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Abstract

We study the linear stability of multidimensional shock waves for systems of conservation laws in the case where
uniform stability condition is violated. The linearized problem is attacked using the “good unknown” of Alinhac. We prove
energy estimate and show that the solutions to the linearized problem have singularities localized along bicharacteristic curve
originating from the boundary. The application to isentropic gas dynamics is detailed.

Résumé

Nous étudions dans cet article la stabilitélinéaire des ondes de choc multidimensionnelles qui ne sont pas uniforméme
stables au sens de Majda. Pour le problème linéarisé, nous montrons une estimation d’énergie sur la « bonne i
d’Alinhac. En particulier, nous montrons que les solutions du problème linéarisé ont des singularités le long de
bicaractéristiques émanant du bord du domaine. Pour finir, nous traitons l’exemple de la dynamique des gaz isentrop
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1. Introduction

In [24] and [23], Majda proved the existence of multidimensional shock waves for hyperbolic systems
conservation laws. The analysis relied on a uniform stability assumption. However, previous works [5,1
exhibited some examples where the uniform stability condition breaks down. In [12], we have begun to exte
Majda’s linear analysis to these particular examples, namely we have proved an energy estimate on a co
coefficients linearized system. Here we adopt a general approach and prove a complete linear stability result for a
class of shock waves that are not uniformly stable. The analysis is closely related to what was done in [12
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To avoid any possible confusion, we shall not include the case of nonclassical shock waves in this work
this field has known a significant increase of interest over the past few years, see, e.g., [5,6,15,16] and the r
therein.

We shall focus in this paperon multidimensionalhyperbolicsystems: the one-dimensional case is far diffe
from the multidimensional case since shock waves are either uniformly stable or violently unstable, see [2
scalar case is also known to be very different from the system case since scalar conservation laws provid
a unified theory of existence and uniqueness of solutions in the large, see, e.g., [13,33].

We consider a system ofN conservation laws in time-spaceR × Rd :
d∑

j=0

∂jfj (u) = 0, (1)

wherex0 is the time variable, also denoted byt in the sequel,(x1, . . . , xd) is the space variable and∂j stands for
the partial derivative with respect toxj . The fluxesf0, . . . , fd areC∞ functions defined on an open setU of RN

with values inRN . The jacobian matrix offj at a pointu ∈ U will be denoted byAj(u).
We assume that the system (1) does not consist of a single conservation law (in one or several space v

that is,N � 2. We also assume that the space dimension isd � 2 (see the preceeding remarks). We first ass
that (1) is a symmetric hyperbolic system of conservation laws:

Assumption 1.There exists aC∞ mappingΣ : U → MN(R) such that

∀j = 0, . . . , d ∀u ∈ U Σ(u)Aj (u) is symmetric,
∀K compact⊂ U ∃cK > 0 such thatΣ(u)A0(u) � cKI for all u ∈ K.

Recall that Assumption 1 is satisfied when there existsa strictly convex entropy, see [13,33]. Assumption 1
met by many physical examples such as Euler equations of gas dynamics, Maxwell equations or the wave
Moreover, Assumption 1 is the key tool to solve the Cauchy problem associated with (1) for smooth initi
(namely in a Sobolev space of large index), see [25,33].

Because the system has been assumed to be symmetric hyperbolic, the matrixA(u, ξ) defined by the formula:

∀ξ ∈ R
d , A(u, ξ) := A0(u)−1

d∑
j=1

ξjAj (u) (2)

is diagonalizable overR for all stateu ∈ U and all wave vectorξ ∈ R
d (see [33]). However, we shall need

little more than hyperbolicity to carry outthe study of the linear stability of shock waves. In [21], the system
assumed to be strictly hyperbolic but it has been shown in [24] that a suitable “block structure condition” (that
is met by strictly hyperbolic systems) is sufficient tocarry out the study of initial boundary value problems a
the study of the linear stability of shock waves, see also [11,27,29]. The block structure condition will be recall
further in this paper. In [26], Métivier has shown that the block structure condition was met by every hyperb
system with constant multiplicity. We are thus naturally led to make the assumption that (1) is a syste
constant multiplicity:

Assumption 2. There existC∞ real valued mappingsλ1, . . . , λq defined onU × Rd \ {0}, and fixed integers
m1, . . . ,mq such that theλj ’s are the eigenvalues, with multiplicitymj , of the matrixA(u, ξ) defined by (2).
Furthermore, theλj ’s satisfy

∀u ∈ U, ∀ξ ∈ R
d \ {0}, λ1(u, ξ) < · · · < λq(u, ξ).

We point out that Assumption 2 is easily checked on the system. However, one could replace Assumpt
the more abstract block structure condition, as was made in [24,27,29].
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Example.Consider Euler’s equations of isentropic gas dynamics in space dimensiond :{
∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,

whereρ stands for the density of the fluid,u for the velocity,p for the pressure. Quantitiesρ andp are linked by
an equation of statep = p(ρ). In the domain{ρ > 0}, hyperbolicity (we mean Assumption 1) amounts to requir
that the pressure satisfies

c2 := dp

dρ
> 0.

As usual,c denotes the sound speed in the fluid. Under this condition on the pressure law, Euler’s equations
endowed with a strictly convex entropy, so Assumption 1 is met. Moreover, the eigenvalues of the corres
matrixA(U, ξ), U = (ρ,u), are given by

λ1(U, ξ) = u · ξ − c|ξ | with multiplicity m1 = 1,

λ2(U, ξ) = u · ξ with multiplicity m2 = d − 1,

λ3(U, ξ) = u · ξ + c|ξ | with multiplicity m3 = 1

and therefore Assumption 2 is met. We shall detail in Section 4 how the general analysis of this paper ap
the context of isentropic gas dynamics.

Note that Lundquist’s equations of magnetohydrodynamics violate Assumption 2. The study of shock w
MHD is a very intricate subject due to the appearance of many “pathologies” (nonconstant multiplicity, occu
of under- and over-compressive shocks, etc.). We refer to [9] and to the references therein for some resul
subject.

Because of the natural development of singularities in finite time, see [3], it appears natural to seek solution
(1) as functions that are smooth on either side of a hypersurface ofR × Rd . Recall the following classical result:

Proposition 1.1.LetΓ = {xd − ϕ(x0, . . . , xd−1) = 0} be a smooth hypersurface inR × Rd , and letu be a smooth
function on either side ofΓ . Thenu is a weak solution of(1) if and only ifu satisfies(1) (in the classical sense)on
either side ofΓ and if the Rankine–Hugoniot conditions hold at each point ofΓ :

∀x = (x0, . . . , xd) ∈ Γ,

d−1∑
j=0

∂jϕ
[
fj (u)

]
(x) − [

fd(u)
]
(x) = 0, (3)

the partial derivatives ofϕ in the above formula being evaluated at(x0, . . . , xd−1). In (3), we have let[fj (u)](x)

denote the jump of the quantityfj (u) across the hypersurface:[
fj (u)

]
(x) := lim

s→0+
(
fj

(
u(x + sn)

) − fj

(
u(x − sn)

))
with n = (−∂0ϕ, . . . ,−∂d−1ϕ,1).

The existence of such a piecewise smooth solution to (1) is a free boundary problem since the funϕ

defining the hypersurfaceΓ is part of the unknown of the problem. To overcome this first difficulty, we begin
straightening the variables in order to work in a fixed domain: given a smooth functionϕ onRd , we define a chang
of variables inRd+1 by the formula:

Φ(x0, . . . , xd) := (
x0, . . . , xd−1, xd + ϕ(x0, . . . , xd−1)

)
.

We have chosen here the standard change of variables (as in [24,27,29]): it maps the hyperplane{xd = 0} onto the
hypersurfaceΓ and the two half-spaces{±xd > 0} on the two sides ofΓ . Other choices for the change of variab
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(that may be appropriate for characteristic problems) may be found in [14]. We now perform a change of u
functions. Ifu is a smooth function on either side ofΓ , then the functionu	 defined by

∀(x0, . . . , xd) ∈ R
d+1, u	(x0, . . . , xd) := u

(
Φ(x0, . . . , xd)

)
is smooth on either side of the hyperplane{xd = 0}. Denoting byu+

	 (respectivelyu−
	 ) the restriction ofu	 to the

half-space{xd > 0} (respectively{xd < 0}), Proposition 1.1 asserts thatu is a weak solution of (1) if and only if{
L(u±

	 , ϕ)u±
	 = 0, if ± xd > 0,

B(u+
	 , u−

	 , ϕ) = 0, if xd = 0,
(4)

where operatorsL andB are defined by the following formulas:

L(v,ψ)w :=
d−1∑
j=0

Aj(v)∂jw + Ãd(v,∇ψ)∂dw (5a)

with

Ãd(v,∇ψ) := Ad(v) −
d−1∑
j=0

∂jψAj (v), (5b)

B(w+,w−,ψ) :=
d−1∑
j=0

∂jψ
[
fj (w)

] − [
fd(w)

]
. (5c)

Now that the domain is fix, the problem reduces to the following question: given an initial datumu0 that is
smooth on either side of a hypersurface{xd = ϕ0(x1, . . . , xd−1)}, does there exist a solution(u	,ϕ) of (4) with
initial value (u0

	, ϕ
0), at least locally in time? This question has received a positive answer in [23] under the

called uniform stability condition (we shall recall it in Section 2), see [25,34] for a description of the meth
The main idea is that Eqs. (5a)–(5c) are satisfied for planar shocks and the linear uniform stability of thes
solutions implies the existence of nontrivial solutions. As detailed in [5,12,35], the uniform stability con
breaks down in some cases and Majda’s nonlinear existence result can not be applied anymore. Our p
therefore to derive a linearstability result under a weaker condition than Majda’s one.

2. The constant coefficients analysis

We first examine the linear stability of a planar shock in order to formulate our “weak stability” assump
A planar shock is a solution of (1) that takes the form

u =
{

ur if xd > σ t + ν · y,

ul if xd < σ t + ν · y,
(6)

whereur andul are fixed vectors belonging to the open setU, y = (x1, . . . , xd−1) is the vector formed by th
tangential space coordinates,ν is a vector inRd−1 andσ is the normal speed of propagation of the front. T
corresponds to the equation

ϕ(x0, . . . , xd−1) = σx0 +
d−1∑
j=1

νj xj

for the shock front. We easily check thatu is a solution of (1) if and only if the Rankine–Hugoniot relations

σ
[
f0(u)

] +
d−1∑

νj

[
fj (u)

] = [
fd(u)

]
(7)
j=1
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Fig. 1. Characteristics entering the shock front.

are satisfied. Performing a rotation of the axis, we may assumeν = 0. Changing last space variablexd into xd −σ t ,
we may also assume that the shock is stationary, that is,σ = 0. Note that Assumption 2 is still satisfied after th
change of observer.

Following Lax [22], we assume thatu is ap-shock:

Assumption 3.There exists an integerp ∈ {1, . . . , q} such that the following inequalities hold:

λp−1(ul , ed) < 0 < λp(ul , ed) and λp(ur , ed) < 0< λp+1(ur , ed ),

whereed := (0, . . . ,0,1) ∈ Rd is the direction of propagation of the shocku. Moreover,λp is a simple eigenvalue
that is,mp = 1.

In the casep = 1 (respectivelyp = q), that is, in the case of an extreme shock, the first inequality on
left (respectively the last on the right) is ignored. Recall that Assumption 3 is made in order to avoid under-
over-) determinacy of the boundary value problem (4).In view of the number of jump conditions, the number
characteristics (counted with their multiplicity) entering the shock front curve has to be equal toN + 1, see Fig. 1.
Recall also that ifλp is a multiple eigenvalue, that is,mp > 1, thep-th field is linearly degenerate by Boillat
Theorem, see [33]. This is a second reason why we assume thatλp is a simple eigenvalue.

Remark. Applying the implicit functions theorem, we easily see that the set of solutions(σ, ν,ul, ur ) of the
Rankine–Hugoniot relations (7) consists, in the neighborhood of(0,0,ul,ur ) of all vectors of the form(

σ, ν,ul, h(σ, ν,ul)
)
,

whereh is aC∞ mapping defined on a neighborhood of(0,0,ul) ∈ R × Rd−1 × U and satisfiesh(0,0,ul) = ur .
Moreover, planar shock waves that are close to our reference planar shock waveu arep-shocks, that is, mee
Assumption 3.

In what follows, we base most of our analysis on the reference shock waveu but we shall also need to deal wi
shock waves that are close tou. These shock waves share the main properties ofu.

2.1. The weak stability condition

We now introduce the linearized operators around the shocku: consider a familyus = u + sv andϕs = sψ .
Then we define
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Lu(v±,ψ) := d

ds
L(u±

s , ϕs)u
±
s |s=0, (8a)

Bu(v,ψ) := d

ds
B(u+

s , u−
s , ϕs)|s=0. (8b)

Sinceu is constant on either side of{xd = 0}, the linearized operators read

Lu(v±,ψ) = Luv± =
d∑

j=0

Aj(ur,l)∂j v
±, ±xd > 0,

Bu(v,ψ) =
d−1∑
j=0

∂jψ
[
fj (u)

] − Ad(ur )v
+ + Ad(ul )v

−, xd = 0.

We letbj (u) := [fj (u)] (for j = 0, . . . , d − 1) and

M(u)

(
v+
v−

)
:= −Ad(ur )v

+ + Ad(ul )v
−.

Then the linearized boundary value operatorBu reads

Bu(v,ψ) =
d−1∑
j=0

∂jψbj (u) + M(u)

(
v+
v−

)
.

We are interested in the following boundary value problem for the unknown functions(v,ψ):{Luv± = f± for ± xd > 0,

Bu(v,ψ) = g for xd = 0,
(9)

wheref± andg are source terms.
Note that system (9) is a constant coefficients hyperbolic boundary value problem; moreover, the b

{xd = 0} is noncharacteristic because of Assumption 3: both matricesAd(ur ) andAd(ul ) are regular. Kreiss’ theor
[21] does not apply directly because partial derivatives ofψ are involved in the boundaryconditions. Nonetheless
we attack problem (9) by the same kind of arguments: formally, we perform a Laplace transform inx0 and a Fourier
transform in the tangential space variables(x1, . . . , xd−1). We also make the change of variables(xd → −xd) in
the evolution equation forv−. This yields the following system of ODEs:(

τA0(ur ) + i
d−1∑
j=1

ηjAj (ur )

)
V + + Ad(ur )

dV +

dxd

= F̂+, (10a)

(
τA0(ul ) + i

d−1∑
j=1

ηjAj(ul )

)
V − − Ad(ul )

dV −

dxd

= F̂−, (10b)

in the domain{xd > 0}, with the boundary conditions:(
τb0(u) + i

d−1∑
j=1

ηjbj (u)

)
Ψ + M(u)

(
V +(0)

V −(0)

)
= Ĝ, (11)

on {xd = 0}. The complex numberτ = γ + iη0 has nonnegative real part and(η1, . . . , ηd−1) is a wave vector in
Rd−1. In the sequel, we shall denote byη the vector(η0, η1, . . . , ηd−1) ∈ Rd .

Because the boundary is noncharacteristic, we may rewrite (10a), (10b) as an ODEs system of the form

d
(

V +
V −

)
=A(u, η, γ )

(
V +
V −

)
+Ad (u)−1

(
F̂+
F̂

)
(12)
dxd −
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A(u, η, γ ) :=
(Ar (u, η, γ ) 0

0 Al (u, η, γ )

)
.

MatricesAr,l andAd in (12) are defined by

Ar,l(u, η, γ ) := ∓Ad(ur,l)
−1

(
γA0(ur,l) + i

d−1∑
j=0

ηjAj (ur,l)

)
,

Ad(u) :=
(

Ad(ur ) 0
0 −Ad(ul )

)
.

Defining

Aj (u) :=
(

Aj(ur ) 0

0 Aj(ul )

)
, 0� j � d − 1,

we easily find

A(u, η, γ ) = −Ad (u)−1

(
γA0(u) + i

d−1∑
j=0

ηjAj (u)

)
.

We also define the symbol associated with the shock front:

b(u, η, γ ) := γ b0(u) + i
d−1∑
j=0

ηjbj (u). (13)

As pointed out by Hersh [17], the homogeneous part of the ODEs (12) is hyperbolic whenγ > 0, that is, the
matrixA has no purely imaginary eigenmodes whenγ > 0. Forγ > 0, we defineE−(u, η, γ ) as the stable subspa
of A, which is the set of initial values of solutions to (12) that are square integrable on[0,+∞[ whenF̂+ = F̂− = 0.
Because of the decoupled nature of (12), the stable subspaceE−(u, η, γ ) is nothing but the product of the stab
subspaces ofAr andAl . In the case of an extreme shock, one of these two stable subspaces is trivial. The dim
of E−(u, η, γ ) is equal to the dimension ofE−(u,0, γ ) for all η (this is just a continuity/connectedness argume
To compute the dimension ofE−(u,0, γ ), we seek the eigenmodes ofA(u,0, γ ). These are the rootsω of the
dispersion equation

det
[
ωI −A(u,0, γ )

] = 0.

