy:

Proposition 2.3. Assume that N ∈ {3, 4}. There is C1 > 0 depending only on N , M , α, R, and ‖∇v0‖1 such that

d

dt
(−F [u,v]) ≥ C1 (−F [u,v])(2N−2)/(2N−3) − 1 , t ∈ [0, Tmax) . (2.4)

The proof of Proposition 2.3 requires several steps. We begin with a weighted L∞-estimate for v as in [27, 
Lemma 3.2].
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Lemma 2.4. Given p ∈ [1, N/(N −1)), there is C2(p) > 0 depending only on p, N , α, R, ‖u0‖1, ‖v0‖1, and ‖∇v0‖p

such that

0 ≤ v(t, r) ≤ C2(p)r(p−N)/p , r > 0 , t ∈ [0, Tmax) . (2.5)

Furthermore,

‖v(t)‖1 ≤ ‖v0‖1 + M

α
, t ∈ [0, Tmax) . (2.6)

Proof. Let (G(t))t≥0 be the semigroup associated to the operator −� in either �∞ or in �R , R < ∞, supplemented 
with either homogeneous Neumann or Dirichlet boundary conditions. Then v is given by the variation-of-constants 
formula:

v(t) = G(t)v0e
−αt +

t∫
0

G(t − s)u(s)eα(s−t) ds , t ∈ [0, Tmax) .

On the one hand, since (G(t))t≥0 is a semigroup of contractions in L1(�R), the estimate (2.6) follows from (2.2) as

‖v(t)‖1 ≤ ‖v0‖1e
−αt + M

1 − e−αt

α
≤ ‖v0‖1 + M

α
.

On the other hand, if p ∈ [1, N/(N − 1)), we infer from the regularizing properties of the heat semigroup and (2.2)
that

‖∇v(t)‖p ≤ e−αt‖∇G(t)v0‖p +
t∫

0

‖∇G(t − s)u(s)‖peα(s−t) ds

≤ e−αt‖∇v0‖p + C(p)

t∫
0

(t − s)−(1/2)−N(p−1)/(2p)‖u(s)‖1e
α(s−t) ds

≤ ‖∇v0‖p + C(p)‖u0‖1

t∫
0

s−(1/2)−N(p−1)/(2p)e−αs ds

≤ ‖∇v0‖p + C(p)‖u0‖1 . (2.7)

Now, let r ∈ (0, R) and r0 ∈ (0, R). Arguing as in [10, Lemma 2.5], it follows from (2.6) that there is r1(t) ∈
(r0/2, r0) such that

v(t, r1(t)) = 2

r0

r0∫
r0/2

v(t, ρ) dρ ≤
(

2

r0

)N
r0∫

r0/2

v(t, ρ)ρN−1 dρ ≤ C r−N
0 .

Consequently,

v(t, r) = v(t, r1(t)) +
r∫

r1(t)

∂rv(t, ρ) dρ ≤ C r−N
0 +

R∫
min{r,r0/2}

|∂rv(t, ρ)| dρ . (2.8)

For p = 1 we infer from (2.7) and (2.8) that

v(t, r) ≤ C r−N
0 + min{r, r0/2}1−N

R∫
min{r,r0/2}

|∂rv(t, ρ)|ρN−1 dρ

≤ C
(
r−N

0 + min{r, r0/2}1−N
)

,
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while, for p ∈ (1, N/(N − 1)), we deduce from (2.7), (2.8), and Hölder’s inequality that

v(t, r) ≤ C r−N
0 +

⎛
⎜⎝

R∫
min{r,r0/2}

|∂rv(t, ρ)|pρN−1 dρ

⎞
⎟⎠

1/p⎛
⎜⎝

R∫
min{r,r0/2}

ρ−(N−1)/(p−1) dρ

⎞
⎟⎠

(p−1)/p

≤ C
(
r−N

0 + min{r, r0/2}(p−N)/p
)

.

We have thus shown that, for p ∈ [1, N/(N − 1)), r ∈ (0, R), and r0 ∈ (0, R), there holds

v(t, r) ≤ C
(
r−N

0 + min{r, r0/2}(p−N)/p
)

. (2.9)

Now set R0 := min{R/2, 1} and consider r ∈ (0, R). Either r ∈ (0, R0/2) and we infer from (2.9) with r0 = R0
that

v(t, r) ≤ C

(
2

R0

)(N−p)/p

R
((N+1)p−N)/p

0 + Cr(p−N)/p ≤ Cr(p−N)/p .

Or r ≥ R0/2 and it follows from (2.9) with r0 = r that

v(t, r) ≤ C
(
r−((N+1)p−N)/p + 1

)
r(p−N)/p ≤ C

(
R

−((N+1)p−N)/p

0 + 1
)

r(p−N)/p ≤ C r(p−N)/p ,

which completes the proof. �
We next set

f := −∂tv = −�v + αv − u , (2.10)

g := 2q + 2

2q + 1
∇u(2q+1)/2 − √

u∇v , (2.11)

so that the dissipation D[u, v] defined in (1.16) reads

D[u,v] = 1

σN

(
‖f ‖2

2 + ‖g‖2
2

)
, (2.12)

with σN := N |B1(0)|. Moreover, for any r ∈ (0, R] ∩ (0, ∞), we define Fr [u, v] as the contribution of the ball Br(0)

to the energy, namely,

Fr [u,v] :=
r∫

0

(
uq+1

q
+ |∂rv|2

2
+ α

v2

2
− uv

)
ρN−1dρ . (2.13)

Lemma 2.5. For all r1 ∈ (0, R] ∩ (0, ∞),

−Fr1[u,v] = 1

N − 2

r1∫
0

g
√

urN dr − α

N − 2

r1∫
0

v2rN−1 dr − 1

N − 2

r1∫
0

f ∂rvrN dr

−
r1∫

0

f vrN−1 dr − rN
1

2(N − 2)
(∂rv(r1))

2 − rN
1

N − 2
(u(r1))

q+1

+ αrN
1

2(N − 2)
(v(r1))

2 − rN−1
1 v(r1)∂rv(r1) . (2.14)

Proof. Owing to the definition (2.10) of f ,
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r1∫
0

uvrN−1 dr =
r1∫

0

[
− 1

rN−1
∂r

(
rN−1∂rv

)
+ αv − f

]
vrN−1 dr

= −
r1∫

0

v∂r

(
rN−1∂rv

)
dr +

r1∫
0

(
αv2 − f v

)
rN−1 dr

= −rN−1
1 v(r1)∂rv(r1) +

r1∫
0

[
(∂rv)2 + αv2 − f v

]
rN−1 dr .

