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Abstract

On a compact stratified space (X, g), a metric of constant scalar curvature exists in the conformal class of g if the scalar curvature 
Sg satisfies an integrability condition and if the Yamabe constant of X is strictly smaller than the local Yamabe constant Y�(X). 
This latter is a conformal invariant introduced in the recent work of K. Akutagawa, G. Carron and R. Mazzeo. It depends on the 
local structure of X, in particular on its links, but its explicit value is unknown. We show that if the links satisfy a Ricci positive 
lower bound, then we can compute Y�(X). In order to achieve this, we prove a lower bound for the spectrum of the Laplacian, by 
extending a well-known theorem by A. Lichnerowicz, and a Sobolev inequality, inspired by a result due to D. Bakry. A particular 
stratified space, with one stratum of codimension 2 and cone angle bigger than 2π , must be handled separately – in this case we 
prove the existence of an Euclidean isoperimetric inequality.
© 2015 
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0. Introduction

Stratifications of topological spaces have been introduced by H. Whitney [30] with the basic idea of partitioning 
a space in simpler elements, like manifolds, which are glued together in an appropriate way. Stratified spaces have 
been largely studied from a topological point of view [27,30]. They appear, for example, in treating the stability of 
smooth mappings between manifolds [16]. Moreover, they give an appropriate setting to formulate Poincaré duality 
for intersection homology on singular spaces [14].

Analysis on stratified spaces is a quite recent field of investigation, which arouse in the 80s with the works of 
J. Cheeger on the spectral analysis on manifolds with conical singularities or corners [11]. Another interesting ap-
proach has been given by R. Melrose’s study of pseudo-differential operators on singular spaces.

Furthermore, stratified spaces also arise in differential geometry, for example as quotients of compact Riemannian 
manifolds: the American football with cone angle 2π/p, for an integer p, is a quotient of the sphere. They appear also 
as limits of smooth Riemannian manifolds. Later on in this paper, we give an example of a stratified space appearing 
as the limit of smooth complete surfaces: the cone of angle bigger than 2π over a circle.
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In this paper we study stratified spaces by extending classical tools from Riemannian geometry and geometric 
analysis. In particular, we consider the Yamabe problem on a compact stratified space X endowed with an iterated 
edge metric g. Let us briefly recall some of the definitions we need in the following: we mainly refer to [2,3] and [4]
for a more detailed discussion.

0.1. The setting: stratified spaces

A compact stratified space X is a metric space which admits a decomposition in a finite number of strata Xj

X ⊇ Xn−2 ⊇ Xn−3 ⊇ . . . ⊇ Xj ⊇ . . .

such that for each j , Xj \ Xj−1 is a smooth open manifold of dimension j , and � = X \ Xn−2 is dense in X. 
By assumption, there is no codimension 1 stratum. We denote by � the singular set of X, i.e. � = X \ �. Each 
connected component of Xj \Xj−1 has a tubular neighbourhood Uj which is the total space of a smooth cone bundle. 
Its fibre is C(Zj ), where Zj is a stratified space and it is called the link of (connected component of) the stratum. 
In the following we assume for simplicity that each stratum is connected, but clearly our discussion applies to each 
connected component. We follow [3] in identifying a neighbourhood of a point x ∈ Xj \ Xj−1 with the cone bundle: 
there exists a radius δx , a neighbourhood Ux of x and a homeomorphism

ϕx : Bj (δx) × Cδx (Zj ) → Ux

ϕx is a diffeomorphism between (Bj (δx) × Cδx (Zj,reg)) \ (Bj (δx) × {0}) (where Zj,reg is the regular part of Zj ) and 
the regular part of Ux , i.e. Ux ∩ �.

The simplest examples of stratified spaces are manifolds with conical singularities or with simple edges: in this last 
case each link Zj is compact smooth manifold.

We define iteratively the notion of depth. If X is a smooth compact manifold, it has depth equal to 0. If Z is a 
stratified space of depth k and X is a stratified space with just one stratum having as link Z, then the depth of X is 
k + 1. In general, the depth of a stratified space is the maximal depth of the links of his strata, plus one. Depth allows 
us to apply iterative arguments on stratified spaces and in particular to define admissible metrics on them. An iterated 
edge metric g on X is a Riemannian metric on � which near to each stratum Xj can be written as

g = dy2 + dx2 + x2kj + E

where dy2 is the Euclidean metric on Rj , kj is an iterated edge metric on the link Zj , and E is a perturbation decaying 
as xγ for some γ > 0.

It is possible to define the Sobolev space W 1,2(X) as the closure of Lipschitz functions on X with the usual Sobolev 
norm; the set C1

0(�) is dense in W 1,2(X). Moreover, it is proved in [2] that the continuous Sobolev embedding of 

W 1,2(X) in L
2n

n−2 (X) holds.

0.2. The Yamabe problem on stratified spaces

A classical problem in geometric analysis was posed in the 60s by H. Yamabe: given a compact smooth manifold 
(Mn, g), n ≥ 3, is it possible to find a conformal metric g̃ such that

g̃ = u
4

n−2 g

for some positive smooth function u, and the scalar curvature Sg̃ of g̃ is constant? The results by Trudinger [28], 
T. Aubin [5], and finally R. Schoen [22], led to a positive answer. The solution of the problem strongly depends on 
finding a smooth positive function attaining the Yamabe constant:

Y(Mn, [g]) = inf
u>0

u∈W 1,2(M)

∫
M

(|du|2 + anSgu
2)dvg

‖u‖2
2n

n−2

, an = (n − 2)

4(n − 1)
.

In particular, T. Aubin proved that for any smooth compact manifold Y(Mn, [g]) is smaller or equal than the Yamabe 
constant Yn of the standard sphere Sn. Furthermore, when the inequality is strict, then there exists a minimizer attaining 
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Y(M, [g]). He also proved that for n ≥ 6 and (Mn, g) not locally conformally flat, the strict inequality holds. In the 
other cases, his works together with the proof of the positive mass theorem [23–25], allowed Schoen to prove that 
either the inequality is strict, or (Mn, [g]) is conformal to the standard sphere.

In [2], the authors considered the analogous problem on compact stratified spaces. Since the Sobolev embedding 
holds on (X, g), it is possible to define the Yamabe constant of X in the same way as in the smooth case. Nevertheless, 
this constant may not be finite if there is not any control the scalar curvature Sg: we assume that Sg satisfies an 
integrability condition, i.e. Sg ∈ Lq(X) for q > n/2. Moreover, Akutagawa et al. [2] introduced another conformal 
invariant, the local Yamabe constant. They first define the Yamabe constant of an open ball (or set) of X: it will be 
equal to

Y(B(p, r)) = inf

⎧⎨
⎩
∫
X

(|du|2 + anSgu
2)dvg,u ∈ W

1,2
0 (� ∩ B(p, r)),‖u‖ 2n

n−2
= 1

⎫⎬
⎭ .

Then the local Yamabe constant of X is defined as follows:

Y�(X) = inf
p∈X

lim
r→0

Y(B(p, r)).

When p belongs to the regular set, the limit as r goes to zero of Y(B(p, r)) is clearly equal to Yn, so that by definition 
Y�(X) ≤ Yn. Furthermore, thanks to the local geometry of stratified spaces, the local Yamabe constant turns out to be 
equal to:

Y�(X) = min
j=0...n

inf
p∈Xj \Xj−1

{
Y(Rj × C(Zj ), [dy2 + dx2 + x2(kj )p])

}
(1)

The local Yamabe constant plays the same role as Yn in the classical Yamabe problem. It is shown in [2] that if the 
Yamabe constant of a compact stratified space X is strictly smaller than its local Yamabe constant

Y(X, [g]) < Y�(X)

and if the scalar curvature of g satisfies Sg is in Lq(X) for some q > n/2, then there exists u bounded on X in 

W 1,2(X) which attains Y(X, [g]) and such that g̃ = u
4

n−2 g has constant scalar curvature.
The main issue is that the explicit value of the local Yamabe constant is not known, even in the simplest case of 

conical singularities, simple edges or only codimension 2 singular strata. We are going to show that we can compute 
it in a large class of stratified spaces under a geometric assumption on the links.

0.3. Main results

We consider a stratified space (X, g) with Einstein links (Zj , kj ) of dimension dj : by this condition we mean that 
the metric kj is such that Rickj

= (dj − 1)kj on the regular set of Zj . We observe that this hypothesis on the Ricci 
tensor is well justified in view of proving the existence of a Yamabe metric. It is showed in [2] that, if the scalar 
curvature of each link is equal to dj (dj − 1), then we have the integrability condition on the scalar curvature Sg. This 
is obviously the case under our assumption.

We show the following:

Theorem. Let (Zd, k) be a stratified space endowed with a metric k such that Rick = (d − 1)k on the regular set of Z. 
Then the Yamabe constant of Rn−d−1 × C(Zd) is either equal to Yn or to:(

Volk(Z)

Vol(Sd)

) 2
n

Yn.

This extends to the setting of stratified spaces an analogous result by J. Petean contained in [18], concerning the 
Yamabe constant of a cone over a smooth compact manifold (Mn, g) with Ricg ≥ (n − 1)g.

In order to prove this result, we need to distinguish two cases which depend on the strata of lowest codimension, 
i.e. equal to 2. The links of such strata must be circles S1

a with radius a: remark that, when a < 1, the cone C(S1
a) is an 
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Alexandrov space with positive curvature, in the sense of triangle comparison; when a > 1 the cone is non-positively 
curved. We refer here to the definition of curvature bound given in the book by D. Burago, Y. Burago and S. Ivanov 
[10].

We first assume (X, g) is compact stratified space which does not posses any codimension 2 strata with link S1
a for 

a ≥ 1. If (X, g) satisfies this condition, we call it an admissible stratified space. In this case, we are able to prove that 
a bound by below on the Ricci tensor leads to a bound by below for the spectrum of the Laplacian.