The definition ofA shows thatωI −A(u,0, γ ) is singular if and only ifγA0(ur )+ωAd(ur ) or γA0(ul )−ωAd(ul )

are singular. As a consequence,ω satisfies the dispersion equation if and only if there exists an integerk ∈ {1, . . . , q}
such that

λk(ur , ed)ω = −γ or λk(ul , ed )ω = γ,

whereed := (0, . . . ,0,1) ∈ Rd . Assumption 3 shows that such values ofω are negative fork = p + 1, . . . , q in the
first case andk = 1, . . . , p − 1 in the second case. Taking multiplicities into account, this shows thatE−(u,0, γ )

(and thereforeE−(u, η, γ )) has dimensionN − 1 as long asγ > 0.
For fixed η 
= 0, the stable subspaceE−(u, η, γ ) admits a continuous extension when(η, γ ) → (η,0), see

[8] (the argument makes use of the compactness of Grassmanian manifolds); we still denote this exte
E−(u, η,0). Note that forγ = 0, vectors in the extended stable subspace are not always boundary values of
integrable functions because of the possible occurrence of purely imaginary eigenmodes. This is widely detailed
[5,12] for Euler equations of isentropic gas dynamics.
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We define the hemisphere ofRd+1 as

Σ+ := {
(η, γ ) ∈ R

d+1 s.t.γ 2 + |η|2 = 1 and γ� 0
}
.

The boundary ofΣ+ will be denoted byΣ0, that is,

Σ0 := {
(η,0) ∈ R

d+1 s.t. |η|2 = 1
}
.

Recall the following definition:

Definition 1 (Majda [24]). The planar shocku is said to satisfy the uniform stability condition if there exists a
positive constantc > 0 such that for all(η, γ ) ∈ Σ+, one has

∀(χ,Z) ∈ C × E−(u, η, γ ),
∣∣χb(u, η, γ ) + M(u)Z

∣∣ � c
(|χ | + |Z|).

By compactness ofΣ+, the uniform stabilitycondition is equivalent to the requirement that for all(η, γ ) ∈ Σ+,
the “critical” subspace{

(χ,Z) ∈ C × E−(u, η, γ ) s.t.χb(u, η, γ ) + M(u)Z = 0
}

is trivial, that is, reduced to{0}. The word “critical” is not standard but its use here intends to show the major
that is occupied by this subspace in the normal modes analysis.

Recall that a planar shock is uniformly stable ifand only if solutions of (9) satisfy a maximalL2 estimate
as in the study of linear hyperbolic boundary value problems, see [24, Proposition 1]. The uniform stability
condition is thus the direct extension of Kreiss’ uniform condition for standard hyperbolic boundary va
problems [21].

As noted by Majda [24, Lemma 4.1], the uniform stability condition enables to isolate the shock frontΨ

appearing in (11) in a single equation. We emphasize that this operationcannotbe achieved for scalar conservati
laws in space dimension more than 1.

Our approach is slightly different: we shall allow some instability but these instabilities can only stem fro
traces of solutions to the dynamical system (12) and not from the shock front symbolb defined by (13). More
precisely, we make the following assumption:

Assumption 4.There exists a positive constantc such that

∀(η, γ ) ∈ Σ+,
∣∣b(u, η, γ )

∣∣� c. (14)

Of course, an analogue estimate is valid for all statesur , ul close tour , ul .

Remark. Assumption 4 is equivalent (see [18, Chapter 4] or [20]) to the requirement that there exists aC∞ mapping
P :Σ+ → GlN(C) such that

∀(η, γ ) ∈ Σ+, P (u, η, γ )b(u, η, γ ) =
(

0
1

)
,

and one can even chooseP depending smoothly on the statesur , ul .

It is clear that (14) holds ifu satisfies Majda’s uniform stability condition. In a pseudodifferential setting,b is an
overdetermined elliptic symbol (γ is seen as a parameter and we are thus dealing with pseudodifferential sy
with a parameter). It is shown in [12] that Assumption 4 is met in some cases where the uniform stability co
is violated: the main example concerns shock waves in isentropic gas dynamics when the pressure law
convex function of the density.
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Assumption 4 enables us to reformulate boundary conditions (11) by isolating the unknown shock frontΨ in a
single equation. Because of (14), we can define for all(η, γ ) ∈ Rd × R+ \ {0} the orthogonal projector

Π(u, η, γ )h := h − 〈h,b(u, η, γ )〉
|b(u, η, γ )|2 b(u, η, γ ).

Multiplying (11) byΠ andb∗ yields the new boundary conditions

Π(u, η, γ )M(u)V (0) = Π(u, η, γ )Ĝ, (15a)∣∣b(u, η, γ )
∣∣2Ψ = 〈

Ĝ − M(u)V (0), b(u, η, γ )
〉
. (15b)

Observe thatb is homogeneous of degree 1 in(η, γ ) so (14) is equivalent to

∀(η, γ ) ∈ R
d × R

+, c
(
γ 2 + |η|2) �

∣∣b(u, η, γ )
∣∣2.

Using Schwarz’ inequality in (15b), we obtain

∀(η, γ ) ∈ R
d × R

+,
(
γ 2 + |η|2)|Ψ |2 � C

(∣∣Ĝ∣∣2 + ∣∣V (0)
∣∣2) (16)

for a suitable constantC depending only on the shocku. It is thus sufficient to get an estimate onV (0) and we shall
get from (16) an estimate onΨ . In order to obtain the desired estimate onV (0), we attack the following boundar
value problem:

dV

dxd

=A(u, η, γ )V +Ad(u)−1F̂ , for xd > 0,

Π(u, η, γ )M(u)V (0) = Π(u, η, γ )Ĝ.

(17)

To avoid overloading the paper, we introduce the notation:

β(u, η, γ ) := Π(u, η, γ )M(u).

This is the symbol of the “reduced” boundary conditions.
Isolating the front yields a boundary value problem where the boundary operator takes the form of a

multiplier of order 0. Indeed, the homogeneity property ofb implies thatΠ is homogeneous of degree 0 wi
respect to(η, γ ). More precisely,Π is a pseudodifferential symbol of degree 0 (γ is seen as a parameter), and
is alsoβ . We refer to [11] for a detailed study of pseudodifferential calculus with a parameter; the introduc
a parameter in Bony’s paradifferential calculus [10,28] has been achieved in [29], see also [27].

Our final assumption is that the boundary conditions defined by the symbolβ satisfy the Kreiss–Lopatinsk
condition but violate theuniformKreiss–Lopatinskii condition. It is important for what follows that this assump
is met by all planar shock waves close tou:

Assumption 5.For all planar shock wavesu close to the reference shock waveu, the following properties hold:

– If (η, γ ) ∈ Σ+ andγ > 0, the reduced critical subspace{
Z ∈ E−(u, η, γ ) s.t.β(u,η, γ )Z = 0

}
is trivial.

– If (η,0) ∈ Σ0 is a point where the reduced critical subspace{
Z ∈ E−(u, η,0) s.t.β(u,η,0)Z = 0

}
is nontrivial, then there exists a neighborhoodV of (η,0) in Σ+ and a constantc > 0 such that

∀(η, γ ) ∈ V, ∀Z ∈ E−(u, η, γ ),
∣∣β(u,η, γ )Z

∣∣ � cγ |Z|. (18)
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Furthermore, there exists aC∞ mappingQ(u, ·) :V → Gl2N(C) depending smoothly onu such that, for all
z = (η, γ ) ∈ V , one has

Q(u, z)A(u, z)Q(u, z)−1 =
ω1(z)In1

. . .

ωJ (z)InJ

 ,

where theωj ’s are complex valued functions, andInj is the identity matrix with sizenj . Moreover, the integer
nj ’s are independant of(u, z), and theωj ’s satisfy

Reωj (z) � cγ

or

Reωj (z) � −cγ,

for all z ∈ V . In applications, it may happen that some of theωj ’s have negative or positive real part wh
γ = 0. In such a case, one would have

Reωj (z) � c (or � −c)

for all z ∈ V .

The terminology we shall use throughout the paper is the following:

Definition 2. The planar shock waveu is said to be weakly stable if it satisfies Assumptions 3–5. In particula
planar shock waves close tou are also weakly stable.

Before stating our main result on such weakly stable planar shocks, let us explain in a few words the me
Assumption 5. The first condition asserts that the shock wave is not violently unstable: it must satisfy the analog
of the Kreiss–Lopatinskii condition for linear hyperbolic boundary value problems. The second condition ass
that the uniform stability condition is violated “at order 1”. Recall that when Majda’s uniform stability condit
is met, one has an estimate of the type

∀(η, γ ) ∈ V, ∀Z ∈ E−(u, η, γ ),
∣∣β(u,η, γ )Z

∣∣ � c|Z|.
In our study, the allowed instability yields a power ofγ in (18).

When(η, γ ) tends to an instability point(η,0), part of the stable and unstable subspaces ofA(u, η, γ ) form a
central subspace. The last requirement of Assumption 5 implies that the restriction ofA(u, η, γ ) to this subspace
(that is central whenγ = 0) is smoothly diagonalizable. In gas dynamics, there are examples of shock wav
which the uniform stability condition breaks down at a point where the symbol is not smoothly diagonalizab
see [12,24]. Unfortunately, we have not been able to deal with this case: one major problem is the failur
differentiability of the eigenmodes at such points. We refer to thework by Okhubo and Shirota [30] for som
aspects of these phenomena.

Remark. Making Assumption 5 for all planar shock waves close tou is not very restrictive (first because
is satisfied in both examples we study). In fact, if Assumption 5 is satisfied by the shock waveu, then it is
automatically satisfied by all shock waves close tou provided that all theωj ’s are purely imaginary whenγ = 0
in the neighborhood of the instability points, see [7]. This theoretical result applies to weakly stable shock w
in isentropic gas dynamics, see [12]. In the case of phasetransitions in a van der Waals fluid, instability poin
belong to a region of the parameters(η, γ ) where some eigenmodes have negative real part and it is not a
consequence of [7] that Assumption 5 is satisfied by allplanar phase transitions close to the reference p
transitionu (but fortunately the calculations show that it is true).
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2.2. The weak stabilityof planar shock waves

In this paragraph, we show that ifu is a weakly stable planar shock, then the constant coefficients bou
value problem (9) is “well-posed”, in the sense that solutions to (9) satisfy an a priori energy estimate. S
deal with shock waves that violate Majda’s uniform stability condition, the energy estimate will involve losses o
derivatives with respect to the source termsf andg.

We need first of all to introduce a few notations. Denote byΩ andω the domains

Ω := R
d+1+ = {

(x0, . . . , xd) ∈ R
d+1 s.t.xd > 0

}
and ω := R

d = ∂Ω.

Forγ > 0 and s∈ R we define the following symbols

∀ξ ∈ R
d , λs,γ (ξ) := (

γ 2 + |ξ |2)s/2
.

The usual Sobolev spacesHs(ω) are equipped with the following weighted norms (depending on the pos
parameterγ ):

‖v‖2
s,γ := 1

(2π)d

∫
Rd

λ2s,γ (ξ)
∣∣v̂(ξ)

∣∣2 dξ.

We shall write‖ · ‖0 instead of‖ · ‖0,γ since there is no dependance on the parameterγ for theL2 norm. These
weighted norms enable to construct a parameter version of the classical pseudodifferential calculus wh
constant use in the study of hyperbolic boundary value problems, see, e.g., [21,24,27].

The spaceL2(R+,H s(Rd)) is also equipped with the weighted norm:

|||v|||2s,γ :=
+∞∫
0

∥∥v(·, xd)
∥∥2

s,γ
dxd. (19)

We shall also write||| · |||0 instead of||| · |||0,γ . Typically, we shall use the spacesL2(Ω) andL2(R+,H 1(Rd )).
Eventually, the scalar products ofL2(ω) andL2(Ω) will be denoted as follows:

〈f,g〉L2(ω) :=
∫
ω

f (y)g(y)dy, 〈〈f,g〉〉L2(Ω) :=
∫
Ω

f (x)g(x)dx.

The Laplace transform performed in the normal modes analysis amounts to working with the new fu
ṽ := exp(−γ t)v and ψ̃ := exp(−γ t)ψ , with γ > 0. This leads to the introduction of the “weighte
operators:

Lγ
u ṽ := Luṽ + γA0(u)ṽ and Bγ

u (ṽ, ψ̃) := Bu(ṽ, ψ̃) + γ ψ̃b0(u).

One easily checks that (9) is equivalent to{
Lγ

u ṽ = exp(−γ t)f, for xd > 0,

Bγ
u (ṽ, ψ̃) = exp(−γ t)g, for xd = 0.

For convenience, we drop the tilda from̃v and ψ̃ (keeping in mind that all functions have been multiplied b
decreasing exponential function and therefore also depend on the parameterγ ). Our result on weakly stable plan
shock waves can be stated as follows:

Theorem 2.1.Letu be a weakly stable planar shock. Then for allv ∈ H 2(Ω), for all ψ ∈ H 2(ω) and for allγ � 1,
one has:

γ |||v|||20 + ‖v|xd =0‖2
0 + ‖ψ‖2

1,γ � 1
3

∣∣∣∣∣∣Lγ
u (v,ψ)

∣∣∣∣∣∣2
1,γ

+ 1
2

∥∥Bγ
u (v,ψ)

∥∥2
1,γ

. (20)

γ γ
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Energy estimates in Sobolev spaces of higher order are available, provided thatv andψ are sufficiently regular
Similar estimates also hold for planar shock wavesu close tou.

2.3. Proof of Theorem 2.1

The proof of Theorem 2.1 follows the earlier works of Kreiss [21] and Majda [24] with suitable modifica
It can be found in [12] in the case of isentropic gas dynamics.

Recall first that Assumption 2 ensures that system (1) satisfies the so-called block structure condition. Mo
precisely, we have:

Proposition 2.1 (Block structure condition [26]).If Assumption2 is satisfied, then for allu close tou, for all
z ∈ Σ+, there exists a neighborhoodV of z in Σ+ and regular matricesQ(u, z) depending smoothly onu and
z ∈ V such that

∀z ∈ V, Q(u, z)A(u, z)Q(u, z)−1 =


a−(z)

a+(z) 0
a1(z)

0
. . .

aK(z)

 .

Furthermore, the spectrum ofa−(z) (respectivelya+(z)) is contained in the half-plane{Reζ < 0} (respectively
{Reζ > 0}), and for all k = 1, . . . ,K, the matrixak(z) has purely imaginary coefficients whenγ = 0 andak(z)

satisfies

ak(z) = ωkI + iNk with ωk ∈ iR andNk =


0 1 0 0

0 0
. . . 0

...
. . . 0 1

0 . . . 0 0

 .

Finally, the lower left-hand corner coefficient of∂ak/∂γ (z) is a nonzero real number. Note that the dimension
the blocksa± andak may depend onz but not onz ∈ V .

Let us go back to Assumption 5: ifz is a point ofΣ0 such that the critical subspace{
Z ∈ E−(u, z) s.t.β(u, z)Z = 0

}
is nontrivial, then we have assumed that all the blocksak (defined by Proposition 2.1 above) have dimensio
and that the blocksa+ anda− can be chosen under diagonal form. In particular, whenz belongs to a suitabl
neighborhood ofz, ak(z) is a complex numberωk such thatωk ∈ iR whenγ = 0 and∂ωk/∂γ (z) is real and does
not vanish. If Reωk < 0 whenγ > 0, we obtain

Reωk(z) � −cγ, (21)

whereas we obtain

Reωk(z) � cγ (22)

if Reωk > 0 when γ >0. In both cases,c is a positive constant depending onu andz. We refer to [12] for a
detailed study of the block structure condition in the case of isentropic gas dynamics. Assumption 5 then sim
amounts to counting the multiplicities of the eigenvalues ofA(u, z) near instability points.