Using the previous identity, −Fr1[u, v] reads

−Fr1[u,v] = 1

2

r1∫
0

[
(∂rv)2 + αv2

]
rN−1 dr − 1

q

r1∫
0

uq+1rN−1 dr

−
r1∫

0

f vrN−1 dr − rN−1
1 v(r1)∂rv(r1) . (2.15)

Using once more (2.10) we realize that

1

2
∂r

[(
rN−1∂rv

)2
]

= rN−1∂rv ∂r

(
rN−1∂rv

)
= r2N−2∂rv (αv − u − f ) ,

so that

1

2

r1∫
0

∂r

[(
rN−1∂rv

)2
]

r2−N dr =
r1∫

0

rN∂rv (αv − u − f ) dr ,

rN
1

2
(∂rv(r1))

2 + N − 2

2

r1∫
0

(∂rv)2 rN−1 dr = αrN
1

2
v(r1)

2 − αN

2

r1∫
0

v2rN−1 dr

−
r1∫

0

u∂rvrN dr −
r1∫

0

f ∂rvrN dr .

Replacing 
√

u∂rv with (2.11) we obtain

1

2

r1∫
0

(∂rv)2 rN−1 dr = − rN
1

2(N − 2)
(∂rv(r1))

2 + αrN
1

2(N − 2)
v(r1)

2

− αN

2(N − 2)

r1∫
0

v2rN−1 dr + 1

N − 2

r1∫
0

g
√

urN dr

− 1

N − 2

r1∫
0

∂ru
q+1rN dr − 1

N − 2

r1∫
0

f ∂rvrN dr

= − rN
1 (∂rv(r1))

2 + αrN
1 v(r1)

2

2(N − 2) 2(N − 2)
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− α

2q

r1∫
0

v2rN−1 dr + 1

N − 2

r1∫
0

g
√

urN dr

− rN
1

N − 2
u(r1)

q+1 + 1

q

r1∫
0

uq+1rN−1 dr − 1

N − 2

r1∫
0

f ∂rvrN dr .

Combining (2.15) and the previous identity gives (2.14). �
In the next step, we estimate the terms involving f in (2.14). To this end, we decompose v as

v = ṽ + v̂ , (2.16)

where, if R = ∞,

ṽ := Bα � u and v̂ := Bα � f , (2.17)

the Bessel kernel Bα being defined by

Bα(x) :=
∞∫

0

exp

{
−|x|2

4s
− αs

}
ds

(4πs)N/2
, x ∈ R

N , (2.18)

and, if R < ∞, (ṽ, v̂) are the unique solutions to

−�ṽ + αṽ = u in �R , (2.19)

−�v̂ + αv̂ = f in �R , (2.20)

supplemented with homogeneous Neumann or Dirichlet boundary conditions according to whether v satisfies (1.4) or 
(1.5).

We now handle separately the contributions from ṽ and v̂.

Lemma 2.6. For r1 ∈ (0, R] ∩ (0, ∞) there is C3 > 0 depending only on N , M , α, and R such that∣∣∣∣∣∣
r1∫

0

f

(
r

N − 2
∂r ṽ + ṽ

)
rN−1 dr

∣∣∣∣∣∣≤ C3(1 + r1)

⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

. (2.21)

Proof. Introducing w(r) := rN−2ṽ(r) for r > 0, we find that

r1∫
0

f

(
r

N − 2
∂r ṽ + ṽ

)
rN−1 dr = 1

N − 2

r1∫
0

f ∂rwr2 dr . (2.22)

It follows from the definition (2.16) of ṽ that w solves

rN−1u(r) = −∂r (r∂rw(r)) + (N − 2)∂rw(r) + αrw(r) , r > 0 .

We multiply the above identity by r∂rw(r) and integrate with respect to r over (0, r1) to obtain

r1∫
0

u∂rwrN dr = − r2
1

2
(∂rw(r1))

2 + (N − 2)

r1∫
0

(∂rw)2 r dr + α

r1∫
0

w∂rwr2 dr ,

and thus

(N − 2)

r1∫
(∂rw)2 r dr =

r1∫
u∂rwrN dr + r2

1

2
(∂rw(r1))

2 − α

r1∫
w∂rwr2 dr . (2.23)
0 0 0
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We now infer from Lemma A.1 (i) and (2.2) that

0 ≤ w(r) ≤ C10‖u‖1 = MC10 , (2.24)

|r∂rw(r)| ≤ rN−1 |∂r ṽ(r)| + (N − 2)rN−2ṽ(r) ≤ (N − 1)C10‖u‖1 = (N − 1)MC10 . (2.25)

Estimating the right-hand side of (2.23) with the help of (2.2), (2.24), and (2.25) we end up with

(N − 2)

r1∫
0

(∂rw)2 r dr ≤ (N − 1)MC10
‖u‖1

σN

+ (N − 1)2M2C2
10 + α(N − 1)M2C2

10r
2
1

≤ C(1 + r2
1 ) . (2.26)

We finally infer from (2.22), (2.26), and Hölder’s inequality that∣∣∣∣∣∣
r1∫

0

f

(
r

N − 2
∂r ṽ + ṽ

)
rN−1 dr

∣∣∣∣∣∣≤
1

N − 2

⎛
⎝ r1∫

0

(∂rw)2 r dr

⎞
⎠

1/2⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

≤ C(1 + r1)

⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

,

as claimed. �
Remark 2.7. Observe that (2.26) implies that r �→ (∂rw(r))2 r belongs to L1(0, r1), a property which cannot be 
deduced from (2.25). Indeed, the latter only gives r (∂rw(r))2 ≤ C/r which is not integrable near zero.