Theorem. Let (X, g) be an admissible stratified space such that Ricg ≥ (n − 1)g. Then the first non-zero eigenvalue 
of the Laplacian 	g is greater or equal than n.

This is a generalization of Lichnerowicz theorem for smooth compact manifolds. Observe that K. Bacher and 
K.-T. Sturm prove in [6] a version of Lichnerowicz theorem for spherical cones over a smooth compact manifold 
(Mn, g), Ricg ≥ (n − 1)g, by using a curvature-dimension condition in the sense of Sturm and Lott–Villani. Our 
theorem applies in general to cones over any admissible stratified space.

This spectral gap allows us to extend a result by D. Bakry contained in [7]: we prove the existence of a Sobolev 
inequality with explicit constants, and this gives in turns a lower bound for Y(X, [g]). Furthermore the lower bound is 
attained in the Einstein case, so that we are able to compute the Yamabe constant of an Einstein admissible stratified 
space.

In order to prove the previous results, we need to study the regularity of a solution to the Schrödinger equation 
	gu = V u for V ∈ L∞(X) and of its gradient. A theorem contained in [3] states that such regularity depends on the 
spectral geometry of the links: more precisely, on the first eigenvalue of the Laplacian on the links. Combining this 
with our singular version of Lichnerowicz theorem, we are able to control the L∞-norm of the gradient du away from 
a tubular neighbourhood of the singular set �.

In the case of a link being S1
a with a ≥ 1, and then cone of angle bigger that 2π , we cannot apply Lichnerowicz 

theorem, which does not even hold on S1
a . We will study the isoperimetric profiles of Rn−2 × C(S1

a). Firstly, it is 
easy to prove by direct computations that the cone C(S1

a) endowed with the metric dr2 + (ar)2dθ2 can be found as 
the limit of Cartan–Hadamard surfaces, i.e. R2 endowed with a metric of negative sectional curvature. This gives an 
example of a stratified space arising as a limit of smooth manifolds. Moreover we show that Rn−2 × C(S1

a) has the 
same isoperimetric profiles as the Euclidean space Rn, and that its isoperimetric domains are the Euclidean balls not 
intersecting the singular set Rn−2 × {0}. This allows us to apply a classical argument by G. Talenti, then to find an 
optimal Sobolev inequality on Rn−2 × C(S1

a) and finally deduce that its Yamabe constant is equal to the one of the 
standard sphere Yn.

Knowing the local Yamabe constant Y�(X) opens further questions. We would like to know under which hypothesis 
the strict inequality Y(X, [g]) < Y�(X) holds, or what happens in the case of equality. As we recalled above, in the 
compact smooth case we know that for dimension n ≥ 6 and if (Mn, g) is not locally conformally flat, the strict 
inequality Y(Mn, [g]) < Yn follows from a local computation by means of test functions (see [5]). It may be possible 
to reproduce the same kind of technique on stratified spaces. Furthermore, in dimension n = 3, 4, 5 and for locally 
conformally flat manifolds, the positive mass theorem holds. At present, it is not known whether an equivalent theorem 
may be proven in the setting of compact stratified spaces.

1. Some technical tools

We start by recalling some useful concepts about the geometry of a compact stratified space (Xn, g).
First of all, we cannot define the usual tangent space at any point of x ∈ X, in particular if x belongs to the singular 

set �. We can nevertheless consider the tangent cone at x: assume that x ∈ Xj and take the Gromov–Hausdorff limit 
of the pointed metric spaces (X, ε−2g, x) as ε tends to zero. We follow [3] in order to state that this limit is unique 
at any point and it is a cone (C(Sx), dr2 + r2hx), where Sx is the j -fold spherical suspension of the link Zj . More 
precisely, if Sj−1 is the canonical sphere of dimension (j − 1) we have:

Sx =
[
O,

π

2

]
× S

j−1 × Zj (2)

hx = dϕ2 + sin2 ϕgSj−1 + cos2 ϕkj (3)
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We refer to Sx as the tangent sphere at x. Observe that Sx is a stratified space of dimension (n − 1).
The tangent cone (C(Sx), dr2 + r2hx) is in fact isometric to the product Rj × C(Zj ) with the metric dy2 + dτ 2 +

τ 2kj . We can rewrite the Euclidean metric dy2 in polar coordinates

dy2 = dρ2 + ρ2gSj−1,

where gSj−1 is the canonical metric on the sphere of dimension j − 1. Then with the change of coordinates ρ =
r sin(ϕ), τ = r cos(ϕ) we get g = dr2 + r2h where h coincides with the metric on the tangent sphere. This change of 
variables gives us the isometry we were looking for.

Observe that, as a consequence, the local Yamabe constant of (X, g) given in (1) is also equal to:

Y�(X) = inf
x∈X

{Y(C(Sx), [dr2 + r2hx])}.

1.1. Bounds by below for the Ricci tensor

Let (X, g) be a stratified space with strata Xj , j = 1, . . .N and links (Zj , kj ). We give some result about the 
relations between Ricci bounds for the metric g, kj and the metrics hx on the tangent spheres Sx .

We observe that through this paper a Ricci bound means that we have a classical Ricci bound on the regular set �, 
where the metric g is a smooth Riemannian metric and the Ricci tensor Ricg is defined in the usual way. There exist 
other approaches based on generalized lower Ricci bounds for metric measure spaces, as introduced by Sturm and 
Lott–Villani: see for example [6] for recent developments in the subject.

Lemma 1.1. Let X be a compact stratified space endowed with a metric g such that the Ricci tensor is bounded by 
below, i.e. there exists a constant c ∈ R such that:

Ricg ≥ cg on �

Then for each point x ∈ X the tangent cone has non-negative Ricci tensor. Furthermore, on each link (Zj, kj ) of 
dimension dj we have Ricdj

≥ (dj − 1)kj .

Proof. As we stated above, the tangent cone at x ∈ Xj is the Gromov–Hausdorff limit of (X, ε−2g, x) as ε goes to 
zero. Furthermore, the convergence is uniform in C∞ away from the singular set �, so that as a consequence we have:

Ricgε = Ricg ≥ cg = ε2cgε on �.

Then when we pass to the limit as ε goes to zero the Ricci tensor of the limit metric dr2 + r2hx must be non-negative. 
Now it is not difficult to see that this implies:

Richx ≥ (n − 2)hx

Recall that the metric hx has the form (3), and then kj on the link Zj of the stratum Xj must satisfy Rickj
≥ (dj −1)kj . 

For both of the last two bounds, we refer to the formulas for the Ricci tensor of warped products and doubly warped 
products contained in Chapter 3 of [19]. �

Vice versa, we can assume that we have a Ricci bound on the links:

Lemma 1.2. Let (Zd, k) be a compact stratified space such that Rick ≥ (d − 1)k. Consider the metric g = dy2 +
dτ 2 + τ 2k on (Rn−d−1 × C(Z)) and let S be the (n − d − 2)-fold spherical suspension of Z

S =
[
0,

π

2

]
× S

n−d−2 × Z,

endowed with the metric:

h = dϕ2 + sin2 ϕgSn−d−2 + cos2 ϕk (4)

Then the cone metric dr2 + r2h on C(S) = (0, ∞) ×S has non-negative Ricci tensor. Moreover, (Rn−d−1 ×C(Z), g)

is conformally equivalent to C(S) = (0, π) × S endowed with a metric gc such that Ricgc ≥ (n − 1)gc.
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Proof. By recalling again [19], Chapter 3, page 71, Rick ≥ (d − 1)k implies that the metric h defined in (3) has Ricci 
tensor such that Rich ≥ (n − 2)h. As a consequence the Ricci tensor of dr2 + r2h is non-negative. Furthermore, we 
know that (Rn−d−1 × C(Z), g) is isometric to (C(S), dr2 + r2h), where C(S) = (0, +∞) × S. Now dr2 + r2h is 
conformal to the product metric on R × S, which in turns is conformal to the metric:

gc = dt2 + sin2(t)h

on (0, π) × S. For this metric Ricgc ≥ (n − 1)gc holds: this concludes the proof. �
In the following we are going to give a bound from below for the Yamabe constant of a compact stratified space 

(Xn, g) with Ricci tensor bounded by below Ricg ≥ (n −1)g. Thanks to the previous Lemma, we know that the tangent 
cones are conformal to a compact stratified space with this hypothesis on the Ricci tensor. As a consequence, we will 
also have a result about the local Yamabe constant of a stratified spaces with links (Zd, k) such that Rick ≥ (d − 1)k.

1.2. Regularity

We recall that on a compact stratified space (X, g) we can define W 1,p(X) as the completion of the Lipschitz 
functions with the norm of W 1,p(X). Following [2], when p is smaller or equal than the codimension m of the 
singular set �, we assume that C1

0(�) is dense in W 1,p(X). From Proposition 2.2 in [2] we also know that the 
Sobolev inequality holds on (X, g), i.e. there exist positive constants A, B such that for any u ∈ W 1,2(X):

‖u‖2
2n

n−2
≤ A‖u‖2

2 + B ‖du‖2
2 . (5)

We are going to study the regularity of the gradient du of a function u ∈ W 1,2(X) solving a Schrödinger equation of 
the form 	gu = V u, for V ∈ L∞(X). We show that we can control the L∞-norm of the gradient |du| on � depending 
on the distance from the singular set.

In order to do this, we need two hypothesis: the first one is that the Ricci tensor is bounded by below. The second 
one is a condition on the first eigenvalue λ1(Sx) of the Laplacian on the tangent spheres Sx (or equivalently, on the 
links Zj ).

