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Abstract

We consider a sequence of Dirichlet problems in varying domains (or, more generally, of relaxed Dirichlet problems involving
measures im/lar(a?)) for second order linear elliptic operators in divergence form with varying matrices of coefficients. When
the matricesH -converge to a matrix %, we prove that there exist a subsequence and a meﬁgu'reMar(Q) such that the
limit problem is the relaxed Dirichlet problem correspondingﬁfbanduo. We also prove a corrector result which provides an
explicit approximation of the solutions in t1-norm, and which is obtained by multiplying the corrector for fheonverging
matrices by some special test function which depends both on the varying matrices and on the varying domains.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous considérons une suite de problemes de Dirichlet dans des ouverts variables (ou plus généralement une suite d
problémes de Dirichlet relaxés définis par des mesure&@e(_o)) pour des opérateurs elliptiques linéaires du deuxieme
ordre sous forme divergence avec des matrices de coefficients elles aussi variables. Quand lesradricesgent vers une
matrice A%, nous démontrons gu'il existe une sous suite et une mestde MS“(.Q) telles qu'a la limite on obtienne le
probléeme de Dirichlet relaxé correspondam\%etuo. Nous démontrons également un résultat de correcteur qui donne une
approximation explicite des solutions en norfié ; ce correcteur est obtenu enftipliant le correcteur pour |& -convergence
des matrices par une fonction test spéciale qui dépend a la fois des matrices variables et des ouverts variables.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this paper we consider a sequence of linear Dirichlet problems

ué e Hol(.Qs), 1)
—div(A*Du®) = f in D'(22°), '

where the matriced® and the domain£¢ both depend on the parameteiWe assume that the open s&$ are
all contained in a fixed bounded open sub€ebf R”, and that the matriced?, defined on2 with measurable
coefficients, are coercive and bounded, uniformly with respeet ©ur goal is to study the behaviour of the
solutionsu® ase tends to zero.

In the special cas@® = §2 it is known (see Section 3) that there exist a subsequence, still denotdd yand
amatrixA°, called theH -limit of (A%), such that for every € H~1(£2) the solutiona® of the problems
Ve € HY(R),
—div(A*Dv¥) = f inD'(R2),

converge weakly irﬂol(.Q) to the solution? of
W e HY(R),
—div(A°Dv0) = f inD'(2),

and satisfy also
A?Dv® —~ ADv®  weaklyinL?(2,R").

Without making any further hypothesis on the open gets we prove in the present paper that there exists
a subsequence, still denoted @¢), such that for every’ € H~1(£2) the solutions:® of (1.1) converge to the
solutionu® of the problem

u® e Hy(2) N L%(2, uO),
0p,0 0, 4,0 1 2 0 1.2)
A"Du"Dydx + [ uydu’=(f,y) VyeHy(2)NL (.Q,p,),
2 2

whereu? belongs to/\/lar(.Q), a class of nonnegative Borel measures which vanish on all sets of capacity zero, but
can take the valug-oo on some subsets &? (see Section 2).

Problems like (1.2) are called relaxed Dirichlet peribk (see Section 4) and have been extensively studied
to describe the limits of the solutions of (1.1) when the matri¢ésdo not depend om. On the other hand,
problems (1.1) can be written as relaxed Dirichlet problems (see Remark 4.1) by considering the me&asures
defined by

0, if cap(B \ £2¢) =0,
400, otherwise

Actually in the paper we consider not only the case of Dirichlet problems (1.1), which correspond to the measures
u® defined by (1.3), but more in general we study theecafa sequence of relaxed Dirichlet problems with
arbitrary;® € M{ (£2).

In the limit problem (1.2) the measure’ does not depend ofi, but, as shown in Section 6, it depends both
on the sequence of set€¢) and on the sequence of matriges’) (and not only on it4-limit A®). Nevertheless
the sequencé&??) has a stronger influence than the sequérc¢é: indeed the limit measures corresponding to the
same sequendae2®) but to different sequenced?) are equivalent (see Theorem 8.1).

1 (B) = { (1.3)



G. Dal Maso, F. Murat / Ann. |. H. Poincaré — AN 21 (2004) 445-486 447

In Section 5 we give a fairly general and flexible method to construct the limit meaSursing suitable test
functionsw?® associated t@2¢ and A¢. We then pass to the limit in the sequence of problems (1.1) by a duality
argument and obtain (1.2).