We now turn to the contribution of v̂ in the same term.

Lemma 2.8. There is C4 > 0 depending only on N , M , α, and R such that∣∣∣∣∣∣
r1∫

0

f

(
r

N − 2
∂r v̂ + v̂

)
rN−1 dr

∣∣∣∣∣∣≤ C4 r
3/2
1

(
1 +√r1| ln r1|

)
‖f ‖2

2 (2.27)

for r1 ∈ (0, R] in a ball and r1 ∈ (0, ∞) in the whole space.

Proof. On the one hand, it follows from (A.7) and the Cauchy–Schwarz inequality that

1

N − 2

∣∣∣∣∣∣
r1∫

0

f ∂r v̂rN dr

∣∣∣∣∣∣≤
‖f ‖2√

σN

⎛
⎝ r1∫

0

(
∂r v̂
)2

rN+1 dr

⎞
⎠

1/2

≤ C11
‖f ‖2

2√
σN

⎛
⎝ r1∫

0

r3 dr

⎞
⎠

1/2

≤ Cr2
1‖f ‖2

2 .

On the other hand, by (A.6) and the Cauchy–Schwarz inequality,∣∣∣∣∣∣
r1∫

0

f v̂rN−1 dr

∣∣∣∣∣∣≤
‖f ‖2√

σN

⎛
⎝ r1∫

0

(
v̂
)2

rN−1 dr

⎞
⎠

1/2

≤ Cr
3/2
1

(
1 +√r1| ln r1|

)
‖f ‖2

2 .

Combining the previous two estimates completes the proof of (2.27). �
Gathering the outcomes of Lemma 2.5, Lemma 2.6, and Lemma 2.8 provides the following estimate on the contri-

bution Fr1[u, v] of the ball Br1(0), r1 ∈ (0, 1), to the energy.
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Proposition 2.9. Assume that N ∈ {3, 4}. There is C5 > 0 depending only on N , M , α, and R such that, for r1 ∈
(0, min{1, R}) and t ∈ [0, Tmax),

−Fr1[u(t), v(t)] ≤ C5

[
r1‖g(t)‖2 + r1‖f (t)‖2

2 + ‖f (t)‖2 + r1−N
1

]
.

Proof. Since r1 ∈ (0, 1), we infer from (2.2), (2.14), (2.21), (2.27), and the Cauchy–Schwarz inequality that

−Fr1[u,v] ≤ r1

N − 2

⎛
⎝ r1∫

0

g2rN−1 dr

⎞
⎠

1/2⎛
⎝ r1∫

0

urN−1 dr

⎞
⎠

1/2

+ C3(1 + r1)

⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

+ C4r
3/2
1

(
1 +√r1| ln r1|

)
‖f ‖2

2

− 1

2(N − 2)

[
r
N/2
1 ∂rv(r1) + (N − 2)r

(N−2)/2
1 v(r1)

]2

+ N − 2

2
rN−2

1 v(r1)
2 + α

2(N − 2)
rN

1 v(r1)
2

≤ C

⎡
⎢⎣r1‖g‖2 + r1‖f ‖2

2 +
⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

+ rN−2
1 v(r1)

2

⎤
⎥⎦ .

Since 2N/(2N − 1) < N/(N − 1) we infer from Lemma 2.4 that

rN−2
1 v(r1)

2 ≤ C2(2N/(2N − 1)) r3−2N
1 rN−2

1 ≤ C r1−N
1 .

Consequently,

−Fr1[u,v] ≤ C

⎡
⎢⎣r1‖g‖2 + r1‖f ‖2

2 +
⎛
⎝ r1∫

0

f 2r3 dr

⎞
⎠

1/2

+ r1−N
1

⎤
⎥⎦ ,

and we complete the proof of Proposition 2.9 after noticing that r3 = rN−1r4−N ≤ rN−1 for r ∈ (0, 1) and N ∈
{3, 4}. �

We supplement Proposition 2.9 with an estimate on the contribution of the complement of Br1(0), r1 ∈
(0, min{1, R}), to the energy.

Lemma 2.10. There is C6 > 0 depending only on N , M , α, R, and ‖∇v0‖1 such that

−F [u(t), v(t)] +Fr1[u(t), v(t)] ≤ C6r
1−N
1 (2.28)

for r1 ∈ (0, R] in a ball and r1 ∈ (0, ∞) in the whole space and t ∈ [0, Tmax).

Proof. Owing to (2.2) and (2.5) (with p = 1), we find

1

σN

∫
�R\Br1 (0)

(
uv − uq+1

q
− |∇v|2

2
− α

v2

2

)
dx ≤

R∫
r1

uvrN−1dr ≤ C2(1)

R∫
r1

u dr

≤ Cr1−N
1

R∫
r1

urN−1 dr ≤ CMr1−N
1 ,

as claimed. �
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Remark 2.11. In contrast to the outcome of Proposition 2.9 note that the right-hand side of (2.28) involves neither f
nor g and is thus not controlled by the dynamics of (1.1)–(1.3). It however vanishes as r1 → ∞ and will actually only 
be used when R = ∞.

We are now in a position to prove the main result of this section.

Proof of Proposition 2.3. According to (2.3), Proposition 2.9, and Lemma 2.10, there holds

0 ≤ −F[u,v] = −Fr1[u,v] −F[u,v] +Fr1[u,v]
≤ C5

[
r1‖g‖2 + r1‖f ‖2

2 + ‖f ‖2 + r2−N
1

]
+ C6r

1−N
1

≤ C
[
r1

(
‖g‖2 + ‖f ‖2

2

)
+ ‖f ‖2 + r1−N

1

]
for all r1 ∈ (0, min{1, R}). By Young’s inequality we further obtain

0 ≤ −F[u,v] ≤ C
[
r1

(
1 + ‖g‖2

2 + ‖f ‖2
2

)
+ ‖f ‖2 + r1−N

1

]
, r1 ∈ (0,1) .

