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Abstract

We study the linear stability of multidimensional shock waves for systems of conservation laws in the case where Majda’s
uniform stability condition$ violated. The linearized problem is attadkusing the “good unknown” of Alinhac. We prove an
energy estimate and show that the solutions to the linearized problesrsimgularities localized ahg bicharacteristic curves
originating from the boundary. The application to isentropic gas dynamics is detailed.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous étudions dans cet article la stabilit@aire des ondes de choc multidimensidiesequi ne sont pas uniformément
stables au sens de Majda. Pour le probleme linéarisé, nous montrons une estimation d’énergie sur la «bonne inconnue
d’Alinhac. En particulier, nous montrons que les solutions du probléme linéarisé ont des singularités le long de courbes
bicaractéristiques émanant du bord du domaine. Pour finir, nous traitons I'exemple de la dynamique des gaz isentropique.
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1. Introduction

In [24] and [23], Majda proved the existence of muiigtnsional shock waves for hyperbolic systems of
conservation laws. The analysis relied on a uniform stability assumption. However, previous works [5,12] have
exhibited some examples where the uniform stabilidypdition breaks down. In [12], we have begun to extend
Majda’s linear analysis to these piaular examples, namely we have proved an energy estimate on a constant
coefficients linearized system. Here we adopt a gen@gicach and prove a compdeinear stability result for a
class of shock waves that are not uniformly stable. The analysis is closely related to what was done in [12].
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To avoid any possible confusion, we shall not include the case of nonclassical shock waves in this work though
this field has known a significant increase of interest over the past few years, see, e.g., [5,6,15,16] and the reference
therein.

We shall focus in this pap@m multidimensionahyperbolicsystems: the one-dimensional case is far different
from the multidimensional case since shock waves are either uniformly stable or violently unstable, see [25]. The
scalar case is also known to be very different from the system case since scalar conservation laws provide us witl
a unified theory of existence and uniqueness of solutions in the large, see, e.g., [13,33].

We consider a system @f conservation laws in time-spafiex R?:

d
> 0 fiw) =0, 1)
j=0

wherexg is the time variable, also denoted byn the sequel(xy, ..., x;) is the space variable arig stands for
the partial derivative with respect tg. The fluxesfo, ..., fz areC* functions defined on an open gétof RV
with values inR" . The jacobian matrix of; at a point« € U will be denoted byA ; ().

We assume that the system (1) does not consist of a single conservation law (in one or several space variables
that is, N > 2. We also assume that the space dimensiehzs2 (see the preceeding remarks). We first assume
that (1) is a symmetric hyperbolic system of conservation laws:

Assumption 1.There exists & mappingX : U — My (R) such that

Vji=0,....,dYueU X(u)A;(u) is symmetric,
VK compactc U Jcg > 0 such thaty' (u) Ag(u) > cx I forallu e K.

Recall that Assumption 1 is satisfied when there exasstrictly convex entropy, see [13,33]. Assumption 1 is
met by many physical examples such as Euler equations of gas dynamics, Maxwell equations or the wave equatior
Moreover, Assumption 1 is the key tool to solve the Cauchy problem associated with (1) for smooth initial data
(namely in a Sobolev space of large index), see [25,33].

Because the system has been assumed to be symmetric hyperbolic, theAtattixdefined by the formula:

d
VEER?, A, &) :=Aow) "y &A;w) (2)

j=1

is diagonalizable oveR for all stateu € U and all wave vectok € R¢ (see [33]). However, we shall need a
little more than hyperbolicity to carry otihe study of the linear stability of shock waves. In [21], the system was
assumed to be strictly hyperbolic but it has been showr24j fhat a suitable “blockteucture condition” (that

is met by strictly hyperbolic systems) is sufficientdarry out the study of initial boundary value problems and
the study of the linear stability of shock waves, see aldg37,29]. The block structure condition will be recalled
further in this paper. In [26], Métivier has shown thaetblock structure condition was met by every hyperbolic
system with constant multiplicity. We are thus naturally led to make the assumption that (1) is a system with
constant multiplicity:

Assumption 2. There existC* real valued mappingss, ..., A, defined onU x R? \ {0}, and fixed integers
my,...,mg such that the\;’s are the eigenvalues, with multiplicity ;, of the matrixA(«, £) defined by (2).
Furthermore, the ;’s satisfy

VueU, VE eRIN{0}, A1(u,&) <--- <y, £).

We point out that Assumption 2 is easily checked on the system. However, one could replace Assumption 2 by
the more abstract block structure condition, as was made in [24,27,29].
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Example. Consider Euler’s equations of isentropic gas dynamics in space dimefision
{31p+V-(pU)=O,
d(pu) + V- (pu®U)+Vp =0,

wherep stands for the density of the fluid,for the velocity,p for the pressure. Quantitigsand p are linked by
an equation of state = p(p). In the domair{p > 0}, hyperbolicity (we mean Assumption 1) amounts to requiring
that the pressure satisfies

dp
As usual,c denotes the sound speed in the fluid. Under this itimmdon the pressure law, Euler’s equations are

endowed with a strictly convex entropy, so Assumption 1 is met. Moreover, the eigenvalues of the corresponding
matrix A(U, &), U = (p, u), are given by

AU, &) =u-& —c|&| with multiplicity mq =1,
MU, E)=u-& with multiplicity mo =d — 1,
A3(U,E)=u-& +c|&] with multiplicity mz =1

c 0.

and therefore Assumption 2 is met. We shall detail in Section 4 how the general analysis of this paper applies in
the context of isentropic gas dynamics.

Note that Lundquist’s equations of magnetohydrodynamics violate Assumption 2. The study of shock waves in
MHD is a very intricate subject due to the appearance of many “pathologies” (honconstant multiplicity, occurrence
of under- and over-compressive shocks, etc.). We refer to [9] and to the references therein for some results on thi
subject.

Because of the natural development of singularities iitefitime, see [3], it appears natural to seek solutions to
(1) as functions that are smooth on either side of a hypersurfaiedR?. Recall the following classical result:

Proposition 1.1.Let I' = {x; — ¢(xo, . .., x4—1) = 0} be a smooth hypersurfacelix R¢, and letu be a smooth
function on either side af'. Thenu is a weak solution ofl) if and only ifu satisfieq1) (in the classical sensen
either side of/” and if the Rankine—Hugoniot conditions hold at each poinft of

d-1
VX = (x0,...,xq) € I, Z o[ f; )]0 = [fa)](x) =0, 3)

j=0

the partial derivatives op in the above formula being evaluated@, .. ., x4—1). In (3), we have lef f; (u)1(X)
denote the jump of the quantify () across the hypersurface

[fi]x) = girr&(fj (u(x+sn) — fi(u(x—sn))) withn=(—dog. ..., —da-1¢, 1).

The existence of such a piecewise smooth solution to (1) is a free boundary problem since the function
defining the hypersurfacE is part of the unknown of the problem. To overcome this first difficulty, we begin by
straightening the variables in order to work in a fixed domain: given a smooth fupctiaiR?, we define a change
of variables inR?*1 by the formula:

D (x0, ..., %q) == (x0, ..., Xa—1,Xa + ¢(x0, ..., Xa—1)).

We have chosen here the standard change ddibvies (as in [24,27,29]): it maps the hyperplane= 0} onto the
hypersurfacd™ and the two half-spacds-x; > 0} on the two sides of". Other choices for the change of variables
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(that may be appropriate for characteristic problems) may be found in [14]. We now perform a change of unknown
functions. Ifu is a smooth function on either side bf, then the functiom; defined by

Y(x0,...,%xq) € Rd+l, ug(xg, ..., xq) = u(fb(xo, e, xd))

is smooth on either side of the hyperplgng = 0}. Denoting byu;r (respectivelyu, ) the restriction ot to the
half-spacdx,; > 0} (respectively{x,; < 0}), Proposition 1.1 asserts thais a weak solution of (1) if and only if

L(u;it,go)utizO, if £x4>0, 4
B(u;,uﬁ_,(p)zO, if x4=0, “)
where operatorg and B are defined by the following formulas:
d-1
L. yyw:= Y Aj@)djw+ Ag(v, Vip)dgw (5a)
j=0
with
d-1
A, V) 1= Aa(v) = Y 0¥ A;(v), (5b)
j=0
d-1
Bw",w™,¥) =) ;¢[f;w)] - [faw)]. (5¢)

j=0

Now that the domain is fix, the problem reduces to the following question: given an initial détuhat is
smooth on either side of a hypersurfdag = ¢%(x1, ..., x4_1)}, does there exist a solutiamy, ¢) of (4) with
initial value (12, ¢°), at least locally in time? This question haseived a positive answer in [23] under the so-
called uniform stability condition (we shall recall it ineStion 2), see [25,34] for a description of the method.
The main idea is that Egs. (5a)—(5c) are satisfied for planar shocks and the linear uniform stability of these trivial
solutions implies the existence of nontrivial solutions. As detailed in [5,12,35], the uniform stability condition
breaks down in some cases and Majda’s nonlinear existence result can not be applied anymore. Our purpose |
therefore to derive a lineatability result under a weaker condition than Majda’s one.

2. The constant coefficients analysis

We first examine the linear stability of a planar shock in order to formulate our “weak stability” assumptions.
A planar shock is a solution of (1) that takes the form
u- ifxg>ot+v-y,
U { ro M y (6)
W ifxg<ot+v-y,
whereu, andu; are fixed vectors belonging to the open &gty = (x1,...,xqs—1) is the vector formed by the

tangential space coordinatesjs a vector inR?~! ando is the normal speed of propagation of the front. This
corresponds to the equation

d—1
@ (x0,...,X4-1) =0x0+ Zijj
j=1
for the shock front. We easily check thats a solution of (1) if and only if the Rankine—Hugoniot relations
d-1
o[ o]+ vilfiw]=[faw] @)

j=1
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Fig. 1. Characteristics entering the shock front.

are satisfied. Performing a rotation of the axis, we may assum6. Changing last space variahlginto x; — o,
we may also assume that the shock is stationary, that4s0. Note that Assumption 2 is still satisfied after this
change of observer.

Following Lax [22], we assume thatis a p-shock:

Assumption 3.There exists an integere {1, ..., ¢} such that the following inequalities hold:
Ap—1(Up,eq) <0< ip(u,eq) and A,(Ur,eq) <0< Apy1(uy,eq),

wheree, := (0, ..., 0, 1) € R? is the direction of propagation of the shagkMoreover,., is a simple eigenvalue,
that is,m, = 1.

In the casep = 1 (respectivelyp = ¢), that is, in the case of an extreme shock, the first inequality on the
left (respectively the last on the right) is ignored. Rétaht Assumption 3 is made in order to avoid under- (or
over-) determinacy of the boundary value problem (d)view of the number of jump conditions, the number of
characteristics (counted with thenultiplicity) entering the shock front curve has to be equavte- 1, see Fig. 1.
Recall also that if,, is a multiple eigenvalue, that is;, > 1, the p-th field is linearly degenerate by Boillat's
Theorem, see [33]. This is a second reason why we assumgtiga simple eigenvalue.

Remark. Applying the implicit functions theorem, we easily see that the set of solutiens, u;, u,) of the
Rankine—Hugoniot relations (7) consists, in the neighborhoa@,df, u;, u,) of all vectors of the form

(a, v,uy, h(o, v, ul)),

whereh is aC*® mapping defined on a neighborhood(6f0, u;) € R x R¥~1 x U and satisfie#(0, 0, u;) = u,..
Moreover, planar shock waves that are close to our reference planar shockiveagg-shocks, that is, meet
Assumption 3.

In what follows, we base most of our analysis on the reference shockwawewe shall also need to deal with
shock waves that are closedoThese shock waves share the main properties of

2.1. The weak stability condition

We now introduce the linearized operators around the shiodonsider a familyu; = u + sv andg; = sv.
Then we define
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d
La@®, ¥) 1= LT, g |s=0, (82)
d
By(v, ¥) := —B(us s Uy @s)|s=0- (8b)
Sinceu is constant on either side ¢f; = 0}, the linearized operators read
Lo@E, ¥) = Lyvt ZA (Ur1)0; v, 4xy >0,
d—1
Buw, ¥) =Y 0;¥[fi(W] — Aa(u)v® + Ag(upv™,  xg=0.
j=0

We letb;(u) :=[f;(w] (for j =0,...,d — 1) and

+
M(u) <z) =—AqU)vt + Ag(upv.