We are now going to construct a microlocal symmetrizer in order to prove (20).
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• Let z ∈ Σ+ \ Σ0. SinceA(u, z) has no purely imaginary eigenvalue (by Hersh’s result [17]), there exi
neighborhoodV of z in Σ+ and invertible matricesQ(u, z) depending smoothly onz ∈ V (and also smoothly onu
close tou) such that

∀z ∈ V, Q(u, z)A(u, z)Q(u, z)−1 =
(

a−(z) 0

0 a+(z)

)
,

with

Spa−(z) ⊂ {Reζ < 0} and Spa+(z) ⊂ {Reζ > 0}.
Matricesa−(z) anda+(z) are defined by Dunford’s formula, see [11,20]. As noted in [26], this reduction exp
why the block structure condition needs only to be checked in the neighborhood of points belonging toΣ0. By
Lyapunov’s Theorem, see [4], there exists two positive definite hermitian matricesH+ andH− such that

Re
(
H±a±(z)

) = ±I.

For convenience, we define the real part of a square matrixN as(N + N∗)/2 and we do the same for operators
a Hilbert space. Following Kreiss [21] (see also [11]), we chooser of the form

r(z) :=
(−H− 0

0 αH+
)

,

whereα is a real number greater than 1, to be chosen large enough. Because the critical subspace is triviaz

belongs to a neighborhood ofz, it is proved in [11] that forα large enough, the following estimates hold

Re
(
r(z)Q(u, z)A(u, z)Q(u, z)−1) � 1

2
I,

r(z) + Cβ̃(u, z)∗β̃(u, z) � cI, whereβ̃(u, z) := β(u, z)Q(u, z)−1.

Constantsc andC are positive and depend only on(u, z).
• Let nowz ∈ Σ0 be a point where the critical subspace is trivial. It appears from Proposition 2.1 that J

blocks may occur in the reduction of the symbolA. In such a case, the construction of the symmetrizer is ra
technical. We refer to [8,11,12,21,29,31] for the details. Following these anterior works, we conclude th
exists a neighborhoodV of z in Σ+ andC∞ matrix valued mappingsr andQ(u, ·) defined onV such that for all
z ∈ V , r(z) is hermitian,Q(u, z) is regular (that is, invertible) and

Re
(
r(z)Q(u, z)A(u, z)Q(u, z)−1) � cγ I,

r(z) + Cβ̃(u, z)∗β̃(u, z) � cI, β̃(u, z) := β(u, z)Q(u, z)−1.

• Let z ∈ Σ0 be a point where the critical subspace is nontrivial. From Assumption 5, we know that there
a neighborhoodV of z in Σ+ and invertible matricesQ(u, z), depending smoothly onz ∈ V , such that

Q(u, z)A(u, z)Q(u, z)−1 =



ω1(z)In1

. . .

ωJ ′(z)InJ ′
ωJ ′+1(z)InJ ′+1

. . .

ωJ (z)InJ


,

where theωj ’s have negative real part whenγ > 0 and j= 1, . . . , J ′ and have positive real part whenγ > 0 and
j = J ′ + 1, . . . , J . We have just reordered the diagonal blocks appearing in Assumption 3. Let us remark t



414 J.-F. Coulombel / Ann. I. H. Poincaré – AN 21 (2004) 401–443

f

ing

of a

e
n

stable subspaceE−(u, z) (that has dimensionN − 1 for all z) is spanned by theN − 1 first column vectors o
Q(u, z)−1. In particular, we have

n1 + · · · + nJ ′ = N − 1 and nJ ′+1 + · · · + nJ = N + 1.

For z ∈ V , we chooser(z) of the form

r(z) :=
(−γ 2IN−1

αIN+1

)
,

whereα is a real number greater than 1, to be fixed large enough. Because of the local behavior of theωj ’s, see
(21) and (22), we have

Re
(
r(z)Q(u, z)A(u, z)Q(u, z)−1) � c

(
γ 3IN−1

αγ IN+1

)
,

for all z ∈ V . If W ∈ C2N , we denote byW− the vector composed by theN − 1 first coordinates ofW andW+ the
vector composed by theN + 1 last coordinates ofW (this corresponds to a decomposition between the incom
part and the outgoing part), so we can write

β(u, z)Q(u, z)−1W = β(u, z)Q(u, z)−1
(

W−
0

)
+ β(u, z)Q(u, z)−1

(
0

W+
)

,

and using (18), we have∣∣∣∣β(u, z)Q(u, z)−1
(

W−
0

)∣∣∣∣ � cγ |W−|,
which implies

γ 2
∣∣W−∣∣2 �

∣∣W+∣∣2 + ∣∣β̃(u, z)W
∣∣2, β̃(u, z) := β(u, z)Q(u, z)−1.

Choosingα large enough yields

r(z) + Cβ̃(u, z)∗β̃(u, z) � cγ 2I,

for all z ∈ V . This completes the microlocal construction of the symmetrizer.
• We now turn to the proof of (20). For allz ∈ Σ+, the previous analysis establishes the existence

neighborhoodV of z in Σ+ and of smooth mappingsr andQ with suitable properties. BecauseΣ+ is a smooth
compact manifold, there exists a finite coveringVi , 1 � i � I , of Σ+ by such neighborhoodsand a smooth partition
of unity χi, 1� i � I , subordinated to this covering. Functionsχi areC∞, nonnegative and satisfy

∀i = 1, . . . , I Suppχi ⊂ Vi and
I∑

i=1

χ2
i ≡ 1.

Let nowv ∈ H 2(Ω) andψ ∈ H 2(ω). We denote byV (η, xd) the Fourier transform ofv with respect to thed first
variables(x0, . . . , xd−1). We also define

F := Lγ
u (v,ψ) ∈ H 1(Ω), G := Bγ

u (v,ψ) ∈ H 1(ω).

We extend all mappingsri andQi on allΣ+ assuming them to be constant outside ofVi (this is of pure convenienc
since only the value of these mappings on the support ofχi will be involved in the following calculations). The
we extendχi andQi as homogeneous functions of degree 0 in(η, γ ). Forz = (η, γ ) ∈ Rd × R+, we define

Vi(z, xd) := χi(z)Qi(u, z)V (η, xd).

We thus get the relation

dVi = Qi(u, z)A(u, z)Qi(u, z)−1Vi(z, xd) + χi(z)Qi(u, z)Ad (u)−1F̂ (η, xd). (23)

dxd
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If Vi is a neighborhood of a pointzi where the critical subspace is trivial, we extendri as a homogeneou
function of degree 0 in(η, γ ). We take the scalar product of (23) withri(z)Vi(z, xd) and integrate with respect t
(η, xd), γ being fixed. Using the inequalities

Re
(
ri (z)Qi(u, z)A(u, z)Qi(u, z)−1) � cγ I,

ri(z) + Cβ̃i(u, z)∗β̃i (u, z) � cI,

we obtain Kreiss’ maximalL2 inequality

γ |||χiV |||20 + ‖χiV|xd=0‖2
0 � 1

γ

∣∣∣∣∣∣χiF̂
∣∣∣∣∣∣2

0 + ∥∥χiΠĜ
∥∥2

0 � 1

γ 3

∣∣∣∣∣∣χiλ
1,γ F̂

∣∣∣∣∣∣2
0 + 1

γ 2

∥∥χiλ
1,γ ΠĜ

∥∥2
0.

If Vi is a neighborhood of a pointzi where the critical subspace is nontrivial, we extendri as a homogeneou
function of degree 2 in(η, γ ). We have

ri(z) + Cλ2,γ (η)β̃i(u, z)∗β̃i(u, z) � cγ 2I,

and therefore, taking the scalar product of (23) withri (z)Vi(z, xd) and integrating with respect to(η, xd) yields the
inequality

−2 Re
〈〈
riVi,χiQiA−1

d F̂
〉〉
L2(Ω)

� cγ 2‖χiV|xd=0‖2
0 − C

∥∥χiλ
1,γ ΠĜ

∥∥2
0 + 2 Re

〈〈
Vi, riQiAQ−1

i Vi

〉〉
L2(Ω)

.

Recall thatri has diagonal form

ri(z) =
(−γ 2IN−1

αλ2,γ (η)IN+1

)
�

(
γ IN−1 √

αλ1,γ (η)IN+1

)2

=: s(z)2,

andri satisfies

Re
(
ri (z)Qi(z)A(z)Qi(z)

−1) � cγ s(z)2.

We have

2 Re
〈〈
Vi, riQiAQ−1

i Vi

〉〉
L2(Ω)

� cγ
∣∣∣∣∣∣s(z)Vi

∣∣∣∣∣∣2
0,

and Young’s inequality yields

−2 Re
〈〈
riVi,χiQiA−1

d F̂
〉〉
L2(Ω)

� c

2
γ
∣∣∣∣∣∣s(z)Vi

∣∣∣∣∣∣2
0 + C

γ

∣∣∣∣∣∣χis(z)F̂
∣∣∣∣∣∣2

0

� c

2
γ
∣∣∣∣∣∣s(z)Vi

∣∣∣∣∣∣2
0 + C

γ

∣∣∣∣∣∣χiλ
1,γ F̂

∣∣∣∣∣∣2
0.

Eventually, we obtain

γ 3|||χiV |||20 + γ 2‖χiV|xd=0‖2
0 � 1

γ

∣∣∣∣∣∣χiλ
1,γ F̂

∣∣∣∣∣∣2
0 + ∥∥χiλ

1,γ ΠĜ
∥∥2

0.

Since theχi ’s form a partition of unity, Plancherel’s Theorem yields

γ |||v|||20 + ‖v|xd =0‖2
0 � 1

γ 3

∣∣∣∣∣∣Lγ
uv

∣∣∣∣∣∣2
1,γ

+ 1

γ 2

∥∥Bγ
u (v,ψ)

∥∥2
1,γ

.

To conclude the proof, we integrate (16) with respect toη ∈ Rd :

‖ψ‖2
1,γ � ‖v|xd=0‖2

0 + ∥∥Bγ
u (v,ψ)

∥∥2
0 � ‖v|xd =0‖2

0 + 1

γ 2

∥∥Bγ
u (v,ψ)

∥∥2
1,γ

,

and this gives (20). �
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Remark. In [24, Proposition 2], Majda stated an energy estimate similar to (20) for isentropic Euler equations. W
point out that his result was obtained under the assumptionLγ

uv ≡ 0. Theorem 2.1 thus extends this earlier res
and indicates that losses of derivatives occur both in the interior domain and on the boundary. This shows
difference between our analysis and earlier works such as [30,32].

3. Variable coefficients analysis: theL2 estimate

Let u be a weakly stable planar shock. Becauseof Assumption 3, there exists an open setU in RN × RN × R ×
Rd−1 containing the origin such that for all(wr ,wl, σ, ν) ∈ U , we have

ur + wr ∈ U, ul + wl ∈ U,

λp−1(ul + wl, ξ) < σ < λp(ul + wl, ξ) and λp(ur + wr, ξ) < σ < λp+1(ur + wr, ξ),

whereξ := (−ν,1) ∈ R
d . In other words, Uis an open set such that all planar shocks associated with eleme

U arep-shocks. ShrinkingU if necessary, all planar shock waves associated with elements ofU are weakly stable
We fix a compact subsetK ⊂ U and consider mappingṡur , u̇l, ϕ such thatϕ is defined onRd, u̇r (resp.u̇l ) is
defined on{xd � ϕ(x0, . . . , xd−1)} (resp.{xd � ϕ(x0, . . . , xd−1)}). Eventually, we assume that(u̇r , u̇l,∇ϕ) takes
its values inK and is compactly supported. We define a function

a :=
{

ur + u̇r (x) if xd > ϕ(x0, . . . , xd−1),

ul + u̇l(x) if xd < ϕ(x0, . . . , xd−1),
(24)

and make the following assumption:

Assumption 6.For all pointx = (x0, . . . , xd) such thatxd = ϕ(x0, . . . , xd−1), the function

ax :=
{

ur + u̇r (x) if yd > ∇ϕ · (y0, . . . , yd−1),

ul + u̇l(x) if yd < ∇ϕ · (y0, . . . , yd−1),

is a planar shock wave. An equivalent formulation is that the Rankine–Hugoniot jumpconditions are satisfied a
each pointx = (x0, . . . , xd−1, ϕ(x0, . . . , xd−1)):

d−1∑
j=0

∂jϕ
[
fj (a)

]
(x) = [

fd(a)
]
(x).

In the above relations, the gradient∇ϕ is evaluated at(x0, . . . , xd−1).

The regularity ofu̇r , u̇l and ϕ has not been precised. One can think of them as mild perturbations o
stationary shock waveu (some kind of first order correction in an asymptotic expansion). We shall be more p
in the sequel.

3.1. The linearized equations

We first straighten the variables to work in a fixed domain, as described in Section 1. We still denote ba the
function obtained after changing variables. We consider a familyus = a + sv andϕs = ϕ + sψ . Then we define
the linearized operators arounda in the following way:

La(v
±,ψ) := d

ds
L(u±

s , ϕs)u
±
s |s=0, (25a)

Ba(v,ψ) := d
B(u+

s , u−
s , ϕs)|s=0. (25b)
ds
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A direct computation shows that

La(v
±,ψ) =

d−1∑
j=0

Aj(a±)∂j v
± +

d−1∑
j=0

[∇Aj(a±) · v±]
∂j u̇r,l + Ãd(a±,∇ϕ)∂dv±

−
d−1∑
j=0

∂jψAj (a±)∂d u̇r,l + [∇uÃd(a±,∇ϕ) · v±]
∂d u̇r,l, ±xd > 0,

and

Ba(v,ψ) =
d−1∑
j=0

∂jψ
[
fj (a)

] − Ãd(a+,∇ϕ)v+ + Ãd(a−,∇ϕ)v−, xd = 0.

We decompose the linearized operatorLa as

La(v
±,ψ) = L(a±, ϕ)v± −

d−1∑
j=0

∂jψAj (a±)∂d u̇r,l − C(a±, ϕ)v±,

whereL is defined by (5a), (5b) and

C(a±, ϕ)v± := −
d−1∑
j=0

[∇Aj(a±) · v±]
∂j u̇r,l − [∇uÃd(a±,∇ϕ) · v±]

∂du̇r,l (26)

is the zero order part (inv±) of La.
As was done in Section 2, we write the linearized equations as a first order system inv := (v+, v−) andψ in

the domain{xd > 0}. Define

Aj (a) :=
(

Aj(a+) 0

0 Aj(a−)

)
for 0 � j � d − 1,

Ad(a) :=
(

Ãd(a+,∇ϕ) 0

0 −Ãd(a−,∇ϕ)

)
,

bj (a) := [
fj (a)

]
for 0 � j � d − 1 and M(a) := (−Ãd(a+,∇ϕ) Ãd(a−,∇ϕ)

)
.

The linearized operators read

La(v,ψ) =
d∑

j=0

Aj (a)∂j v −
d−1∑
j=0

∂jψAj (a)∂d u̇ − C(a)v, xd > 0,

Ba(v,ψ) =
d−1∑
j=0

∂jψbj (a) + M(a)v, xd = 0.

Recall that the perturbation(u̇r , u̇l ,∇ϕ) takes its values in the compact setK ⊂ U so the matrixAd(a) is regular.
We now introduce the positive weightγ , that is, we change functionsv andψ and deal withṽ := exp(−γ t)v

andψ̃ := exp(−γ t)ψ . As in Section 2, we introduce the weighted operators

Lγ
a
(
ṽ, ψ̃

) := La
(
ṽ, ψ̃

)+ γA0(a)ṽ − γ ψ̃A0(a)∂d u̇ and Bγ
a
(
ṽ, ψ̃

) := Ba
(
ṽ, ψ̃

) + γ ψ̃b0(a).

For simplicity, we drop the tildas.
We fix an integerm > (d + 5)/2 and assume thatϕ ∈ Hm+1/2(Rd) and u̇ = (u̇r , u̇l) ∈ Hm(Ω). Using some

classical properties of Sobolev spaces, see [1], we have

∇ϕ ∈ W2,∞(
R

d
)
, (u̇r , u̇l) ∈ W2,∞(Ω) and (u̇r , u̇l) ∈ L2(

R
+,W2,∞(

R
d
))

.
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Because the coefficients of the linearized operators have limited smoothness, a convenient way to der
energy estimate analogous to (20) is to use the paradifferential calculus of Bony, see [10,28]. With this str
mind, we are going to estimate the error between the linearized operators and their paralinearized version.

3.2. The paralinearized equations

We refer to Appendix for the definition of paradifferential symbols and for the main results of paradiffe
calculus.

3.2.1. Paralinearization of the boundary conditions
Define the following symbols:

b(x0, . . . , xd−1, η, γ ) := γ b0(x0, . . . , xd−1) + i
d−1∑
j=0

ηj bj (x0, . . . , xd−1),

where

bj (x0, . . . , xd−1) := bj

(
a(x0, . . . , xd−1,0)

)
.