Recalling that D[u, v] = (‖g‖2
2 + ‖f ‖2

2

)
/σN by (2.12) and choosing

r1 =
(

1 + R−2(N−1) + ‖g‖2
2 + ‖f ‖2

2

)−1/(2N−2) ∈ (0,min{1,R})
in the previous inequality give

0 ≤ −F[u,v] ≤ C

[(
1 + R−2(N−1) + ‖g‖2

2 + ‖f ‖2
2

)(2N−3)/(2N−2) + ‖f ‖2

+
(

1 + R−2(N−1) + ‖g‖2
2 + ‖f ‖2

2

)1/2
]

≤ C
[
1 + (1 +D[u,v])(2−N)/(2N−2)

]
(1 +D[u,v])(2N−3)/(2N−2)

≤ C (1 +D[u,v])(2N−3)/(2N−2) .

We finally combine the above inequality with (1.14) to obtain

C (−F [u,v])(2N−2)/(2N−3) ≤ 1 +D[u,v] ≤ 1 + d

dt
(−F [u,v]) ,

and thereby complete the proof of (2.4). �
For further use we report the following consequence of Proposition 2.3. Recall that F[u0, v0] < 0 by (2.1).

Theorem 2.12. Assume that N ∈ {3, 4}. There is C7 > 0 depending only on N , M , α, R, and ‖∇v0‖1 such that, if 
Tmax = ∞,

−F [u0, v0] ≤ −F[u(t), v(t)] ≤ C7 , t > 0 , and

∞∫
0

D[u(s), v(s)] ds ≤ C7 . (2.29)

Proof. Setting C7 := C
−(2N−3)/(2N−2)

1 , we assume for contradiction that there is t0 ≥ 0 such that −F [u(t0), v(t0)] >
C7. Thanks to the differential inequality (2.4), a classical argument entails that t �→ −F[u(t), v(t)] is increasing on 
[t0, ∞) and satisfies −F [u(t), v(t)] > C7 for all t ≥ t0. Using again (2.4), we realize that, for t ≥ t0,

d

dt
(−F [u(t), v(t)]) ≥

(
C1 − 1

(−F [u(t0), v(t0)])(2N−2)/(2N−3)

)
(−F [u(t), v(t)])(2N−2)/(2N−3)

+ (−F [u(t), v(t)])(2N−2)/(2N−3)

(−F [u(t0), v(t0)])(2N−2)/(2N−3)
− 1

≥ δ0 (−F [u(t), v(t)])(2N−2)/(2N−3)
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for some δ0 > 0. Since (2N − 2)/(2N − 3) > 1, this implies that −F [u, v] blows up in finite time and contradicts 
the assumption Tmax = ∞. Recalling (2.3) we have thus shown the first statement in (2.29). Combining it with (1.14)
completes the proof. �
3. Finite time blowup

3.1. Proof of Theorem 1.1: R = ∞

The first step is to compute the evolution of the second moment of u given by

M2(t) := 1

σN

∫
RN

u(t, x)|x|2 dx =
∞∫

0

u(t, r)rN+1 dr , t ∈ [0, Tmax) . (3.1)

Lemma 3.1. There is C8 > 0 depending only on N and α such that, for t ∈ [0, Tmax),

dM2

dt
(t) ≤ 2(N − 2)F[u0, v0] + C8‖∂tv(t)‖2

∞∫
0

u(t, r)r(N+2)/2 dr . (3.2)

Proof. As in Section 2 we decompose v as

v = ṽ + v̂

with (ṽ, v̂) given by (2.17) since R = ∞. We infer from (1.1) and Lemma A.2 that

σN

dM2

dt
(t) = −2

∫
RN

x ·
(
∇uq+1(t, x) − u(t, x)∇ṽ(t, x) − u(t, x)∇v̂(t, x)

)
dx

= 2N

∫
RN

u(t, x)q+1 dx + 2
∫
RN

∫
RN

u(t, x)x · ∇Bα(x − y)u(t, y) dydx

+ 2
∫
RN

u(t, x)x · ∇v̂(t, x) dx

= 2(N − 2)

∫
RN

u(t, x)q+1

q
dx +

∫
RN

∫
RN

(x − y) · ∇Bα(x − y)u(t, x)u(t, y) dydx

+ 2σN

∞∫
0

u(t, r)∂r v̂(t, r)rN dr

≤ 2(N − 2)

∫
RN

u(t, x)q+1

q
dx − (N − 2)

∫
RN

∫
RN

Bα(x − y)u(t, x)u(t, y) dydx

+ 2σN

∞∫
0

u(t, r)∂r v̂(t, r)rN dr .

Now, the definitions of ṽ and of the Bessel kernel guarantee that
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−
∫
RN

∫
RN

Bα(x − y)u(t, x)u(t, y) dydx = −
∫
RN

u(t, x)ṽ(t, x) dx

=
∫
RN

(
|∇ṽ(t, x)|2 + α|ṽ(t, x)|2 − 2u(t, x)ṽ(t, x)

)
dx

= 2σNF[u(t), ṽ(t)] − 2

q

∫
RN

u(t, x)q+1 dx .

Therefore,

dM2

dt
(t) ≤ 2(N − 2)F[u(t), ṽ(t)] + 2

∞∫
0

u(t, r)∂r v̂(t, r)rN dr .

We next infer from (A.7) that

dM2

dt
(t) ≤ 2(N − 2)F[u(t), ṽ(t)] + 2C11‖∂tv‖2

∞∫
0

u(t, r)r(N+2)/2 dr .