In Section 7 we continue the study of the behaviour of the solutiéraf (1.1) by giving a corrector result. By
this we mean the following: when the solutiof of the limit problem (1.2) can be written as

u =y, (1.4)

wherea? is the limit of the above test functiors’ andy is sufficiently smooth (actually it 2(2) N W (£2)),
we prove that

n
u® = (1// + Z D,wﬁzj)af +rf with r® — 0 strongly inHol(.Q), (1.5)
j=1

where the functionsj depend only on the matrice$®. This provides an approximation af in the norm of
Hol(.Q) by means of functions that are constructed explicitly.

When (1.4) is not satisfied with a smoaoth a similar but more technical result holds (see Theorem 7.2). We
also prove a local version of this corrector result.

Moreover, we prove (global and local) convergence and corrector results when also the right-hand side of (1.1)
depends om and converges strongly in a convenient sense (see Section 10).

Let us finally note that the case where the matri¢éand the domaing°¢ are periodic, with periods converging
to zero with different speeds, has been studied in detail by Ansini and Braides in [1]. Results similar to those proved
in the present paper have been obtained by Kovalevskd] for a class of nonlinear monotone elliptic equations
under some geometric assumptions on the &tsand more recently by Calvo Jurado and Casado Diaz in [6] in
the general case.

2. Preliminarieson capacity and measures

In this section we first introduce a few notation. Thearecall some known results on measures, capacity, and
fine properties of Sobolev functions.

2.1. Notation

Throughout the pape® is a bounded open subsetRf, n > 1. The space’(§2) of distributions in$2 is
the dual of the spac€°($2). The spaceW&”’(.Q), 1< p < 400, is the closure o£2°(£2) in the Sobolev space
whr(2), while W=14(£2), 1< g < +o0, is the space of all distributions of the forfn= fo + _; D; f;, with
fos f1-oos fn e L1(2) (if1/p+1/g =1, thenW ~19(£2) is the dual ofW&”’(Q)). In the Hilbert casep = ¢ =2
these spaces are denotedij(2), H(£2), andH ~1(£2), respectively. The norm if{}(£2) is defined by

1/2
il gz ) = </|Du|2dx) :
2

while the duality pairing betwee ~1(£2) and H(}(.Q) is denoted by(-, -). We shall sometimes use also the
Sobolev spacé/?(2) = W22(2).

The adjoint of a matrix A is denoted byA. Since complex numbers are not used in this paperpar never
denotes complex conjugatiolfi w is an object related to the matrik, thenw denotes the corresponding object
related to the adjoind.
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Throughout the paper varies in a stricly decreasing sequence of positive real numbers which converges to 0.
When we writes > 0, we consider only the elements of this sequence, while when weangite we also consider
its limit e = 0.

2.2. Capacity and measures

For every subsek of £2 thecapacityof E in §2, denoted by ca(E), is defined as the infimum qu | Du|? dx
over the set of all functions Hol(.(z) such thau > 1 a.e. in a neighbourhood &f. We say that a propertf (x)
holdsquasi everywheréabbreviated ag.e) in a setE if it holds for all x € E except for a subse¥ of E with
capN) = 0. The expressioalmost everywhergbbreviated aa.e) refers, as usual, to the analogous property for
the Lebesgue measure.

Afunctionu : 2 — R is said to beyuasi continuous for everye > 0 there exists a séf C 2, with cagE) < ¢,
such that the restriction of to £2 \ E is continuous. A subsdf of £2 is said to bequasi operif for everye > 0
there exists an open sBtC 2, with capgVa U) < ¢, wherea denotes the symmetric difference.

Everyu € H1(£2) has aquasi continuous representatijwehich is uniquely defined up to a set of capacity zero.
In the sequel we shall always identifywith its quasi continuous representative, so that the pointwise values of a
functionu € H1(£2) are defined quasi everywheresh If u € H1(£2), then

u>0 aein?2 << u>0 g.e.inf. (2.1)

If a sequenceu ;) converges tar strongly in H&(.Q), then a subsequence @f;) converges ta: g.e. in$2. For
all these properties concerning quasi continuous reptatiess of Sobolev functions we refer to [16], Section 4.8,
[17], Section 4, [19], Section 7.2.4, or [27], Chapter 3.