Then the linearized boundary value operdtgmreads
d-1

Bu(v, ¥) = Za vb; (u)+M<u>( )

We are mterested in the following boundary value problem for the unknown funations:
{Euvizfi for £x; >0,
Bu(v,¢) =g forxqs=0,

where f1. andg are source terms.

Note that system (9) is a constant coefficients hyperbolic boundary value problem; moreover, the boundary
{x4 = 0} is noncharacteristic because of Assumption 3: both matrigés, ) andA,(u;) are regular. Kreiss’ theory
[21] does not apply directly because partial derivativeg @fre involved in the boundagonditions. Nonetheless,
we attack problem (9) by the same kind of arguments: formally, we perform a Laplace transferemitha Fourier
transform in the tangential space variables, ..., x;—1). We also make the change of variableg — —x;) in
the evolution equation far~. This yields the following system of ODEs:

(9)

K dv+
(on(Ur) +i Z njA;j (Ur)> v+ Ad(ur)— =F;, (10a)
j=1
d-1 -
(TAo(Uz) +i Z njAj (U1)> Ve — Ad(ul)—d =F_, (10b)
j=1
in the domain{x,; > 0}, with the boundary conditions:
d—1
, V*(0) ~
<Tbo(u)+lj2::lfljbj(u)>‘1’+M(u) <V—(O)) =G, (11)

on {x; = 0}. The complex humber = y + ing has nonnegative real part afwt, ..., ny—1) iS a wave vector in
R?-1, In the sequel, we shall denote hyhe vector(no, n1, . .., n4—1) € R?.
Because the boundary is noncharacteristic, we may rewrite (10a), (10b) as an ODEs system of the form

d (vt _ v+ 1 (Fy
(V)= awnn (L) rawrt(E) @
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with

(A y) 0
A, n,y) = < 0 Aj(u, 7, 7/))‘

MatricesA,; and.A; in (12) are defined by

d-1
Ari(U,n, y) = FAa(uy) L (VAO(Ur,l) +i Z njAj (Ur,z)> ,

j=0
Aq(u) = (A"é“r) 0 ) .

—Aq(up)
Defining
A;(u):=<A"(u’) ° ) 0<j<d-1,
' 0 Aj(up)

we easily find

d-1
A(u,n.y) = —Ad<u)—1<on(u) +iD njA; (u)).

j=0
We also define the symbol associated with the shock front:
d-1
b(u, 1, y) = ybo(U) +1 ) n;bj(u). (13)
Jj=0
As pointed out by Hersh [17], the homogeneous part of the ODEs (12) is hyperbolicyvkeh that is, the
matrix.4 has no purely imaginary eigenmodes whes 0. Fory > 0, we defin€€~ (u, n, y) as the stable subspace
of A, which is the set of initial values of solutions to (12) that are square integral(e fmo[whenﬁ =F_=0.
Because of the decoupled nature of (12), the stable subgpacen, y) is nothing but the product of the stable
subspaces ofl, and.A4;. In the case of an extreme shock, one of these two stable subspaces is trivial. The dimension
of £~ (u, n, y) is equal to the dimension &f (u, 0, y) for all  (this is just a continuity/connectedness argument).
To compute the dimension & (u, 0, y), we seek the eigenmodes df(u, 0, y). These are the roots of the
dispersion equation

det[a)l — A(u, 0, )/)] =0.

The definition of4 shows thatoI — A(u, O, y) is singular if and only ify Ag(u,) + wA4(u,) or y Ag(U;) —wA4(Up)
are singular. As a consequeneesatisfies the dispersion equation if and only if there exists an integét, . . ., ¢}
such that

M(Up,eq)o=—y OF A(U,eq)w =1y,

wheree,g := (0, ...,0, 1) e R?. Assumption 3 shows that such valueswdire negative fok = p+ 1, ..., g in the
firstcase and =1,..., p — 1 in the second case. Taking multiplicities into account, this showsthat, 0, y)
(and therefore&~ (u, n, ¥)) has dimensiowV — 1 as long ag > 0.

For fixed n # 0, the stable subspa&& (u, n, ) admits a continuous extension whén y) — (5, 0), see
[8] (the argument makes use of the compactness of Grassmanian manifolds); we still denote this extension by
£7(u, n, 0). Note that fory = 0, vectors in the extended stable subspace are not always boundary values of square
integrable functions because of thespible occurrence of purely imaginargenmodes. This is widely detailed in
[5,12] for Euler equations of isentropic gas dynamics.
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We define the hemisphere Bf't1 as
Zpi={my) eR™ sty?+ |y =1and y>0}.
The boundary o, will be denoted byXy, that is,
Zo:={(n,0 eR™ st |p?=1}.

Recall the following definition:

Definition 1 (Majda[24]). The planar shock is said to satisfy the uniform ability condition if there exists a
positive constant > 0 such that for alln, y) € X, one has

V(x.Z)€eCxE (Un,y), |xbWU.ny)+MWZ|>c(Ixl+1Z]).

By compactness af’,, the uniform stabilitycondition is equivalent to the requirement that for@ally) € X,
the “critical” subspace

{(X, Z)eCx & (un,y)st.xbu,n,y)+MWZ =0}

is trivial, that is, reduced t¢0}. The word “critical” is not standard but its use here intends to show the major place
that is occupied by this subspace in the normal modes analysis.

Recall that a planar shock is uniformly stableaifid only if solutions of (9) satisfy a maximaF estimate
as in the study of linear hyperbolic boundary valuelpems, see [24, Propositior. IThe uniform stability
condition is thus the direct extension of Kreiss’ fanin condition for standard hyperbolic boundary value
problems [21].

As noted by Majda [24, Lemma 4.1], the uniform dgtiy condition enables to isolate the shock fro#t
appearing in (11) in a single equation. We emphasize that this opecatimotbe achieved for scalar conservation
laws in space dimension more than 1.

Our approach is slightly different: we shall allow some instability but these instabilities can only stem from the
traces of solutions to the dynamical system (12) and not from the shock front synutedined by (13). More
precisely, we make the following assumption:

Assumption 4.There exists a positive constansuch that
Y. y)e Xy, |bun,y)|>c. (14)

Of course, an analogue estimate is valid for all statesu; close tou,, u;.

Remark. Assumption 4 is equivalent (see [18, Chapter 4] or [20]) to the requirement that there gXistaapping
P: X, — Gly(C) such that

0
Vor.y) € Ty, P(U.n.y)b(U.n.y)= <1) :
and one can even choofedepending smoothly on the states u;.

Itis clear that (14) holds ifi satisfies Majda’s uniform stability coitobn. In a pseudodifferential setting,is an
overdetermined elliptic symbo} (is seen as a parameter and we are thus dealing with pseudodifferential symbols
with a parameter). It is shown in [12] that Assumption 4 is met in some cases where the uniform stability condition
is violated: the main example concerns shock waves in isentropic gas dynamics when the pressure law is not :
convex function of the density.
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Assumption 4 enables us to reformulate boundanditions (11) by isolating the unknown shock frahtin a
single equation. Because of (14), we can define fogaly) € R¢ x R* \ {0} the orthogonal projector

(h,b(u,n,y))
o, n,y)h:=h—-—"—"T"2pu,n,y).
"y b
Multiplying (11) by IT andb* yields the new boundary conditions
T, 0. y)MWV () = IT(u.n. )G, (15a)
b, n, )7 = (G — MUV (0), b(u, n, y)). (15b)

Observe thab is homogeneous of degree 1(im y) so (14) is equivalent to
2
V. y) R xRY, c(y?+nf%) < b, n.v)|".
Using Schwarz’ inequality in (15b), we obtain
~ 2 2
V(n,y) eRYxRY, (y2+ )¢ P < (|G +|VO]) (16)

for a suitable constart depending only on the shock It is thus sufficient to get an estimate ©1i0) and we shall
get from (16) an estimate of. In order to obtain the desired estimate (D), we attack the following boundary
value problem:

dv -
—— =AW, n,y)V + As(u)~1F, for 0,
g U, n, )V + Aq(u) Xd > (17)
I(u,n, y) MWV (OQ) =TII(u,n,y)G.
To avoid overloading the paper, we introduce the notation:

B, n,y):=I1I(U,n,y)MU).

This is the symbol of the “reduced” boundary conditions.

Isolating the front yields a boundary value problem where the boundary operator takes the form of a Fourier
multiplier of order 0. Indeed, the homogeneity propertybainplies that/T is homogeneous of degree 0 with
respect tan, y). More precisely/T is a pseudodifferential symbol of degree)0i§ seen as a parameter), and so
is alsoB. We refer to [11] for a detailed study of pseudodifferential calculus with a parameter; the introduction of
a parameter in Bony’s paradifferential calcsifd0,28] has been achieved in [29], see also [27].

Our final assumption is that the boundary conditions defined by the syfbatisfy the Kreiss—Lopatinskii
condition but violate theniformKreiss—Lopatinskii condition. It is important for what follows that this assumption
is met by all planar shock waves closeuo

Assumption 5.For all planar shock wavesclose to the reference shock wavethe following properties hold:

— If (n,y) € X4+ andy > 0, the reduced critical subspace

{Ze& u,n, y)stBu,n y)Z=0}
is trivial.
— If (n, 0) € Xp is a point where the reduced critical subspace

{Ze& (u,n,0)s.t.8(u,n 0Z=0}
is nontrivial, then there exists a neighborhaddf (», 0) in X, and a constant> 0 such that

Y. y) eV, VZe&E (u.n,y), |Buny)Z|=cylZ|. (18)
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Furthermore, there exists&° mappingQ (i, -):V — Gloy (C) depending smoothly on such that, for all
z=(n,y) €V, one has

a)l(Z)Inl
O, ) Au, 2) Qu, 2) 1 = ,
wy () Iy,

where thew;’s are complex valued functions, aigd is the identity matrix with size ;. Moreover, the integers
n;'s are independant aft, z), and thew;’s satisfy

Rew;(z) > cy
or
Rew;(z) < —cy,

for all z € V. In applications, it may happen that some of thgs have negative or positive real part when
y = 0. In such a case, one would have

Rew;(z) > ¢ (or < —c)

forallz e V.
The terminology we shall use throughout the paper is the following:

Definition 2. The planar shock wave is said to be weakly stable if it satisfies Assumptions 3-5. In particular, all
planar shock waves close tioare also weakly stable.

Before stating our main result on such weakly stable planar shocks, let us explain in a few words the meaning of
Assumption 5. The first condition asserts that the shoclevianot violently unstable: it must satisfy the analogue
of the Kreiss—Lopatinskii condition for linear hypetlmboundary value problems. The second condition asserts
that the uniform stability endition is violated “at order 1”. Recall that when Majda’s uniform stability condition
is met, one has an estimate of the type

V(,y) €V, YZeE (u,n.y), |Bu,n.y)Z|>clZ|.

In our study, the allowed instability yields a poweryoin (18).

When(n, y) tends to an instability point;, 0), part of the stable and unstable subspaced(@f, n, y) form a
central subspace. The last requirement s§émption 5 implies that the restriction dfu, 5, y) to this subspace
(that is central wherr = 0) is smoothly diagonalizable. In gas dynamics, there are examples of shock waves for
which the uniform stability condition breaks down at argoivhere the symbol is not smoothly diagonalizable,
see [12,24]. Unfortunately, we have not been able to deal with this case: one major problem is the failure of the
differentiability of the ei@nmodes at such points. We refer to therk by Okhubo and Shirota [30] for some
aspects of these phenomena.

Remark. Making Assumption 5 for all planar shock waves closeutds not very restrictive (first because it

is satisfied in both examples we study). In fact, if Assumption 5 is satisfied by the shockuyéven it is
automatically satisfied by all shock waves closeitprovided that all thev;'s are purely imaginary whep =0

in the neighborhood of the instiiby points, see [7]. This theoretical result applies to weakly stable shock waves
in isentropic gas dynamics, see [12]. In the case of phasesitions in a van der Waals fluid, instability points
belong to a region of the parametérs y) where some eigenmodes have negative real part and it is not a direct
consequence of [7] that Assumption 5 is satisfied bypdhar phase transitions close to the reference phase
transitionu (but fortunately the calculations show that it is true).
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2.2. The weak stabilitgf planar shock waves

In this paragraph, we show thatufis a weakly stable planar shock, then the constant coefficients boundary
value problem (9) is “well-posed”, in the sense that solutions to (9) satisfy an a priori energy estimate. Since we
deal with shock waves that violate Mig's uniform stability condition, the engy estimate will involve losses of
derivatives with respect to the source terfhandg.