We complete the proof with the help of (1.14) and [3, Lemma 4] which guarantee that F[u(t), ṽ(t)] ≤ F[u(t), v(t)] ≤
F[u0, v0] for t ∈ [0, Tmax). �

We next state a simple consequence of (2.2) and Lemma 3.1 for N ∈ {3, 4}.

Corollary 3.2. There is C9 > 0 depending only on N , M , and α such that, for t ∈ [0, Tmax),

dM2

dt
(t) ≤ 2F [u0, v0] + C9‖∂tv(t)‖2M2(t)

1/4 for N = 3 , (3.3)

dM2

dt
(t) ≤ 4F [u0, v0] + C9‖∂tv(t)‖2 for N = 4 . (3.4)

Proof. For N = 4, (N + 2)/2 = 3 = N − 1 so that

∞∫
0

u(t, r)r(N+2)/2 dr =
∞∫

0

u(t, r)rN−1 dr = M

σN

by (2.2) and the differential inequality (3.4) readily follows from (3.2) with C9 := MC8/σN .
For N = 3, (N + 2)/2 = 5/2 and we infer from (2.2) and Hölder’s inequality that

∞∫
0

u(t, r)r(N+2)/2 dr ≤
⎛
⎝ ∞∫

0

u(t, r)r2 dr

⎞
⎠

3/4⎛
⎝ ∞∫

0

u(t, r)r4 dr

⎞
⎠

1/4

≤
(

M

σN

)3/4

M2(t)
1/4 ,

which gives the differential inequality (3.3) once combined with (3.2). �
Proof of Theorem 1.1: R = ∞. Assume for contradiction that Tmax = ∞. We infer from (1.14), (1.16), (1.17), and 
(2.29) that

V (t) :=
t∫
‖∂tv(s)‖2

2 ds ≤ σN

t∫
D[u(s), v(s)] ds ≤ C7 , t ≥ 0 . (3.5)
0 0
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Consequently,

t �→ ‖∂tv(t)‖2
2 ∈ L1(0,∞) with

∞∫
0

‖∂tv(s)‖2
2 ds ≤ C7 . (3.6)

We now handle the cases N = 3 and N = 4 separately.

N = 3: We infer from (3.3) and Young’s inequality that

dM2

dt
≤ 2F [u0, v0] + ‖∂tv‖2

2M2 + C‖∂tv‖2/3
2 ,

hence, after integration with respect to time,

M2(t) ≤ M2(0)eV (t) +
t∫

0

[
2F [u0, v0] + C‖∂tv(s)‖2/3

2

]
eV (t)−V (s) ds , t ≥ 0 .

Thanks to (3.5), (3.6), and Hölder’s inequality, we further obtain

M2(t) ≤ M2(0)eC7 + 2F [u0, v0]t + CeC7V (t)1/3t2/3

≤ C
[
M2(0) + t2/3

]
+ 2F [u0, v0]t .

Since F[u0, v0] < −C0 by (1.17) with C0 = 0, it readily follows from the above inequality that M2(t) becomes 
negative for sufficiently large t , contradicting the non-negativity of u. We have thus established that Tmax < ∞ in that 
case.

N = 4: Let t ≥ 0. A straightforward consequence of (3.4), (3.5), and the Cauchy–Schwarz inequality is

M2(t) ≤ M2(0) + 4F [u0, v0]t + C9V (t)1/2t1/2

≤ M2(0) +√C7C9t
1/2 + 4F [u0, v0]t .

Owing to (1.17) with C0 = 0, the above inequality implies that M2 becomes negative in finite time, contradicting the 
non-negativity of u. Thus Tmax < ∞ and the proof of Theorem 1.1 is complete. �
3.2. Alternative proof of Theorem 1.1: R = ∞

We next give an alternative proof of Theorem 1.1 in the case R = ∞ which does not involve the second moment.

Proof of Theorem 1.1: R = ∞. Assume for contradiction that Tmax = ∞ and consider t ≥ 0 and r1 ∈ (0, ∞). We aim 
at showing that, owing to the time integrability (2.29) of ‖f ‖2

2 and ‖g‖2
2 (recall that D[u, v] = (‖f ‖2

2 + ‖g‖2
2

)
/σN ), 

the energy −Fr1[u(t), v(t)] located in Br1(0) behaves as a negative power of r1 as t → ∞. Since this is also true 
uniformly with respect to time for the remaining part of the energy according to Lemma 2.10 we will conclude that 
the limit of −F [u(t), v(t)] is bounded by a negative power of r1 as t → ∞, thereby contradicting the negativity (2.29)
of F[u0, v0] since r1 > 0 was arbitrarily taken. More specifically, by (2.29), Lemma 2.5, and Lemma 2.10,

−F [u0, v0] ≤ −F[u(t), v(t)]
≤ −F[u(t), v(t)] +Fr1[u(t), v(t)] −Fr1[u(t), v(t)]

≤ C6r
1−N
1 + 1

N − 2

r1∫
0

g
√

urN dr −
r1∫

0

f

(
r

N − 2
∂rv + v

)
rN−1 dr

− 1

2(N − 2)

[
r
N/2
1 ∂rv(r1) + (N − 2)r

(N−2)/2
1 v(r1)

]2

+ N − 2
rN−2

1 v(r1)
2 + α

rN
1 v(r1)

2

2 2(N − 2)
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≤ C6r
1−N
1 + C‖g‖2

⎛
⎝ r1∫

0

urN+1 dr

⎞
⎠

1/2

+ C
(
rN−2

1 + rN
1

)
v(r1)

2

+
∣∣∣∣∣∣

r1∫
0

f

(
r

N − 2
∂r v̂ + v̂

)
rN−1 dr

∣∣∣∣∣∣+
∣∣∣∣∣∣

r1∫
0

f

(
r

N − 2
∂r ṽ + ṽ

)
rN−1 dr

∣∣∣∣∣∣ .