The characteristic functionglof a setk C 2 isdefined by k(x)=1lif xe Eand Izp(x) =0if x € 2 \ E.
The following lemma (see [9], Lemma 1.5, or [11], Lemma 1.1) concerns the pointwise approximation of the
characteristic function of a quasi open set.

Lemma 2.1. For every quasi open séf of £2 there exists an increasing sequerieg) of nonnegative functions
of H&(.Q) converging tal,; pointwise g.e. in2.

By a nonnegative Borel measuan £2 we mean a countably additive set function defined on the Borel subsets
of §£2 with values in[0, +o00]. By a nonnegative Radon measura 2 we mean a nonnegative Borel measure
which is finite on every compact subset @f Every nonnegative Borel measusieon 2 can be extended to a
Borel regular outer measure @b by setting for every subsét of 2

w(E) =inf{u(B): B Borel, EC B C 2}.

If 1« is a nonnegative Borel measure &n we shall usel.” (£2, u), 1< r < +00, to denote the usual Lebesgue
space with respect to the measuré/Ne adopt the standard notatiafh($2) whenu is the Lebesgue measure.
We will consider the con&.\/lar(.(z) of all nonnegative Borel measurgson £2 such that

(8 u(B) =0 for every Borel seB C §2 with capB) =0,
(b) u(B) =inf{u(U): U quasi open B C U} for every Borel se3 C 2.

If EC £ and capE) = 0, thenE is contained in a Borel sé& C §2 with capB) = 0. ThereforeE is u-measurable
by (a). Property (b) is a weak regularity property of the meagurt is always satisfied ifx is a nonnegative
Radon measure. Since any quasi open set differs from a Borel set by a set of capacity zero, every quasi open set
u-measurable for every nonnegative Borel meaguvehich satisfies (a).

Let us explicitly observe that the notation is not fixed in the literature and that in other works (see, e.g., [14])
Mo(£2) denotes the set of nonnegative Borel measures which only satisfy (a), while the set thatavel ¢at)
in the present paper is sometimes denotedt{($2) (see, e.g., [10]).
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For every quasi open sét C 2 we define the Borel measurg, by

_Jo, if cap(B\ U) =0,

o (B) = {+oo, otherwise
Roughly speakinguy is identically zero o/ and identically+oo on 2\ U. It is easy to see that this measure
belongs to the clasﬁ/lar(.(z). Indeed, property (a) follows immediately from the definition, and it is enough to
verify (b) only for every Borel set withu (B) < +00; in this case cafB \ U) = 0, and this impliesthat = UUB
is quasi open (sinc# is quasi open), containd, anduy (V) = 0 (since capV \ U) = capB \ U) = 0), so that
(b) is satisfied. The measurgg will be used to transform a sequence of Dirichlet problems on varying domains
into a sequence of relaxed Dirichlet problems on a fixed domain (see Remark 4.1 and the proof of Corollary 5.5).

If e ME(£2), then the spac&1(2) N L?($2, p) is well defined, since every functionin H1($2) is defined
u-almost everywhere and js-measurable if2 (recall thatu is quasi continuous, so that > ¢} is quasi open for
everyt € R). Itis easy to see thai1(£2) N L2(£2, n) is a Hilbert space for the scalar product

(I/l, U)Hl(.Q)ﬁLz(.Q,u) = / DMDU d.x +/uv d.x + / uv dl/L (2.3)
2 2 2
(see [5], Proposition 2.1).

The space of all (signed) Radon measuresowill be denoted byM (£2), while Mp(§2) will be the space of
all u e M(£2) with |u|(£2) < +00, where|u| denotes the total variation of. A subsetd of M (£2) is bounded if
for every compact sek C §2 we have

sup|u|(K) < 4oo.
ueA

Every Radon measure @ will be identified with an element dP’(£2) in the usual way. Therefore belongs
to M(£2) N W~L4(82) if and only if there existfo, f1, ..., f, € L1(§2) such that

[odu=[ o= [ D00 voecza.
2

2

2.2)

i=1lg

Note that, by Riesz’ theorem, every nonnegative elemeiit of 7 (£2) is a nonnegative Radon measures@n
The cone of all nonnegative elementsf1(s2) will be denoted byH ~1(£2)*. It is well known that every
element off ~1(£2)* is a nonnegative Radon measure which belongs aIMSQ.Q). In other words we have the

inclusionH~1(2)* € M(2) N M{ (£2).