We need first of all to introduce a few notations. Denote&bwandw the domains

2= ]Rff_"’l = {(xo, .., X4) € Rt stxy > O} and w:=R?Y=0%.
Fory > 0 and se R we define the following symbols
veeR?, A (E) = (v2+15PR)"2

The usual Sobolev spacés’(w) are equipped with the following weighted norms (depending on the positive
parametey):

2
”U”s)y A

/Ak*y(s)\ﬁ@ﬂzdéf.

R4

(2r)?

We shall write|| - [|o instead off| - ||o,,, Since there is no depenaee on the parameter for the L2 norm. These
weighted norms enable to construct a parameter version of the classical pseudodifferential calculus which is of
constant use in the study of hyperbolic boundary value problems, see, e.g., [21,24,27].

The spacd.?(RT, H*(RY)) is also equipped with the weighted norm:

+00
il = f JoC.xa) |2, dia. (19)
0

We shall also writd) - [|o instead of]| - [lo., . Typically, we shall use the spacgd(2) andL2(R*, H1(R?)).
Eventually, the scalar products bf(w) and L2(£2) will be denoted as follows:

(fs @120 = / Fmegmdy,  (f.e)2) = f f(x)g(x)dx.
w 2

The Laplace transform performed in the normal modes analysis amounts to working with the new functions
v = exp(—ytv and ¥ = exp(—yt)¥, with y > 0. This leads to the introduction of the “weighted”
operators:

LhD:= Ly +yAo(w)d and Bl (@, V) := Bu(@, ¥) + y¥rbo(u).
One easily checks that (9) is equivalent to
LI =exp(—y?) f, for xg > 0,
{ Bl (@, v) =exp(—yt)g, forxy;=0.

For convenience, we drop the tilda froimand s (keeping in mind that all functions have been multiplied by a
decreasing exponential function and therefore also depend on the parain@&ar result on weakly stable planar
shock waves can be stated as follows:

Theorem 2.1 Letu be a weakly stable planar shock. Then foralt H2(£2), for all v € H2(w) and forally > 1,
one has

1 1
PO+ o, ol + IVIE, S 5 I8 i3, + Bt s, (20)
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Energy estimates in Sobolev spaces of higher order are available, provided #matr are sufficiently regular.
Similar estimates also hold for planar shock wauedose tou.

2.3. Proof of Theorem 2.1

The proof of Theorem 2.1 follows the earlier works of Kreiss [21] and Majda [24] with suitable modifications.
It can be found in [12] in the case of isentropic gas dynamics.

Recall first that Assumption 2 ensures that system (fijfégs the so-called block structure condition. More
precisely, we have:

Proposition 2.1 (Block structure condition [26])lf Assumptior? is satisfied, then for all: close tou, for all
z € X, there exists a neighborhood of z in ¥, and regular matricesD (u, z) depending smoothly om and
z € V such that
a=(z)
at(z) 0
VzeV, Q@u,2)Awu,2)0u,z) = a1(2)

ak (z)

Furthermore, the spectrum af (z) (respectivelya™(z)) is contained in the half-plangRe¢ < 0} (respectively
{Re¢ > 0}), and for allk =1, ..., K, the matrixax(z) has purely imaginary coefficients when= 0 and ax (z)
satisfies

0 1 0
ax(z) = wpl +iNy  with oy € iR and Ny = 0 .0 .0

.01

0O ... 0 O

Finally, the lower left-hand corner coefficient & /dy (z) is a nonzero real number. Note that the dimensions of
the blocksz* anda;, may depend on but not onz € V.

Let us go back to Assumption 5:4fis a point of X such that the critical subspace

{Ze& w2 stpw,2Z=0}

is nontrivial, then we have assumed that all the blagk¢defined by Proposition 2.1 above) have dimension 1
and that the blocka™ anda~ can be chosen under diagonal form. In particular, whérelongs to a suitable
neighborhood of, ax(z) is a complex numbep; such that; € iR wheny =0 anddwy /9y (z) is real and does
not vanish. If Revy; < 0 wheny > 0, we obtain

Rewi(z) < —cy, (21)
whereas we obtain
Rewi (z) > cy (22)

if Rewr > 0 when y >0. In both cases; is a positive constant depending srendz. We refer to [12] for a
detailed study of the block structure condition in theecagisentropic gas dynamics. Assumption 5 then simply
amounts to counting the multiplicities of the eigenvalueslaf, z) near instability points.

We are now going to construct a microlocal symmetrizer in order to prove (20).
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e Letz e ¥ \ Xo. SinceA(u, z) has no purely imaginary eigenvalue (by Hersh’s result [17]), there exists a
neighborhood’ of z in ¥ and invertible matrice® («, z) depending smoothly one V (and also smoothly on
close tou) such that

VeV, 0, AW, 2)0w, ) = (a_O(Z) af@) ,
with
Spa~(z) c {Ret <0} and Smt(z) C {Re¢ > 0}.
Matricesa ™ (z) anda™ (z) are defined by Dunford’s formula, see [11,20]. As noted in [26], this reduction explains

why the block structure condition needs only t® thecked in the neighboood of points belonging t&y. By
Lyapunov’s Theorem, see [4], there exists two positive definite hermitian mafifitesnd H ~ such that

Re(H*a*(2)) = 1.

For convenience, we define the real part of a square méitas(N + N*)/2 and we do the same for operators on
a Hilbert space. Following Kreiss [21] (see also [11]), we chaosEthe form

r@:= <_g ozl(-)I*‘) ’

whereqx is a real number greater than 1, to be chosen large enough. Because the critical subspace is trigial when
belongs to a neighborhood gf it is proved in [11] that fokx large enough, the following estimates hold

Re(r ()0, A, 0. > 51,

r@)+CBu,2)*Bu,z) > cl, wherefu,z) :=Bu,2)Qu,2)"".
Constantg andC are positive and depend only ¢m, z).
e Let nowz € Xy be a point where the critical subspace is trivial. It appears from Proposition 2.1 that Jordan
blocks may occur in the reduction of the symb&l In such a case, the construction of the symmetrizer is rather
technical. We refer to [8,11,12,21,29,31] for the details. Following these anterior works, we conclude that there

exists a neighborhoow of z in X andC* matrix valued mappings and Q(u, -) defined onV such that for all
z €V, r(z) is hermitian,Q (u, z) is regular (that is, invertible) and

Re(r(2) Q(u, 2) A, 2) Q(u, 2) ) > ey 1,
r(2) + CRu, 2)* Bu,2) = cl, Bu,z):=pwu,2)Qu,z) %

e Letz € X be a point where the critical subspace is nontrivial. From Assumption 5, we know that there exists
a neighborhoo® of z in X and invertible matrice® (u, z), depending smoothly one V, such that

CUl(Z)Inl

Q(M,Z)A(M,Z)Q(u,z)_l: U)J’(Z)Inj/

w1,

(,()j (Z)Inj

where thew;'s have negative real part when> 0 and j=1, ..., J' and have positive real part when> 0 and
j=J'+1,...,J. We have just reordered the diagonal blocks appearing in Assumption 3. Let us remark that the
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stable subspacé€ (u, z) (that has dimensiotv — 1 for all z) is spanned by th&V — 1 first column vectors of
Q(u,z)~ L. In particular, we have

ni+---+npy=N-1 and w1+ ---+n;=N+1
Forz € V, we choose (z) of the form

2
—y“In-1

rz) .= N

@ < 011N+1)

wherea is a real number greater than 1, to be fixed large enough. Because of the local behaviab 06,tsee
(21) and (22), we have

3
1 y°In-1
Re(r(2) Q(u, 2) A, 2) Q(u. 2) )26( ay1N+1)’

forallz e V. If W € C2¥, we denote by¥ — the vector composed by thé — 1 first coordinates of¥ andW+ the
vector composed by th¥ + 1 last coordinates oV (this corresponds to a decomposition between the incoming
part and the outgoing part), so we can write
_ (W™ _ 0
B, )0, )W = B, 2) Q(u, 2) 1( 0 ) + B, )0, 2) 1(W+) :

and using (18), we have

ﬁ(u,z)Q(u,z)l(ug_> ’ > ey W,
which implies

WS W+ B ow
Choosingx large enough yields

r(2)+ CBu, 0)*Blu,2) > ey,

for all z € V. This completes the microlocal construction of the symmetrizer.

e We now turn to the proof of (20). For alj € X, the previous analysis establishes the existence of a
neighborhood’ of z in X and of smooth mappingsand Q with suitable properties. Becausg, is a smooth
compact manifold, there exists a finite covering 1 < i < I, of ¥ by such neighborhoodsdia smooth partition
of unity x;, 1<i < I, subordinated to this covering. FunctiopsareC*, nonnegative and satisfy

2

Blu,z):=Bu,2)Qu,2)" %

1
Vi=1...I SuppucCV; and » x?=1
i=1

Let nowv € H%(£2) andy € H?(w). We denote by (17, x4) the Fourier transform of with respect to the first
variables(xo, . .., x4—1). We also define

F =L@, ¥) e H(2), G:=Bl(v,¥) e H w).
We extend all mappings andQ; on all ¥, assuming them to be constant outsid&ofthis is of pure convenience

since only the value of these mappings on the suppogt afill be involved in the following calculations). Then
we extendy; and Q; as homogeneous functions of degree Qriny). Forz = (1, y) € R x R*, we define

Vi(z, xq) == xi(2) Qi(u, 2)V (1, xa).
We thus get the relation
dv;

il 410 AU, 2) Qi (U, 2) " Vi(z, xa) + xi (2) Qi (U, 2).Aa (W) "TF (1, x4). (23)
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If V; is a neighborhood of a point where the critical subspace is trivial, we extendas a homogeneous
function of degree 0 irfn, y). We take the scalar product of (23) with(z) V; (z, x4) and integrate with respect to
(n, xa), y being fixed. Using the inequalities

Re(r; (2) Qi (U, 2)A(U, 2) Qi (U, 2) ) = ey 1,
ri(z) + CBi(u, 2)*Bi(u, 2) > cl,

we obtain Kreiss’ maximal 2 inequality
1 -~ ~ 1 -~ 1 ~
yIXi VI + 1% Vi, _olI3 < ;|||XfF|||§ + 1855 ;lllxﬂ\l’yﬂ“g + 3 |2t IG5,

If V; is a neighborhood of a point where the critical subspace is nontrivial, we extends a homogeneous
function of degree 2 irin, v). We have

ri(2) + CA2Y ()i (U, 2)*Bi (U, 2) = ¢y?I,

and therefore, taking the scalar product of (23) wijtta) V; (z, x4) and integrating with respect t@, x,) yields the
inequality

—2Re[ri Vi %1 Qi A7 F ) 20y = ¥l Vi, 13 — C | xid Y G |5+ 2Re(Vi. 1 Qi AQT Vi) 2 -
Recall that; has diagonal form

2
<—J/21N1

yiIn_1 2
< =522,
omz*y(n)mﬂ) ( \/&xl’y(mmﬂ) s

ri(z) =

andr; satisfies

Re(ri (2) Qi (2)A(2) Qi (2) ™) = eys ()%
We have

2Re(Vi, i QiAQ Vi) 20y = c¥ s Vi]
and Young’s inequality yields

2
o’

~2Rel1 Vi 1 00A; Pl a0y < 5y s @Vl + s P
< rlls@villi+ > it Pl

Eventually, we obtain

Y3l VIE+ v2xi Vi, oI5 < %Hlml’yﬂﬂﬁ + [ xirt G|,
Since they;’s form a partition of unity, Plancherel’s Theorem yields

Yol + vy, 113 < y—13\||£5vmiy + % |BL @ w7},
To conclude the proof, we integrate (16) with respeoj toR?:

W12, < llvi,, ol3+ | BY . v) |3 < vy, o3 + %lll%(v, wl,.

and this gives (20). O
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Remark. In [24, Proposition 2], Majda stated an energy estarsimilar to (20) for isentropic Euler equations. We

point out that his result was obtained under the assumptjan= 0. Theorem 2.1 thus extends this earlier result

and indicates that losses of derivatives occur both in the interior domain and on the boundary. This shows a majo
difference between our analysis and earlier works such as [30,32].