Proposition 1.3. Let (Xn, g) be a compact stratified space such that Ricg ≥ (n − 1)g. Assume that for any x ∈ X we 
have λ1(Sx) ≥ (n − 1). Let u ∈ W 1,2(X) be a solution of:

	gu = V u (6)

for V ∈ L∞(X). Assume that there exists a constant c such that 	g|du| ≤ c|du|. Then for any ε > 0 we have:

‖du‖L∞(X\�ε) ≤ C
√| ln(ε)| (7)

where �ε is an ε-tubular neighbourhood of � and C is a positive constant not depending on ε.

Remark 1.4. Since |du| satisfies the estimate (7), it is in Lp(X) for any p ∈ [1, +∞). In fact, if we denote by m the 
codimension of the singular set �, which is greater or equal to two, we have:∫

X

|du|pdvg =
∫

X\�ε

|du|pdvg +
∫
�ε

|du|pdvg

≤ | ln(ε)| p
2 Volg(X) + Cp

ε∫
0

⎛
⎝∫

∂�t

| ln(t)| p
2 dσg

⎞
⎠dt

≤ | ln(ε)| p
2 Volg(X) + C1

ε∫
0

tm−1| ln(t)| p
2 dt.

Where we used that the volume of boundary of the tubular neighbourhood of size t is bounded by a constant times the 
(m − 1) power of t . The last integral is clearly finite, therefore |du| ∈ Lp(X).
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The proof of Proposition 1.3 consists of two steps: we state in the following the results we need to obtain it. First we 
use a classical tool, the Moser iteration technique, on a function f such that its Laplacian on the regular set is bounded 
by a constant times f . The argument is very similar to the one of Proposition 1.8 in [2] (and of Proposition 5.8 in [1]), 
but the difference is that we get an estimate of the norm in L∞ only over a ball centred in a regular point, since the 
inequality for the Laplacian holds only on the regular set (note that this will be enough to prove (7)). We include the 
proof here for the sake of completeness.

Lemma 1.5 (Moser iteration technique). Let (X, g) be a compact stratified space and f ∈ L2(X) such that the 
inequality 	gf ≤ cf holds on � for some positive constant c. Then there exists a constant c1, only depending on the 
dimension n, such that for any x ∈ � and 0 < r < dg(x, �)/2 we have:

‖f ‖L∞(B(x,r/2)) ≤ c1

⎛
⎜⎝ 1

rn

∫
B(x,3r/4)

f 2dvg

⎞
⎟⎠

1
2

,

where c1 depends on c, on the dimension n and on the constants appearing in the Sobolev inequality.

Proof. We claim that if 	gf ≤ cf on � then for any γ > 1 we have:

	g(f
γ ) ≤ cγf γ on �. (8)

For any ε > 0 define fε =√f 2 + ε2 > 0. Consider the Laplacian of f 2
ε on �:

fε	gfε − |dfε|2 = 1

2
	g(f

2
ε ) = f 	gf − |df |2 ≤ cf 2 − |df |2 ≤ cf 2

ε − |dfε|2.

We have shown that fε	gfε ≤ cf 2
ε on �. Now for γ > 1 consider 	g(f

γ
ε ). Since xγ is a convex function, non-

decreasing on R+, on � we have:

	g(f
γ
ε ) = γ (f γ−1

ε 	gfε − (γ − 1)f γ−2
ε |dfε|2)

≤ γf γ−1
ε 	gfε

≤ cγf γ
ε ,

where in the last inequality we used the fact that fε	gfε ≤ cf 2
ε on �. Now if we let ε go to zero we obtain (8).

Now let R0 = dg(x, �)/2 and choose 0 < r < R < R0. Consider a smooth function ϕ having compact support in 
B(x, R0) such that ϕ is equal to one in B(x, r), it vanishes outside B(x, R) and its gradient satisfies:

|dϕ| ≤ 2

(R − r)

Let us consider ϕf . Then we have:∫
B(x,R)

|d(ϕf )|2dvg =
∫

B(x,R)

(|dϕ|2f 2 + ϕ2f 	gf )dvg

≤
∫

B(x,R)

(|dϕ|2f 2 + cϕ2f 2)dvg

≤ A1

(R − r)2

∫
B(x,R)

f 2dvg,

for some positive constant A1. We then apply the Sobolev inequality (5) to ϕf :
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⎛
⎜⎝ ∫

B(x,R)

|ϕf | 2n
n−2 dvg

⎞
⎟⎠

n−2
n

≤ A

∫
B(x,R)

ϕ2f 2dvg + B

∫
B(x,R)

|d(ϕf )|2dvg

≤ A

∫
B(x,R)

ϕ2f 2dvg + A1

(R − r)2

∫
B(x,R)

f 2dvg

≤ A2

(R − r)2
||f ||2

L2(B(x,R))

If we denote γ = n
n−2 , we have shown that:

‖f ‖L2γ (B(x,r)) ≤
(

A2

(R − r)2

) 1
2 ‖f ‖L2(B(x,R) (9)

Consider for j ∈N the sequence of radius

rj =
(1

2
+ 2−(j+3)

)
R0

Rj =
(1

2
+ 2−(j+2)

)
R0,

so that Rj − rj = 2−j−3R0 and Rj+1 = rj . Thanks to (8), we can apply the same argument we used for ϕf to ϕf γ , 
and so on iteratively with γ j , for j = 1, . . .N . This leads to:

||f ||
L2γN

(B(x,rN ))
≤

N−1∏
j=0

(
22(j+3)A2γ

j

R2
0

) 1
2γ j

||f ||L2(B(x,3R0/4)) (10)

When we let N tend to ∞, the left-hand side converges to the L∞-norm of f on B(x, r), and the product in the 
right-hand side converges to a constant C divided by R−n/2

0 . In fact we have:

ln

⎛
⎝N−1∏

j=0

(
22(j+3)A2γ

j

R2
0

) 1
2γ j

⎞
⎠= ln(2)

2

N−1∑
j=0

j + 3

γ j
+ ln(γ )

2

N−1∑
j=0

j

γ j

+ 1

2
ln

(
A2

R2
0

)
N−1∑
j=0

1

γ j
.

The first two sums converges to a constant as N tends to infinity. The last one tends to 
1

1 − 1/γ
= n

2
so that at the end 

we obtain:

‖f ‖L∞(B(x,R0/2)) ≤ c1

⎛
⎜⎝ 1

Rn
0

∫
B(x,3R0/4)

f 2dvg

⎞
⎟⎠

1
2

,

as we wished. �
We recall a result contained in [3] (see Theorem A and Proposition 4.1): it allows to study the regularity of solutions 

of the Schrödinger equation 	gu = V u, for V ∈ L∞(X), depending on the geometry of the tangent spheres.

Proposition 1.6. Let (Xn, g) be a compact stratified space and u ∈ W 1,2(X) be a solution to

	gu = V u,
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for V ∈ L∞(X). Assume that for any x ∈ X we have λ1(Sx) ≥ n − 1. Then there exist a constant C and a sufficiently 
small radius r0 such that for any x ∈ X and 0 < r < r0 we have:

1

rn

∫
B(x,r)

|du|2dvg ≤ C| ln(r)|. (11)

Remark 1.7. In Section 3.6 of [3], it is shown that asking for any x ∈ X that λ1(Sx) ≥ (n − 1) is equivalent to ask 
that for each link (Zj , kj ) the first eigenvalue λ(Zj ) of the Laplacian with respect to kj is greater or equal than the 
dimension of Zj .

The proof of Proposition 1.3 follows from the previous results:

Proof of Proposition 1.3. Let x ∈ � and B(x, r) a ball of radius 0 < r < dg(x, �)/2, which is entirely contained 
in �. Lemma 1.5 allows us to bound the L∞-norm of |du| on B(x, r/2) with the mean of its L2-norm on a ball of 
radius 3r/4. The square of this last quantity is bounded by some constant times | ln(r)|, thanks to Proposition 1.6. 
Therefore, we get the desired inequality outside an ε tubular neighbourhood of � by choosing an appropriate small 
radius r . �
1.2.1. Applications

Assume that (Xn, g) is a compact stratified spaces which satisfies the hypothesis of Proposition 1.3, i.e. such that 
Ricg ≥ (n − 1)g and for any x ∈ X we have λ1(Sx) = (n − 1). We give two examples of equations to which we can 
apply Proposition 1.3.

Example 1. Let ϕ be a locally Lipschitz function on R and consider u ∈ W 1,2(X) ∩ L∞(X) solution of:

	gu = cϕ(u). (12)

Note that when ϕ(x) = x then the previous equation is just the one satisfied by an eigenfunction of the Laplacian. It 
is not difficult to prove that there exists a constant c1 such that on � we have 	g|du| ≤ c1|du|. This is done by using 
Bochner–Lichnerowicz formula, as the following lemma shows (see also [9]).

Lemma 1.8 (Bochner method). Let (Xn, g) be a compact stratified space such that Ricg ≥ (n − 1)g. Let u ∈ W 1,2(X)

be a solution of (12). Then on the regular set � we have:

	g|du| ≤ c1|du|
for some positive constant c1.

Proof. Since u is a solution to (12), we can assume that it is positive. As we observed above, u is also bounded. For 
ε > 0, let us introduce

fε =
√

|du|2 + ε2 > 0

We will consider 	g(f
2
ε ) in order to obtain an inequality of the type fε	gfε ≤ cf 2

ε : dividing by fε and letting ε tend 
to zero will allow us to conclude. We have

fε	gfε − |dfε|2 = 1

2
	g(|du|2 + ε2) = (∇∗∇du,du) − |∇du|2.

The Bochner–Lichnerowicz formula holds on the regular set �. By applying it to the equation (12) we get:

∇∗∇du + Ricg(du) = cϕ′(u)du

We can now multiply by du. Since u is bounded, the Ricci tensor Ricg is bounded by below by (n − 1)g and the 
derivative of ϕ is bounded on [0, ‖u‖∞], we obtain:

(∇∗∇du,du) ≤ c1|du|2 − (n − 1)|du|2.
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As a consequence we have:

(∇∗∇du,du) − |∇du|2 ≤ c1|du|2 − (n − 1)|du|2 − |∇du|2
≤ c1|du|2 − |∇du|2.