3. H-convergence

In this section we recall the definition &f-convergence and the corresponding corrector result. Moreover we
prove a fairly general convergence theorem for right-hand sides which do not converge straigh(i).
Throughout the paper we fix two constaatandg such that

O<a< B <+oo0.
We defineMo’f(.Q) as the set of all matrice$ in L*°(§2, R"*") such that
A zal, (A@) =g, foraexe. (3.1)

In (3.1) I is the identity matrix inR"*", and the inequalities are in the sense of the quadratic forms defined
byA(x)&& for & € R". Note that (3.1) implies that

|A(x)| < B forae.xe s, (3.2)
and that necessarity < 8.
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3.1. Definition ofH -convergence

A sequenceg A®) of matrices ian(.Q) H-convergeso a matrixA% in M(f(.Q) if for every f € H~1(2) the
sequencéu®) of the solutions to the problems

u® € H}(£2), (3.3)
_div(A*Duf) = f in D), |
satisfies
u® —u® weakly in H}(£2),
A*Duf — A°Du® weakly inL?(2,R"),
whereu? is the solution to the problem
u® e H}(£2), (3.4)
—div(A°Du®) = f inD'(2). '

Every sequence of matrices iMf(Q) has a subsequence whidti-converges to a matrix inwf(sz)
(see [22,24,26]).

Denoting the adjoint ofA? by A%, it is easy to prove that the sequenc¥) H-converges taA® when the
sequencegA®) H-converges toA°.

If U is an open set contained {R, we can consider also the notion Bfconvergence i/, replacings2 by U
in the definition. It is not difficult to prove thatd®) H-converges tA in U, for every open sel/ C £2, if (A%)
H-converges toA% in £2.

3.2. Corrector result
Besides the compactness result mentioned above, one of the main theorems is the corrector result (see [22,2¢

and [3,23] in the periodic case). Léty, eo, .. ., e,) be the canonical basis &*. Forj =1, 2, ..., n there exists a
sequencez$) in H(£2) such that

25 =0 weaklyinH'(£2), (3.5)

A*(DZ% +ej) —~ A%; weaklyinL?(2,R"), (3.6)

—div(A® (Dzj +ej)) —> — div(AOej) strongly inH (). (3.7)
Throughout the paper we will also assume that

25— 0 strongly inL>(£2), (3.8)

25 =0 weaklyinw"”(£2) for somep > 2; (3.9)

using De Giorgi's and Meyers’ regularity theorems, such a sequence can be constructed, for instance, by solving
the problems

& < HY(2),
—div(A?(Dzf +¢;)) = —div(A%;) inD'(2),

wheres2’ is a bounded open set with € 2/, andA¢ is extended by on 2"\ £2. (The use of2’ is needed here
only to obtain a globaW®-?(£2) bound forzj. in the case wher&s2 is not smooth.)
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Let f € H1(2), let (u®) be the sequence of the solutions to (3.3), and:febe the solution to (3.4). Given
8 > 0, letys be a function inC2° (£2) which satisfies

,8/|Du0—D1ﬂ5|2dx<5, (3.10)
2
and letv§ be defined by
n
i =5+ DjYs . (3.11)
j=1

Then (see [22,26])

e—0

lim SupOl/‘Du‘€ — Dv§|2dx <é. (3.12)
2

If u° belongs taC°(£2), we can takeys = u® in (3.10) for everys > 0, so that
n
v§=v€=u0+ZDju0zj, (3.13)
j=1

and (3.12) implies that
Duf — Dv* — 0 strongly inL?(s2,R"), (3.14)

which means thabu? is equivalent taDv® (and also taDu® + Zj DquDzj-, using (3.5)), as far as convergences

in L2(£2, R") are concerned.

In the general case whex8 only belongs toHol(.Q), we obtain from (3.12) that

n 2 5
Duf =Dy + Y D D25+ R, with IiTjéJp|| ] O
j=1

This is a corrector result: indeed it allows one to replBeé by an explicit expression, up to a remaindgrwhich
is small inL2(§2, R") for § small, uniformly ine. Similar corrector results also hold in the case of local solutions.
Applications can be found, e.g., in [2,8].

3.3. A convergence result

We conclude this section with the following convergence result, which is implicitly used in various works (see,
e.g., [4]). Observe that there is no boundary condition on the solutibasd that the right-hand sidgs do not
converge strongly it ~1(£2).