Then we havebj ∈ W2,∞(Rd) and as a consequenceb ∈ Γ 1
2 . Theorem A.5 yields∥∥γ b0ψ − T

γ

γ b0
ψ
∥∥

1,γ
� ‖b0‖W1,∞γ ‖ψ‖0 � ‖ψ‖1,γ ,∥∥bj ∂jψ − T

γ

iηj bj
ψ
∥∥

1,γ
= ∥∥(bj − T

γ

bj

)
(∂jψ)

∥∥
1,γ

� ‖∂jψ‖0 � ‖ψ‖1,γ ,

and we thus obtain∥∥∥∥∥γ b0ψ +
d−1∑
j=0

∂jψbj − T
γ

b ψ

∥∥∥∥∥
1,γ

� ‖ψ‖1,γ . (27)

We also define

M(x0, . . . , xd−1) := M
(
a(x0, . . . , xd−1,0)

) ∈ W2,∞(
R

d
)
,

and Theorem A.5 yields∥∥Mv|xd=0 − T
γ

Mv|xd=0

∥∥
1,γ

� ‖v|xd =0‖0. (28)

Combining (27) and (28), we get∥∥Bγ
a (v,ψ) − T

γ

b ψ − T
γ

M v|xd=0

∥∥
1,γ

� ‖ψ‖1,γ + ‖v|xd=0‖0. (29)

We shall therefore replace the linearized boundary operator(v,ψ) �→ Bγ
a (v,ψ) by its paralinearized versio

(v,ψ) �→ T
γ

b ψ + T
γ

M v.

3.2.2. Paralinearization of the evolution equations
We are now going to paralinearize the evolution equations after multiplying byA−1

d . Define

Aj (x0, . . . , xd) :=Aj

(
a(x0, . . . , xd)

)
, C(x0, . . . , xd) := C

(
a(x0, . . . , xd)

)
.

Because∇ϕ ∈ W2,∞(Rd ) anda ∈ W2,∞(Ω), we haveAj ∈ W2,∞(Ω) andC ∈ W1,∞(Ω). Recall that first orde
derivatives ofu̇ appear in the definition ofC, see (26), so we do not haveC ∈ W2,∞(Ω).

The matrix valued mappingAd is uniformly invertible, namely∥∥A−1∥∥
2,∞ � C.
d W (Ω)
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Using the definition (19) and Theorem A.5, we obtain the following estimates∣∣∣∣∣∣γ A−1
d A0v − T

γ

γ A−1
d A0

v
∣∣∣∣∣∣

1,γ
� |||v|||0,∣∣∣∣∣∣A−1

d Aj ∂j v − T
γ

iηj A−1
d Aj

v
∣∣∣∣∣∣

1,γ
� |||v|||0 for 0 � j � d − 1,∣∣∣∣∣∣A−1

d Cv − T
γ

A−1
d C

v
∣∣∣∣∣∣

1,γ
� |||v|||0.

Those estimates are obtained by a simple integration of the paraproduct estimates inRd and from the definition o
the paradifferential operators in a half-space, see appendix.

As for Eq. (12), forx ∈ Ω, η ∈ Rd andγ � 0, we define the symbol

A(x, η, γ ) := −Ad(x)−1

(
γ A0(x) + i

d−1∑
j=0

ηjAj (x)

)
.

It is clear thatA ∈ Γ 1
2 and the previous inequalities yield∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣γ A−1

d A0v +
d−1∑
j=0

A−1
d Aj ∂j v − A−1

d Cv + T
γ

A v + T
γ

A−1
d C

v

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,γ

� |||v|||0. (30)

We have thus estimated the error terms inv when paralinearizingA−1
d Lγ

a (v,ψ). We now turn to the error term
in ψ . There are two such terms that are

γψA−1
d A0∂du̇ − T

γ

γ A−1
d A0∂d u̇

ψ and A−1
d Aj ∂d u̇∂jψ − T

γ

iηj A−1
d Aj ∂d u̇

ψ, 0 � j � d − 1.

Using Theorem A.5 and the property∂du̇ ∈ L2(R+,W1,∞(Rd)), we obtain∣∣∣∣∣∣γψA−1
d A0∂du̇ − γ T

γ

A−1
d A0∂d u̇

ψ
∣∣∣∣∣∣

1,γ
� γ ‖ψ‖0 � ‖ψ‖1,γ ,∣∣∣∣∣∣A−1

d Aj ∂d u̇∂jψ − T
γ

iηj A−1
d Aj ∂d u̇

ψ
∣∣∣∣∣∣

1,γ
� ‖∂jψ‖0 � ‖ψ‖1,γ .

We thus get the estimate∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣γψA−1

d A0∂du̇ +
d−1∑
j=0

A−1
d Aj ∂d u̇∂jψ + T

γ

A∂d u̇
ψ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,γ

� ‖ψ‖1,γ . (31)

Combining (30) and (31), we have proved∣∣∣∣∣∣A−1
d Lγ

a (v,ψ) − ∂dv + T
γ

A v + T
γ

A−1
d C

v − T
γ

A∂d u̇ψ
∣∣∣∣∣∣

1,γ
� |||v|||0 + ‖ψ‖1,γ . (32)

As for the boundary operator, we shall therefore replace the linearized operator(v,ψ) �→ A−1
d Lγ

a (v,ψ) by its
paralinearized version(v,ψ) �→ ∂dv − T

γ

A v − T
γ

A−1
d C

v + T
γ

A∂d u̇ψ .

3.2.3. Change of unknown function
Unlike in the uniformly stable case, the linearized operator involves in our case a zero order operator iv and

a first order operator inψ . We shall use a change of unknown functions, that is due to Alinhac, see [2], an
simplifies the expression ofLa. If we let v = v̇ + ψ∂du̇, we have

La(v,ψ) = L(a, ϕ)v̇ − C(a)v̇ + ψ∂d

[
L(a, ϕ)u̇

]
.
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The functionv̇ is referred to as the “good unknown” of the problem. We emphasize that this change of un
functions yields an operator in(v̇,ψ) with only zero order term inψ : roughly speaking, the operatorLa reduces
to an operator with only first and zero order term inv̇, since the zero order terms inψ will be easily estimated.

As regards the paralinearized equations, the previousresult suggests to make the change of unknown funct
v := v̇ + T

γ
∂d u̇ψ . We are going to show that the paralinearized operator is equal to∂d v̇ − T

γ

A v̇ − T
γ

A−1
d C

v̇ plus some

error terms whose norm can be controlled.
A straightforward computation shows that

∂dv − T
γ

A v − T
γ

A−1
d C

v + T
γ

A∂d u̇ψ = ∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇ + e1 − e2 + e3,

where

e1 := T
γ

∂2
d u̇

ψ, e2 := T
γ

A−1
d C

T
γ

∂d u̇ψ, e3 := (
T

γ

A∂d u̇ − T
γ

A T
γ

∂d u̇

)
ψ.

Becausėu ∈ Hm(Ω) andm > (d + 5)/2, we have

|||ei |||1,γ � ‖ψ‖1,γ , 1 � i � 3,

and therefore∣∣∣∣∣∣(∂dv − T
γ

A v − T
γ

A−1
d C

v + T
γ

A∂d u̇ψ
) − (

∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇
)∣∣∣∣∣∣

1,γ
� ‖ψ‖1,γ .

As a consequence, we shall focus our attention on the operator∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇ and try to derive an energ

estimate for this operator.

Remark. After changing unknown functions, the paralinearized boundary operator readsT
γ

b ψ + T
γ

M v̇|xd=0 +
T

γ

M T
γ

∂d u̇ψ , and we see that the last term in this sum satisifies∥∥T
γ

MT
γ
∂d u̇ψ

∥∥
1,γ

� ‖ψ‖1,γ .

To summarize, we have proved∣∣∣∣∣∣A−1
d Lγ

a (v,ψ) − (
∂d v̇ − T

γ

A v̇ − T
γ

A−1
d C

v̇
)∣∣∣∣∣∣

1,γ
� C

(|||v|||0 + ‖ψ‖1,γ

)
,∥∥Bγ

a (v,ψ) − (
T

γ

b ψ + T
γ

M v̇|xd=0

)∥∥
1,γ

� C
(‖v|xd=0‖0 + ‖ψ‖1,γ

)
.

(33)

Furthermore, the relationv = v̇ + T
γ

∂d u̇ψ yields

‖v|xd=0‖2
0 � 2

(‖v̇|xd =0‖2
0 + C‖ψ‖2

0

)
� 2

(
‖v̇|xd=0‖2

0 + C

γ 2‖ψ‖2
1,γ

)
,

|||v|||20 � 2
(|||v̇|||20 + C‖ψ‖2

0

)
� 2

(
|||v̇|||20 + C

γ 2
‖ψ‖2

1,γ

)
,

and we thus get

γ |||v̇|||20 + ‖v̇|xd =0‖2
0 � 1

2

(
γ |||v|||20 + ‖v|xd=0‖2

0

)− C

γ
‖ψ‖2

1,γ . (34)

It is now clear that the change of unknown function is appropriate because an energy estimate of the sam
(20) for (v̇,ψ) will yield a similar energy estimate for(v,ψ).

All constants appearing in (33) and (34) are uniform with respect to the norms of the perturbations
compact setK. Namely, if the perturbation(u̇r , u̇l,∇ϕ) is valued inK and satisfies

‖ϕ‖Hm+1/2(ω) � K,
∥∥(u̇r , u̇l)

∥∥
Hm(Ω)

� K,

for some constantK > 0 and some integerm > (d + 5)/2, then the constants appearing in (33), (34) only dep
onK andK.
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3.2.4. Eliminating the shock front
Using Assumption 4, we know that there exists a positive constantc > 0 such that

b∗(x0, . . . , xd−1, η, γ )b(x0, . . . , xd−1, η, γ ) � c
(
γ 2 + |η|2).

The constantc only depends on the compact setK. The symbolb∗b is of degree 2 and elliptic so, applyin
Gårding’s inequality (Theorem A.3), we obtain

∀γ � γ0, ‖ψ‖2
1,γ � Re

〈
T

γ

b∗bψ,ψ
〉
L2 �

∥∥T
γ

b ψ
∥∥2

0 + Re
〈
Rγ ψ,ψ

〉
L2,

where{Rγ } is a family of order� 1. We thus get

‖ψ‖2
1,γ �

∥∥T
γ

b ψ
∥∥2

0 + ‖ψ‖1,γ ‖ψ‖0 � 1

γ
‖ψ‖2

1,γ + ∥∥T
γ

b ψ
∥∥2

0.

Up to a greater choice ofγ0, we finally get

∀γ � γ0, ‖ψ‖2
1,γ �

∥∥T
γ

b ψ
∥∥2

0 �
∥∥T

γ

b ψ + T
γ

M v̇|xd=0

∥∥2
0 + ‖v̇|xd=0‖2

0

� 1

γ 2

∥∥T
γ

b ψ + T
γ

M v̇|xd =0

∥∥2
1,γ

+ ‖v̇|xd =0‖2
0, (35)

which is the variable coefficients version of (16).
Introducing the orthogonal projector�(y, η, γ ) on b(y, η, γ )⊥, we have �∈ Γ 0

2 and�b ≡ 0. Theorem A.2
gives∥∥T

γ
�T

γ

b ψ
∥∥

1,γ
� ‖ψ‖1,γ ,

∥∥T
γ
�T

γ

M v̇|xd=0 − T
γ

�M v̇|xd=0

∥∥
1,γ

� ‖v̇|xd =0‖0.

Using the decomposition

T
γ

�M v̇|xd=0 = (
T

γ

�M − T
γ

�T
γ

M

)
v̇|xd=0 + T

γ

�

(
T

γ

M v̇|xd=0 + T
γ

b ψ
) − T

γ

�T
γ

b ψ,

we end up with∥∥T
γ

�M v̇|xd=0

∥∥
1,γ

� ‖v̇|xd=0‖0 + ∥∥T
γ

b ψ + T
γ

M v̇|xd=0

∥∥
1,γ

+ ‖ψ‖1,γ . (36)

From now on, we focus on the system∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇ = F, xd > 0,

T
γ

�M v̇|xd=0 = G, xd = 0,

and try to derive an energy estimate of the type

γ |||v̇|||20 + ‖v̇|xd =0‖2
0 � 1

γ 3 |||F |||21,γ + 1

γ 2‖G‖2
1,γ ,

for all γ � γ0. Using (33)–(36) and a greater choice of the constantγ0, we shall obtain the variable coefficien
analogue of our basic estimate (20). A precise result will be stated in Section 3.6.

As was done in the constant coefficients case, we define the symbolβ of the reduced boundary conditions:

∀(y, η, γ ) ∈ R
d × R

d × R
+, β(y, η, γ ) := �(y, η, γ )M(y).

Our goal is to derive an a priori estimate for the paralinearized system:∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇ = F, xd > 0,

T
γ

β v̇|xd =0 = G, xd = 0.
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3.3. Geometrical assumptions

Let us go back to Assumption 5. For all planar shock wavesu close tou, we define the set of critical frequenci
Σcr(u) as the set of those(η, γ ) ∈ Σ+ such that the critical subspace{

Z ∈ E−(u, η, γ ) s.t.β(u,η, γ )Z = 0
}

is not reduced to{0}. From Assumption 5, we know that frequencies(η, γ ) ∈ Σcr(u) satisfy γ = 0. Another
requirement of Assumption 5 is that there exists a neighborhoodVcr(u) of Σcr(u) in Σ+ and a smooth mappin
Q0(u) defined onVcr(u) with values inGl2N(C) such that

Q0AQ−1
0 =

ω1In1 0
. . .

0 ωJ InJ

 .

To deal with the variable coefficients case, we need to assume thatΣcr(u) is endowed with an “equation”. Mor
precisely, we assume that there exists a smoothreal valued functionσ̃ (defined for all shock wavesu close tou)
such that

Σcr(u) = {
(η, γ ) ∈ Σ+ s.t.γ + iσ̃ (u, η, γ ) = 0

}
= {

(η,0) ∈ Σ0 s.t. σ̃ (u, η,0) = 0
}
.

We refer to Section 4 for an example. The functionσ̃ is extended as an homogeneous mapping of degree 1
respect to(η, γ ).

Recall that the perturbed planar shocka is assumed to satisfy the Rankine–Hugoniot relations at each point o
the boundary∂Ω (Assumption 6). We thus define the set of the so-called “critical points” as

Σc := {
(x, η, γ ) ∈ ∂Ω × Σ+ s.t.(η, γ ) ∈ Σcr

(
a(x)

)}
. (37)

We already know from Assumption 5 that there exists a neighbourhoodV0
c of Σc in ∂Ω ×Σ+ such that the symbo

A(z) is diagonalizable onV0
c :

Q0(z)A(z)Q0(z)
−1 =

ω1(z)In1 0
. . .

0 ωJ (z)InJ

 =: D1(z). (38)

This corresponds to a diagonalization of the symbolA on the boundary∂Ω , when the frequencies are close to
unstable frequencies.

On the boundary∂Ω of the space domain, the set of space-frequency variables is thus decomposed as th
of a setV0

c that contains all the unstable points and a set that contains only uniformly stable points. In the sub
analysis, we shall show that the instabilities originating from the critical setΣc propagate in the interior doma
along bicharacteristic curves. In order to control where these instabilities propagate, we are led to the im
assumption that these bicharacteristic curvesare well-defined in all the interior domain:

Assumption 7.There exists an open setVc ⊂ �Ω × Σ+ satisfying

Vc ∩ {xd = 0} = V0
c

and there exists a symbolQ0 of degree 0 and regularity 2 defined onVc such that (38) holds on allVc.
Moreover, decomposingωj asωj = γ ej + ihj (all mappings are defined onVc), the solutions of the Hamiltonia

ODEs system
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dxk

dxd

= ∂hj

∂ηk

(x, η, γ ), k = 0, . . . , d − 1,

dηk

dxd

= −∂hj

∂xk

(x, η, γ ), k = 0, . . . , d − 1, (39)

(x0, . . . , xd−1, η0, . . . , ηd−1, γ )|xd=0 ∈ V0
c

are defined for allxd � 0, that is, stay inVc for all xd � 0. These solutions are referred to as bicharacteristic cu

Note that Assumption 7 is met in the constant coefficients case. Indeed,V0
c may be chosen as the produ

∂Ω × Vcr(u), and we choose in this case

Vc := �Ω × Vcr(u).