We also observe that, by elementary calculations and Kato’s inequality:

|dfε|2 = |du|2|∇|du||2
|du|2 + ε2

≤ |∇|du||2 ≤ |∇du|2,
and as a consequence we get:

fε	gfε − |dfε|2 = (∇∗∇du,du) − |∇du|2
≤ c1|du|2 − |∇du|2
≤ c1f

2
ε − |dfε|2.

In conclusion fε	gfε ≤ c1f
2
ε . Since fε is positive everywhere, we can divide and obtain 	gfε ≤ cfε . By letting ε go 

to zero, we deduce the desired inequality on |du|. �
Example 2. When the metric is Einstein and the Ricci tensor Ricg is exactly equal to (n − 1)g, we can also apply 
Proposition 1.3 to the Yamabe equation:

	gu + anSgu = anSgu
n+2
n−2 . (13)

It is proven in [2] that a solution u of the Yamabe equation (13), when it exists, is in W 1,2(X) ∩ L∞(X). When 
Ricg = (n − 1)g, the scalar curvature is constant: thus we can differentiate the equation as we did in Lemma 1.8 and 
apply the same technique in order to obtain 	|du| ≤ c1|du|.

2. Eigenvalues of the Laplacian operator

The aim of the next session is to show that the condition λ1(Sx) ≥ (n − 1) for any x ∈ X holds in a large class of 
stratified spaces. Such class is given by admissible stratified spaces, that we define as follows:

Definition 1. An admissible stratified space is a compact stratified space (Xn, g) which satisfies the following as-
sumptions:

(1) If there exists a stratum Xn−2 of codimension 2, its link has diameter smaller than π .
(2) The iterated edge metric g satisfies Ricg ≥ k(n − 1), for some k > 0, on the dense smooth set �.

A classical result by Lichnerowicz states that for a compact smooth manifold (Mn, g) with Ricg ≥ k(n − 1) with 
k > 0, the lowest non-zero eigenvalue of the Laplacian is greater or equal to kn (see for example [13]). We are going 
to extend this result to the case of admissible stratified spaces.

Theorem 2.1. Let (X, g) be an admissible stratified space. Any non-zero eigenvalue λ of the Laplacian 	g is greater 
or equal to kn.

Remark 2.2. For smooth Riemannian manifolds, a theorem by Obata characterizes the case of equality (see [17]), 
i.e. under the same hypothesis of Lichnerowicz’s theorem, λ1 = kn if and only if (Mn, g) is isometric to the standard 
sphere Sn of radius 1/

√
k. In the case of stratified spaces, it would be interesting to obtain a similar result: we 

conjecture that if (Xn, g) is an admissible stratified space and the first non-zero eigenvalue of the Laplacian is equal 
to kn, then (Xn, g) must be the spherical suspension of an (n − 1)-dimensional admissible stratified space.

Remark 2.3. In [6] the authors give an analogous Lichnerowicz theorem for spherical cones �(M) (considered as 
metric measure spaces) on a compact Riemannian manifold (M, g) with lower Ricci bound Ricg ≥ (n − 1)g. They 
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use the existence of a curvature dimension condition CD(n, n + 1) on �(M) in the generalized sense of Sturm and 
Lott–Villani.

Our theorem applies more generally to cones over any stratified space (X, g) having a lower Ricci bound on the 
regular set �.

Proof. Without loss of generality, we can rescale the metric and assume that k = 1. We proceed by iteration on the 
dimension n of the space.

If n = 1, by our hypothesis X must be a circle of diameter smaller than π . Then the first eigenvalue of the Laplacian 
is greater than 1, and the proposition is true in dimension 1.

Assume that the statement is true for any dimension until (n − 1) and consider an admissible stratified space X
of dimension n. For any x ∈ X, the tangent sphere Sx is an admissible stratified space of dimension (n − 1). By 
Lemma 1.1, the condition Ricg ≥ (n − 1)g implies that for any x the metric hx satisfies Richx ≥ (n − 2)hx . Therefore, 
by the iteration argument, for any x ∈ X:

λ1(Sx) ≥ (n − 1)

As a consequence, the hypothesis of Proposition 1.3 are satisfied by Sx . As we have shown in the first example 
of 1.2.1, we can apply this result to any eigenfunction ϕ of the Laplacian. Therefore for any ε > 0 we have:

‖dϕ‖L∞(X\�ε) ≤ C
√| ln(ε)|. (14)

Recall also that by Moser iteration technique ϕ is bounded.
Since we have an estimation of the behaviour of dϕ depending on the distance from the singular set, the rest of 

the proof is an adaptation of the classical one by means of well-chosen cut-off functions. Consider for ε > 0 a cut-off 
function ρε , being equal to one outside �ε, vanishing on some smaller tubular neighbourhood of � and such that 
between the two tubular neighbourhoods 0 ≤ ρε ≤ 1. We are going to specify the choice of such function in the 
following.

If ϕ is an eigenfunction relative to the eigenvalue λ, then by the Bochner–Lichnerowicz formula on � we have:

∇∗∇dϕ + Ricg(dϕ) = λdϕ

We then consider the Laplacian of |dϕ|2 and get:

1

2
	g|dϕ|2 = (∇∗∇dϕ,dϕ) − |∇dϕ|2 ≤ λ|dϕ|2 − (n − 1)|dϕ|2 − |∇dϕ|2. (15)

If we multiply (15) by ρε and integrate by parts we obtain:∫
X

	g(ρε)
|dϕ|2

2
dvg ≤

∫
X

ρε((λ − (n − 1))|dϕ|2 − |∇dϕ|2)dvg (16)

We study the right-hand side and we consider the first term. By elementary calculations and integration by parts 
formula we can rewrite:∫

X

ρε|dϕ|2dvg =
∫
X

(d(ρεϕ), dϕ) − ϕ(dρε, dϕ))dvg

=
∫
X

ρεϕ	gϕdvg −
∫
X

ϕ(dρε, dϕ)dvg

= 1

λ

∫
X

ρε(	gϕ)2dvg −
∫
X

ϕ(dρε, dϕ)dvg. (17)

In order conclude the proof, we need to choose ρε such that when ε goes to zero we have:

(i) the left-hand side of (16) tends to zero;
(ii) the last term of the right-hand side in (17) tends to zero.
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Recall that the norm in L∞ of the gradient is bounded by the logarithm of ε, the size of the tubular neighbourhood, 
so that the cut-off functions need to counterbalance this decay. If we can find such a family of cut-off functions, when 
we pass to the limit as ε goes to zero we obtain:(

1 − (n − 1)

λ

)∫
X

(	gϕ)2dvg −
∫
X

|∇dϕ|2dvg ≥ 0

Moreover, by Cauchy–Schwarz inequality |∇du|2 ≥ (	gϕ)2

n
, so that we finally have:

(
1 − (n − 1)

λ
− 1

n

)∫
X

(	gϕ)2dvg ≥ 0,

which leads to λ ≥ n.
It remains to show that it is actually possible to construct a cut-off function having the properties (i) and (ii). This 

is done in the following.

Choice of the family of cut-off functions
We have to distinguish two different cases, whether the codimension m of � is strictly greater than two, or equal to 
two.

Case 1: Firstly assume m > 2. Consider ε > 0 and the tubular neighbourhoods �ε, �2ε . We want to build a cut-off 
function ρε which is equal to 1 on X \�2ε and vanishes on �ε . Moreover, we need the gradient dρε and the Laplacian 
	gρε to decay “fast enough” as ε tends to zero. We will obtain ρε from a harmonic function, as explained in the 
following. The reason for this, is that we need a condition of decay on the Laplacian of ρε, and as a consequence a 
function of the distance r from the singular set � does not suffice, because r is not smooth: we know that |∇r| = 1
almost everywhere, but anything on the Laplacian of r .

Let hε be the harmonic extension of the function which is equal to 1 on the boundary of �2ε and vanishes on the 
boundary of �ε , i.e. hε satisfies:{

	ghε = 0
hε = 1 on ∂�2ε

hε = 0 on ∂�ε.

The harmonic extension has a variational characterization, i.e. if we consider the Dirichlet energy E defined by:

E(ϕ) =
∫

�2ε\�ε

|dϕ|2dvg,

then hε attains the infimum of the functional E among all functions ϕ ∈ W 1,2(X) taking values 1 on ∂�2ε and 
vanishing on ∂�ε .

Let r be the distance function from the singular set �, i.e. r(x) = dg(x, �), and consider the following function ψε:

ψε(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 on X \ �2ε

r

ε
− 1 on �2ε \ �ε

0 on �ε.

|dψε| = 1

ε
.

It is then easy to estimate the Dirichlet energy of ψε:

E(ψε) =
∫

�2ε\�ε

|dψε|2dvg ≤ c′εm−2.