Theorem 3.1. Let (A%) be a sequence of matricesmf(.(z) which H-converges to a matrix® in Mf(fz), and
let (u®) be a sequence i 1(£2) such that

ut =~ u® weakly inH1(£2),
—div(A*Duf) = f¢ inD'(R2) for everys > 0.
Assume thaf® = g® + u® + v® for everye > 0, where

(3.15)

(g°) is relatively compact irngcl”’(.Q) for somep > 1,
(u®) is bounded inM(£2), (3.16)
v > 0inD'(2).
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Then

: fé— f9 weakly inH~1(£2) and strongly inngcl’q(.Q) for everyg < 2,

3.17
A*Dut — A°Du®  weakly inL?(%2, R"). -

In the present paper, this theorem will be used with= 0 and (¢) relatively compact (or even constant)
in H71(£2).

Proof. Let K be any compact set ®”" with K C £2, and letp € C2°(£2) with ¢ >0 on£2 andgp =1 onK. We
have

0</dv€ g/(pdvs=/A€Du€D<pdx—(g‘i(p)—/(pdyf. (3.18)

K 2 2 2
Because of (3.2), (3.15), and (3.16), thght-hand side of (3.18) is bounded independently.dfhis implies that
(v®) is bounded iNM (£2). (3.19)

For every bounded open sét of R", the embeddingivc}”(U) - C8(U) is compact for every > n. This
implies that the embeddinyt, (U) € W—15(U) is compact for every < n/(n — 1), and therefore the embedding
M(£2) C ngcl’s(.(z) is compact for every < n/(n — 1). Therefore (3.16) and (3.19) imply thgu® + v®) is
relatively compact irngcl""(Q), which implies by (3.16) thatf¢) is relatively compact irngcl”(Q) for some
¢ > 1. On the other hand, we deduce from (3.15) and (3.2)tfatis bounded ind ~1(£2). By interpolation /¢)
is relatively compact irngcl"’(Q) for everyg < 2.

Let now° be an arbitrary function iC2°(£2), and, for every > 0, letv® be the solution to the problem

¢ € Hy(R2), (3.20)
—div(A®D9?) = —div(A°Di°)  in D'(2). '

Recall that the sequen¢a®) H-convergestoi®, so that
v —~ 9% weakly in H}(£2),
A*Dp® —~ A°Di®  weakly inL?(£2, R"), (3.21)
¢ —~ 30 weakly in V[/li’C”(Q) for somep > 2,

where in the last assertion we have used Meyers’ regularity result (see [20]).
Letp € C2°(£2). Usingv® ¢ as test function in (3.15), andf ¢ as test function in (3.20), we have

(f‘f,ﬁ€<p)=/A€Du‘>‘Dﬁf¢dx+/A€Du80<p58dx
2 2

(3.22)
=(—div(A°D1°), ufp) —/AeDf)eD(p u® dx +/A€Du€D<p v° dx.
2 2
Passing to a subsequence, we may assume that
A®Du® —~ o weaklyinL?(s2,R"), (3.23)
fé—~ f weakly in H~1(£2) and strongly inngcl"’(Q) for everyg < 2, '

for someo € L?(22,R") and f € H~1(£2). It is now easy to pass to the limit in the left and right-hand sides
of (3.22) by using (3.15), (3.21), (3.23), and Rellich’s compactness theorem. One obtains
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(f, Bogo):(—div(AODf)o),uo(p)—/AODEODQ& uodx—i—/ch(p 20 dx
2 2
:/A DﬁODuo(pdx+/ch<p 20 dx (3.24)
2 2
:/AODuODEO(de—i-/GD(p 7% dx.
2 2
Since
—divie)=f inD'(2), (3.25)
one deduces from (3.24) that
/GDﬁo(pdxzonDuoDﬁo(pdx, (3.26)

2 2

for everyp € C°(£2) and everyi® e C>(£2). Since, for every point < 2, the vectorD1%(x) can be chosen to
coincide with any prescribed vector Bf, (3.26) implies that

o=A°Du® ae.ing,

which, together with (3.25), giveg = f°. The uniqueness of the limits in (3.23) implies that the whole sequences
converge, and this completes the proof of (3.1}

4. Relaxed Dirichlet problems

In this section we recall the definition, introduced in [14, of relaxed Dirichlet problems associated with
measureg. € Mar(Q), and prove that, under some conditions on the data, the meastaa be reconstructed
from a solution of the corresponding relaxed Dirichlet problem.