Then the mappingQ0 exists because of Assumption 5, and it is independent ofx, as well as theωj ’s. The ODEs
system (39) then reduces to

dxk

dxd

= ∂hj

∂ηk

(η, γ ), k = 0, . . . , d − 1,

dηk

dxd

= 0, k = 0, . . . , d − 1,

(x0, . . . , xd−1, η0, . . . , ηd−1, γ )|xd=0 ∈ V0
c .

Our choice ofVc implies that the bicharacteristic curves stay inVc (frequencies are constant along these cur
becausehj does not depend onx).

In the variable coefficients case, we recall that the perturbationu̇ = (u̇r , u̇l) has compact support. Consequen
if (xk, ηk) is a solution of (39),ηk is constant forxd large enough. From standard ODEs arguments, we c
that Assumption 7 is satisfied whenu̇ is a sufficiently small perturbation (one can chooseVc as in the constan
coefficients case, provided the perturbation is small enough). We refer to Fig. 2 for a schematic pictur
situation.

For (y, η, γ ) ∈ ∂Ω × Rd × R+, define

σ(y,η, γ ) := σ̃
(
a(y), η, γ

)
,

so we haveσ ∈ Γ 1
2 (Rd).

Fig. 2. Bicharacteristic curves originating from the boundary.



424 J.-F. Coulombel / Ann. I. H. Poincaré – AN 21 (2004) 401–443

.

2

es.
in the

e.

striction
t
e.
goniot

e fix a

n

With the help of Assumption 7, it is possible to construct a solution of the transport equation

∂xd σj +
d−1∑
k=0

∂xkσj ∂ηkhj − ∂ηkσj ∂xkhj = 0, (x, η, γ ) ∈ Vc,

σj |xd=0
= σ, (x, η, γ ) ∈ V0

c ,

(40)

and the solutionσj of this equation is homogeneous of degree 1 with respect to(η, γ ). The solutionσj is constant
along the characteristic curves of Eq. (40), and these curves are exactly the bicharacteristic curves defined earlier

Note that (40) also reads

∂xd σj + {σj ,hj } = 0,

where{σj ,hj } is the Poisson bracket ofσj andhj .
For convenience, we extend all mappingsωj , 1 � j � J (and thusD1) as symbols of degree 1 and regularity

defined for all(x, η, γ ). We therefore haveωj ∈ Γ 1
2 . We choose these extensions such that one has either

ej � c > 0 or ej � −c < 0,

whereωj = γ ej + ihj . Extending theωj ’s allows to define a global solutionσj of (40), meaning thatσj is defined
for all (x, η, γ ) ∈ Ω × Σ+ and not only for(x, η, γ ) ∈ Vc. This global solution belongs toΓ 1

2 . What is important
is that we havenot changed the value ofσj on the setVc sinceσj is constant along the bicharacteristic curv
The functionsσj are weights that vanish only on the curves originating from the critical points. We shall see
sequel that they are appropriate in the derivation of an energy estimate.

Finally, we need to precise the behavior of the restriction of the boundary symbolβ to the stable subspac
Recall that the firstN − 1 column vectors of the matrixQ0(z)

−1 span the stable subspaceE−(z) whenz ∈ V0
c . We

write:

Q0(z)
−1 = (

Qin(z) Qout(z)
)
, Qin(z) ∈M2N,N−1(C),

and make the following assumption:

Assumption 8.There exist two mappingsP1 andP2 defined onV0
c such that

for all z ∈ V0
c , P1(z) ∈ GlN−1(C) andP1 is a symbol of degree 0 and regularity 1,

for all z ∈ V0
c , P2(z) ∈ GlN−1(C) andP2 is a symbol of degree 0 and regularity 1,

for all z ∈ V0
c , one has

P1(z)β(z)Qin(z)P2(z) =
(

λ−1,γ (η)(γ + iσ(z)) 0

0 IN−2

)
=: β in(z). (41)

In the constant coefficients case, Assumption 8 implies (18). The meaning of Assumption 8 is that the re
of β to the stable subspace has a kernel of dimension 1 (this was not part of Assumption 5) and “β vanishes a
order 1 on this kernel”. To check Assumption 8 in practice, it is sufficient to check it for a planar shock wav
Using Assumption 6, a similar reduction will hold for a perturbed planar shock satisfying the Rankine–Hu
relations.

With these preliminary reductions in mind, we can turn to the derivation of our energy estimates. W
nonnegative cut-off functionχ verifying

χ is a smooth (that is,C∞) symbol of degree 0 and Suppχ ⊂ Vc,
χ ≡ 1 in a neighborhood of the bicharacteristic curves originating fromΣc. In other words, out of the regio
whereχ ≡ 1, one has|σj | � c > 0 for all j .

Defineχ0 := 1− χ and observe thatχ0 has its support in the set of uniformly stable points.
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3.4. Energy estimates near instability points

The aim of this paragraph is to derive three different energy estimates in the neighborhood of instability poi
We show how to control theL2(H 1) norm of the outgoing modes. For the incoming modes, we show ho
control theL2 norm and theL2(H 1) norm far from the bicharacteristic curves starting from the critical setΣc.

Before establishing our main energy estimates, we prove a reduction result that will help us to deal w
zero order term in the linearized equations. Recall that relation (38)holds on all the open setVc and not only on its
traceV0

c . In terms of symbolic calculus, we are looking for a symbolQ−1 of degree−1 and regularity 1 such tha

(Q0 + Q−1)#
(
∂d − A − A−1

d C
) = (∂d − D1 − D0)#(Q0 + Q−1),

where the composition of symbols is to be understood as the expansion to first or second order (dependi
regularity with respect tox), see Theorem A.2. Recall that our symbols have finite smoothness in the space v
so the expansions of adjoints or composed symbols are only finite and not asymptotic.

The existence ofQ−1 is given by the following lemma:

Lemma 1.Let Q0 be defined by Assumption7, and defineD1 as in(38). There exists a symbolQ−1 of degree−1
and regularity1, defined onVc, such that

(Q0 + Q−1)
(
A + A−1

d C
) + ∂dQ0 + 1

i

d−1∑
k=0

(∂ηkQ0∂xkA − ∂ηkD1∂xkQ0) − (D1 + D0)(Q0 + Q−1)

is a symbol of degree−1 and regularity1, andD0 is a block diagonal symbol(of degree0 and regularity1) whose
blocks have dimensionsn1, . . . , nJ as those ofD1.

Proof. Using the equalityQ0A = D1Q0, the problem reduces to finding a symbolQ−1 of degree−1 such that

[
Q−1Q

−1
0 ,D1

] + Q0A−1
d CQ−1

0 + ∂dQ0 + 1

i

d−1∑
k=0

∂ηkQ0∂xkA − ∂ηkD1∂xkQ0

is block diagonal (it will automatically be a symbol of degree 0). Here above[M,N] denotes the commutator of tw
matricesM andN . Using thatD1 is block diagonal (with diagonal blocksω1In1, . . . ,ωJ InJ ), a simple calculation
shows that one can chooseQ−1Q

−1
0 (and thereforeQ−1) such that the extra diagonal blocks of[Q−1Q

−1
0 ,D1]

cancel those of

Q0A−1
d CQ−1

0 + ∂dQ0 + 1

i

d−1∑
k=0

∂ηkQ0∂xkA − ∂ηkD1∂xkQ0.

Because the diagonal blocks of[Q−1Q
−1
0 ,D1] are identically zero, one can only cancel the extra diagonal blo

It stems from this simple calculation thatQ−1Q
−1
0 is of degree−1 and regularity 1, and therefore so isQ−1. This

proves the lemma. �
Note thatQ−1 andD0 are only defined for space-frequency variables belonging toVc but, as was done forD1,

we extendD0 as a global symbol of degree 0 and regularity 1.
In all the sequel, we denote byQ the sumQ0 + Q−1. The following calculations heavily use the fact thatQ

defines a “good diagonalization basis” of the paralinearized operator

v̇ �→ ∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇.

Let v̇ ∈ H 2(Ω) and define

F := ∂d v̇ − T
γ

A v̇ − T
γ
−1 v̇ ∈ H 1(Ω).
Ad C
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We also define

w := T
γ

χQv̇

and we first show thatw satisfies a paradifferential equation whose first and zero order symbol are block dia
The paradifferential equation involves error terms that will be absorbed at the very end of the analysis. In
paragraph,Rγ always denotes an operator of order�−1 that represents the current error terms in the computat
We have

∂dw = T
γ

(∂dχ)Qv̇ + T
γ
χ∂dQv̇ + T

γ
χQ(∂d v̇)

= T
γ

(∂dχ)Qv̇ + T
γ
χ∂dQv̇ + T

γ
χQ

(
T

γ

A v̇ + T
γ

A−1
d C

v̇ + F
)

= T
γ

(∂dχ)Q0
v̇ + T

γ
χ∂dQ0

v̇ + T
γ

χQ(A+A−1
d C)

v̇ + T
γ

r1v̇ + Rγ v̇ + T
γ
χQF,

where

r1 := 1

i

d−1∑
k=0

∂ηk (χQ0)∂xkA.

Lemma 1 implies that

χ∂dQ0 + χQ
(
A + A−1

d C
) + r1 −

(
(D1 + D0)χQ + 1

i

d−1∑
k=0

(∂ηkχ)Q0∂xkA + χ(∂ηkD1)∂xkQ0

)
is of degree−1, and we thus get

∂dw = T
γ

(∂dχ)Q0
v̇ + (

T
γ
D1

+ T
γ
D0

)
w + T

γ

r2v̇ + T
γ

r3v̇ + Rγ v̇ + T
γ
χQF,

where

r2 := 1

i

d−1∑
k=0

(∂ηkχ)Q0∂xkA + χ(∂ηkD1)∂xkQ0,

r3 := −1

i

d−1∑
k=0

(∂ηkD1)∂xk (χQ0).

After simplifying r2 + r3, we get the relation

∂dw = T
γ

D1
w + T

γ

D0
w + T

γ
r v̇ + Rγ v̇ + T

γ

χQF, (42)

with

r := (∂dχ)Q0 + 1

i

d−1∑
k=0

(∂ηkχ)Q0∂xkA − (∂xkχ)(∂ηkD1)Q0. (43)

As a consequence,r is of order 0 and is identically zero in the domain whereχ ≡ 1. Thereforer has its suppor
far from the “unstable” points.

Recall thatD1 is diagonal andD0 is block diagonal:

D1 =
ω1In1

. . .

ωJ InJ

 , D0 =
C1

. . .

CJ

 ,

so (42) can be written as a collection ofJ equations

∂dwj = T γ
ωj

wj + T
γ

Cj
wj + T

γ
rj v̇ + Rγ v̇ + T

γ

χQj
F, (44)

with Reωj < 0 when γ >0 and 1� j � J ′, and Reωj > 0 whenγ > 0 andJ ′ + 1 � j � J .
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3.4.1. Estimate for the outgoing modes
We first deal with the indexesj for which Reωj > 0 when γ >0. Recall thatωj is defined for all(η, γ ) and

satisfies

∀(η, γ ) ∈ R
d × R

+, Reωj � cγ.

We chooseΛ2,γ as a symmetrizer for (44), whereΛ2,γ is the Fourier multiplier of symbolλ2,γ (η). Taking the
scalar product inL2(Ω) of (44) withΛ2,γ wj , we get

−∥∥wj(0)
∥∥2

1,γ
= 2 Re

〈〈
Λ1,γ T γ

ωj
wj ,Λ

1,γ wj

〉〉
L2(Ω)

+ 2 Re
〈〈
Λ1,γ T

γ
Cj

wj ,Λ
1,γ wj

〉〉
L2(Ω)

+ 2 Re
〈〈
Λ1,γ T

γ
rj v̇,Λ1,γ wj

〉〉
L2(Ω)

+ 2 Re
〈〈
Λ1,γ Rγ v̇,Λ1,γ wj

〉〉
L2(Ω)

+ 2 Re
〈〈
Λ1,γ T

γ

χQj
F,Λ1,γ wj

〉〉
L2(Ω)

.

Taking the order of the different operators into account and using Young’s inequality, we obtain

−2 Re
〈〈
Λ1,γ T

γ
Cj

wj ,Λ
1,γ wj

〉〉
L2(Ω)

� C|||wj |||21,γ ,

−2 Re
〈〈
Λ1,γ T

γ
rj v̇,Λ1,γ wj

〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ
rj v̇

∣∣∣∣∣∣2
1,γ

+ εγ |||wj |||21,γ ,

−2 Re
〈〈
Λ1,γ Rγ v̇,Λ1,γ wj

〉〉
L2(Ω)

� C

γ
|||v̇|||20 + εγ |||wj |||21,γ ,

−2 Re
〈〈
Λ1,γ T

γ

χQj
F,Λ1,γ wj

〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ

χQF
∣∣∣∣∣∣2

1,γ
+ εγ |||wj |||21,γ ,

for someε > 0 to be fixed. Using Theorem A.2, the difference

Λ1,γ T γ
ωj

− T γ
ωj

Λ1,γ

is of order� 1 so we have

2 Re
〈〈
Λ1,γ T γ

ωj
wj ,Λ

1,γ wj

〉〉
L2(Ω)

� 2 Re
〈〈
T γ

ωj
Λ1,γ wj ,Λ

1,γ wj

〉〉
L2(Ω)

− C|||wj |||21,γ .

Applying Gårding’s inequality (Theorem A.3), we finally get

2 Re
〈〈
Λ1,γ T γ

ωj
wj ,Λ

1,γ wj

〉〉
L2(Ω)

� (cγ − C)|||wj |||21,γ .

It is now clear that an appropriate choice ofε yields theL2(H 1) estimate

γ |||wj |||21,γ + ∥∥wj(0)
∥∥2

1,γ
� 1

γ

∣∣∣∣∣∣T γ
χQF

∣∣∣∣∣∣2
1,γ

+ 1

γ

(|||v̇|||20 + |||T γ
r v̇|||21,γ

)
. (45)

3.4.2. Estimate for the incoming modes
We now deal with the indexesj for which Reωj < 0 when γ >0 (and therefore Reωj � −cγ ). We first choose

the identity as a symmetrizer and perform the same computation as above. One can indeed proceed in
way because the symmetrizer is a constant coefficients operator (that is, a Fourier multiplier). Because of
of Reωj , we have

γ |||wj |||20 �
∥∥wj (0)

∥∥2
0 + 1

γ 3

∣∣∣∣∣∣T γ

χQF
∣∣∣∣∣∣2

1,γ
+ 1

γ 3

(|||v̇|||20 + ∣∣∣∣∣∣T γ
rj v̇

∣∣∣∣∣∣2
1,γ

)
,

and we rewrite this estimate as

γ 3|||wj |||20 � γ 2
∥∥wj(0)

∥∥2
0 + 1 ∣∣∣∣∣∣T γ

χQF
∣∣∣∣∣∣2

1,γ
+ 1 (|||v̇|||20 + ∣∣∣∣∣∣T γ

r v̇
∣∣∣∣∣∣2

1,γ

)
. (46)
γ γ
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The right-hand terms in (45) and (46) have similar expressions. The only difference is that the boundary valu
wj is on the right-hand side of the inequality when we deal with an incoming mode.

At this stage, it is important to note that both right-hand side terms in (45) and (46) involve theL2(H 1) norm
of T

γ
r v̇, and r is identically zero in the region{χ ≡ 1}, see (43). In particular,r is identically zero near th

bicharacteristic curves originating fromΣc. However,r is not identically zero inVc so, in order to absorb the err
term|||T γ

r v̇|||1,γ , we need to control theL2(H 1) norm of thewj ’s in Vc far from the bicharacteristic curves. We a
thus going to estimateT γ

σj wj .
We chooseSj := (T

γ
σj

)∗T γ
σj

as a symmetrizer for (44). Recall thatSj is of order�2 sinceσj ∈ Γ 1
2 . We take the

scalar product inL2(Ω) of (44) withSjwj . This yields

−∥∥T γ
σ wj (0)

∥∥2
0 = Re

〈〈
(∂dSj )wj ,wj

〉〉
L2(Ω)

+ 2 Re
〈〈
SjT

γ
ωj

wj ,wj

〉〉
L2(Ω)

+ 2 Re
〈〈
SjT

γ

Cj
wj ,wj

〉〉
L2(Ω)

+ 2 Re
〈〈
SjT

γ
rj v̇,wj

〉〉
L2(Ω)

+ 2 Re
〈〈
SjR

γ v̇,wj

〉〉
L2(Ω)

+ 2 Re
〈〈
SjT

γ

χQj
F,wj

〉〉
L2(Ω)

.