Using Lemma 2.6, Lemma 2.8, (2.2), and (2.5) (with p = 1) and recalling that N ∈ {3, 4}, we further obtain

−F [u0, v0] ≤ C6r
1−N
1 + Cr1‖g(t)‖2 + C

(
r−N

1 + r2−N
1

)

+ C3(1 + r1)

⎛
⎝ r1∫

0

f (t, r)2r3 dr

⎞
⎠

1/2

+ C4r
3/2
1

(
1 +√r1| ln r1|

)
‖f (t)‖2

2

≤ C
(
r−N

1 + r1−N
1 + r2−N

1

)
+ Cr1‖g(t)‖2 + C(1 + r1)r

(4−N)/2
1 ‖f (t)‖2

+ Cr
3/2
1

(
1 +√r1| ln r1|

)
‖f (t)‖2

2 .

Integrating the above inequality with respect to time over (T , T + 1) for some arbitrary T > 0, we deduce from (2.12)
and the Cauchy–Schwarz inequality that

−F [u0, v0] ≤ C
(
r−N

1 + r1−N
1 + r2−N

1

)
+ Cr1

T +1∫
T

‖g(t)‖2 dt + C(1 + r1)r
(4−N)/2
1

T +1∫
T

‖f (t)‖2 dt

+ Cr
3/2
1

(
1 +√r1| ln r1|

) T +1∫
T

‖f (t)‖2
2 dt

≤ C
(
r−N

1 + r1−N
1 + r2−N

1

)
+ C

(
r1 + (1 + r1)r

(4−N)/2
1

)⎛⎝ T +1∫
T

D[u(t), v(t)] dt

⎞
⎠

1/2

+ Cr
3/2
1

(
1 +√r1| ln r1|

) T +1∫
T

D[u(t), v(t)] dt .

Owing to (2.29), we may pass to the limit as T → ∞ in the previous inequality and obtain

−F [u0, v0] ≤ C
(
r−N

1 + r1−N
1 + r2−N

1

)
.

Since r1 is arbitrary in the above inequality, we may let r1 → ∞ to conclude that −F [u0, v0] ≤ 0, which contradicts 
(1.17) with C0 = 0. �
3.3. Proof of Theorem 1.1: R < ∞

Proof of Theorem 1.1: R < ∞ with the mixed boundary conditions (1.5). Assume for contradiction that Tmax =
∞. Choosing r1 = R in Lemma 2.5 and applying Lemma 2.6 and Lemma 2.8 (with r1 = R) yield

−F [u(t), v(t)] ≤ 1

N − 2

R∫
0

g(t)
√

u(t)rN dr + C3(1 + R)

⎛
⎝ R∫

0

f (t)2r3 dr

⎞
⎠

1/2

+ C4R
3/2
(

1 +√R| lnR|
)

‖f (t)‖2
2
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for t > 0, after noticing that the last two terms in (2.14) vanish due to (1.5). Since −F [u0, v0] ≤ −F[u(t), v(t)] for 
t > 0 according to (2.3), we infer from (2.12), Hölder’s inequality and the above estimate that

−F [u0, v0] ≤ C
(√

D[u(s), v(s)] +D[u(s), v(s)]
)

for s > 0 .

Integrating the above inequality with respect to s over (t, t + 1) and using Hölder’s inequality give

−F [u0, v0] ≤ C

⎡
⎢⎣
⎛
⎝ t+1∫

t

D[u(s), v(s)] ds

⎞
⎠

1/2

+
t+1∫
t

D[u(s), v(s)] ds

⎤
⎥⎦ for t > 0 ,

and it readily follows from Theorem 2.12 that the right hand side of the above inequality converges to zero as t → ∞. 
Consequently, −F [u0, v0] ≤ 0 which contradicts (1.17) with C0 = 0 and thus implies Tmax < ∞. �
Proof of Theorem 1.1: R < ∞ with the Neumann boundary conditions (1.4). Assume for contradiction that 
Tmax = ∞. Setting r1 = R in Lemma 2.5 and applying Lemma 2.6 and Lemma 2.8 (with r1 = R), we find

−F [u(t), v(t)] ≤ 1

N − 2

R∫
0

g(t)
√

u(t)rN dr + C3(1 + R)

⎛
⎝ r1∫

0

f (t)2r3 dr

⎞
⎠

1/2

+ C4R
3/2
(

1 +√R| lnR|
)

‖f (t)‖2
2 + αRN

2(N − 2)
{ṽ(t,R) + v̂(t,R)}2

for t > 0, after noticing that the last term in (2.14) vanishes due to (1.4). Recall that ṽ and v̂ are the solutions to 
(2.19)–(2.20) supplemented with homogeneous Neumann boundary conditions. From Lemma A.1 (for N ∈ {3, 4}) 
and (2.2),

RNṽ(t,R)2 ≤ C2
10M

2R4−N and RNv̂(t,R)2 ≤ C2
11R

N
(

1 +√| lnR|
)2 ‖f (t)‖2

2 for t > 0.

Owing to (2.2), (2.3), the definition (1.16) of D[u, v], and Hölder’s and Young’s inequalities, we are led to

−F [u0, v0] ≤ C
(√

D[u(s), v(s)] +D[u(s), v(s)]
)

+ αC2
10M

2R4−N

N − 2
for s > 0 .

Arguing as in the previous case with the help of (2.29), we end up with

−F [u0, v0] < αC2
10M

2R4−N/(N − 2)

which contradicts (1.17) with C0 := αC2
10R

4−N/(N − 2) and again implies Tmax < ∞. �
4. Existence of blowing-up solutions

In this section, we prove Theorem 1.2 showing the existence of initial data satisfying the criterion given in The-
orem 1.1. The first step towards the proof of Theorem 1.2 is the existence of a couple of functions with negative 
energy which requires its first component to have a sufficiently high mass. Recall that, for N ≥ 3, Mc(N) is the 
critical mass associated to (1.8)–(1.10) which guarantees global existence if ‖u0‖1 < Mc(N) and possible blowup if 
‖u0‖1 > Mc(N) [2,3].