3. Variable coefficients analysis: thel.2 estimate

Letu be a weakly stable planar shock. BecaoBAssumption 3, there exists an open&dh RY x RY x R x
R?-1 containing the origin such that for &, w;, o, v) € U, we have
u-+w,eU, u+w el,
Ap—1(Up +wp, &) <o <Ap(U+wp, §) and ApUy +wp, §) <o < Apira(Uy +wy, §),
whereg := (—v, 1) € R“. In other words, Us an open set such that all planar shocks associated with elements of
U are p-shocks. Shrinking/ if necessary, all planar shock waves associated with elemebtad weakly stable.
We fix a compact subsét ¢ ¢/ and consider mappings, i;, ¢ such thatp is defined orR?, i, (resp.i;) is

defined on{xy > ¢(xo, ..., xq-1)} (resp.{xqs < ¢(xo, ..., xqs-1)}). Eventually, we assume thai,, i;, V) takes
its values inC and is compactly supported. We define a function

. {ur‘i‘l;tr(x) If xd>(p(x01"'1-xdfl)7 (24)
U+ (x) if xg < @(xo, ..., xa-1),
and make the following assumption:

Assumption 6.For all pointx = (xg, .. ., x4) such thatc; = ¢(xo, ..., xg—1), the function
o {Ur +iu,(X) if ya>Ve-(yo,...,vi-1),
“Tlu+ i ya < Ve (o...., ya-1),

is a planar shock wave. An equivalent formulationhattthe Rankine—Hugoniot jumgonditions are satisfied at
each poink = (xg, ..., xg—1, (X0, . . ., X4—1)):

d-1
> e[ fi@]00 = [fa@]00.

j=0
In the above relations, the gradiény is evaluated atxo, ..., xg—1).

The regularity ofi,,u; and ¢ has not been precised. One can think of them as mild perturbations of the
stationary shock wave (some kind of first order correction in an asymptotic expansion). We shall be more precise
in the sequel.

3.1. The linearized equations

We first straighten the variables to work in a fixed domain, as described in Section 1. We still deadteeby
function obtained after changing variables. We consider a famib a+ sv andg; = ¢ + sy. Then we define
the linearized operators arouadn the following way:

d
La(w™, ¥) = aL(u?, Pu|s—o, (25a)

d
Ba(U, 1//) = aB(uj7 M;7 (pS)|S:0- (25b)
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A direct computation shows that

d—1 d-1
La® y) =Y Aj@)dv* + Y [VA;j@5) - vF]oji + Aa(@®, Vo)dgv®
j=0 j=0
d—1
=D ;WA @) gty + [ViAa @, Vo) - vF]dgiir,  Hxg >0,
j=0
and
d—1
Ba(v. ) =Y 0;¥[f;@] — Ag@", Vo)u™ + Ag@ . Vo)v~, xq=0.
j=0

We decompose the linearized operafgras

d—1
La@*,¥) = L@, @v" =Y 8;¥A;(@")dgiir — C@", p)v™,
j=0
whereL is defined by (5a), (5b) and
d-1
c@*, )t =— Z[VA.,' @) - vE]9jiir) — [VuAa(@®, Vo) - vE]daity (26)
j=0

is the zero order part (in*) of La.
As was done in Section 2, we write the linearized equations as a first order system (@™, v=) andy in
the domain{x,; > 0}. Define

(ot
A;(a)::(A"(a) O_) for0<j<d—1,
' 0 A@)
_(Aa@", Vo) 0
Ad® '_< 0 —Z}(a,W)>’

bj@:=[fj@] for0<j<d—1 and M@):=(-Aq@", Vo) Au@,Vg)).
The linearized operators read

d d-1
La(w,y) =) Aj@djv— Y 0;¥.A;@dsi —C@v, xa>0,

j=0 j=0
d-1

Ba(v, ) =Y _9;¥b;(@) + M(@)v, xq=0.
j=0

Recall that the perturbatiagi,, i1;, Vo) takes its values in the compact et I/ so the matrix4,(a) is regular.
We now introduce the positive weight that is, we change functionsandy and deal withv := exp(—y1)v
andvy ;= exp(—y1)y. As in Section 2, we introduce the weighted operators

LE©,9) = La(0, V) + yAo@7 — y ¥ Ao@dqi and B (3, V) := Ba(0, ¥) + y ¥bo(a).
For simplicity, we drop the tildas.

We fix an integem > (d + 5)/2 and assume that € H"Y2(R?) andu = (i, ii;) € H™(£2). Using some
classical properties of Sobolev spaces, see [1], we have

Vo e W22(RY), (i, i) e W2®(2) and (i, i) € L2(RT, W22(RY)).
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Because the coefficients of the diarized operators have limited smoothness, a convenient way to derive an
energy estimate analogous to (20) is to use the paradifferential calculus of Bony, see [10,28]. With this strategy in
mind, we are going to estimate the error between thesliized operators and their paralinearized version.

3.2. The paralinearized equations

We refer to Appendix for the definition of paradifferential symbols and for the main results of paradifferential
calculus.

3.2.1. Paralinearization of the boundary conditions
Define the following symbols:

d-1

b(xo,...,x4-1,1,¥) :=ybolxo, ..., x4-1) +1i Z njbj(xo, ..., xqa-1),
j=0

where
bj(xo,...,x4-1) :=b; (a(xo, ey Xd—1, O)).

Then we havés; € W2>°(R9) and as a consequenise I';. Theorem A.5 yields
lyboy — T)o ¥ [, Slibollwreoy 1¥llo S ¥ lla,y s
[bjd;9 = T3 6 w1, = I(b; = T5) @) |1, S 18;¥llo S ¥ ll.y -

and we thus obtain

Sy - (27)
1y

-1
yboy + ) 0,uby — Iyy

j=0

We also define
M (xo, ..., X4—1) := M (a(xo, . . ., x4—1, 0)) € W2 (RY),

and Theorem A.5 yields
Mo = Tl 1, < V1., ollo- (28)
Combining (27) and (28), we get
I1BE . ¥) = Ty ¥ = Tl oy, SN2y + v, llo- (29)

We shall therefore replace the linearized boundary operataf) — Bk (v, ¥) by its paralinearized version
W, ) > T) Y + Tyv.

3.2.2. Paralinearization of the evolution equations
We are now going to paralinearize the evolution equations after multiplying(ﬁy Define
Aj(xo,...,xq) = A; (a(xo, .. .,xd)), C(xo,...,xq) ::C(a(xo, el xd)).

BecauseVp € W2 (RY) anda e W2>(2), we haveA ; € W2>(£2) andC € W1>(£2). Recall that first order
derivatives ofi; appear in the definition of, see (26), so we do not haGe W2 (£2).
The matrix valued mapping, is uniformly invertible, namely

[Ad T w2ee o) < €
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Using the definition (19) and Theorem A.5, we obtain the following estimates
lyAG* Ao =77, 1, vl S Hvllo

IA;*A;9;0 — Slivllo foro<j<d-—1,

A 1A v|||1y

lAazicv — nglcvml,y < lvllo-

Those estimates are obtained by a simple integration of the paraproduct estinitesnit from the definition of
the paradifferential operators in a half-space, see appendix.
As for Eq. (12), forx € £2, n € R? andy > 0, we define the symbol

d-1
A1, y) = —Ad(x)—1<on(x) +iY njA; (x)>.

j=0
Itis clear thatA 1“2l and the previous inequalities yield

d-1

YA Ao+ ) ATAY v — A ICo+ T v+ T) v
i—0 d
j:

< lvllo. (30)
Ly

We have thus estimated the error terms iwhen paralinearizin@glﬁg(v, ¥). We now turn to the error terms
in . There are two such terms that are

YA Agd i — oy and A YA;d.00;y — T v, 0<j<d-1.

1A dqit injAy IA; j0dit
Using Theorem A.5 and the propeidy:i € L2(R*, W1°(R%)), we obtain
Ve, Svivio S IvilLy.

Vil S8;vllo S 1¥llLy-

Iy vAs Aodait =y T,

IlA1A 8410, — Tn T

We thus get the estimate

d-1
Y WAL Aodait+ Y AFAidjy + T, vl Sl (31)
j=0 Ly
Combining (30) and (31), we have proved
A L5 @, ¥) = a0+ T v+ Tpac? = Taga¥ [l S Mvllo+ ¥y (32)

As for the boundary operator, we shall therefore replace the linearized opérator — A;lﬁg(v, ¥) by its
paralinearized versiov, ) > d4v — Tx v — T/i’,lcv + TRga ¥
d

3.2.3. Change of unknown function

Unlike in the uniformly stable case, the linearized operator involves in our case a zero order operatndin
a first order operator iy. We shall use a change of unknown functions, that is due to Alinhac, see [2], and that
simplifies the expression df,. If we letv = v + ¢ 9,1, we have

La(v, ¥) = L(@, )0 — C(@)v + ¥oq[L(@, p)i].
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The functiony is referred to as the “good unknown” of the problem. We emphasize that this change of unknown
functions yields an operator ifd, y) with only zero order term iny: roughly speaking, the operatgy reduces
to an operator with only first and zero order ternvirsince the zero order terms ynwill be easily estimated.

As regards the paralinearized equations, the previesidt suggests to make the change of unknown functions
vi=0+ aduw- We are going to show that the paralinearized operator is eqaabte T,i’i) — T/i/glci’ plus some

error terms whose norm can be controlled.
A straightforward computation shows that

14 _ . Y. y .
adv—TAv— v+ Aﬂduw—fidv—TAv—TAJle—i—el—ez—i—eg,
where
TV 14 Yy
e1:= Tagux/f, er: =T/ R (R = (TRa,u — TA Tyi) V-

Because: € H™(£2) andm > (d + 5)/2, we have
Mleillny SM¥llay, 1<i<3,
and therefore
1@av = T5v = T3 s vt TR0 ¥) = (Bad = T30 = T 0, S 1My
As a consequence, we shaII focus our attention on the opekatoer 7, v — T/Iglci} and try to derive an energy
estimate for this operator.

Remark. After changing unknown functions, the paralinearized boundary operator @agis+ T,\’,',budzo +
Ty Tyq ¥, and we see that the last term in this sum satisifies

Tt ), S 1,

To summarize, we have proved
llAG ca . vy = (00 = T = T s 0)l, < Clvlo+ 1112y,
| BE@. ) = (T¥ + Ty i1, o)1, < Cllvr,,ollo+ ¥ 2).

Furthermore, the relation= v + adu‘ﬁ yields

(33)

. . C
vy, —ol1§ < 2(191,, oI5+ ClIV 1) < 2(||v|xd=0||3 2 ||w||iy>,

. . C
vl < 2(lIo13 + Cllw113) < 2<|||v|||% t 3 ||w||iy>,

and we thus get

. . 1 c
VIBIG + 51,015 > 5 (¥ IVl + l1vi,, o 13) - ;nwniy. (34)

It is now clear that the change of unknown function is appropriate because an energy estimate of the same type &
(20) for (v, ¥) will yield a similar energy estimate faw, v).

All constants appearing in (33) and (34) are uniform with respect to the norms of the perturbations and the
compact sefC. Namely, if the perturbatioty,, it;, Vo) is valued inkC and satisfies

ol gmsrew <K, |G )] yn gy < K.

for some constark > 0 and some integen > (d + 5)/2, then the constants appearing in (33), (34) only depend
onK andk.
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3.2.4. Eliminating the shock front
Using Assumption 4, we know that there exists a positive constar such that

b*(xo, ..., Xa—1, 0, YIb(x0, . .., Xa—1, 1, ¥) = c(¥* + In|?).