First observe that

∂dSj = (
T

γ
∂dσj

)∗
T γ

σj
+ (

T γ
σj

)∗
T

γ
∂dσj

,

so we have

Re
〈〈
(∂dSj )wj ,wj

〉〉
L2(Ω)

= 2 Re
〈〈
T

γ
∂dσj

wj , T
γ
σj

wj

〉〉
L2(Ω)

.

We recall thatσj ∈ R, hence the difference

T γ
σj

T
γ
Cj

− T
γ
Cj

T γ
σj

is of order� 0, and we get

2 Re
〈〈
T γ

σj
T

γ

Cj
wj , T

γ
σj

wj

〉〉
L2(Ω)

� C
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 + C|||wj |||0

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣
� C

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣2
0 + C

γ
|||wj |||20 + εγ

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣2
0,

for someε > 0 to be fixed. BecauseT γ
σj

is of order� 1, Young’s inequality yields

2 Re
〈〈
T γ

σj
T

γ
rj v̇, T γ

σj
wj

〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ
rj v̇

∣∣∣∣∣∣2
1,γ

+ εγ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0,

2 Re
〈〈
T γ

σj
Rγ v̇, T γ

σj
wj

〉〉
L2(Ω)

� C

γ
|||v̇|||20 + εγ

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣2
0,

2 Re
〈〈
T γ

σj
T

γ
χQj

F,T γ
σj

wj

〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ
χQF

∣∣∣∣∣∣2
1,γ

+ εγ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0.

Collecting these first inequalities, we already have

−2 Re
〈〈
T

γ

∂dσj
wj + T γ

σj
T γ

ωj
wj , T

γ
σj

wj

〉〉
L2(Ω)

�
∥∥T γ

σ wj (0)
∥∥2

0 + (C + 4εγ )
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 + C

γ

∣∣∣∣∣∣T γ
χQF

∣∣∣∣∣∣2
1,γ

+ C

γ
|||wj |||20 + C

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
1,γ

)
. (47)

We are now going to derive a lower bound for the left-hand term in (47). Writeωj = γ ej + ihj with ej , hj ∈ R

andej ∈ Γ 0
2 , hj ∈ Γ 1

2 . From Theorem A.2, we have

T γ
σ T γ

ω = γ T
γ
ej

T γ
σ + γ T

γ + γRγ + T
γ

T γ
σ + T

γ + R
γ
,

j j j −i{σj ,ej } ihj j {σj ,hj } 0



J.-F. Coulombel / Ann. I. H. Poincaré – AN 21 (2004) 401–443 429

des:
whereRγ still denotes an operator of order� −1 andR
γ

0 denotes an operator of order�0. Recall thatσj is a
solution to the transport equation{

∂dσj + {σj ,hj } = 0, xd > 0,

σj |xd=0
= σ,

so we get

−2 Re
〈〈
T

γ
∂dσj

wj + T γ
σj

T γ
ωj

wj , T
γ
σj

wj

〉〉
L2(Ω)

= −2γ Re
〈〈
T

γ
ej

T γ
σj

wj , T
γ
σj

wj

〉〉
L2(Ω)

− 2γ Re
〈〈
T

γ

−i{σj ,ej }wj ,T
γ
σj

wj

〉〉
L2(Ω)

− 2γ Re
〈〈
Rγ wj ,T

γ
σj

wj

〉〉
L2(Ω)

− 2
〈〈(

ReT
γ

ihj

)
T γ

σj
wj , T

γ
σj

wj

〉〉
L2(Ω)

− 2 Re
〈〈
R

γ

0 wj ,T
γ
σj

wj

〉〉
L2(Ω)

.

Let us first examine the last three terms of the right-hand side. Because ihj ∈ iR, the operator ReT γ

ihj
is of order

�0 and we have

−2
〈〈(

ReT
γ

ihj

)
T γ

σj
wj , T

γ
σj

wj

〉〉
L2(Ω)

� −C
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0,

−2 Re
〈〈
R

γ

0 wj ,T
γ
σj

wj

〉〉
L2(Ω)

� −C|||wj |||0
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣
0, (48)

−2γ Re
〈〈
Rγ wj ,T

γ
σj

wj

〉〉
L2(Ω)

� −Cγ |||wj |||−1,γ

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣
0 � −C|||wj |||0

∣∣∣∣∣∣T γ
σj

wj

∣∣∣∣∣∣
0.

Applying Gårding’s inequality (Theorem A.3), we obtain

−2γ Re
〈〈
T

γ
ej

T γ
σj

wj , T
γ
σj

wj

〉〉
L2(Ω)

� cγ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0, (49)

so it only remains to derive a lower bound for the term

−2γ Re
〈〈
T

γ

−i{σj ,ej }wj ,T
γ
σj

wj

〉〉
L2(Ω)

.

Becauseσj ∈ Γ 1
2 , the operatorT γ

−i{σj ,ej } is of order� 0 and therefore

−2γ Re
〈〈
T

γ

−i{σj ,ej }wj ,T
γ
σj

wj

〉〉
L2(Ω)

� −Cγ |||wj |||0
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣
0

� −εγ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 − Cγ |||wj |||20. (50)

Choosingε appropriately and taking the sum of (47)–(50), we get the second estimate for the incoming mo

γ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 �

∥∥T γ
σ wj (0)

∥∥2
0 + 1

γ

∣∣∣∣∣∣T γ
χQF

∣∣∣∣∣∣2
1,γ

+ γ |||wj |||20 + 1

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
1,γ

)
. (51)

Take the sum of (46) and (51). Choosingγ large enough, we have

γ 3|||wj |||20 + γ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 � γ 2

∥∥wj(0)
∥∥2

0 + ∥∥T γ
σ wj (0)

∥∥2
0 + 1

γ

∣∣∣∣∣∣T γ
χQF

∣∣∣∣∣∣2
1,γ

+ 1

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
1,γ

)
. (52)

Let us decompose the vectorw in

w =
(

win
wout

)
, win ∈ C

N−1, wout ∈ C
N+1.

The vectorwin is the collection of thewj ’s that correspond to incoming modes andwout is the collection of the
wj ’s that correspond to outgoing modes. Taking the sum of (45) and (52), we obtain

γ |||wout|||21,γ + γ 3|||win|||20 +
∑

incoming

γ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 + ∥∥wout(0)

∥∥2
1,γ

� γ 2
∥∥win(0)

∥∥2
0 + ∥∥T γ

σ win(0)
∥∥2

0 + 1 ∣∣∣∣∣∣T γ

χQF
∣∣∣∣∣∣2

1,γ
+ 1 (|||v̇|||20 + ∣∣∣∣∣∣T γ

r v̇
∣∣∣∣∣∣2

1,γ

)
, (53)
γ γ
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ing’s

use
and we want to show an estimate of the type

γ 2
∥∥win(0)

∥∥2
0 + ∥∥T γ

σ win(0)
∥∥2

0 � ‖G‖2
1,γ + ∥∥wout(0)

∥∥2
1,γ

,

where

G := T
γ

β v̇(0).

3.4.3. Estimate for the boundary terms
We fix four cut-off functionsχ1, χ2, χ3, χ4 such that

χ1 ≡ 1 on a neighborhood of Suppχ ∩ {xd = 0},
χ2 ≡ 1 on a neighborhood of Suppχ1,

χ3 ≡ 1 on a neighborhood of Suppχ2,

χ4 ≡ 1 on a neighborhood of Suppχ3,

and Suppχ4 ⊂ V0
c ⊂ ∂Ω × Σ+. These cut-off functions are introduced in order to use the localized Gård

inequality (Theorem A.4). They are extended as homogeneous mappings of degree 0 with respect to(η, γ ). We
write

T
γ

χ2βQ−1
0

w(0) = T
γ

χ2βQin
win(0) + T

γ

χ2βQout
wout(0).

Using the definitionw = T
γ

χQv̇, we obtain

T
γ

χ2βQ−1
0

w(0) = T γ
χ G + Rγ v̇(0),

whereRγ is an operator of order� − 1. We thus get∥∥T
γ

χ2βQin
win(0)

∥∥
1,γ

� ‖G‖1,γ + ∥∥wout(0)
∥∥

1,γ
+ ∥∥v̇(0)

∥∥
0. (54)

We are now going to introduce the basis of the stable subspace in whichβ has a reduced expression. Beca
χ4χ2 ≡ χ2, we have

χ2βQin = (
χ4P

−1
1

)
(χ2P1βQinP2)︸ ︷︷ ︸

χ2β in

(
χ4P

−1
2

)
.

We therefore obtain

T
γ

χ2βQin
win(0) = T

γ

χ4P
−1
1

T
γ

χ2β in
T

γ

χ4P
−1
2

win(0) + Rγ win(0),

and this yields the inequality∥∥T
γ

χ4P
−1
1

T
γ

χ2β in
T

γ

χ4P
−1
2

win(0)
∥∥

1,γ
� ‖G‖1,γ + ∥∥wout(0)

∥∥
1,γ

+ ∥∥v̇(0)
∥∥

0. (55)

We first show that we have an estimate of the type∥∥T
γ

χ4P
−1
1

T
γ

χ2β in
T

γ

χ4P
−1
2

win(0)
∥∥

1,γ
� c

∥∥T
γ

χ2β in
T

γ

χ4P
−1
2

win(0)
∥∥

1,γ
− C

∥∥win(0)
∥∥

0.

Define

W := T
γ

χ2β in
T

γ

χ4P
−1
2

win(0).

We first check that∥∥T
γ

−1W
∥∥

1,γ
= ∥∥Λ1,γ T

γ
−1W

∥∥
0 �

∥∥T
γ

−1Λ
1,γ W

∥∥
0 − C

∥∥win(0)
∥∥

0.
χ4P1 χ4P1 χ4P1
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hat
We also note that

T γ
χ3

Λ1,γ W = Λ1,γ W + R
γ

0 W,

whereR
γ

0 is of order�0. We thus get∥∥T
γ

χ4P
−1
1

W
∥∥

1,γ
�

∥∥T
γ

χ4P
−1
1

T γ
χ3

Λ1,γ W
∥∥

0 − C
∥∥win(0)

∥∥
0.

We are now going to use the ellipticity of(P−1
1 )∗P−1

1 on the support ofχ4. We write∥∥T
γ

χ4P
−1
1

T γ
χ3

Λ1,γ W
∥∥2

0 = 〈(
T

γ

χ4P
−1
1

)∗
T

γ

χ4P
−1
1

T γ
χ3

Λ1,γ W,T γ
χ3

Λ1,γ W
〉

� Re
〈
T

γ

χ2
4 (P−1

1 )∗P−1
1

T γ
χ3

Λ1,γ W,T γ
χ3

Λ1,γ W
〉 − C

∥∥T γ
χ3

Λ1,γ W
∥∥

0

∥∥T γ
χ3

Λ1,γ W
∥∥−1,γ

,

and we now apply Gårding’s inequality (Theorem A.4) to obtain∥∥T
γ

χ4P
−1
1

T γ
χ3

Λ1,γ W
∥∥2

0 � c
∥∥T γ

χ3
Λ1,γ W

∥∥2
0 − C

∥∥win(0)
∥∥2

0 � c
∥∥Λ1,γ W

∥∥2
0 − C

∥∥win(0)
∥∥2

0.

Plugging this later inequality in (55) yields∥∥Λ1,γ T
γ

χ2β in
T

γ

χ4P
−1
2

win(0)
∥∥

0 � ‖G‖1,γ + ∥∥wout(0)
∥∥

1,γ
+ ∥∥v̇(0)

∥∥
0. (56)

Observe that the difference

Λ1,γ T
γ

χ2β in
− T

γ

χ2λ
1,γ β in

is of order�0 so (56) also reads∥∥T
γ

χ2λ
1,γ β in

T
γ

χ4P
−1
2

win(0)
∥∥

0 � ‖G‖1,γ + ∥∥wout(0)
∥∥

1,γ
+ ∥∥v̇(0)

∥∥
0. (57)

It is time to use the particular structure ofβ in to derive a lower bound for the left-hand term in (57). Recall t

χ2λ
1,γ β in =

(
χ2(γ + iσ) 0

0 χ2λ
1,γ IN−2

)
.

The relationχχ1 ≡ χ yields

T
γ

χ4P
−1
2

win(0) = T γ
χ1

T
γ

χ4P
−1
2

win(0) + Rγ win(0),

so we rewrite (57) as∥∥T
γ

χ2λ
1,γ β in

T γ
χ1

T
γ

χ4P
−1
2

win(0)
∥∥

0 � ‖G‖1,γ + ∥∥wout(0)
∥∥

1,γ
+ ∥∥v̇(0)

∥∥
0. (58)

The decomposition

T
γ

χ4P
−1
2

win(0) :=
(

W1
W ′

)
, W1 ∈ C, W ′ ∈ C

N−2,

gives∥∥T
γ

χ2λ
1,γ β in

T γ
χ1

T
γ

χ4P
−1
2

win(0)
∥∥2

0 = ∥∥T
γ

χ2(γ+iσ )T
γ
χ1

W1
∥∥2

0 + ∥∥T
γ

χ2λ
1,γ T γ

χ1
W ′∥∥2

0.

Becauseχ2χ1 ≡ χ1 andχ1χ ≡ χ , we obtain∥∥T
γ

χ2λ
1,γ T γ

χ1
W ′∥∥

0 � c
∥∥W ′∥∥

1,γ
− C

∥∥win(0)
∥∥

0 � c
∥∥T γ

σ W ′∥∥
0 − C

∥∥win(0)
∥∥

0,

and using thatσ ∈ R, we also obtain∥∥T
γ

T γ
χ W1

∥∥ � c
(
γ ‖W1‖0 + ∥∥T γ

σ W1
∥∥ ) − C

∥∥win(0)
∥∥ .
χ2(γ+iσ) 1 0 0 0
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th

y
d

d around
Eventually, we get the lower-bound∥∥T
γ

χ2λ
1,γ β in

T γ
χ1

T
γ

χ4P
−1
2

win(0)
∥∥

0 � c
(
γ
∥∥T

γ

χ4P
−1
2

win(0)
∥∥

0 + ∥∥T γ
σ T

γ

χ4P
−1
2

win(0)
∥∥

0

) − C
∥∥v̇(0)

∥∥
0. (59)

To conclude, we perform the same kind of calculations as those already done withχ4P
−1
1 to show that∥∥T

γ

χ4P
−1
2

win(0)
∥∥

0 � c
∥∥win(0)

∥∥
0 − C

∥∥v̇(0)
∥∥−1,γ

,∥∥T γ
σ T

γ

χ4P
−1
2

win(0)
∥∥

0 � c
∥∥T γ

σ win(0)
∥∥

0 − C
∥∥v̇(0)

∥∥
0.

The boundary terms thus satisfy:

γ 2
∥∥win(0)

∥∥2
0 + ∥∥T γ

σ win(0)
∥∥2

0 � ‖G‖2
1,γ + ∥∥wout(0)

∥∥2
1,γ

+ ∥∥v̇(0)
∥∥2

0. (60)

Combining (53) and (60), we obtain our main energy estimate localized near the instability points:

γ |||wout|||21,γ + γ 3|||win|||20 +
∑

incoming

γ
∣∣∣∣∣∣T γ

σj
wj

∣∣∣∣∣∣2
0 + ∥∥wout(0)

∥∥2
1,γ

+ γ 2
∥∥win(0)

∥∥2
0 + ∥∥T γ

σ win(0)
∥∥2

0

� ‖G‖2
1,γ + ∥∥v̇(0)

∥∥2
0 + 1

γ

∣∣∣∣∣∣T γ

χQF
∣∣∣∣∣∣2

1,γ
+ 1

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
1,γ

)
. (61)

3.5. Energy estimates far from instability points

In this section, we show how to estimate theL2(H 1) norm of v̇ far from the instability points. We fix a smoo
cut-off functionχ̃ such that

χ̃ ≡ 1 on Suppχ0 ∩ {xd = 0},
so we haveχ̃χ0|xd=0

≡ χ0|xd=0
, and we also ask that the support ofχ̃ does not meet the set of critical pointsΣc.

This is possible because the support ofχ0|xd=0
does not meetΣc. With this requirement, the uniform stabilit

condition is met at all point in the support ofχ̃ . The cut-off functionχ̃ is introduced in order to use a localize
Gårding’s inequality.

To derive the desired energy estimate, we shall use a classical Kreiss’ symmetrizer that is microlocalize
uniformly stable points.