4.1. Relaxed Dirichlet problems

GivenA € Mo’ff(.Q), [T M{{(Q), andf € H1(£2), we callrelaxed Dirichlet problenthe problem of finding
u such that

u € Hy(2) N L322, ),

/ADuDydx—i—/uydu:(f,y) Vy € H}(22) N L3(2, ). (4.1)

2 2

By a straightforward application of the Lax—Milgram lemma problem (4.1) has a unique solufsee [14],
Theorem 2.4) and satisfies the estimate

1
a/|Du|2dx+/|u|2du<gnfnz_l(m. (4.2)
2 2
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A connection between classical Q@ihilet problems on open subsets®fand relaxed Dirichlet problems of the
form (4.1) is given by the following remark.

Remark 4.1. Using Theorem 4.5 of [17] it is easy to check that/ifC £2 is open angyy is the measure introduced
in (2.2), theru € H(2) N L?(£2, o) if and only if the restriction of: to U belongs toH(U) andu = 0 g.€. in
£2\ U. Therefore whem = uy problem (4.1) reduces to the following boundary value problenyon

{u e H}(U),
—div(ADu) = f inD/(U),

in the sense that is the solution of (4.1) if and only if its restriction 1@ is the solution of (4.3) and =0 g.e. in
2\U.

The name “relaxed Dirichlet problem” is motivated by the fact that the limit of the solutions to Dirichlet
problems on varying domaing¢ always satisfies a relaxed Dirichlet problem (see, e.g., [11,14], and also
Corollary 5.5 below). Moreover, the results provedi [14] ensure that every relaxed Dirichlet problentdan
be approximated in a convenient sense by classical Dirichlet problems on a suitable sequence of ggEn sets
included ins2.

(4.3)

4.2. Reconstructing the measwe

We now want to reconstruct the measurérom one particular solution of the relaxed Dirichlet problem (4.1).
In view of the applications we consider also solutions of the equation in (4.1) which do not necessarily satisfy
the homogeneous Dirichlet boundary conditionda®, but we study only the case where the solution and the
right-hand side are nonnegative. Let us fix

AeMP(R), ne Mg ), re H Y (2)", (4.4)
and a solutionw to the problem

we HY(2)NL%(2, w),

/ADa)Dy dx + / wydu = / ydi Vye H&(.Q) NL3(82, p), (4.5)
Q 2 Q
which satisfies
w>0 g.e.ing2. (4.6)

Remark 4.2. From the Lax—Milgram lemma, there exists a solution of (4.5) which belongsolm); by the
comparison principle (Theorem 2.10 of [13]) this solution satisfies (4.6), so that the set of such fuadsaorst
empty.

The following proposition (proved in [13], Propositi@.6) will be frequently used throughout the paper.

Proposition 4.3. Assumé4.4), (4.5) and(4.6). Then there exists € H~1(£2)* such that
—div(ADw) +v =X inD' (). 4.7)
For technical reasons, the reconstruction of the meastirem « requires the following assumption: for every
quasi open set/ in 2 we have

cafU N{o=0})>0 = A(U)>0. (4.8)
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Remark 4.4. Condition (4.8) is satisfied in the following (extreme) cases:

(@) w>0g.e.ing;

(b) A(U) > 0O for every quasi open sét C 2 with capU) > 0.
Note that (b) is always satisfied ifU) = [, f dx with f € Lﬁ)C(Q) and f > 0 a.e. ing2, since, by Lemma 2.1
and (2.1), every quasi open set with positive capacity has positive Lebesgue measure.

Proposition 4.5. Assumé4.4)—(4.6) and (4.8). Then

ue H}(2)NL*(2,n) = u=0 qe.info=0}. (4.9)
Moreover for every Borel se® C §2
cafBN{w=0})>0 = u(B)=+o0. (4.10)

Proof. The proof follows along the lines of Lemma 3.2 of [11], with some important variants, due to the fact that
now  is not the Lebesgue measure.

To prove (4.9) it is enough to consider a functior H&(.Q) N L2($2, ) such that 0< u < 1 g.e. in £2 For
everyk € N let uy be the solution of the relaxed Dirichlet problem

ux € Hy(2) NLA(2, ),

/ADukDydx+/ukydu+k/ukydk=k/uydk (4.11)
2 2 2 2

Vy € Hy(£2) NL3(2, p).