By the variational characterization of hε, E(hε) ≤ E(ψε), so that

E(hε) ≤ c′εm−2. (18)
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However, hε is not necessarily smooth. The cut-off function ρε will be obtained by composing hε with a smooth 
function ρ vanishing on (−∞, 14 ] end being equal to one on [ 3

4 , +∞): more precisely, ρε = ρ ◦ hε . As a consequence 
we have:

dρε = (ρ′ ◦ hε)dhε and 	gρε = −(ρ′′ ◦ hε)|dhε|2.
Since ρ is smooth and chosen independently from ε, there exist two constants c1, c2, not depending on ε, such that:

|dρε| ≤ c1|dhε|, and |	ρε| ≤ c2|dhε|2.
We claim that our choice of ρε satisfies (i) and (ii). For what concerns the first condition we obtain:∫

�2ε\�ε

|	gρε||dϕ|2dvg ≤ c2

∫
�2ε\�ε

|dhε|2|dϕ|2dvg ≤ C2| ln(ε)|εm−2,

which tends to zero as ε goes to zero. As for the second condition (ii), by using Cauchy–Schwarz inequality twice and 
the estimate we have on |dρε|, we get:∫

�2ε\�ε

(dρε, dϕ)dvg ≤
∫

�2ε\�ε

|dρε||dϕ|dvg

≤
⎛
⎜⎝ ∫

�2ε\�ε

|dρε|2dvg

⎞
⎟⎠

1
2
⎛
⎜⎝ ∫

�2ε\�ε

|dϕ|2dvg

⎞
⎟⎠

1
2

≤ c′
1ε

m
2
√| ln(ε)|

⎛
⎜⎝ ∫

�2ε\�ε

|dhε|2dvg

⎞
⎟⎠

1
2

≤ c′′
1ε

m−1
√| ln(ε)|,

which also tends to zero with ε.
Case 2: Consider m = 2. The cut-off function ρε will be equal to one outside �ε and it will vanish in �ε2

, for 
0 < ε < 1. In this case too ρε is obtained by “smoothing” the harmonic function hε being equal to one on ∂�ε

and vanishing on ∂�ε2
. We will be able to show that the Dirichlet energy of ε tends to zero when ε goes to zero 

as | ln(ε)|−1. A priori this estimate does not suffices to show (i) and (ii), but only implies that the two integrals 
are bounded. For this reason we will need to give a more detailed study: we are going to prove that in fact |dϕ| ∈
W 1,2(X) ∩ L∞(X). Let hε be the harmonic function solving:⎧⎪⎨
⎪⎩

	ghε = 0

hε = 1 on ∂�ε

hε = 0 on ∂�ε2
.

We are going to exhibit a test function fε such that the Dirichlet energy E(fε) is bounded by a constant times | ln(ε)−1|. 
Let r be the distance function from � as above. We define fε:

fε(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 on X \ �ε(
2 − ln(r)

ln(ε)

)
on �ε \ �ε2

0 on �ε2
.

|dfε| = 1

r| ln(ε)| .

We claim that there exists a constant A independent of ε such that:⎛
⎜⎜⎝
∫

�ε\�ε2

|dfε|2dvg

⎞
⎟⎟⎠≤ A

| ln(ε)| . (19)
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Let us assume that − ln(ε) is an integer number N . Then we can decompose �ε \ �ε2
in the disjoint union:

�ε \ �ε2 =
2N−1⋃
j=N

�e−j \ �e−(j+1)

.

As a consequence the integral (19) can be written as the following sum:

1

| ln(ε)|2

⎛
⎜⎜⎝
∫

�ε\�ε2

1

r2
dvg

⎞
⎟⎟⎠= 1

| ln(ε)|2
2N−1∑
j=N

∫
�e−j \�e−(j+1)

1

r2
dvg

≤ 1

| ln(ε)|2
2N−1∑
j=N

∫
�e−j \�e−(j+1)

e2(j+1)dvg

≤ 1

| ln(ε)|2 A(N − 1) ≤ A

| ln(ε)| ,
which is the estimate we wanted to prove. Then by the variational characterization of hε we have:

E(hε) ≤ E(fε) ≤ A

| ln(ε)| .
Furthermore, thanks to our estimate on the behaviour of dϕ we obtain:∫

�ε\�ε2

|dhε|2|dϕ|2dvg ≤ C| ln(ε2)|
∫

�ε\�ε2

|dhε|2dvg

≤ 2C2| ln(ε)|
∫

�ε\�ε2

|dfε|2dvg

≤ 2C2| ln(ε)| A

| ln(ε)| ≤ B,

where B is a positive constant independent of ε.
If we replace ρε by fε in (16) and we let ε go to zero we then obtain a finite term B1 on the left-hand side; therefore 

we obtain the following estimate:

B1 ≤
∫
X

((λ − (n − 1))|dϕ|2 − |∇dϕ|2)dvg.

Recall that ϕ ∈ W 1,2(X), so that the L2-norm of |dϕ| is finite. Then the previous inequality tells us that also |∇dϕ|
must be in L2(X), and so ∇|dϕ| too, since we have clearly |∇|dϕ|| ≤ |∇dϕ|. As a consequence we have |dϕ| ∈
W 1,2(X). This allows us to get more regularity on |dϕ|.

Claim: The gradient dϕ belongs to L∞(X).

Proof. Let us call u = |dϕ| for simplicity. We state that u satisfies the weak inequality

	gu ≤ cu, (20)

on the whole X. This means that for any ψ ∈ W 1,2(X), ψ ≥ 0 we have:∫
X

(du,dψ)gdvg ≤ c

∫
X

uψdvg. (21)

We already proved that 	gu ≤ cu strongly on �, then we know that for any ψ ∈ W 1,2(X) we have:
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∫
�

ψ	gudvg ≤ c

∫
�

uψdvg.

In order to extend this inequality to the whole X and obtain (20), we consider fε defined as above, 0 ≤ fε ≤ 1 and we 
replace ψ by fεψ . By integrating by parts we obtain:∫

X

(d(fεψ), du)gdvg ≤ c

∫
X

fεψu +
∫
X

ψ(dfε, du)gdvg. (22)

We can use Cauchy–Schwarz inequality twice on the second term and obtain:

∫
X

ψ(dfε, du)gdvg ≤ B2 ‖du‖2

⎛
⎝∫

X

|dfε|2dvg

⎞
⎠

1
2

≤ B3 ‖du‖2
1√| ln(ε)| .

Where we used the estimate (19) that we deduced above on the gradient fε. Since the L2-norm of the Hessian 
du = ∇dϕ is finite, the second term in (22) tends to zero when ε goes to zero. Then letting ε go to zero in (22)
implies (21), as we wished. Since (20) is proven, Moser’s iteration technique in Proposition 1.8 of [2] assures that 
|dϕ| ∈ L∞(X). �

We are finally in the position to show that in codimension m = 2 a cut-off functions satisfying (i) and (ii) exists: 
define ρε = ρ ◦ hε for the same smooth function ρ as before. We have for c1, c2 independent of ε

|dρε| ≤ c1|dhε| |	gρε| ≤ c2|dhε|2.
The estimate on the Dirichlet energy on hε and the fact that the L∞-norm of |dϕ| is finite assures that ρε is the desired 
cut-off function. For the condition (i) we obtain:∫

X

|	gρε||dϕ|dvg ≤ c′
2

∫
X

|dhε|2dvg ≤ c′
2A

| ln(ε)| ,

which tends to zero as ε goes to zero. For the condition (ii) we use Cauchy–Schwarz inequality twice and we get:

∫
X

(dρε, dϕ)gdvg ≤
⎛
⎝∫

X

|dρε|2dvg

⎞
⎠

1
2
⎛
⎝∫

X

|dϕ|2
⎞
⎠

1
2

≤ c′
1ε

⎛
⎝∫

X

|dhε|2dvg

⎞
⎠

1
2

≤ c1
′′ε√| ln(ε)| ,

which tends to zero as ε goes to zero.
We have found an appropriate cut-off function for any codimension of the singular set �: this concludes the proof 

of the theorem. �
Remark 2.4. In the discussion above for the choice of the cut-off function in codimension m > 2 (respectively m = 2), 
we obtain ρε by smoothing a harmonic function hε and by considering ρ ◦ ψε (respectively ρ ◦ fε) because we need 
a condition on the Laplacian of ρε. The distance function from � is not necessarily smooth: we know that almost 
everywhere |dr|2 = 1, but we do not have information on the behaviour of its Laplacian.
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Remark 2.5. By our definition of admissible stratified space, we are excluding the existence of a stratum of codimen-
sion 2 whose link is a circle S1

a , of radius a bigger or equal to one. Recall that the classical Lichnerowicz theorem 
does not hold for S1

a , since the first eigenvalue of the Laplacian is equal to 1/a2 < 1: the first iterative step in our proof 
could not be applied.

3. A bound by below for the Yamabe constant

The following theorem is inspired by a result by Dominique Bakry in [7], which gives a Sobolev inequality with 
an explicit constant on smooth compact Riemannian manifolds (M, g) satisfying Ricg ≥ k(n − 1), k > 0.

Theorem 3.1. Let X be an admissible stratified space of dimension n. Then for any 1 < p ≤ 2n/(n − 2) a Sobolev 
inequality of the following form holds:

V
1− 2

p ‖f ‖2
p ≤ ‖f ‖2

2 + p − 2

nk
‖df ‖2

2 , (23)

where V is the volume of X with respect to the metric g.

The existence of such Sobolev inequality allows us to compute the Yamabe constant of a compact Einstein stratified 
space, as the following corollary states. We first give the proof of the corollary.

Corollary 3.2. The Yamabe constant of an admissible stratified space X is bounded by below:

Y(X, [g]) ≥ nk(n − 2)

4
V

2
n (24)

In particular, if g is an Einstein metric, we have equality.

Proof of Corollary 3.2. Recall that the Yamabe constant of X is defined by

Y(X, [g]) = inf
u∈W 1,2(X),u�=0

∫
X

(|du|2 + anSgu
2)dvg

‖u‖2
2n

n−2

,

where an = n−2
4(n−1)

and Sg is the scalar curvature. Since Ricg ≥ k(n − 1)g, we have Sg ≥ kn(n − 1), and as a conse-
quence

anSg ≥ nk(n − 2)

4
.