Lemma 4.1. For each M > Mc(N) there is (UM, VM) ∈ I∞ such that ‖UM‖1 = M , F0[UM, VM ] < 0, and both UM

and VM have compact support in �∞, where

F0[u,v] :=
∞∫

0

(
uq+1

q
+ 1

2
(∂rv)2 − uv

)
rN−1dr .
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Proof. According to [2, Proposition 3.5] there is a compactly supported and radially symmetric non-negative function 
U ∈ L1(RN) ∩ L∞(RN) satisfying

Uq ∈ H 1(RN) , ‖U‖1 = Mc(N) , F0[U,B0 � U ] = 0 ,

and

div
(
∇Uq+1 − U∇(B0 � U)

)
= 0 in R

N .

Introducing V := B0 � U , we observe that

0 =F0[U,V ] =
∞∫

0

(
1

q
Uq+1 − 1

2
(∂rV )2

)
rN−1dr ,

while it follows from the regularity properties of U , the compactness of its support, and Newton’s formula [18, 
Section 9.7] that

V ∈ Lp(RN) , p ∈
(

N

N − 2
,∞
]

, and ∇V ∈ L2(RN) ,

but V /∈ L2(RN) for N = 3, 4. Thus (U, V ) does not belong to I∞ and we need to truncate V . To this end, let 
ϑ ∈ C∞

0 (RN) be a radially symmetric cut-off function satisfying 0 ≤ ϑ ≤ 1, ϑ ≡ 1 in B1(0), and ϑ ≡ 0 in RN \B2(0), 
and define Vk(x) := V (x)ϑ(x/k) for x ∈ R

N and k ≥ 1. We then fix μ > 1 such that μ := M/Mc(N) and observe 
that, for k ≥ 1, (μU, μVk) belongs to I∞ with ‖μU‖1 = M , both functions have compact supports, and

F0[μU,μVk] = μq+1F0[U,V ] +
(
μ2 − μq+1

) ∞∫
0

[
1

2
(∂rV )2 − UV

]
rN−1 dr

+ μ2

∞∫
0

[
1

2
∂r(V + Vk)∂r (V − Vk) − U(V − Vk)

]
rN−1 dr

= −μq+1

q

(
μ1−q − 1

) ∞∫
0

Uq+1rN−1 dr

+ μ2

∞∫
0

[
1

2
∂r(V + Vk)∂r (V − Vk) − U(V − Vk)

]
rN−1 dr .

Owing to the regularity of U and V , the last term in the right-hand side of the above identity converges to zero as 
k → ∞, so that there is kμ large enough for which

F0[μU,μVkμ] ≤ −μq+1

2q

(
μ1−q − 1

) ∞∫
0

Uq+1rN−1 dr < 0 .

Setting (UM, VM) = (μU, μVkμ) completes the proof. �
Proof of Theorem 1.2. Fix M > Mc(N). To simplify notation, we set U = UM and V = VM and define

Uλ(r) = λNU(λr) and Vλ(r) = λN−2V(λr) for r ∈ [0,R) and λ > 0 .

Taking λ large enough such that the supports of U and V are included in BλR(0) it is immediate that

R∫
Uλ(r)r

N−1 dr =
λR∫
U(r)rN−1 dr =

∞∫
U(r)rN−1 dr = M

σN

0 0 0
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and

F[Uλ,Vλ] = λN−2

λR∫
0

(
1

q
Uq+1 + 1

2
(∂rV)2 − UV

)
rN−1 dr + α

2
λN−4

λR∫
0

V2rN−1 dr

= λN−2

⎡
⎣F0[U ,V] + α

2λ2

λR∫
0

V2rN−1 dr

⎤
⎦ . (4.1)

Recalling that F0[U , V] < 0 by Lemma 4.1 we now choose λ∗ large enough such that

α

2λ2∗

λR∫
0

V2rN−1 dr < −1

2
F0[U ,V] ,

and

λN−2∗
2

F0[U ,V] < −C0 M2 = −C0‖Uλ∗‖2
1 < 0 ,

and conclude that F[Uλ∗, Vλ∗ ] < −C0‖Uλ∗‖2
1. Taking (u∗

0, v
∗
0) = (Uλ∗ , Vλ∗), the continuity of F in Lq+1(�R) ×

H 1(�R) and Theorem 1.1 give the first assertion of Theorem 1.2.
Next, when 0 < p < 1 and 1 < σ < N/(N − 1), we have

R∫
0

Uλ(r)
prN−1dr = λN(p−1)

λR∫
0

U(r)prN−1 dr −→ 0 as λ → ∞ (4.2)

and
R∫

0

{(∂rVλ(r))
σ + Vλ(r)

σ }rN−1 dr

= λσ(N−1)−N

λR∫
0

{(∂rV(r))σ + λ−σV(r)σ }rN−1 dr −→ 0 as λ → ∞ . (4.3)

Given (u0, v0) ∈ IR we put w0,λ = u0 +Uλ and z0,λ = v0 +Vλ and easily deduce from (4.2) and (4.3) that (w0,λ, z0,λ)

converges towards (u0, v0) as λ → ∞ in the sense stated in Theorem 1.2. In addition, owing to the non-negativity of 
u0, v0, U , and V , we infer from (4.1) that, for λ > 1,

F[w0,λ, z0,λ] ≤ F[Uλ,Vλ] + q + 1

q

R∫
0

u0
(
u

q

0 + Uq
λ

)
rN−1 dr

+
R∫

0

(
∂rVλ∂rv0 + 1

2
(∂rv0)

2
)

rN−1 dr

+ α

R∫
0

(
Vλv0 + 1

2
v2

0

)
rN−1 dr

≤ F[Uλ,Vλ] + C(u0, v0) + CλN(q−1)‖u0‖∞‖U‖q

1 |supp(U)|1−q

+ C

λ
‖∂rv0‖∞‖∂rV‖1 + C

λ2
‖v0‖∞‖V‖1

≤ λN−2

⎡
⎣F0[U ,V] + α

2λ2

λR∫
0

V2rN−1 dr + C(u0, v0)

λN−2

⎤
⎦ .
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Since F0[U , V] < 0 by Lemma 4.1 and the L1-norm of w0,λ is bounded uniformly with respect to λ > 1, we readily 
check that (w0,λ, z0,λ) satisfies (1.17) for suitably large λ > 0 and thereby complete the proof of Theorem 1.2. �
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Appendix A. Bessel potentials

In this last section we collect the results on the Bessel kernels and potentials we have used in the preceding sections.