Proposition 3.1(Kreiss’ symmetrizers).There exists a mapping

S : �Ω × (
R

d × R
+ \ {0}) →M2n(C)

satisfying the following properties:

∀z, the matrixS(z) is Hermitian,
S is a symbol of degree2 and regularity2,
∀z ∈ ∂Ω × (Rd × R+ \ {0}), one has

χ̃(z)2S(z) + Cχ̃(z)2λ2,γ (η)β(z)∗β(z) � cχ̃(z)2λ2,γ (η)I, (62)

there exists a finite set of matrix valued mappings such that

Re
(
S(z)A(z)

) =
∑

Vl(z)
∗
(

γHl(z) 0

0 El(z)

)
Vl(z),
l
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s

se

s to
whereVl andEl are homogeneous of degree1 with respect to(η, γ ) (and belong toΓ 1
2 ), Hl is homogeneou

of degree0 with respect to(η, γ ) (and belongs toΓ 0
2 ), and the following inequalities hold:∑

l

Vl(z)
∗Vl(z) � cλ2,γ (η)I, Hl(z) � cI, El(z) � cλ1,γ (η)I. (63)

We definew := T
γ
χ0v̇ and compute the equation satisfied byw. The calculations are entirely similar to tho

done in the preceeding paragraph, namely

∂dw = T
γ

A w + T
γ

A−1
d C

w + T
γ

r0v̇ + Rγ v̇ + T
γ
χQF, (64)

with

r0 := ∂dχ0 + 1

i
{χ0,A} = ∂dχ0 + 1

i

d−1∑
k=0

(∂ηkχ0)∂xkA − (∂ηk A)∂xkχ0. (65)

Let {Sγ (xd)} be given by

Sγ (xd) := 1

2

((
T

γ

S(xd)

)∗ + T
γ

S(xd)

)
.

BecauseS ∈ Γ 2
2 , {Sγ } is a bounded Lipschitzeanfamily of selfadjoint operators fromL2(R+;H 2(Rd )) to L2(Ω)

(the bounds are uniform with respect to the parameterγ � 1). The starting point to derive the energy estimate i
take the scalar product of (64) withSγ w and integrate with respect to(x0, . . . , xd) ∈ Ω . We find〈

Sγ (0)w(0),w(0)
〉
L2(ω)

+ 2 Re
〈〈
Sγ T

γ

A w,w
〉〉
L2(Ω)

= −Re

〈〈
dSγ

dxd

w,w

〉〉
L2(Ω)

− 2 Re
〈〈
Sγ T

γ

A−1
d C

w,w
〉〉
L2(Ω)

− 2 Re
〈〈
Sγ T

γ

r0v̇,w
〉〉
L2(Ω)

− 2 Re
〈〈
Sγ Rγ v̇,w

〉〉
L2(Ω)

− 2 Re
〈〈
Sγ T γ

χ0
F,w

〉〉
L2(Ω)

. (66)

The right-hand side of (66) is easily estimated. We writeSγ as

Sγ = Λ1,γ Λ−1,γ Sγ

and use thatΛ1,γ is selfadjoint. BecauseΛ−1,γ Sγ is of order�1, we obtain

−Re

〈〈
dSγ

dxd

w,w

〉〉
L2(Ω)

� C|||w|||21,γ ,

−2 Re
〈〈
Sγ T

γ

A−1
d C

w,w
〉〉
L2(Ω)

� C|||w|||21,γ ,

−2 Re
〈〈
Sγ T

γ

r0v̇,w
〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

1,γ
+ εγ |||w|||21,γ ,

−2 Re
〈〈
Sγ Rγ v̇,w

〉〉
L2(Ω)

� C

γ
|||v̇|||20 + εγ |||w|||21,γ ,

−2 Re
〈〈
Sγ T γ

χ0
F,w

〉〉
L2(Ω)

� C

γ

∣∣∣∣∣∣T γ
χ0

F
∣∣∣∣∣∣2

1,γ
+ εγ |||w|||21,γ ,

so we get〈
Sγ (0)w(0),w(0)

〉
L2(ω)

+ 2 Re
〈〈
Sγ T

γ

A w,w
〉〉
L2(Ω)

� (C + 3εγ )|||w|||21,γ + C ∣∣∣∣∣∣T γ
χ0

F
∣∣∣∣∣∣2

1,γ
+ C (|||v̇|||20 + ∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

1,γ

)
. (67)
γ γ
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ck,
We are now going to derive a lower bound for the left-hand side of (67) by means of Gårding’s inequalities. We
first deal with the boundary term. First note that

S(0) − T
γ

S(0)

is of order�1, so we have〈
Sγ (0)w(0),w(0)

〉
L2(ω)

= Re
〈
T

γ

S(0)(0)w(0),w(0)
〉
L2(ω)

+O
(∥∥w(0)

∥∥
1,γ

∥∥w(0)
∥∥

0

)
.

Using (62), we can apply Gårding’s inequality (Theorem A.4) and derive

Re
〈
T

γ

S(0)(0)w(0),w(0)
〉
L2(ω)

+ C Re
〈
T

γ

λ2,γ β∗βw(0),w(0)
〉
L2(ω)

� c
∥∥w(0)

∥∥2
1,γ

− C
∥∥v̇(0)

∥∥2
0.

Observe that

T
γ

λ2,γ β∗β − [
Λ1,γ T

γ

β

]∗[
Λ1,γ T

γ

β

]
is of order�1 so we have

Re
〈
T

γ

λ2,γ β∗βw(0),w(0)
〉
L2(ω)

= ∥∥T
γ

β w(0)
∥∥2

1,γ
+O

(∥∥w(0)
∥∥

1,γ

∥∥w(0)
∥∥

0

)
.

Forγ large enough, we therefore obtain〈
Sγ (0)w(0),w(0)

〉
L2(ω)

� c
∥∥w(0)

∥∥2
1,γ

− C
∥∥T

γ

β w(0)
∥∥2

1,γ
− C

∥∥v̇(0)
∥∥2

0, (68)

and we now deal with the interior term. Since

ReSγ T
γ

A − T
γ

Re(SA)

is of order�2, we have

2 Re
〈〈
Sγ T

γ

A w,w
〉〉
L2(Ω)

� 2 Re
〈〈
T

γ

Re(SA)w,w
〉〉
L2(Ω)

− C|||w|||21,γ .

Define

∀z ∈ �Ω × (
R

d × R
+ \ {0}), ai(z) :=

(
γHi(z) 0

0 Ei(z)

)
.

Then the remainders

T
γ

V ∗
l alVl

− (
T

γ

Vl

)∗
T

γ
al

T
γ

Vl

are of order�2, so we get

2 Re
〈〈
Sγ T

γ

A w,w
〉〉
L2(Ω)

� Re
∑

l

〈〈
T

γ
al

wl,wl

〉〉
L2(Ω)

− C|||w|||21,γ ,

wherewl := T
γ
Vl

w. Using the block decomposition ofai and Gårding’s inequality (Theorem A.3) on each blo
we obtain

Re
〈〈
T

γ
al

wl,wl

〉〉
L2(Ω)

� cγ |||wl|||20,
and the ellipticity of the symbol

∑
l V

∗
l Vl yields, forγ large enough, the estimate

|||w|||21,γ �
∑

l

Re
〈〈
T

γ

V ∗
l Vl

w,w
〉〉
L2(Ω)

�
∑

l

|||wl |||20 + 1

γ
|||w|||21,γ .

Combining all these inequalities, we conclude that

Re
〈〈
Sγ T

γ
w,w

〉〉
2 � cγ |||w|||21,γ (69)
A L (Ω)
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osing
for γ large enough. We now use (68) and (69) to derive a lower bound for the left-hand term of (67). Choε
appropriately, we end up with

γ |||w|||21,γ + ∥∥w(0)
∥∥2

1,γ
− ∥∥T

γ

β w(0)
∥∥2

1,γ
− ∥∥v̇(0)

∥∥2
0 � 1

γ

∣∣∣∣∣∣T γ
χ0

F
∣∣∣∣∣∣2

1,γ
+ 1

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

1,γ

)
.

To conclude, observe that the remainder

T
γ

β T γ
χ0

− T γ
χ0

T
γ

β

is of order� −1 so we have∥∥T
γ

β w(0)
∥∥2

1,γ
� ‖G‖2

1,γ + ∥∥v̇(0)
∥∥2

0.

Eventually, we have proved

γ
∣∣∣∣∣∣T γ

χ0
v̇
∣∣∣∣∣∣2

1,γ
+ ∥∥T γ

χ0
v̇(0)

∥∥2
1,γ

� ‖G‖2
1,γ + ∥∥v̇(0)

∥∥2
0 + 1

γ

∣∣∣∣∣∣T γ
χ0

F
∣∣∣∣∣∣2

1,γ
+ 1

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

1,γ

)
. (70)

3.6. The main result

This paragraph is devoted to the very end of the analysis. We first prove the following:

Theorem 3.1.For all v̇ ∈ H 1(Ω), we define the localized norm ofv̇ as

|||v̇ |̃||2 := ∣∣∣∣∣∣T γ
χ0

v̇
∣∣∣∣∣∣2

1,γ
+ |||v̇out|||21,γ + γ 2|||v̇in|||20 +

∑
1�j�J ′

∣∣∣∣∣∣T γ
σj

v̇j

∣∣∣∣∣∣2
0,

where notations are similar to those of Section3.4:

T
γ

χQv̇ =
(

v̇in

v̇out

)
, v̇in ∈ C

N−1, v̇out ∈ C
N+1 andv̇in =

 v̇1
...

v̇J ′

 .

For v̇(0) ∈ H 1(Rd) we define in a similar way the localized norm ofv̇(0) as∥∥v̇(0)
∥̃∥2 := ∥∥T γ

χ0
v̇(0)

∥∥2
1,γ

+ ∥∥v̇out(0)
∥∥2

1,γ
+ γ 2

∥∥v̇in(0)
∥∥2

0 + ∥∥T γ
σ v̇in(0)

∥∥2
0.

Then there exist two constantsC > 0 andγ0 � 1 such that for allγ � γ0 and for all (v,ψ) ∈ H 2(Ω) × H 2(Rd ),
the following estimate holds:

γ |||v̇ |̃||2 + ∥∥v̇(0)
∥̃∥2

� C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
, (71)

where

v̇ := v − T
γ
∂daψ, F := ∂d v̇ − T

γ

A v̇ − T
γ

A−1
d C

v̇ and G := T
γ

β v̇|xd=0.

Proof. Using (61) and (70), we have already proved that there exists two constantsC andγ0 such that for all
γ � γ0, one has

γ |||v̇ |̃||2 + ∥∥v̇(0)
∥̃∥2

� C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
+ C

∥∥v̇(0)
∥∥2

0 + C

γ

(|||v̇|||20 + ∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
0 + ∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

0

)
, (72)

wherer is given by (43) andr0 is given by (65). We first show that the localized norm verifies

γ |||v̇|||0 � C|||v̇ |̃|| (73)
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e

tic
for γ large enough andC > 0. Write

I = χ0I + χI = χ0I + (
χ̃Q−1

0

)
χQ0,

whereχ̃ is a suitable cut-off function such thatχ̃χ = χ . Then we have

γ |||v̇|||0 � γ
∣∣∣∣∣∣T γ

χ0
v̇
∣∣∣∣∣∣

0 + Cγ
∣∣∣∣∣∣T γ

χQ0
v̇
∣∣∣∣∣∣

0 �
∣∣∣∣∣∣T γ

χ0
v̇
∣∣∣∣∣∣

1,γ
+ Cγ

∣∣∣∣∣∣T γ
χQv̇

∣∣∣∣∣∣
0 + Cγ

∣∣∣∣∣∣T γ
χQ−1

v̇
∣∣∣∣∣∣

0

�
∣∣∣∣∣∣T γ

χ0
v̇
∣∣∣∣∣∣

1,γ
+ |||v̇out|||1,γ + γ |||v̇in|||0 + C|||v̇|||0 � C|||v̇ |̃|| + C|||v̇|||0

and this gives (73) whenγ is large enough. In a completely similar way, we get

γ
∥∥v̇(0)

∥∥
0 � C

∥∥v̇(0)
∥̃∥. (74)

Using (73) and (74), (72) yields

γ |||v̇ |̃||2 + ∥∥v̇(0)
∥̃∥2

� C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
+ C

γ

(∣∣∣∣∣∣T γ
r v̇

∣∣∣∣∣∣2
1,γ

+ ∣∣∣∣∣∣T γ

r0v̇
∣∣∣∣∣∣2

1,γ

)
, (75)

and we need to absorb the last two error terms on the right-hand side.
To absorb the termT γ

r v̇, we decompose the symbolr as a linear combination ofχ0 and theσj ’s. Recall thatr
is a symbol of degree 0 and regularity 1 that is identically zero in the region{χ ≡ 1}. In the region{χ � 1/2}, we
haveχ0 � 1/2 so we can write

r := α0(χ0I),

with α a symbol of degree 0. In the region{1> χ � 1/2}, we can write

r :=


α1
...

αJ ′
αout




σ1In1

. . .

σJ ′InJ ′
IN+1

 (χQ0),

because the two last matrices are regular in the region wherer is not identically zero (this is because|σj | � c when
r is not zero). Up to introducing new cut-off functions, we can decomposer as

r = α0(χ0I) +


α1
...

αJ ′
αout




σ1In1

. . .

σJ ′InJ ′
I

 (χQ0),

whereα0 andαout are of degree 0 andα1, . . . , αJ ′ are of degree−1 (because theσj ’s are of degree 1). Using th
above decomposition, we easily derive∣∣∣∣∣∣T γ

r v̇
∣∣∣∣∣∣

1,γ
�

∣∣∣∣∣∣T γ
χ0

v̇
∣∣∣∣∣∣

1,γ
+ |||v̇out|||1,γ +

∑
1�j�J ′

∣∣∣∣∣∣T γ
σj

v̇j

∣∣∣∣∣∣
0 � |||v̇ |̃||.

The same kind of arguments also work for the termT
γ

r0 becauser0 is identically zero near the bicharacteris
curves. Eventually, (75) yields, forγ large enough:

γ |||v̇ |̃||2 + ∥∥v̇(0)
∥̃∥2

� 1 |||F |||21,γ + ‖G‖2
1,γ . � (76)
γ
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Theorem 3.1 gives a precise statement of the location of the possible singularities ofv̇, that is, wherėv is less
regular than the source termsF andG. However, an important consequence of Theorem 3.1 is that our con
coefficients energy estimate holds for variable coefficients system:

Theorem 3.2.Let a, defined by(24), satisfy Assumptions6–8. Then for allv ∈ H 2(Ω), ψ ∈ H 2(Rd) and for all
γ � γ0, one has

γ |||v|||20 + ‖v|xd =0‖2
0 + ‖ψ‖2

1,γ � 1

γ 3

∣∣∣∣∣∣Lγ
a (v,ψ)

∣∣∣∣∣∣2
1,γ

+ 1

γ 2

∥∥Bγ
a (v,ψ)

∥∥2
1,γ

. (77)

Proof. The result is now a direct consequence of the paralinearization estimates. Letv andψ be given and define
v̇ as the good unknown of the problem. Let

F := ∂d v̇ − T
γ

A v̇ − T
γ

A−1
d C

v̇ and G := T
γ

β v̇|xd=0.

Using (76) and (73), (74), we get

γ |||v̇|||20 + ∥∥v̇(0)
∥∥2

0 � 1

γ 3 |||F |||21,γ + 1

γ 2‖G‖2
1,γ .

We know from (36) thatG satisfies

‖G‖2
1,γ �

∥∥v̇(0)
∥∥2

0 + ∥∥T
γ

b ψ + T
γ

M v̇|xd=0

∥∥2
1,γ

+ ‖ψ‖2
1,γ ,

so we have

γ |||v̇|||20 + ∥∥v̇(0)
∥∥2

0 � 1

γ 3 |||F |||21,γ + 1

γ 2

∥∥T
γ

b ψ + T
γ

M v̇|xd=0

∥∥2
1,γ

+ 1

γ 2‖ψ‖2
1,γ .

Using (33), we obtain

γ |||v̇|||20 + ∥∥v̇(0)
∥∥2

0 � 1

γ 3 |||F |||21,γ + 1

γ 2

∥∥Bγ
a (v,ψ)

∥∥2
1,γ

+ 1

γ 2‖ψ‖2
1,γ ,

and using once again (33) (for the term|||F |||1,γ ) yields

γ |||v̇|||20 + ∥∥v̇(0)
∥∥2

0 � 1

γ 3

∣∣∣∣∣∣Lγ
a (v,ψ)

∣∣∣∣∣∣2
1,γ

+ 1

γ 2

∥∥Bγ
a (v,ψ)

∥∥2
1,γ

+ 1

γ 2
‖ψ‖2

1,γ .