We denote this constant by γ −1. Remark that if we take p = 2n
n−2 in Theorem 3.1, γ is exactly the constant appearing 

in the right-hand side of the Sobolev inequality. Then for any u ∈ W 1,2(X) we have:

V
2
n

γ
‖u‖2

2n
n−2

≤ ‖du‖2
2 + 1

γ
‖u‖2

2 ≤ ‖du‖2
2 +
∫
X

anSg|u|2dvg,

and this easily implies the desired bound by below on the Yamabe constant.
Recall that an equivalent definition for the Yamabe constant is the following:

Y(X, [g]) = inf
g̃∈[g]

Q(g̃), Q(g̃) = an

∫
X

Sg̃dvg̃

Volg̃(X)1− 2
n

.

Where [g] is the conformal class of g, consisting of all the metrics that can be written as g̃ = u
4

n−2 g for some function 
u ∈ C1

0(�). We call Q(g̃) the Yamabe quotient of g̃. When we consider an Einstein metric g on an admissible stratified 
space, its Yamabe quotient attains exactly
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Q(g) = n(n − 2)

4
Volg(X)

2
n (25)

since the scalar curvature of g is constant and equal to n(n − 1). Thanks to our lower bound and the fact that the 
Yamabe constant is an infimum, we get the case of equality in the Einstein case. �

We are now going to give the proof of theorem.

Proof of Theorem 3.1. We can always rescale the metric in order to have k = 1. By Theorem 2.1, we know that 
the first non-zero eigenvalue of the Laplacian is greater than n; moreover, as we recalled in Section 1, the Sobolev’s 
inequality holds on X (see Proposition 2.2 in [2]). From now on, we are using in our calculations the renormalized 
measure dμ = V −1dvg , where V = Volg(X).

The lower bound on the spectrum of the Laplacian, the Sobolev’s inequality and Lemma 4.1 in [7] imply that there 
exists a positive constant γ such that

‖f ‖2
2n

n−2
≤ ‖f ‖2

2 + γ ‖df ‖2
2 .

By using interpolation between 2 and 2n
n−2 , it is easy to see that for any p < 2n

n−2 and for any δ > 0 we have the 
following inequality:

‖f ‖2
p ≤ (1 + δ)‖f ‖2

2 + γ0 ‖df ‖2
2

We denote by γ0 the best constant appearing in the previous inequality. Note that γ0 depends on δ, but in the following 
we are going to omit it in order to simplify the notation. We are going to show that γ0 is smaller then (p − 2)/n, for 
any choice of δ > 0. By coming back to the measure dvg , we will get the power 1 − 2/p of the volume and therefore 
the inequality (23) will hold on X.

Consider a minimizing sequence for γ0, i.e. a sequence of positive functions (fn)n in Lp(X) such that the quotient

‖fn‖2
p − (1 + δ)‖fn‖2

2

‖dfn‖2
2

converges to γ0. We can assume without loss of generality that ||fn||2 = 1. Then (fn)n is bounded in Lp(X) and by 
the compact embedding of W 1,2(X) in Lp(X) we can deduce that there exists a positive function f in W 1,2(X) such 
that (fn)n converges weakly to f in W 1,2(X), and strongly in Lp(X). Thanks to the normalization of the L2-norm, 
f is not vanishing everywhere, and thanks to the choice of δ > 0, f cannot be constant. Moreover, it satisfies the 
following equation on X:

γ0	gf + (1 + δ)f = Af p−1, (26)

where A = ‖f ‖2−p
p . We can apply the Moser iteration technique as in Proposition 1.8 in [2], in order to show that f

is bounded. Since the Ricci tensor is bounded by below, we can apply the same technique we used in Lemma 1.8 to 
show that 	g|df | is smaller or equal than c|df | on � for some positive constant c. Furthermore, Theorem 2.1 assures 
that the condition λ1(Sx) ≥ (n − 1) holds for any x ∈ X, so that we can apply Proposition 1.3 to f . Then, for any 
ε > 0 we have:

‖df ‖L∞(X\�ε) ≤ C
√| ln(ε)|.

We can express f as the power of a function u, i.e. f = uα for some α that will be chosen later. Then u is also positive, 
bounded and its gradient satisfies the same estimate as |df | away from a neighbourhood of the singular set �.

We can rewrite (26) in the form:

Auα(p−2) = (1 + δ) + γ0
	g(u

α)

uα
= (1 + δ) + αγ0

(
	gu

u
− (α − 1)

|du|2
u2

)
(27)

Bakry’s proof consists in multiplying this equation for an appropriate factor, and then by integrating it. He finds a 
factor depending on γ −1

0 , p and n, multiplies by the L2-norm of du, and he bounds it by below by some quantity, 
which is positive when α is well-chosen. We will proceed in a similar way, by taking care of introducing a cut-off 
function, because we are allowed to use the equation (27) and integration by parts only on the regular set �.
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If the codimension m > 2 of � is strictly greater than 2, consider the cut-off function ρε chosen in the proof of 
Theorem 2.1. If m = 2 consider the function fε defined in the same proof. We must be careful with the codimension 
m = 2, since we are still not sure that the Hessian of u is in L2(X): we will be able to affirm it later in the proof. 
For m > 2 we multiply (27) by ρεu	gu and integrate on X; respectively for m = 2 we multiply by fεu	gu. For 
simplicity we write down the computations only for ρε: they are exactly the same for fε.

A

∫
X

ρεu
1+α(p−2)	gudμ = (1 + δ)

∫
X

ρεu	gu

+ γ0α

⎛
⎝∫

X

ρε(	gu)2dμ − (α − 1)

∫
X

ρε

	gu

u
|du|2dμ

⎞
⎠ . (28)

When integrating by parts the left-hand side we obtain:

A

∫
X

ρεu
1+α(p−2)	gudμ =

∫
X

u1+α(p−2)(dρε, du)gdμ

+ (1 + α(p − 2))

∫
X

ρεu
α(p−2)|du|2dμ.

Since u is positive and bounded, we can bound u1+α(p−2) by a positive constant independent of ε. Then first term, 
which contains (du, dρε)g , tends to zero as ε goes to zero as we have shown in the proof of Theorem 2.1. This is true 
also for m = 2 when we replace ρε by the function fε . In the second term we will replace uα(p−2) by its value given 
by (27), and this allows one to simplify the constant A, which will not appear in the following.

As for the right-hand side of (28), consider the first term:∫
X

ρε(u	gu)dμ =
∫
X

u(du,dρε)gdμ +
∫
X

ρε|du|2dμ,

and when we let ε tends to zero, since as before u is bounded, we simply get the L2-norm of du, both for the case 
m > 2 and m = 2.

Therefore, after some elementary computation we obtain:

1 + δ

γ0
(p − 2)

∫
X

ρε|du|2dμ =
∫
X

ρε(	gu)2dμ

+ (α − 1)(1 + α(p − 2))

∫
X

ρε

|du|4
u2

dμ

− α(p − 1)

∫
X

ρε

	gu

u
|du|2dμ + o(1), (29)

where we replaced the two terms containing du and dρε by a term o(1) which tends to zero as ε goes to zero. Let us 
denote:

I1 =
∫
X

ρε(	gu)2dvg.

I2 =
∫
X

ρε

	gu

u
|du|2dvg.

We are going to bound by below I1 by integrating the Bochner–Lichnerowicz formula, which holds on the regular 
set �, and to give an alternative expression for I2 by integrating by parts.

Consider firstly I1. We multiply the Bochner–Lichnerowicz formula
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(du, d	gu)g = 	g

|du|2
2

+ |∇du|2 + Ricg(du, du) on �,

by the cut-off function ρε and integrate. Recall that by hypothesis we have Ricg ≥ (n − 1)g.
By rewriting ρε(du, d	gu)g = (du, d(ρε	gu))g − 	gu(du, dρε)g and integrating by parts, we then obtain:∫

X

ρε(	gu)2dμ ≥
∫
x

ρε(|∇du|2dvg + (n − 1)|du|2)dμ

+
∫
X

	gρε

|du|2
2

dμ +
∫
X

	gu(du,dρε)gdμ. (30)

Remark that thanks to (27), and the fact that u is bounded, we know that 	gu can be split in the sum of a bounded 
term and a second term depending on |du|2: it is equal to

	gu = 1

α
u

(
	gf

uα
+ α(α − 1)

|du|2
u2

)
.

We know that u is strictly positive and bounded, then the same is true for u−1, and 	gf is bounded too. Furthermore, 
Remark 1.4 in Section 1, assures that |du| ∈ Lp(X), for all p ∈ [1; +∞). As a consequence 	gu also belongs to 
Lp(X) for p ∈ [1; +∞). Then we can bound the last term in (30) by using Cauchy–Schwarz inequality:

∫
X

	gu(du,dρε)gdμ ≤
⎛
⎝∫

X

(	gu)2dμ

⎞
⎠

1
2
⎛
⎝∫

X

(du, dρε)
2
gdμ

⎞
⎠

1
2

,

where the first factor is finite, and the second one tends to zero as ε goes to zero. Then the last term in (30) tends 
to zero as ε goes to zero. As for the term containing 	gρε , we know that for m > 2 this tends to zero as ε goes to 
zero. For m = 2 and fε , we only have that this quantity is bounded: but thanks to (30) this is enough to state that the 
L2-norm of ∇du is finite. As in the proof of Theorem 2.1, this implies |du| ∈ L∞(X) and there exists ρε , vanishing 
on �ε2

, being equal to one away from �ε, and 0 ≤ ρε ≤ 1 on �ε \ �ε2
, such that the integrals of both (du, dρε)g and 

	gρε|du|2 tend to zero as ε goes to zero. From now on we are allowed to consider the cut-off function ρε instead of 
fε also in the case of m = 2.