Lemma A.1. Let N ≥ 3, R ∈ (0, ∞], and consider a radially symmetric function h which belongs to Lp(�R) for 
some p ∈ {1, 2}. Let H be the unique radially symmetric solution to

−�H + αH = h in �R , (A.1)

supplemented with either homogeneous Neumann boundary conditions

∂νH = 0 on ∂�R , (A.2a)

or homogeneous Dirichlet boundary conditions

H = 0 on ∂�R , (A.2b)

if R < ∞, or given by

H = Bα � h (A.3)

if R = ∞.

(i) If h ∈ L1(�R), h ≥ 0 a.e. in �R , then there is C10 > 0 depending only on N , R, and α such that, for r > 0,

0 ≤ H(r) ≤ C10‖h‖1r
2−N , (A.4)

|∂rH(r)| ≤ C10 ‖h‖1r
1−N . (A.5)

(ii) If h ∈ L2(�R) then H ∈ H 2(�R) and there is C11 > 0 depending only on N , R, and α such that, for r > 0,

|H(r)| ≤
⎧⎨
⎩

C11‖h‖2 for N = 3 ,

C11‖h‖2
(
1 + √| ln r|) for N = 4 ,

C11‖h‖2r
(4−N)/2 for N ≥ 5 ,

(A.6)

and

|∂rH(r)| ≤ C11‖h‖2r
(2−N)/2 . (A.7)

Proof. (i): We first consider the case R = ∞ where H is given by (A.3). Since 0 ≤ Bα ≤ B0 and h is non-negative 
and radially symmetric, it follows from Newton’s formula [18, Section 9.7] that

0 ≤ (Bα � h)(r) ≤ (B0 � h)(r) = 1

(N − 2)rN−2

r∫
h(ρ)ρN−1 dρ + 1

N − 2

∞∫
h(ρ)ρ dρ
0 r
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≤ 1

rN−2

r∫
0

h(ρ)ρN−1 dρ + 1

rN−2

∞∫
r

h(ρ)ρN−1 dρ

≤ ‖h‖1

σN

r2−N .

We have thus proved (A.4). Next, since h is a non-negative and integrable function, it follows from [18, Theorem 6.23]
that H = Bα � h is also a non-negative and integrable function with ‖H‖1 = ‖h‖1/α and solves

−∂r

(
rN−1∂rH(r)

)
= rN−1(h − αH)(r) .

Integrating over (0, r) gives

∂rH(r) = r1−N

r∫
0

(αH − h)(ρ)ρN−1 dρ , r > 0 ,

whence

|∂rH(r)| ≤ r1−N

r∫
0

(αH + h)(ρ)ρN−1 dρ ≤ r1−N (α‖H‖1 + ‖h‖1) ≤ 2‖h‖1r
1−N .

We next turn to the case R < ∞. Let r ∈ (0, R). Integrating (A.1) over (0, r) gives

−rN−1∂rH(r) = −α

r∫
0

H(ρ)ρN−1 dρ +
r∫

0

h(ρ)ρN−1 dρ . (A.8)

Owing to the comparison principle, the non-negativity of h implies that of H in �R and we realize that ∂rH(R) ≤ 0
for both boundary conditions (A.2a) and (A.2b). It then follows from (A.8) with r = R that

0 ≤ α

R∫
0

H(ρ)ρN−1 dρ ≤
R∫

0

h(ρ)ρN−1 dρ . (A.9)

Combining (A.8) and (A.9) then gives

rN−1|∂rH(r)| ≤
R∫

0

h(ρ)ρN−1 dρ = ‖h‖1

σN

,

which proves (A.5). The estimate (A.4) readily follows from (A.5) when H solves (A.1)–(A.2b) as

H(r) = −
R∫

r

∂rH(ρ) dρ .

When H solves (A.1)–(A.2a), the estimate (A.4) is also deduced from (A.5), arguing as in [10, Lemma 2.5], see also 
the end of the proof of Lemma 2.4.

(ii): Since h ∈ L2(�R) and α > 0, classical elliptic regularity ensures that H belongs to H 2(�R) and there is a 
constant C > 0 depending only on N , R, and α such that ‖H‖H 2 ≤ C‖h‖2. On the one hand, H 2(�R) is continuously 
embedded in L∞(�R) for N = 3 which gives (A.6) for N = 3 while (A.6) for N ≥ 4 follows from [10, Theorem 1.1]
(after noticing that the proof extends to the case R = ∞). On the other hand, ∇H belongs to H 1(�R) and we deduce 
(A.7) from [10, Theorem 1.1]. �

We next turn to some properties of the gradient of Bα which plays an important role in the computation of the 
evolution of the second moment of u in Section 3.1. A similar result can be found in [25, Lemma 2.1].
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Lemma A.2. For x ∈R
N and α > 0, there holds ∇Bα(−x) = −∇Bα(x) and

x · ∇Bα(x) ≤ −(N − 2)Bα(x) . (A.10)

Proof. Differentiating (2.18) gives

∇Bα(x) = −
∞∫

0

exp

{
−|x|2

4s
− αs

}
ds

2s(4πs)N/2
x , x ∈ R

N ,

so that

x · ∇Bα(x) = −2

∞∫
0

|x|2
4s2

exp

{
−|x|2

4s

}
e−αss(2−N)/2 ds

(4π)N/2

= −
∞∫

0

exp

{
−|x|2

4s
− αs

}
(2αs + N − 2)

ds

(4πs)N/2

≤ −(N − 2)Bα(x) ,

as claimed. �
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