The constant only depends on the compact 9ét The symbolb*b is of degree 2 and elliptic so, applying
Garding’s inequality (Theorem A.3), we obtain

2
Yy =vo. 1VIE, SRe(TL v v),2 S| T v g+ Re(RY v, ) .
where{R"} is a family of order< 1. We thus get

W12, ST v lg+ 1wy vl < %nwniy +T v
Up to a greater choice gh, we finally get
Yy 2y0. IWIE, SITVIES T v + T30, o2+ 161,003
< y—lz T+ Ty, sl5, + 161,01, (35)

which is the variable coefficients version of (16).
Introducing the orthogonal projectdk(y, 1, ) onb(y, , ¥)*, we have Ie F2° andIlb = 0. Theorem A.2
gives

YV YV .. Yoo .
H TH Tb I/f H 1,y 5 ”w ”l,y ’ || TH TM v|xd:0 - THI\/I ledzo H 1y 5 ”U\xd:o ”0
Using the decomposition
Yo — (7Y S AR Y (7Y s ¥ Yy
Tiim 01,0 = (Tam — Tt T ) 01y + T (T Ot yo + Tp V) — T Ty ¥
we end up with
y . . y y .
I Tt L ||1,y S0, —ollo+ | Ty v + Ty V=0 ”1,;; il - (36)
From now on, we focus on the system
. y . )/ .
g0 — Th v — TA(?lCU =F, x4>0,
TIJI/M l')lxd:o =G, xq =0,

and try to derive an energy estimate of the type
. . 1 1
yIBIE+ 116, oI5 S FmFmiy + ﬁncniw

for all y > yp. Using (33)—(36) and a greater choice of the constantve shall obtain the variable coefficients
analogue of our basic estimate (20). A precise result will be stated in Section 3.6.
As was done in the constant coefficients case, we define the syérdfdhe reduced boundary conditions:

Yr.m, ) € RO RO RY, B(y,m.p) =T 0, y)M().
Our goal is to derive an a priori estate for the paralinearized system:
. y . ]/ .
0qv — T 0 — TAJlez F, x4>0,
T;;/ﬁ\xfo =G, xg=0.
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3.3. Geometrical assumptions

Let us go back to Assumption 5. For all planar shock wavel®se tou, we define the set of critical frequencies
Xer(u) as the set of thosgy, y) € X4 such that the critical subspace

{Z €& (u,n,y)stBu,ny)Z =0}

is not reduced td0}. From Assumption 5, we know that frequencies y) € X¢r (1) satisfy y = 0. Another
requirement of Assumption 5 is that there exists a neighboriggd) of X¢((x) in X and a smooth mapping
Qo(u) defined onVer (1) with values inGloy (C) such that

w11y, 0
QoAQ;" =
0 wyly,
To deal with the variable coefficients case, we need to assume&gh@d is endowed with an “equation”. More

precisely, we assume that there exists a smasdhvalued functiorns (defined for all shock waves close tou)
such that

Zer(u) ={(n,y) € Ty sty +ic(u,n,y) =0}
={(n,0) € Zos.t.5(u,n,0)=0}.

We refer to Section 4 for an example. The functioiis extended as an homogeneous mapping of degree 1 with
respect tan, y).

Recall that the perturbed planar shatlks assumed to satisfy the Ranki-Hugoniot relatins at each point of
the boundary £2 (Assumption 6). We thus define the set of the so-called “critical points” as

Zoi={(x,n,y) €32 x Ty st.(n,y) € Tur(ax))}. (37)

We already know from Assumption 5 that there exists a neighbourtifod > in 952 x ¥, such that the symbol
A(z) is diagonalizable ow?:
CUl(Z)Inl 0
Q0(2)A(2)Qo(2) " = =: D1(2). (38)
0 (,()j (Z)Inj

This corresponds to a diagonalization of the symbdain the boundary 2, when the frequencies are close to the
unstable frequencies.

On the boundary £2 of the space domain, the set of space-frequency variables is thus decomposed as the union
of a setV? that contains all the unstable points and a set that contains only uniformly stable points. In the subsequent
analysis, we shall show that the instabilities originating from the criticabzgbropagate in the interior domain

along bicharacteristic curves. In order to control where these instabilities propagate, we are led to the important
assumption that these bicharacteristic cuatreswell-defined in all the interior domain:

Assumption 7.There exists an open Sgt C 2 x X, satisfying
Ve {xg =0} =10

and there exists a symbglp of degree 0 and regularity 2 defined Basuch that (38) holds on ali..
Moreover, decomposing; asw; = ye;+ih; (all mappings are defined aft), the solutions of the Hamiltonian
ODEs system
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dxy  9hj

—=—(,n,y), k=0,...,d—1,

dxa  Omk 4

d oh;

r]kz_—](x’r},y), k=0,...,d—1, (39)
dxy 0Xk

(X0, -+ Xd—1, 105 > Nd—1: ¥ )| -0 € 1%

are defined for alk; > 0, that is, stay in; for all x; > 0. These solutions are referred to as bicharacteristic curves.
Note that Assumption 7 is met in th@mrstant coefficients case. Indeeéf, may be chosen as the product
082 x Ver(U), and we choose in this case
Vo= 2 x Ver(U).

Then the mappin@g exists because of Assumption 5, and it is independent e well as thev;’s. The ODEs
system (39) then reduces to

dxy  9hj

_:—(77:7/)7 k:O,...,d_l,
dxg; O

d

Y _o, k=0,...d-1,

dxg

(X0, -+ Xd—1, M0 - ++» Nd—1, V)] € V&

Our choice ofV. implies that the bicharacteristic curves stayin(frequencies are constant along these curves
becausé:; does not depend ar).

In the variable coefficients case, we recall that the perturbatier,, it;) has compact support. Consequently,
if (xx,nx) is a solution of (39)); is constant forx; large enough. From standard ODEs arguments, we claim
that Assumption 7 is satisfied whenis a sufficiently small perturbation (one can chodkeas in the constant
coefficients case, provided the perturbation is small enough). We refer to Fig. 2 for a schematic picture of the
situation.

For (y,n,y) € 92 x RY x R, define

o(y.n.y):=d(ay).n.v).

so we haver € I'}(RY).

i

Tq

Support of (u,, ;)

Fig. 2. Bicharacteristic curves originating from the boundary.
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With the help of Assumption 7, it is possible to construct a solution of the transport equation
d—1

0,05 + Zaxkajaﬁkhj — 000k =0, (x,n,v)eV, (40)
k=0

0
Ojlymo =0 (M y) €V,

and the solutiow; of this equation is homogeneous of degree 1 with respeget, te). The solutiors; is constant
along the characteristic curves of Eq. (40), and these swneexactly the bicharacistic curves defined earlier.
Note that (40) also reads

8Xd6,/ + {Uj, /’lj} =0,
where{o;, h} is the Poisson bracket of; and# .

For convenience, we extend all mappimgs 1< j < J (and thusD;) as symbols of degree 1 and regularity 2
defined for all(x, n, y). We therefore have; € F21. We choose these extensions such that one has either

ejzc>0 or e; <—c<0,

wherew; = ye; +ih;. Extending thev;’s allows to define a global solutiar; of (40), meaning that; is defined
forall (x,n,y) € 2 x X and not only for(x, n, y) € V. This global solution belongs t621. What is important
is that we havenot changed the value af; on the sef); sinceo; is constant along the bicharacteristic curves.
The functionss; are weights that vanish only on the curves originating from the critical points. We shall see in the
sequel that they are appropriate in the derivation of an energy estimate.

Finally, we need to precise the behavior of the restriction of the boundary sygntmthe stable subspace.
Recall that the firsiv — 1 column vectors of the matri@o(z) 1 span the stable subspage(z) whenz € Vg. We
write:

Q0() ' =(Qin(@ Qou@)), Qin(z) € May n-1(0),
and make the following assumption:

Assumption 8.There exist two mapping®; and P, defined or)? such that

forall z € VO, P1(z) € Gly_1(C) and Py is a symbol of degree 0 and regularity 1,
forall z € VQ, P>(2) € Gly—1(C) and P> is a symbol of degree 0 and regularity 1,
for all z € V9, one has

Aoy +iocz) 0

P1(2)B(2) Qin(z) P2(2) = ( 0 v

> =: Bin(2). (41)

In the constant coefficients case, Assumption 8 implies (18). The meaning of Assumption 8 is that the restriction
of B to the stable subspace has a kernel of dimension 1 (this was not part of Assumption B) \@amishes at
order 1 on this kernel”. To check Assiption 8 in practice, it is sufficienbtcheck it for a planar shock wave.
Using Assumption 6, a similar reduction will hold for a perturbed planar shock satisfying the Rankine—Hugoniot
relations.

With these preliminary reductions in mind, we can turn to the derivation of our energy estimates. We fix a
nonnegative cut-off functiop verifying

x is a smooth (that i<7°°) symbol of degree 0 and Sugpc V.,
x =1 in a neighborhood of the bicharacteristic curves originating fééynin other words, out of the region
wherey =1, one hago;| > ¢ > 0 forall j.

Definexo := 1 — x and observe thatg has its support in the set of uniformly stable points.
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3.4. Energy estimates near instability points

The aim of this paragraph is to derive three différemergy estimates in the neighborhood of instability points.
We show how to control thé&2(H1) norm of the outgoing modes. For the incoming modes, we show how to
control theL? norm and thd.2(H1) norm far from the bicharacteristic otes starting from the critical sefc.

Before establishing our main energy estimates, we prove a reduction result that will help us to deal with the
zero order term in the linearized equations. Recall that relationh@8} on all the open s&t. and not only on its
tracevg. In terms of symbolic calculus, we are looking for a symBol; of degree—1 and regularity 1 such that

(Qo+ Q-D#(84 — A — A;*C) = (8; — D1 — Do)#(Qo + 0-1),

where the composition of symbols is to be understood as the expansion to first or second order (depending on th
regularity with respect to), see Theorem A.2. Recall that our symbols have finite smoothness in the space variable
so the expansions of adjoints or composed symbols are only finite and not asymptotic.

The existence 0 _1 is given by the following lemma:

Lemma 1.Let Qg be defined by Assumpti@nand defineD1 as in(38). There exists a symbag) _; of degree—1
and regularityl, defined oV, such that

d—1

_ 1
(Qo+Q-1)(A+A;C) + Qo+ 3 (B QodyA — By D1y, Qo) — (D1 + Do)(Qo + 0-1)

k=0
is a symbol of degree 1 and regularityl, and Dg is a block diagonal symbdbf degreed and regularityl) whose
blocks have dimensioms, ..., n; asthose oD;.

Proof. Using the equalityDoA = D1 Qo, the problem reduces to finding a symlgl ; of degree—1 such that
141
[0-105% D1] + QoA COGt + 8400 + - >0y, Q00 A — By, D1y, Qo
k=0
is block diagonal (it will automatically be a symbol of degree 0). Here abdfeV] denotes the commutator of two
matricesM andN. Using thatD; is block diagonal (with diagonal blocks, 1, , ..., w;1,,), a simple calculation
shows that one can choog};ngl (and thereforeD _1) such that the extra diagonal blocks [@71Q51, D1]
cancel those of
14-1
QoA;'CQG" +84Qo+ = ) by Qody A — By D1y Qo.
k=0
Because the diagonal blocks[a@) 1 Qal, D1] are identically zero, one can only cancel the extra diagonal blocks.

It stems from this simple calculation th@t_1 Qal is of degree-1 and regularity 1, and therefore so@s 1. This
proves the lemma. O

Note thatQ_1 and Dg are only defined for space-frequency variables belonging taut, as was done fabq,
we extendDg as a global symbol of degree 0 and regularity 1.
In all the sequel, we denote by the sumQg + Q_1. The following calculations heavily use the fact that
defines a “good diagonalization basis” of the paralinearized operator
. . y . ]/ .
V> g0 — T v — TA;le.
Letv € H?(£2) and define
- - V.. Y . 1
F:=0q0—Tyv— TA;1CU e H-(£2).
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We also define
TV
w = TXQU
and we first show thab satisfies a paradifferential equation whose first and zero order symbol are block diagonal.
The paradifferential equation involves error terms that will be absorbed at the very end of the analysis. In all this

paragraphR? always denotes an operator of order 1 that represents the current error terms in the computations.
We have

_ TV . Y . 14 .
daw =T,V + Tyg, 00 + Ty 0 (@av)
_ 77 g Y . Y Y. Y .
=T 000+ Tha,00 + Ty o (Ta 0+ TAJle +F)

_ 7Y . Y . % . v Ve %
- T(3dX)QOU + Txaonv + TXQ(A.;.A;lc)U tTav+ R+ TXQF’
where
191
1,
= ];)ank (x Q0)dx,A.