By the comparison principle (Theorem 2.10 of [13]) we have &, < kw g.e. ins2, hencey;, =0 g.e. in o = 0}.
Takingy = u; — u as test function in (4.11), from (3.1) we obtain, by using Cauchy'’s inequality,

1
a/|Duk|2dx+/|uk|2du+2k/|uk—u|2dA<—/lADulzdx+/|u|2du.
a
2 2 2 2 2

It follows that (1) is bounded inH(}(.Q) and converges to strongly inL?(s2, ). Therefore a subsequence, still
denoted by(uy;), converges weakly irH(}(.Q) to some functiorv in Hol(Q) such thatv = u A-a.e. in§2. Since
ur = 0 g.e. in =0}, and since suitable convex combinations(@f) converge tov strongly in H(}(.Q), we
conclude that =0 g.e. in fp=0}. Let V = {v £ u}. ThenV is quasi open and(V) = 0. It follows from (4.8)
that cagV N{w=0}) =0. Asu=vin £\ V andv =0 qg.e. in o = 0}, this implies that: =0 q.e. in f» = 0}.

Let us prove (4.10). Lel/ be a quasi open subset &f such thafu(U) < +o0o. By Lemma 2.1 there exists an
increasing sequendgey) in H&(.Q) converging to §; pointwise g.e. inf2 and such that & z; < 1y g.e. ins2 for
everyk € N. As u(U) < +oo, each functiorn; belongs taL.2(£2, 1), hencezx = 0 g.e. on{w = 0} by the previous
step. This implies thatil =0 g.e. on{w = 0}, hence ca@/ N {w =0}) = 0.

Let us consider a Borel s& with cap(B N {w = 0}) > 0. For every quasi open sét containingB we have
capU N{w=0}) > 0, henceu(U) = +o0 by the previous step of the proof. Then the regularity property (b) in
the definition ofM{ (£2) implies thatu(B) = +o00. O

Proposition 4.6. Assume4.4)—(4.6) and (4.8), and letv be the measure dff ~1(£2)* defined in(4.7). Then for
every Borel seB C §2 we have

/d—v if cap(BN{w=0})=0,
nB =15 * (4.12)
+oo f Ca[:(B N{w= O}) > 0,
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and

v(Bﬂ{a)>O})=/a)d,u,. (4.13)
B
In particular, this implies that = wu on {w > 0}.

Proof. The proof follows along the lines of Lemma 3.3 and Proposition 3.4 of [11]. For every letv, be the
Borel measure defined by

vy (B) = / wdu. (4.14)

BN{w>n}

Asw e L2(£2, ), we havev, (£2) < %fg w?du < 4+00. Let us prove that
vn(B)zv(Bﬂ{a)>77}), (4.15)

for every Borel setB C 2. Sincev,, is a Radon measure, it is enough to prove that/) = v(U N {w > n}) for
every open sel/ C §2. Let us fix an open sdV/, and letU,, = U N {w > n}. As U, is quasi open, by Lemma 2.1
there exists an increasing sequeng@ of nonnegative functions dﬂol(.(z) converging to §, pointwise g.e. inf2.

Sinceun(U,) < +o0, the functiong; belong toL2(£2, ). Usingzx as test function in (4.5) and (4.7) we obtain

/devszzkdu.

2 2

Taking the limit ask tends toco we getv(U N {w > n}) = v, (U,) = v, (U), which proves (4.15). When tends
to 0, we obtain (4.13) from (4.14) and (4.15) (recall that 0 g.e. in £J.
From (4.13) we have

d
w(BN{w>n}) = / ;v

BN{w>n}

for every Borel set3 C £2 and everyy > 0. Taking the limit as; tends to 0 we obtain

mmzfﬁ, (4.16)
w
B

for every Borel setB C {w > 0}. Since pvanishes on all sets with capacity zero, (4.16) holds also when
cap B N {w=0}) =0. Finally, if cagB N {w = 0}) > 0, thenw(B) = +oco by Proposition 4.5. O

4.3. Density and uniqueness results

In the next proposition we assume, in addition, that
we L™ (). (4.17)

The following density result will be crucial in Sections 7 and 9. The proof follows along the lines of
Proposition 5.5 of [15], with one important variant, duethe fact that it is now possible that the solutians
of the penalized problem (4.11) do not converge tweakly in Hol(Q) (see the proof of Proposition 4.5).