We can modify (30) a bit more. We decompose the Hessian ∇du in its traceless part A plus −(	gu/n)g, since 
	gu = −tr(∇du). Then the square norm of ∇du is equal to |A|2 + (	gu)2/n, and therefore we get:∫

X

ρε(	gu)2dμ ≥ n

n − 1

∫
X

ρε|A|2dμ + n

∫
X

ρε|du|2dμ + o(1). (31)

This will be the appropriate bound by below for I1.
Now consider I2 and integrate by parts:

I2 = 2
∫
X

ρε

∇du(du, du)

u
dμ −
∫
X

ρε

|du|4
u2

dμ +
∫
X

|du|2
u

(dρε, du)gdμ.

With the same observations as before (|du| ∈ Lp(X) for all p ∈ [1 + ∞) and Cauchy–Schwarz inequality), we can 
say that the last term in this expression tends to zero as ε goes to zero. We can decompose again the Hessian ∇du in 
∇du = A − 	gu

n
g. As a consequence we can write:

I2 = 2n

n + 2

∫
X

ρε

A(du,du)

u
dμ − n

n + 2

∫
X

ρε

|du|4
u2

dμ + o(1). (32)

We can now replace this expression for I2 and the bound by below (31) for I1 in (29); after passing to the limit as ε
and δ go to zero we obtain:
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(
1

γ0
(p − 2) − n

)∫
X

|du|2dμ ≥ n

n − 1

∫
X

|A|2dμ

− α(p − 1)
2n

n + 2

∫
X

A(du,du)

u
dμ

+ C(α)

∫
X

|du|4
u2

dμ, (33)

where

C(α) = (α − 1)(1 + α(p − 2)) + α(p − 1)
n

n + 2
.

The first two terms in the left-hand side of (33) can be interpreted as a part of a square norm for some convenient 
coefficient: we can rewrite in fact

(
1

γ0
(p − 2) − n

)∫
X

|du|2dμ ≥ n

n − 1

⎛
⎝∫

X

∣∣∣∣A + β
du ⊗ du

u

∣∣∣∣
2

dμ

⎞
⎠

+
(

C(α) − β2 n

n − 1

)∫
X

|du|4
u2

dμ,

where we have chosen:

β = −α(p − 1)
n − 1

n + 2

We denote by T = du⊗du
u

. Then, recalling that A is traceless, we have

|A + βT |2 ≥ 1

n
tr(A + βT )2 = β2

n

|du|4
u2

.

Replacing this in the previous inequality, we finally get:(
1

γ0
(p − 2) − n

)∫
X

|du|2dμ ≥ (C(α) − β2)

∫
X

|du|4
u2

dμ. (34)

We remark that C(α) − β2 is a quadratic expression in α. Its discriminant equals:

−4n(p − 1)((n − 2)p − 2n)

(n + 2)2

which is positive for 1 < p < 2n
n−2 . Therefore, thanks to our hypothesis, we can choose α in such a way that the 

right-hand side of (34) is a positive quantity. As a consequence we get for any 1 < p < 2n
n−2 :

1

γ0
≥ n

p − 2
,

which gives the desired Sobolev inequality. We can pass to the limit as p tends to 2n
n−2 and get the result for 2n

n−2
too. �
3.1. Some examples

Consider an admissible stratified space (Zd, k) of dimension d with Einstein metric k. Thanks to Lemma 1.2, we 
know that X = R

n−d−1 × C(Z) with the metric g = dy2 + dr2 + r2k is conformally equivalent to (C(S), [dt2 +
cos2(t)h]), where:
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S =
[
0,

π

2

]
× S

n−d−2 × Z

h = dϕ2 + cos2(ϕ)gSn−d−2 + sin2(ϕ)k.

Moreover, C(S) is an admissible stratified space endowed with an Einstein metric gc = dt2 + cos2(t)h. Corollary 3.2
states that its Yamabe constant will be equal to:

Y(X, [g]) = Y(C(S), [gc]) = n(n − 2)

4
Volgc (C(S))

2
n . (35)

We claim that:

Lemma 3.3. Let (Zd, k) be an admissible stratified space of dimension d with Einstein metric k. Then the Yamabe 
constant of X =R

n−d−1 × C(Z) endowed with the metric g as above is equal to:

Y(X, [g]) =
(

Volk(Z)

Vol(Sd)

) 2
n

Yn. (36)

Proof. Recall that the Yamabe constant of the sphere Yn is equal to

Yn = n(n − 2)

4
Vol(Sn)

2
n .

Then by our expression above we have:

Y(X, [g]) = Yn

(
Volgc (C(S))

Vol(Sn)

) 2
n

.

Now the volume of C(S) with respect to gc is clearly equal to:

Volgc (C(S)) = 2 Volh(S)

π
2∫

0

cosn−1(t)dt,

and the volume of S with respect to h is:

Volh(S) = Vol(Sn−d−2)Volk(Z)

π
2∫

0

cosn−d−2(ϕ) sind(ϕ)dϕ.

By using polar coordinates, the sphere Sn can be viewed as the cone over the (n − d − 3)-fold spherical suspension 
of Sd , so that we can express its volume in the following form:

Vol(Sn) = 2 Vol(Sn−d−2)Vol(Sd)

π
2∫

0

cosn−d−2(ϕ) sind(ϕ)dϕ

π
2∫

0

cosn−1(t)dt.

Finally by replacing the two expressions for the volumes of C(S) and Sn we get the desired value of Y(X, [g]). �
Example. In the simplest case of Z being a circle of radius a < 1, C(S1

a) is a cone of angle α = 2πa. A similar 
calculation leads to:

Y(Rn−2 × C(S1
a), [g]) = a

2
n Yn =

( α

2π

) 2
n
Yn.

Observe that this procedure cannot be applied if Z is a circle with radius bigger than one, since we excluded the 
existence of codimension 2 strata with link of diameter bigger that π . In the next section we are going to give another 
way to compute the Yamabe constant of this kind of stratified spaces.
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Remark 3.4. Lemma 3.3 extends a result by J. Petean about the Yamabe constant of cones. The author shows in [18]
that if M is a compact manifold of dimension n, endowed with a Riemannian metric such that Ricg = (n − 1)g, then 
the Yamabe constant of the cone C(M) = (0, π) × M endowed with the cone metric dt2 + sin2(t)g is equal to:

Y(C(M), [dt2 + sin2(t)g]) =
(

Volg(M)

Vol(Sn)

) 2
n+1

Yn+1.

If the spherical suspension S were a compact smooth manifold, our computation would give exactly the same result.

4. Cones of angle α ≥ 2π

Let (Xn, g) be a stratified space with one singular stratum Xn−2 of codimension 2: we assume that its link is the 
circle S1

a of radius a > 1 and then that the cone C(S1
a) has angle α = a2π ≥ 2π . Such stratified space does not belong 

to the class of admissible stratified spaces we defined above, and Theorem 2.1 does not hold on it. As a consequence, 
we cannot apply Corollary 3.2 in order to compute its local Yamabe constant, or, equivalently, the Yamabe constant 
of Rn−2 × C(S1

a).
We are going to follow another strategy: we will study the isoperimetric profile of X =R

n−2 × C(S1
a), i.e. given a 

metric g on X we study the function Ig:

Ig(v) = inf{Volg(∂E), E ⊂ X,Volg(E) = v}.
An Euclidean isoperimetric inequality holds on X if there exists a positive constant c such that

I (v) ≥ cv1− 1
n (37)

In the Euclidean space Rn, the constant c is given by the isoperimetric quotient of Euclidean balls. Moreover, it is a 
well known result that the isoperimetric inequality in Rn is equivalent to the following Sobolev inequality: for any 
n > 1 and f ∈ W 1,1(Rn)

‖f ‖q ≤ C ‖df ‖1 , q = n

n − 1
.

It is also possible to compute the explicit value for the optimal constant appearing in this inequality. Moreover, this 
inequality leads to the sharp inequalities for 1 ≤ p < n (see for example [26]):

‖f ‖q ≤ Cn,p ‖df ‖p , q = np

n − p
(38)

In the following, we are going to show that the isoperimetric profile of X (with the appropriate metric) coincides with 
the isoperimetric profile of Rn. This will give in turn a sharp Sobolev inequality and then the value of the Yamabe 
constant of X =R

n−2 × C(S1
a), for a ≥ 1.

4.1. Approaching C(S1
a) with Cartan–Hadamard manifolds

We are going to find a metric hε on R2, conformal to the Euclidean metric, that converges to a metric h on R2 with 
one conical singularity, which is in turn isometric to C(S1

a) endowed with the metric dr2 + (ar)2dθ2.

Lemma 4.1. There exists a sequence of metrics hε on R2, conformal to the Euclidean metric, with negative sectional 
curvature, such that hε converges uniformly on any compact domain of R2 \ {0} to the cone metric on C(S1

a) with 
a ≥ 1.

Proof. Consider the following metric on R2:

hε = (ε2 + ρ2)a−1(dρ2 + ρ2dθ2) (39)

We can compute its sectional curvature κε by applying the formulas for conformal changes of metrics (see for exam-
ple [8]):
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g = e2fε (dρ2 + ρ2dθ2), fε = a − 1

2
ln(ρ2 + ε2)

κε = e−2fε	gfε = − 2(a − 1)ε2

(ρ2 + ε2)a+1
,

which is non-positive, since by hypothesis a ≥ 1. When ε tends to zero, the conformal factor (ρ2 + ε2)a−1 converges 
to ρ2(a−1) pointwise and uniformly in C∞ on any compact domain. As a consequence hε(ρ, θ) converges to

h(ρ, θ) = ρ2(a−1)(dρ2 + ρ2dθ2)

which is a Riemannian metric on R2 \ {ρ = 0}. Now, R2 endowed with the metric h is a surface with one conical 
singularity 0, which is isometric to C(S1

a) endowed with the metric dr2 + (ar)2dθ2: it suffices to apply the change of 
variables r = ρa/a. �

A Cartan–Hadamard manifold is a complete, simply connected Riemann manifold with nonpositive sectional cur-
vatures. The following conjecture is known as the Cartan–Hadamard conjecture or Aubin’s conjecture (see for example 
[20]):

Conjecture 4.2. Let (Mn, g) be a Cartan–Hadamard manifold, whose sectional curvatures satisfy κ ≤ c ≤ 0. Then 
the isoperimetric profile IM of Mn is bounded from below by the isoperimetric profile Ic of the complete and simply 
connected space Mn

c , whose sectional curvatures are equal to c.