Lemma 1 implies that

d-1
_ 1
x01Q0+ x O(A+ A, lC) +rt— ((Dl +Do)x Q + 7 Z(ankX)QOaxkA + X (9p, D1) 0y, Qo)
k=0
is of degree-1, and we thus get

—_ TV g 4 14 Yo Yo ’ 14
daw =T0 0.0+ (T, +Th )w+Th+T50+ R+ T],F,

where
1 d-1
ri= = ) (@) Qodu A + X (9, D1)dy o,
k=0
1 d-1
3.
r¥i= == ) (@ D1y (x Qo).
k=0
After simplifying 2 + r3, we get the relation
adwzTglw+T,§ow+T,Vﬁ+Rm+T;QF, (42)
with
d-1
1
ri=@ax)Qo+ ¢ Z(ankX)QoaxkA — (0, X)(3n, D1) Qo. (43)
k=0

As a consequence,is of order 0 and is identically zero in the domain whegre= 1. Therefore has its support
far from the “unstable” points.
Recall thatD is diagonal and)g is block diagonal:

wlln]_ Cl
Dl = t. A , DO = c. . s
wyly, Cy
S0 (42) can be written as a collection.bkequations
14 v . ¥
adwj:Ta}:/wj+TCjwj+Trjv+Ryv+TXQjF, (44)

with Rew; <0 when y >0 and 1< j < J/, and Rev; > 0wheny >0andJ' + 1< j < J.
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3.4.1. Estimate for the outgoing modes
We first deal with the indexeg for which Rew; > 0 when y >0. Recall thatw; is defined for all(n, y) and
satisfies

Y(n,y) € R? x RT, Rew; > cy.
We chooseA?? as a symmetrizer for (44), whe?®? is the Fourier multiplier of symbal?? (). Taking the
scalar product irL?($2) of (44) with A%Yw;, we get

~[wi @], = 2RefA™ T wj A wj) o )+ 2R[ANTE w), A w))

L2(£2) L2(2)
+2 Re«Al’V Tr);i” A w; >>L2(.rz

+2Re(AM T, F, AM w;)

) +2 Re(AYY R b, A1~Vw,-))L2(Q)

L2(2)"
Taking the order of the different operatorsdaraccount and using Young’s inequality, we obtain
— Lypy . ALYy .
2Re[ATTE wj, AT wj)

2
LZ(Q) g C|”w1 |||11V’

. C iy
—2Ref AN T3, A w)) 5 < ;|||T,zv|||iy +eyllwsli?,.

—2Re[AM RV b, A wj) o) < —NI0NG + ey llw) I,

C
14
C 2
Ly v Ly, . 14 2
—2Re[AM T, F AY w)) 50, < ;H\TXQFH\LV +eyliw;liz, .
for somes > 0 to be fixed. Using Theorem A.2, the difference
1, 1
ANYTY TV AYY
is of order< 1 so we have

2Re(<Al’yTa’;/wj, A w;) > 2Re((Ta7)’jAl’ij, Al’ij»Lz(m — Cllw; |||§)y.

L2(2)
Applying Géarding’s inequality (Theorem A.3), we finally get
. , 2
2 Re«Al }’Ta})'jwj, Al wa>>L2(Q) = (cy — O)llw; |||1)),.
It is now clear that an appropriate choicesofields theL2(H1) estimate

2 1 2 1 . .
Vi, +[wi Oy, S 2T Flly, + 2 (oo + N7 oz, ). (45)
3.4.2. Estimate for the incoming modes
We now deal with the indexesfor which Rew; < 0 when y >0 (and therefore Re; < —cy). We first choose

the identity as a symmetrizer and perform the same computation as above. One can indeed proceed in a simile
way because the symmetrizer is a constant coefficients operator (that is, a Fourier multiplier). Because of the sigr

of Rew;, we have
1 1 . .
yllw; 3 < Jw; O+ ;IIIT{QFIHiV + ;(Hlvlilé +I7oll3,).
and we rewrite this estimate as

1 1
y3llw;is < v?w; @5+ ;IHT{QFHIiy + 2 (ol + i oll,). (46)
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The right-hand terms in (45) and (46) have similar egsions. The only difference is that the boundary value of
w; is on the right-hand side of the inequality when we deal with an incoming mode.

At this stage, it is important to note that both right-hand side terms in (45) and (46) involve& ¢he") norm
of T,/ v, andr is identically zero in the regiofiy = 1}, see (43). In particular; is identically zero near the
bicharacteristic cums originating from¥.. Howevery is not identically zero in; so, in order to absorb the error
term |||T,”b|||1,,,, we need to control the2(H1) norm of thew;’s in V; far from the bicharacteristic curves. We are
thus going to estimaté; w;.

We chooseS; := (T;’J.)*T;’J. as a symmetrizer for (44). Recall thgit is of order<2 sinceo; € I'}. We take the
scalar product ir.?(£2) of (44) with S;w;. This yields

2
—| 7Y w; @ =Re(@uS)wj. wi) 2o +2RE(S; TS wj, wi), 2o+ 2RE(S; TE i wi), 2,
+2 Re«Sj Trl,/-")’ w./))LZ(.(Z) +2 Re«SjR”’ w/'»LZ(.Q) +2 Re((sj T;/Q_, F, wJ'))LZ(.Q)'
First observe that

%aS;j = (T5,,,) T} +(T))°Ty,

040 940;°

so we have
Re(((adS Jwj, wj ))LZ(Q) =2 Re(( dgo; Wi T ))LZ(Q)‘
We recall thab; € R, hence the difference
4 14
I3, Te, = 1Tg, 15,
is of order< 0, and we get

2Re(T) T¢ w), T3 wj) 20y < CIT wJH|o+ClllwfllloH| will

<Cl|72w;llo+ Illw 5+ 175,

for somee > 0 to be fixed. BecauSE}’/ is of order< 1, Young’s inequality yields

2ReT5 170, T3 wj) 2 < |||Try,v|||1 , Tevllzy,

. C g
2Re(T) RY 0, T) wj), 20 < ;mvm% +ey |77

2Re{T 170, Fo Ty < ST F I, + eI
Collecting these first inequalities, we already have
—2 Re«Ta);a-wj + YT wi T wj) )
<177 wj O g+ (€ +4e) ||, wj g + |||TXVQF|||§,V Illw g+~ (Illvlllo+|||TVv|||1y)- (47)

We are now going to derive a lower bound for the left-hand term in (47). Wijte= ye; +ih; withe;, hj € R
ande; e I'?, h; € I'y. From Theorem A.2, we have

14 Y
TNTS =y T T, +y Ty, o)+ VR + T T+ Ty + Ry,
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where R still denotes an operator of order—1 and R} denotes an operator of ordgi0. Recall that; is a
solution to the transport equation
dacj +1{0j,hj} =0, x4>0,
{ i leg=0 &
so we get

-2 Re«TaJ;aj wj+I7 TS wi, TJ, w]>>L2(.Q)

=2y Re(T} T wj, T} w) 2 o) — 2v Re(T CitojepWis T, w)) 2@y — 2y Re(R"w), T wj) 2,

- 2<<(ReTiZ,)Tz3/j Wi, Taj W >>L2(.Q) -2 Re((Rg wj, To,- wj))LZ(.(z)‘

Let us first examine the last three terms of the right-hand side. BedauseR, the operator R@"j;,j is of order
<0 and we have

—2{(ReT;) )T wj. 17w

))LZ(Q)

—2Re(RYw;, T w)) 20, > —Cllw, IIIo||| (48)

—2y Re(R"wj, Ty wj) 2q) 2 —Cy llwjll-1, H| Wil = —=Cliwjllo]| 75 wj
Applying Garding'’s inequality (Theorem A.3), we obtain

—2y Re(T),T) wj, T w;) 20, = ¥ TY, (49)
so it only remains to derive a lower bound for the term

—2y Re(T” Zifoj.e; Wi T >>L2(.Q)'
Becauser; € 1"21, the operatolei{a_,ej} is of order< 0 and therefore

—2yRe(T7 ;. ywjs Thwj) 20y 2 —Crllw;llo|| 75 w; g

> —ey||TY W |||0 — Cyllw;lIg. (50)

Choosinge appropriately and taking the sum of (47)—(50), we get the second estimate for the incoming modes:
y T2 will £ 177 w; @ g+ —||| oFIIL, +7lwiiE+ > (IIIvIIIo + 779l (51)
Take the sum of (46) and (51). Choosindarge enough, we have
Y3l 5 + ¥ 1|72, w55 < v w; @ g + |72 w; @ g+ |||TXVQF|||§,V + %(Illﬁlllé +I773)1z,)- (52)
Let us decompose the vectorin

wj _
w = in s Win € (CN l, Wout € (CN+1.
Wout

The vectorwi is the collection of they;’s that correspond to incoming modes amgl,; is the collection of the
w;’s that correspond to outgoing modes. Taking the sum of (45) and (52), we obtain

yllwoudl?, +v3Mwinll+ Y vl T2 w5+ |wou @],

incoming

1 1
SV P |wn©@ g+ |77 wn@ g+ 2N/ Fll, + - (g + 1775117, ), (53)
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and we want to show an estimate of the type

2 [win©@ |5+ |77 win@ 5 S I1GIZ, + | wou© |7 -
where

G =T 5(0).

3.4.3. Estimate for the boundary terms
We fix four cut-off functionsy1, x2, x3, xa such that

x1 =1 on a neighborhood of SuppN {x4s =0},
x2 =1 on a neighborhood of Supn,
x3 =1 on a neighborhood of Supp,
x4 =1 on aneighborhood of Supg,

and Supps € V2 C 32 x ¥, These cut-off functions are introduced in order to use the localized Garding’s
inequality (Theorem A.4). They are extended as homogeneous mappings of degree 0 with regpect td/e
write

¥ oy _ Y
TXzﬂQalw(O) = T80, Win@ + T, 55, Wout(0).
¥

Using the definitionv = TXQi), we obtain

T w(0) =T} G + R 0(0),

x2B05*
whereR?” is an operator of ordeg — 1. We thus get
17500 win @1, S1GILy + [wou® ], , + [0 o (54)

We are now going to introduce the basis of the stable subspace in Whias a reduced expression. Because
Xax2 = x2, we have

x2BQin = (xaP; ") (x2P1B QinP2) (x4P5 1.
N————
Xzﬂin
We therefore obtain

4 . _ 7Y Y Y , .
TXzﬂQin win(0) = TX4P1—1 szﬂin TX4P£1w|n(O) + R win(0),

and this yields the inequality

177 T T a0 Oy, S UGy + [wou @]y, + |50 (55)

We first show that we have an estimate of the type
Y Y 14 . Y 14 . .
H TX4Pf1 TXzﬂin TX4P£1 win(0) || 1y Zc H szﬂin TX4P51 win(0) || 1y~ C ” win(0) ||0
TV 14 .
W:=T, g TX4P2_1w.n(0).
We first check that

177 Wl =457 T2 W |77, s A% W o = C i@
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We also note that
Lyw — Al y
TLAYYW =AY W + RYW,
whereR} is of order<0. We thus get
7"

Wy 27, a T A W lo = Clwin© o,

xaPrt P1X3

We are now going to use the ellipticity oP; )* Lonthe support of 4. We write

|77 P_lT)g’sAl’V W||0 = ((T;P_l)*TXV P_lTXV3A1 YW, TY AN W)

% 1, 1, 1, 1,
> Re(T Z(P_l)*P_lT;’sA YW, TL AN W) = C||T) A W||||T), A VWHfLy,
and we now apply Garding’s inequality (Theorem A.4) to obtain

HTyp—lTxysAl’VWH(Z) > e| T AW g = € [win(@) g > e[ 4% W g — € [win(@) .