Estimate (34) yields the estimate forv (and notv̇) while (35) enables us to recover the estimate on the shock
ψ and to derive (77). �

4. The example of gas dynamics

When dealing with a concrete example, it is more convenient to have distinct notations for the Laplace
and the Fourier variable. We shall thus denote byτ the Laplace dual variable oft (τ is a complex number o
positive real part) and byη ∈ Rd−1 the Fourier dual variable of(x1, . . . , xd−1). Consequently, the stable subspa
will be denoted byE−(τ, η), the front symbol will be denoted byb(τ, η) and so on.

Consider Euler’s equations of isentropic gas dynamics:{
∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,
(78)

wherep is an increasing but nonconvex function ofρ > 0. System (78) satisfies both Assumptions 1 and 2. F
planar shock wave

U =
{

(ρl,ul ) if x · ν < σ t,
(ρr ,ur ) if x · ν > σ t,
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ing
whereν is a unit vector inRd , the Rankine–Hugoniot conditions read

ρr(ur · ν − σ) = ρl(ul · ν − σ) =: j,
j [u] + [p]ν = 0,

and we shall assumej 
= 0. Then the tangential velocity is continuousacross the shock front and, up to chang
observer, we may assume

ν = (0, . . . ,0,1), σ = 0, ur,l = (0, . . . ,0, ur,l), j = ρrur = ρlul > 0.

The Mach number on both sides of the shock front is defined by

Mr,l := ur,l

cr,l

with cr,l := √
p′(ρr,l).

As usual,c denotes the sound speed in the fluid. One easily checks thatU is a 1-shock if and only if

Ml > 1, Mr < 1.

In such a case, the following result is proved in [24]:

Proposition 4.1(Majda [24]).The shockU is uniformly stable if and only if

M2
r

(
ρr

ρl

− 1

)
< 1.

Whenp is not a convex function ofρ, one may have

M2
r

(
ρr

ρl

− 1

)
> 1. (79)

In this case, the following is proved in [12]:

Proposition 4.2 [12]. There existsV1 > 0 such that for all(τ, η) ∈ C × Rd−1 satisfyingReτ � 0, (τ, η) 
= (0,0)

andτ 
= ±iV1|η|, one has{
(Z,χ) ∈ E−(τ, η) × C s.t.χb(τ, η) + MZ = 0

} = {0},
and forη 
= 0, the set{

(Z,χ) ∈ E−(±iV1|η|, η)× C s.t.χb
(±iV1|η|, η)+ MZ = 0

}
is a one-dimensional subspace ofC2d+3.

By definition,V 2
1 is the smallest root of the polynomial

P1(X) := (
c2
r − u2

r

)(
X2 + u2

r u
2
l

) + [
4u2

r c
2
r − 2urul

(
c2
r + u2

r

)]
X,

that has two distinct positive roots(the greatest is denotedV 2
2 ). Furthermore we have

c2
r − u2

r < V 2
1 < urul

c2
r − u2

r

c2
r + u2

r

< V 2
2 .

We recall a few results of [12]. The eigenvaluesωj ’s of the symbolA(U, τ, η) areωr
2 := −τ/ur , ωl

2 := τ/ul

and the rootsωr
1,3, ωl

1,3 of the polynomial equations:

(τ + urω)2 = c2
r

(
ω2 − |η|2), (80a)

(τ − ulω)2 = c2
l

(
ω2 − |η|2). (80b)
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We chooseωr
3 as the root of negative real part of (80b) when Reτ > 0. We also definear

3 := τur − (c2
r − u2

r )ω
r
3.

It is proved in [12] that Assumptions 4 and 5 hold as long as (79) is satisfied. Therefore, all planar shoc
satisfying (79) are weakly stable in the sense of Definition 2. Moreover, in a suitable neighborhood of the cr
frequenciesΣcr(u), there exists aC∞ basis (that we write under the form of a rectangular matrixQin) of the stable
subspaceE− such that

β(τ, η)Qin =
(

ρr(c
2
r τ + ura

r
3) 2ijηt

ijη(c2
r τ + ula

r
3) −ρr(τ

2Id−1 + urulη ⊗ η)

)
. (81)

Using simple calculations on matrices, we are going to show that Assumption 8 holds. Let us first loo
2-dimensional case:η is a real number andβQin is a 2× 2 matrix.

For all complex numbersξ1, ξ2, ξ3, ξ4, ξ5 such thatξ4 
= 0 and ξ5 
= 0, the identity(
1/ξ5 −ξ2/(ξ4ξ5)

0 1/ξ4

)(
ξ1 ξ2

ξ3 ξ4

)(
ξ4 0

−ξ3 1

)
=

(
(ξ1ξ4 − ξ2ξ3)/ξ5 0

0 1

)
is a straightforward calculation. If we write (81) under the form

β(τ, η)Qin =
(

ξ1 ξ2

ξ3 ξ4

)
,

we can easily check thatξ4 does not vanish in the neighborhood of the critical frequencies. In the neighborhood
(±iV1|η|, η) ∈ Σ+, the determinant ofβ(τ, η)Qin reads

ξ1ξ4 − ξ2ξ3 = (
τ − iV1|η|)h(τ, η) or ξ1ξ4 − ξ2ξ3 = (

τ + iV1|η|)h(τ, η)

for a suitableC∞ functionh that does not vanish, see [12]. Settingξ5 := h(τ, η), we obtain two regular matrice
P1(τ, η) andP2(τ, η) such that

P1(τ, η)β(τ, η)QinP2(τ, η) =
(

τ ± iV1|η| 0

0 1

)
.

This is nothing but Assumption 8 since the set of critical frequencies is precisely defined byτ = ±iV1|η|. In this
case, the set of critical frequenciesΣcr(U) has exactly four connected components and we have a real equa
each of them.

In space dimension 3, the computations are similar. Observe that the matrixτ2Id−1 +urulη ⊗η is regular (near
the critical frequencies) according to Proposition 4.2. HenceβQin reads

βQin =
 ξ1 ξ2 ξ3

ξ4 ξ5 ξ6

ξ7 ξ8 ξ9

 =
(

ξ1 �

∗ Ξ

)
,

whereΞ := (τ2Id−1 + urulη ⊗ η). One has detΞ 
= 0 near the critical frequencies. We check the identity(
1 −�Ξ−1

0 Ξ−1

) ξ1 ξ2 ξ3

ξ4 ξ5 ξ6

ξ7 ξ8 ξ9

 ξ5ξ9 − ξ6ξ8 0 0

ξ6ξ7 − ξ4ξ9 1 0

ξ4ξ8 − ξ5ξ7 0 1

 =
det(βQin) 0 0

0 1 0

0 0 1


and we can conclude that Assumption 8 is also satisfied in the 3-dimensional case.
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Appendix. Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer [10,28] t
use in this paper. The introduction of a positive parameter was achieved by Mokrane [29], see also [27]. We
these papers for the proofs of the results stated below. We first recall the classification of paradifferential symbo

Definition 3. A paradifferential symbol of degreem ∈ R and regularityk (k ∈ N) is a functiona(x, ξ, γ ) :Rd ×
Rd ×[0,+∞[→ CN×N such thata is C∞ with respect toξ and for allα ∈ Nd , there exists a constantCα verifying

∀(ξ, γ ),
∥∥∂α

ξ a(·, ξ, γ )
∥∥

Wk,∞ � Cαλm−|α|,γ (ξ) = Cα

(
γ 2 + |ξ |2)(m−|α|)/2

.

The set of paradifferential symbols of degreem and regularityk is denoted byΓ m
k . We denote byΣm

k the subse
of paradifferential symbolsa ∈ Γ m

k such that for a suitableε ∈]0,1[ one has

∀(ξ, γ ), SuppFxa(·, ξ, γ ) ⊂ {
η ∈ R

d | |η| � ε
(
γ 2 + |ξ |2)1/2}

.

Of course, the symbols inΣm
k areC∞ functions with respect to both variablesx andξ , and for alla ∈ Σm

k , we
have the estimates

∀(x, ξ, γ ),
∣∣∂β

x ∂α
ξ a(x, ξ, γ )

∣∣� Cα,βλm−|α|+|β|,γ (ξ).

Thus any symbola ∈ Σm
k belongs to Hörmander’s classSm

1,1 [19] and defines an operatorPγ (a) on the Schwartz
classS by the usual formula

∀u ∈ S, P γ (a)u(x) := 1

(2π)d

∫
Rd

eix·ξa(x, ξ, γ )û(ξ)dξ.

We shall use the following terminology:

Definition 4. A family of operators{Pγ } defined forγ � 1 will be said of order�m (m ∈ R) if the operatorsPγ

are uniformly bounded fromHs+m
γ to Hs

γ :

∀γ � 1, ∀u ∈ Hs+m
γ ,

∥∥Pγ u
∥∥

s,γ
� C(s,m)‖u‖s+m,γ .

The following theorem is crucial for the sequel of the analysis:

Theorem A.1.If a ∈ Σm
k , the family{Pγ (a)} is of order�m.

The regularization of symbols in the classΓ m
k is achieved by a convolution with admissible cut-off function

Definition 5. Let ψ :Rd × Rd × [1,+∞[→ [0,+∞[ be aC∞ function such that the following estimates hold f
all α,β ∈ N

d :

∀(η, ξ, γ ),
∣∣∂α

η ∂
β
ξ ψ(η, ξ, γ )

∣∣ � Cα,βλ−|α|−|β|,γ (ξ).

We shall say thatψ is an admissible cut-off function if there exist real numbers 0< ε1 < ε2 < 1 satisfying

ψ(η, ξ, γ ) = 1 if |η| � ε1
(
γ 2 + |ξ |2)1/2

,

ψ(η, ξ, γ ) = 0 if |η| � ε2
(
γ 2 + |ξ |2)1/2

.

An example of cut-off function is the following: letχ be a nonnegativeC∞ function onRd × R such that



J.-F. Coulombel / Ann. I. H. Poincaré – AN 21 (2004) 401–443 441

at
γ 2
1 + |ξ1|2 � γ 2

2 + |ξ2|2 �⇒ χ(ξ1, γ1) � χ(ξ2, γ2),{
χ(ξ, γ ) = 1 if

(
γ 2 + |ξ |2)1/2 � 1/2,

χ(ξ, γ ) = 0 if
(
γ 2 + |ξ |2)1/2 � 1.

We define a functionϕ(ξ, γ ) := χ(ξ/2, γ /2) − χ(ξ, γ ). Then the functionψ0 defined by

ψ0(η, ξ, γ ) :=
∑
p�0

χ
(
22−pη,0

)
ϕ
(
2−pξ,2−pγ

)
is an admissible cut-off function (one can takeε1 = 1/16 andε2 = 1/2).

If ψ is an admissible cut-off function, the inverse Fourier transformKψ of ψ(·, ξ, γ ) satisfies

∀(ξ, γ ),
∥∥∂α

ξ Kψ(·, ξ, γ )
∥∥

L1 � Cαλ−|α|,γ (ξ).

TheseL1 bounds on∂α
ξ Kψ enable us to establish the following proposition:

Proposition A.1.Letψ be an admissible cut-off function. The mapping

a �→ σψ
a (x, ξ, γ ) :=

∫
Rd

Kψ(x − y, ξ, γ )a(y, ξ, γ )dy

is continuous fromΓ m
k to Σm

k for all m.

If a ∈ Γ m
1 , thena − σ

ψ
a ∈ Γ m−1

0 . In particular, if ψ1 andψ2 are two admissible cut-off functions anda ∈ Γ m
1 ,

thenσ
ψ1
a − σ

ψ2
a ∈ Σm−1

0 .

Fixing an admissible cut-off functionψ , we define the paradifferential operatorT
ψ,γ
a by the formula

T
ψ,γ
a := Pγ

(
σψ

a

)
.

If ψ1 andψ2 are two admissible cut-off functions anda ∈ Γ m
1 , then Proposition A.1 and Theorem A.1 show th

the family{T ψ1,γ
a − T

ψ2,γ
a } is of order�(m − 1).

The symbolic calculus is based on the following theorem:

Theorem A.2.Let a ∈ Γ m
1 andb ∈ Γ m′

1 . Thenab ∈ Γ m+m′
1 and the family{

T
ψ,γ
a ◦ T

ψ,γ

b − T
ψ,γ

ab

}
γ�1

is of order�m + m′ − 1 for all admissible cut-off functionψ .
Let a ∈ Γ m

1 . Then for all admissible cut-off functionψ , the family{(
T

ψ,γ
a

)∗ − T
ψ,γ
a∗

}
γ�1

is of order�m − 1.
Let a ∈ Γ m

2 andb ∈ Γ m′
2 . Thenab ∈ Γ m+m′

2 and the family{
T

ψ,γ
a ◦ T

ψ,γ
b − T

ψ,γ
ab − T

ψ,γ

−i
∑

j ∂ξj
a∂xj

b

}
γ�1

is of order�m + m′ − 2 for all admissible cut-off functionψ .
Let a ∈ Γ m

2 . Then the family{(
T

ψ,γ
a

)∗ − T
ψ,γ
a∗ − T

ψ,γ

−i
∑

j ∂ξj
∂xj

a∗
}
γ�1

is of order�m − 2 for all admissible cut-off functionψ .
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The next theorem is the parameter version of Gårding’s inequality:

Theorem A.3.Leta ∈ Γ 2m
1 and letψ be and admissible cut-off function. Assume that there exists a constantc > 0

such that

∀(x, ξ, γ ), Rea(x, ξ, γ ) � cλ2m,γ (ξ) Id .

Then there existsγ0 � 1 such that

∀γ � γ0, ∀u ∈ Hm
γ , Re

〈
T

ψ,γ
a u,u

〉
H−m,Hm � c

2
‖u‖2

m,γ .

We also have a microlocalized version of Gårding’s inequality:

Theorem A.4.Let a ∈ Γ 2m
1 , χ ∈ Γ 0

1 andψ be and admissible cut-off function. Assume that there existsχ̃ ∈ Γ 0
1

and a constantc > 0 such thatχ̃ � 0, χ̃χ = χ and

∀(x, ξ, γ ), χ̃2(x, ξ, γ )Rea(x, ξ, γ ) � cχ̃2(x, ξ, γ )λ2m,γ (ξ)I.

Then there existsγ0 � 1 andC > 0 such that

∀γ � γ0, ∀u ∈ Hm
γ

(
R

d
)
, Re

〈
T

ψ,γ
a T ψ,γ

χ u,T ψ,γ
χ u

〉
H−m,Hm � c

2

∥∥T ψ,γ
χ u

∥∥2
m,γ

− C‖u‖2
m−1,γ .

We now study the case of paraproducts: they are defined by the particular choice ofψ0 as cut-off function. We
shall writeT

γ
a instead ofT ψ0,γ

a for the paradifferential operators obtained after smoothing by the functionψ0. We
have the following important result:

Theorem A.5.Let a ∈ W1,∞(Rd), u ∈ L2(Rd) andγ � 1. Then we have∥∥au − T
γ
a u

∥∥
0 � C

γ
‖a‖W1,∞‖u‖0,∥∥a∂ju − T

γ
a (∂ju)

∥∥
0 � C‖a‖W1,∞‖u‖0,

for a suitable constantC that is independent of(a,u, γ ).
If a ∈ W2,∞(Rd ), we have∥∥au − T

γ
a u

∥∥
1,γ

� C

γ
‖a‖W2,∞‖u‖0,∥∥a∂ju − T

γ
a (∂ju)

∥∥
1,γ

� C‖a‖W2,∞‖u‖0,

for a suitable constantC that is independent of(a,u, γ ).

We can extend the paradifferential calculus to symbols defined on a half-space in the following way:
denote byΓ m

k the set of symbolsa(x0, . . . , xd, η, γ ) defined onΩ × (Rd × [0,+∞[\{0}) such that the mappin
xd �→ a(·, xd, ·) is bounded intoΓ m

k . We define the paradifferential operatorT
γ
a by

∀u ∈ C∞
c

( �Ω )
, ∀xd � 0,

(
T

γ
a u

)
(·, xd) := T

γ

a(xd)u(· , xd).

Using Theorem A.5 and integrating with respect toxd , we obtain for all symbola ∈ W1,∞(Ω) and allu ∈ L2(Ω)

the estimates:∣∣∣∣∣∣au − T
γ
a u

∣∣∣∣∣∣
0 � C

γ
‖a‖W1,∞(Ω)|||u|||0,∣∣∣∣∣∣a∂ju − T

γ
a (∂ju)

∣∣∣∣∣∣
0 � C‖a‖W1,∞(Ω)|||u|||0, 0� j � d − 1.
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