This conjecture has been proved in dimension n = 2, 3, 4 by A. Weil [29], C. Croke [12] and B. Kleiner [15]. In 
our particular case, (R2, hε) is a Cartan–Hadamard manifold with c = 0. As a consequence we have:

Lemma 4.3. Let hε be the metric on R2 defined in the previous lemma. Then the isoperimetric profile Ihε of (R2, hε)

is bounded by below by the isoperimetric profile I2 of R2 with the Euclidean metric.

4.2. Isoperimetric profiles

We recall a result known in the literature as Ros Product Theorem and contained in [21], about the isoperimetric 
profiles of Riemannian products.

Proposition 4.4 (Ros Product Theorem). Consider two Riemannian manifolds (M1, g1) and (M2, g2), dim(M2) = n. 
Assume that the isoperimetric profile I2 of (M2, g2) is bounded by below by the isoperimetric profile In of Rn. 
Then the isoperimetric profile of the Riemannian product (M1 × M2, g1 + g2) is bounded by below by the one of
(M1 ×R

n, g1 + ξ), where ξ is the Euclidean metric.

The idea of the proof is to define an appropriate symmetrization for sets E ⊂ M1 × M2. Denote for simplicity 
g = g1 + g2 and g0 = g1 + ξ . We consider for x ∈ M1 the section E(x) = E ∩ ({x} × M2). Then the symmetrization 
Es ⊂ M1 ×Rn will be the set defined by:

1. if E(x) = ∅, then Es(x) = ∅;
2. if E(x) �= ∅, then Es(x) = {x} × Br , where Br is an Euclidean ball in Rn such that Volξ (Br) = Volg2(E(x)).

By following Proposition 3.6 in [21], Es satisfies that Volg0(E
s) = Volg(E) and Volg0(∂Es) ≤ Volg(∂E). This is 

enough to show that if F ⊂ M1 × M2 realizes the infimum in Ig(v), i.e. Volg(F ) = v and Volg(∂F ) = Ig(v), then its 
symmetrization F s satisfies Volg0(F

s) = v and

Ig0(v) ≤ Volg0(∂F s) ≤ Volg(∂F )

As a consequence, Ig(v) ≥ Ig0(v) for any v > 0.
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Proposition 4.5. Let X =R
n−2 × C(S1

a) and denote by g the metric ξ + h. Let Ig be its isoperimetric profile. Then Ig

is coincides with the isoperimetric profile In of Rn with the Euclidean metric.

Proof. We will show firstly that Ig is bounded by below by In. Consider Rn−2 × R
2 endowed with the metric gε =

ξ + hε , and denote by Iε the isometric profile with respect to this metric. Thanks to Lemma 4.3 and to Ros Product 
Theorem we deduce that Iε is bounded by below by the isoperimetric profile of Rn−2 ×R

2 with the Euclidean metric, 
i.e. In.

Therefore we have for any bounded domain E ⊂ X, Volgε (�) = v, with smooth boundary ∂E:

Volgε (∂E)

Volgε (E)1− 1
n

≥ Iε(v)

v1− 1
n

≥ cn (40)

where cn is the optimal constant appearing in the isoperimetric inequality in Rn. When we pass to the limit as ε tends 
to zero, the volumes of both E and ∂E with respect to gε converge to the volumes with respect to g.

In face, if we denote by dx the n-dimensional Lebesgue measure on Rn and by dσ the volume element induced on 
∂E by the Euclidean metric, we have for the volume of E:

lim
ε→0

Volgε (E) =
∫
E

(ρ2 + ε2)(a−1)dx = Volg(E)

since (ρ2 + ε2)(a−1) converges to ρ2(a−1) on any bounded domain. As for the volume of ∂E we get:

lim
ε→0

Volgε (∂E) = lim
ε→0

∫
∂E

(ρ2 + ε2)(a−1)dσ

= lim
ε→0

∫
∂E\Rn−2×{0}

(ρ2 + ε2)(a−1)dσ

=
∫

∂E\Rn−2×{0}
ρ2(a−1)dσ

=
∫
∂E

ρ2(a−1)dσ = Volg(∂E),

where we used again the convergence of the conformal factor and the fact that Rn−2 ×{0} has zero (n −1)-dimensional 
Lebesgue measure.

Therefore when we pass to the limit as ε goes to zero in (40) we obtain:

Volg(∂E)

Volg(E)1− 1
n

≥ cn (41)

Observe that Rn−2 × C(S1
a) contains Euclidean balls: they are the geodesic balls Bn not intersecting the singular set 

Rn−2 × {0}. They realize cn, so that for any v > 0 the infimum defining Ig(v) is attained by the Euclidean geodesic 

ball of volume v, i.e. I (v) = cnv
1− 1

n . As a consequence, the isoperimetric profile Ig coincides with In. �
Remark 4.6. If we consider the product Rn−2 × C(S1

a), balls centred in a singular point x ∈ Rn−2 × {0} are balls 

in a cone, and a straightforward computation shows that their isoperimetric quotient is equal to a
1
n cn. In particular, 

since a is strictly larger than one, balls centred in a singular point are not isoperimetric domains. Observe that the 
same computations is valid when a is smaller than one, this showing that in this case the isoperimetric profile of 
R

n−2 × C(S1
a) cannot be the Euclidean one.
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4.3. Yamabe constant of Rn−2 × C(S1
a)

We have found an optimal constant for the isoperimetric inequality (41) with respect to a metric g = ξ + h on 
X =R

n−2 ×C(S1
a). Such metric is isometric to ξ +dr2 +(ar)2dθ2 on X, so they obviously define the same conformal 

class. As a consequence, we can compute the Yamabe constant of Rn−2 × C(S1
a), as the following proposition shows.

Proposition 4.7. The Yamabe constant of X = R
n−2 × C(S1

a), a > 1, is equal to the Yamabe constant Yn of the 
standard sphere of dimension n.

Proof. In the Euclidean space Rn, the existence of the isoperimetric inequality leads to the existence of a sharp 
Sobolev inequality: for any 1 < p < n and for any f ∈ W 1,p(Rn):

‖f ‖q ≤ Cn,p ‖df ‖p , q = np

n − p
. (42)

The constant Cn,p is optimal in the sense that it attains:

C−1
n,p = inf

f �=0
f ∈W 1,p(Rn)

‖du‖p

‖u‖q

. (43)

We briefly recall the ideas of the proof given by G. Talenti in [26]. For any Lipschitz function u we can define the 
symmetrization u∗ in the following way: for any t ∈ R, the level sets E∗

t = {x ∈ Rn : u∗(x) > t} of u∗ are Euclidean 
n-balls having the same volume as the level sets Et of u. Then u is spherically symmetric and Lipschitz. It is possible 
to show that this kind of symmetrization makes the ratio (43) decrease: from Lemma 1 in [26] we have that for any 
1 < p < n

‖u‖q = ∥∥u∗∥∥
q

and ‖du‖p ≥ ∥∥du∗∥∥
p

.

The first equality is trivial. The second inequality is deduced by using isoperimetric inequality and coarea formula, 
which relates the integral of |du| with the (n − 1)-measure of the boundaries ∂Et of level sets.

As a consequence, the infimum in (43) is attained by spherically symmetric functions. Classical argument in the 
calculus of variations allows to prove that there exists a minimizer. Moreover, G. Talenti exhibits a family of functions 
attaining Cn,p and gives its exact value.

When p = 2, (Cn,2)
−2 coincides with the Yamabe constant Yn of the n-dimensional sphere. This is shown by 

pulling back the functions attaining Cn,2 from Rn to the sphere Sn without the north pole.
In our case, X =R

n−2 × C(
S

1
a) is flat and satisfies the Euclidean isoperimetric inequality (41). We can then repeat 

the same argument as Talenti to deduce that the inequality (42) holds on X with the same optimal constant as in Rn. 
Furthermore, by definition of the Yamabe constant, and since Sg = 0, we have:

Y(X, [g]) = inf
u>0

u∈W 1,2(X)

∫
X

|du|2dvg

‖u‖2
2n

n−2

,

so that Y(X, [g]) is equal to (Cn,2)
−2. We have then proved Y(X, [g]) = Yn. �

5. Conclusion

Our results allows us to compute the Yamabe constant of an Einstein admissible stratified space, as Corollary 3.2
states. Moreover, we can deduce from them an explicit value for the local Yamabe constant of a stratified space whose 
links are endowed with an Einstein metric.

Let (X, g) be a compact stratified space with strata Xj , j = 1 . . . n. Assume that each of its links Zj admits an 
Einstein metric kj such that

Rickj
= (dj − 1)kj
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where dj is the dimension of Zj . We have two possibilities: either Zj is an admissible stratified space, or it is a 
circle of radius a ≥ 1. In both cases we are able to compute the Yamabe constant of Rn−dj−1 × Zj . This leads to the 
following:

Proposition 5.1. Let (X, g) be a compact stratified space with strata Xj , j = 1, . . .N . Assume that each link Zj of 
dimension dj is endowed with an Einstein metric kj , such that Rickj

= (dj − 1)kj . Then the local Yamabe constant of 
X is given by:

Y�(X) = inf

{
Yn,

(
Volk1(Z1)

Vol(Sd1)

) 2
n

Yn, . . .

(
VolkN

(ZN)

Vol(SdN )

) 2
n

Yn

}
.
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