Plugging this later inequality in (55) yields
|atrr) TVP_lw.n(O)H0 IGlILy + [wour@ ], + |50 ] (56)

X2/3|n
Observe that the difference
LypY Y
A szﬂm TXZ)\l'y.Bin
is of order<0 so (56) also reads

17507 8, Ty @in @0 S 1611y + [woun @]y, + 0O (57)

Itis time to use the particular structure g, to derive a lower bound for the left-hand term in (57). Recall that

x2(y +io) 0
xoA MY Bin = ( 1
0 X2A™V IN_2

The relationy x1 = x vields
szpz,lwin(o) T, 1in(0) + R” win(0),
so we rewrite (57) as
172 8, T T 2 0in©@ g S UGy + [wou@ 1, + [5O)] (58)

The decomposition

T)sz-lwin(O) = <VV‘;1,> WieC, WeCN 2
gives
H x2A L7 Bin yTVP 1w.n(0)||0 ” xo(y+io) X1 Ho"'“Tykly X1W ||0

Becauserox1 = x1 andx1x = x, we obtain

|7 ers TAW lo = c[W'll,, = Clwin©@]g > ¢ 77 W' [lg = Clwin (@ o,

and using that € R, we also obtain

| 24100 T Wallo = e(v 1Wallo + [ 3 Wall) = € |win(0) o
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Eventually, we get the lower-bound

I T;/le,y;;in Ty T)Zpglwin(o) lo=c(r| T)Zpglwin(o) lo+ 17 T)sz—lwin(o) lo) = C[[2@ - (59)

To conclude, we perform the same kind of calculations as those already don;@WFﬁ to show that
175,10 @[> c[win@o = Cl2@] _y .
1777, 2 win© o > |7 win@ g = C[3O o

The boundary terms thus satisfy:
72 [win© |3+ [ 7 w5 S IGIZ, + [wou@ |7, + [5O)[5. (60)

Combining (53) and (60), we obtain our main energy estimate localized near the instability points:

ylwoull, + 73wl + > v[I72wjllo+ [wou® |3, +¥2|win@ g+ | T win@]

incoming

5 ) 2 1, 2 1, .5 v 2
SHGHE, + 2@ o+ ZlITeo Fll, + > (oG + {1770l ) (61)

3.5. Energy estimates far from instability points

In this section, we show how to estimate th& H') norm of v far from the instability points. We fix a smooth
cut-off functiony such that

x=1 on Suppon{xs =0},

so we havey X0l ,—o = XO|, " and we also ask that the supportjpfioes not meet the set of critical points.
This is possible because the supportxef _ does not meef. With this requirement, the uniform stability

Xq=
condition is met at all point in the support gt The cut-off functiony is introduced in order to use a localized

Garding’s inequality.
To derive the desired energy estimate, we shall use a classical Kreiss’ symmetrizer that is microlocalized arounc
uniformly stable points.
Proposition 3.1(Kreiss’ symmetrizers)rhere exists a mapping
§:2 x (R? x RT\ {0}) — M2,(C)
satisfying the following properties
Yz, the matrixS(z) is Hermitian,

S is a symbol of degre2 and regularity?2,
Vz €92 x (R x Rt \ {0}), one has

%(2)28(2) + CX(2)°A2Y () B(2)*B(z2) = ci ()22 )1, (62)

there exists a finite set of matrix valued mappings such that

L(YHE@ 0 )
Re(S(2)A = Vi Vi(2),
&(S(A(2)) ; 1(2) ( o E 1(2)
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whereV; and E; are homogeneous of degréevith respect tan, y) (and belong tol“zl), H; is homogeneous
of degreed with respect tan, y) (and belongs td“zo), and the following inequalities hoid

Y Vi@ Vi) = AP (I, Hi(2) 2 el,  Ei(2) 2 e (il (63)
I

We definew := T};9 and compute the equation satisfied by The calculations are entirely similar to those
done in the preceeding paragraph, namely

daw = TKerTAV;le+Tr¥,1‘)+RV1‘)+TXVQF, (64)
with
1 1 d-1
r®:=04x0+ Tl Ay =daxo+ - (O X003 A = (35, A) 3, Xo. (65)
k=0

Let {S (xq)} be given by
1
S (xq) == E((TS)'/(xd))* + TSJ'/(Xd))'

BecauseS € I'7, {S} is a bounded Lipschitzedamily of selfadjoint operators from?(R*; H2(R9)) to L2(£2)
(the bounds are uniform with respect to the parameterl). The starting point to derive the energy estimate is to
take the scalar product of (64) wif w and integrate with respect tao, ..., x;) € 2. We find

- Re<<378ydw, w>>L2(9) —2Re[S T 1w, w) 2, — 2RE(T T)o0. w) 2,
— 2Re(S R0, w)) o) — 2RE(S' T F. w)) 5, (66)
The right-hand side of (66) is easily estimated. We wateas
S =AtrA" vy

and use thant-” is selfadjoint. Becausa 1S is of order<1, we obtain

asr
- Re<<d—w, w>> <Cllwlif, .
X4 LZ(.Q)

—2Re[S T}y . w) g < Cliwliz,.

—2Re[S T 50, w) 2y < —| T,@H\iy +eyliwii,,

~2Re[S RV i, w)) 5 ) < — o113+ evllwll,.
C
14

¢
v
c
v

—2Re[S T, F.w) o) < —ITLFIIS, +evliwli2,.

so we get

(& Ow(0), w(0),,,,, +2Re(S T w, w)

L2(w) L2(2)

C C
<C+3en i, + TR FIR, + (53 + Tl ). ©n
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We are now going to derive a lower bound for the ledinll side of (67) by meand Garding’s inequalities. We
first deal with the boundary term. First note that

S(0) — TSV(O)
is of order<1, so we have
(S Ow(0), w(0)>L2(w) = Re<Tsy(0)(O)w(0)’ w(0)>L2(a)) +O([w© ”1,;; |w(O) ”0)-
Using (62), we can apply Garding’s inequality (Theorem A.4) and derive
2 . 2
Re(T5(0) (Qw(0), w(0), 2, + CRE[TS, 4. sw(0), w(0)), 2, = c[w (@], — C[[0(O).
Observe that
AV T AN T ]
is of order<1 so we have

Re(T,, o500, w(0) 2, = [T} w O3, + O(Jw @], [w©])-

Fory large enough, we therefore obtain

Tovgep

(S Ow(0). w©0),z,, > c[wO|], - |7} wO];, - C[O]. (68)

and we now deal with the interior term. Since
14 14

ReS' T, — TRe(SA)

is of order<2, we have

2Re(S Ty w. w)) 2y > 2 R T sy W) 2y — C|||w|||iy.

Define
= g . (YHi) 0
V2 e 2 x (R < RF\(0). “’(Z)"( 0 E@)
Then the remainders
14 Y\*pV Y
Tvl*a,vl o (TVz) Ta TV/

are of orderK2, so we get

2Re(S T w, w), 2.0 = RED (T wr, i), 2 ) — CllwlI .
l

wherew; := T\’,’lw. Using the block decomposition ef and Garding’s inequality (Theorem A.3) on each block,
we obtain

Re( T wi, wi) 5 ) = ey llwill,
and the ellipticity of the symba} ", V;*V; yields, fory large enough, the estimate

1
wlf, <D Re(Ty.,w. w), 20, < Y lwili§+ ” lwliZ, .
I 1

Combining all these inequalities, we conclude that
Re(S/ T w, w), 2.0, = cvllwllf, (69)
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for y large enough. We now use (68) and (69) to derive a lower bound for the left-hand term of (67). Chwoosing
appropriately, we end up with

. 1 1, . .
PllE, + [wO 7, = |75 wvOly, = [50l6 ZIT5FllL, + (o + [1750]l7 )
To conclude, observe that the remainder
TﬂV T — TXVOTﬂV
is of order< —1 so we have
|7} w7, SIGIZ, + [5O3,
Eventually, we have proved

.2 . 2 . 2 1 2 1, . L2
vIITolls, + 1735, SIGIE, + 5O ]5+ SITFlL, + ;(IIIvIII% +I75%0][%,)- (70)
3.6. The main result

This paragraph is devoted to the very end of the analysis. We first prove the following:

Theorem 3.1.For all v € H1(£2), we define the localized norm dfas

W9fi° = | 72,0012, + Nioutl?, +y2snliB+ > (17,6
1<jsJ’

2
o’

where notations are similar to those of Sect®#4:
. U1
b
Tyt = ( - ) . i€ CVL doue CVH andiin =

Vout .
vy

For 1(0) € H1(R) we define in a similar way the localized normig0) as
2
5] = |75,00)F, + [0w@]7, + ¥2|0in©)§ + | T in(O) 5.

Then there exist two constar@s> 0 and yo > 1 such that for ally > o and for all (v, ) € H2(£2) x H3(RY),
the following estimate holds

L2 N 1
Il + o] < c(;mFmiy + ||G||iy), (71)
where
e 14 R - V.. Y - TV
Vi=v—T, %, F:=040—Tyv— TAfCU and G:=Tgv|, .

Proof. Using (61) and (70), we have already proved that there exists two constagmsl yo such that for all
y = yo, One has

- L2 1 . c, . . .
ylloli® + 50 < c(;mﬂniy + ||G||iy) +Clo@)3+ — (g + 7o)+ 750 ]13).  (72)
wherer is given by (43) and? is given by (65). We first show that the localized norm verifies
yllillo < ClI]l (73)
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for y large enough and > 0. Write

I=xol +x1I=xol +(%05%)x Qo

wherey is a suitable cut-off function such th@ty = x. Then we have

viivllo <y |75 0llo+ Cv T o,0llo < W75 2llL, + 7Ty o0 llo + C¥ T, llo
<1750l + Woudlsy + ¥ llvinllo + Cliéllo < DIl + Clivllo

and this gives (73) whep is large enough. In a completely similar way, we get
y 6], < ClsO]. (74)
Using (73) and (74), (72) yields

. L2 1 C . .
e ECT I c(;mmuiy + HGniy) + ;(H!Tryvuliy +lIT5elI,). (75)

and we need to absorb the last twooe terms on the right-hand side.

To absorb the terrii;” v, we decompose the symbohs a linear combination gfy and thes;’s. Recall thatr
is a symbol of degree 0 and regularity 1 that is identically zero in the rdgieaa 1}. In the region{y < 1/2}, we
haveyxo > 1/2 so we can write

r:=ao(xol),
with @ a symbol of degree 0. In the regi¢h > x > 1/2}, we can write

a1 011111

ri=| - - (x Qo),
oy UJ’Iizj/
Qout Iny1
because the two last matricegaegular in the region whereis not identically zeo (this is becausgr;| > ¢ when
r is not zero). Up to introducing new cut-off functions, we can decompa@se

ol o1ly,

r=ao(xo)+| - - (x Qo).
ajr UJ’Inj/
Oout 1

whereog andaoyt are of degree 0 andh, ..., o, are of degree-1 (because the;’s are of degree 1). Using the
above decomposition, we easily derive

17250l STl + Wioulley + 3 172,651l S o
1<jigy’

The same kind of arguments also work for the térfg] because? is identically zero near the bicharacteristic
curves. Eventually, (75) yields, fgr large enough:

.~2 52 1
IRl + o] §;|||F|||iy+||c||iy. O (76)
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Theorem 3.1 gives a precise statementheffbcation of the possible singularitieswfthat is, where) is less
regular than the source ternisand G. However, an important consequence of Theorem 3.1 is that our constant
coefficients energy estimate holds for variable coefficients system:

Theorem 3.2.Leta, defined by(24), satisfy Assumptior-8. Then for alb € H2(£2), ¥ € H3(R%) and for all
y = yo, One has

1 1
PN+ o1, ol + V1S, S 5l v, + 1B e, (77)

Proof. The result is now a direct consequence of the paralinearization estimatesahét be given and define
v as the good unknown of the problem. Let

F:=0840—Txv— TK{Ile and G:=Tg 0|, .
Using (76) and (73), (74), we get
. . 2 1 1
ylolg+ 9O g < anmiy + ﬁnGniy.
We know from (36) thatG satisfies
2 . 2 y Y. 2 2
1GIZ, S 1@ |G+ 75 ¥ + B0, o[y, +1VIE, .
so we have
I+ [0 |2 S ZNFIZ, + = [Ty + 120, o2 + — w2
4 0 0~ 7/3 Ly 7/2 b M Vlx =0 Ly J/Z 1,y-
Using (33), we obtain
5113 + [5(0) |5 < LuFz, + i||l’>’y( w5+ 2w
Viivilg — (v 0~ 3 1y T 2l7a v, 1y T2 Ly

and using once again (33) (for the teff’||1,, ) yields

1 1 1
ylllg+ 602 < slicac. wlls, + B, nl;, + ﬁuwniy.

Estimate (34) yields the estimate foXand noto) while (35) enables us to recover the estimate on the shock front
Y and to derive (77). O

4. The example of gas dynamics

When dealing with a concrete example, it is more convenient to have distinct notations for the Laplace variable
and the Fourier variable. We shall thus denotetbthe Laplace dual variable of (r is a complex number of
positive real part) and by € RY~1 the Fourier dual variable dfcy, . .., x4_1). Consequently, the stable subspace
will be denoted bye~(z, 1), the front symbol will be denoted bz, n) and so on.

Consider Euler’s equations of isentropic gas dynamics:

{8tp+V'(pU)=0,
9 (pu) + V- (pu®u)+Vp =0,
wherep is an increasing but nonconvex function@f- 0. System (78) satisfies both Assumptions 1 and 2. For a
planar shock wave
U— (or,up)  ifx-v<or,
B (or,Uy) ifx-v>or,

(78)
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wherev is a unit vector inR?, the Rankine—Hugonot conditions read
or(Up-v—0)=p(U-v—o0)=:],
Jjlul+[plv=0,

and we shall assumg# 0. Then the tangential velocity is continucarsross the shock front and, up to changing
observer, we may assume

v=(,...,0,1), o=0, u,;=(,...,0,u.;), j=prur=pu; >0.
The Mach number on both sides of the shock front is defined by

U .
My == withc,; :=+/p' (pr1).

Cr,l

As usualc denotes the sound speed in the fluid. One easily check&/tigh 1-shock if and only if
M; > 1, M, <1

In such a case, the following result is proved in [24]:

Proposition 4.1(Majda [24]). The shoclU is uniformly stable if and only if

M}(ﬁ - 1) <1
o

Whenp is not a convex function gf, one may have

M,Z(& . 1) S 1 (79)
12)

In this case, the following is proved in [12]:

Proposition 4.2[12]. There exists/; > 0 such that for all(z, n) € C x R¢~1 satisfyingRer > 0, (z, ) # (0, 0)
andzt # +iVi|n|, one has

{(Z.x) €& (r,n) x Cs.t.xb(r,n) + MZ =0} = {0},
and forn #£ 0, the set
{(Z, x) e £ (£iValnl, n) x Cs.t.xb(&iVilnl, n) + MZ =0}

is a one-dimensional subspace@¥ *3.
By definition,vl2 is the smallest root of the polynomial

Pi(X) = (crz — uf) (X2 + ufulz) + [4ufcr2 — 2u,ul(c,2 + uf)]X,
that has two distinct positive roofthe greatest is denote‘dzz). Furthermore we have

2 Cr — Uy
< Vl < Mrulﬁ
r r

) 2_ 2

2
r <V2.

CE —Uu
We recall a few results of [12]. The eigenvaluegss of the symbolA(U, 7, n) arew), := —1/u,, a)lz =1/
and the roots] 5, a)ll 5 of the polynomial equations:

(t +u,0)2 = c2(w? — In1?), (80a)
(T — ) = clz(a)z — |77|2). (80b)
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We choosevy as the root of negative real part of (80b) whentRe 0. We also defines := rtu, — (c,2 — uf)wg.

Itis proved in [12] that Assumptions 4 and 5 hold as long as (79) is satisfied. Therefore, all planar shock waves
satisfying (79) are weakly stable indlsense of Definition 2. Moreover, in a suitable neighborhood of the critical
frequenciesX¢(u), there exists &% basis (that we write under the form of a rectangular maiii) of the stable
subspace& ™ such that

pr(ct +upay) 2ijn' )
ijn(c?t +wal)  —pr(t?la—1 + uruin ® )

Using simple calculations on matrices, we are going to show that Assumption 8 holds. Let us first look at the
2-dimensional case;j is a real number andQin is a 2x 2 matrix.

For all complex numbers;, &, &3, &4, &5 such that, £ 0 and & # 0, the identity

<1/$5 —Ez/(«§4§5)> <§1 $2> < €4 0) _ ((51%4 —§263) /65 0)
0 1/64 £3 &) \—& 1 0 1
is a straightforward calculation. If we write (81) under the form

(& $2)
IB(T’ 77)an - <§3 54 )

we can easily check thgj does not vanish in the neighborhood of thiéical frequencies. In the neighborhood of
(£iV1|n], n) € X4, the determinant of (z, n) Qi reads

£164— &283=(r —iValnl)h(zr,n) or &1&4—Exkz= (T +iVi|n|)h(z,n)

for a suitableC® functionh that does not vanish, see [12]. Settirg= h(z, ), we obtain two regular matrices
P1(z,n) and Px(z, n) such that

B(t,n) Qin= < (81)

T +iVan| 0)
0 1)

This is nothing but Assumption 8 since the set of critical frequencies is precisely defineg Byi V1|n|. In this
case, the set of critical frequenci&s;(U) has exactly four connected components and we have a real equation of
each of them.
In space dimension 3, the computations are similar. Observe that the mfdtrix + u,u;n ® n is regular (near
the critical frequencies) accadrd) to Proposition 4.2. HencgQin reads

§1 & &3

& L

BOin=1%1 & & |= . =)
§7 &8 &9

where® := (t21;_1 + uruin @ n). One has de¥ +# 0 near the critical frequencies. We check the identity

1 —gg-1 &1 & &3\ [&sbo—&s O O detBQin) 0 O
<O o-1 > (54 és 56) (5657—%’459 1 0) = ( 0 1 0)
&7 &8 &9/ \éag—&s67 0 1 0 0 1
and we can conclude that Assumption 8 is also satisfied in the 3-dimensional case.

P1(z,n)B(t,n) QinPa(z,n) = (
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Appendix. Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer [10,28] that we
use in this paper. The introduction of a positive parameter was achieved by Mokrane [29], see also [27]. We refer to
these papers for the proofs of the results stated below. Wedicall the classification of paradifferential symbols:

Definition 3. A paradifferential symbol of degree € R and regularityk (k € N) is a functiona(x, &, y) :R? x
R x [0, +00[ — CN¥*N such that is C*° with respect tg and for alle € N¢, there exists a consta@t, verifying

YE ). [02aC,E )] pre < Cak™ 107 (&) = Co (2 + 161) " 7402,
The set of paradifferential symbols of degreeand regularityk is denoted by}". We denote byZ}" the subset
of paradifferential symbols € I} such that for a suitable< ]0, 1[ one has

V(£ ), SuppFa(. & y)C {neR?| Iyl <e(y?+ 61772}

Of course, the symbols i&}" areC> functions with respect to both variablesandé, and for alla € X}, we
have the estimates
Vx.£.y).  |0P0ga(x. & y)| < Capr 1HIPLY (£),
Thus any symbak € X" belongs to Hérmander's clas$’; [19] and defines an operaté¥ (a) on the Schwartz’
classS by the usual formula

1
(27

VueS, PY(au(x):= )d/éx'sa(x,é,)/)ft(é)dﬁ
R4

We shall use the following terminology:

Definition 4. A family of operatorq P”} defined fory > 1 will be said of ordexm (m € R) if the operatorsP”
are uniformly bounded fromI;Jf’" to Hy):

Yy =1 Yue Hyt [PYul < Clsom)lullssm.y -
The following theorem is crucial for the sequel of the analysis:
Theorem A.1.If a € X}, the family{ P” (a)} is of order<m.

The regularization of symbols in the clag§' is achieved by a convolution with admissible cut-off functions:

Definition 5. Let ¥ : R? x R? x [1, +oo[ — [0, +oo[ be aC* function such that the following estimates hold for
alla, B e N4:

Y(n.6.y).  [9golvn. €. y)| < Capr LY &),

We shall say that is an admissible cut-off function if there exist real numbers 8 < ¢ < 1 satisfying
YaLEy) =1 i In <ea(y?+ 181"
V(& y)=0 if n>ea(y?+ Iélz)l/z.

An example of cut-off function is the following: let be a nonnegativé™ function onR? x R such that
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vi+ 1€ > vE + 1E21° = x (1. y1) < X (€2, 2,
:x@,y):l it (v2+1£12) " < 1/2,
xE =0 if (2+ER)2>1
We define a functiop (&, y) := x(£/2,¥/2) — x (&, y). Then the functionyg defined by
Yon, &,y) =Y x(2°"n,0)p(277&,27"y)
p=0

is an admissible cut-off function (one can take= 1/16 ands = 1/2).
If v is an admissible cut-off function, the inverse Fourier transfathof (-, &, y) satisfies

VEy), 0KV E )]0 < Car*T (&),

TheseL! bounds orﬂgK‘ﬁ enable us to establish the following proposition:
Proposition A.1. Let ¢» be an admissible cut-off function. The mapping

ar> o) (x.£y) = / KV (x = y.&y)a(y,& y)dy
R4
is continuous fronT}" to X" for all m.
Ifa e 7", thena — o € gt In particular, if 1 andy, are two admissible cut-off functions ande 17",
thenot — 62 ¢ 26"_1.

Fixing an admissible cut-off functiotr, we define the paradifferential operaﬂq‘?”’ by the formula
TV = PY ().
If ¥1 andyr, are two admissible cut-off functions aade 17", then Proposition A.1 and Theorem A.1 show that

the family {T./*” — 7./2"} is of order<(m — 1).
The symbolic calculus is based on the following theorem:

Theorem A.2.Leta € I'7" andb  I'}". Thenab € I'"™ and the family

{Taw’y °© Tbvj’y - Tavl/;)y}y>l

is of order<m + m’ — 1 for all admissible cut-off functiog .
Leta e I'7". Then for all admissible cut-off functiah, the family

(R

is of order<m — 1.
Leta € Iy" andb € I'}" . Thenab € Iy and the family

v,y 14 v,y vy
(T o1 — T, _T—izjagjaaij};/;l

is of order<m + m’ — 2 for all admissible cut-off functiog .
Leta € I;". Then the family

{(Ta'//,y)* _ T(;/,:’V — Tﬁ’%/ o, ax_/a*}y>l

is of order<m — 2 for all admissible cut-off functiog.
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The next theorem is the parameter version of Garding’s inequality:
Theorem A.3.Leta € I'?" and letyr be and admissible cut-off function. Assume that there exists a constadit
such that
V(x,& ), Rea(x,&y)=cr®"7(&)1d.
Then there existgy > 1 such that

Yy = yo, Yu e H)', Re(Tf”’ >H g Z ”u”m y

We also have a microlocalized version of Garding’s inequality:
Theorem A.4.Leta € I'?", x e I'? andy be and admissible cut-off function. Assume that there exigts™,
and a constant > O such thaty >0, xx = x and
Vir € y),  X°(nE y)Reax, &, y) > ci(x, £, A" (O
Then there existgy > 1 andC > 0 such that

¥y >0, Yue HI'RY),  Re(T/ VTV u, TV ),y > —||T‘W 12 , = Cllulz_y -

We now study the case of paraproducts: they are defined by the particular chgiga®tut-off function. We

shall write 7,/ instead ofTa‘”O”’ for the paradifferential operators obtained after smoothing by the fungtoive
have the following important result:

Theorem A.5.Leta € WL °(R?), u € L2(R?) andy > 1. Then we have
Hau - Tayuno < _”a”WlfJo ||Lt||0,

|adju — T (3 u>||0 Cllallyros llulo,

for a suitable constanf' that is independent atz, u, y).
If a € W2°(R?), we have

law =T u||y , < ||a||wzoc||u||o,

Haaju -T7 (0ju) ||1)y < Cllallwa.o llullo,

for a suitable constanf' that is independent atz, u, y).

We can extend the paradifferential calculus to symbols defined on a half-space in the following way: we still
denote byr;" the set of symbola(xo, ..., x4, n, y) defined on2 x (R4 x [0, +00[\{0}) such that the mapping
xq +> a(-, xq, ) is bounded intd". We deflne the paradifferential operaff by

Yu ECSO( ), Vxg >0, ( a u)(',xd) = Ta(xd)u(”xd)‘

Using Theorem A.5 and integrating with respecko we obtain for all symbot € W1 (£2) and allu € L?($2)
the estimates:

C
llau — T ul|, < = ||a||W1,oo(g)|||u|||o,

ladju— T (d; u>|||0 Cllallwioo(ellullo. 0<j<d—1.
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