Proposition 4.7. Assume4.4)—(4.6), (4.8), and4.17) Then the sefwy: ¢ € C°(£2)} is dense inHol(.Q) N
L%(2, ).
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Proof. For everyu € Hol(Q) N L2($2, 1) we have to construct a sequengg) in C2°(£2) such that(w ¢x)
converges ta: both in H&(.Q) and in L2(£2, ). Clearly it is enough to consider the case: 0 g.e. in £2 For
everyjeNletv; =u A (jw). Sincew > 0 g.e. in 2andu =0 g.e. in {v = 0} by Proposition 4.5, the sequence
(v;) is nondecreasing and convergestq.e. in§2. By Lemma 1.6 of [9] there exists a sequerigg) in Hol(Q),
converging tou strongly in Hol(Q), such that O< u; < vj <u g.e. in$2 for every j € N. By the dominated
convergence theorem it turns out thiag) converges ta in L?(£2, p) too.

It is thus sufficient to consider the case where H(}(.Q) is such that 0< u < cow g.e. in 2 for some
constantc > 0. Since{(u —ce)* > 0} C {» > ¢}, and (u — ce)™ converges tar in H}(2) N L?(2,p) ase
tends to 0, we may also assume that there exist® such thafu > 0} C {w > ¢}. Thenu/w =u/(w Vv ¢). Since
we HY(2) N L>®(£2), we haveu € H}(£2) N L™®(£2), and thus:/w € Hy(52) N L*°(52). Therefore there exists
a sequencéyy) in C2°(£2), bounded inL*°(£2), which converges t@ = u/w strongly in Hol(.(z) and g.e. ing2,
hencep-a.e. inf2. Sincew € H1(£2) N L>®(£2), the sequencéwy;) converges tavz = u strongly in Hol(.Q).
As w € L2($2, ) and (¢;) is bounded inL>(£2, 1) and converges te = u/w p-a.e. ins2, by the dominated
convergence theorem the sequetoe;) converges taz = u strongly inL2(2, u). O

The following unigueness result will be crucial in Theorems 5.1 and 5.4. The proof follows along the lines of
Lemma 3.5 of [11], with one important variant, due to the fact that now the conqigoﬁ dr =0 does not imply
thatu =0 q.e.in 2

Proposition 4.8. Assum€4.4)—(4.6), (4.8), and4.17) Letu be a solution of the problem
u € H}(2)NL®(£2),

/AD(pDua)dx—/ADwD<pudx+/ug0dA=0 Yo € C°(£2). (4.18)

2 2 2

Thenu =0g.e. ins2.

Proof. Sinceu andw belong toH1(£2) N L>(£2), it is easy to see that the equation in (4.18) is satisfied also for
xS Hol(Q) N L*°(£2). Usingy = u as test function in this equation we obtain

1
/ADuDuwdx— E/ADa)D(uZ) dx+/u2dA=O. (4.19)
2 Q 2

Usingy = u? as test function in (4.7), from (4.19) we get

1 1
/ADuDua)dx+E/uzdv+—/u2d)\=0.

2
2 2 2
This implies
Du=0 a.e.infw> 0}, (4.20)
u=0 x-a.e.ing. (4.21)

Let U = {u # 0}. ThenU is quasi open and(U) = 0 by (4.21). Therefore (4.8) implies that= 0 g.e. in
{w =0}, and consequentlpu = 0 a.e. in { = 0}. By (4.20) we conclude thddu = 0 a.e. ins2. Sinceu € Hol(sz),
thisyieldsu =0q.e.in 2 O
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5. A global convergenceresult

For everye > 0 we consider a matri® in Mf(sz) and a measurg® in M{;(Q), that will remain fixed
throughout the rest of the paper. We assume that

(A®) H-convergesto°. (5.1)

In this section we use a duality argument to prove that, under suitable hypothege® dwhich are always
satisfied by a subsequence), the solutiohof the relaxed Dirichlet problems (4.1) fot = A® and u = u®
converge to the solutiomC of the relaxed Dirichlet problem fot = A% andu = °.
5.1. Definition of special test functions

For everye > 0 we define the functions® andw? as the unique solutions to the problems

w® € HY(2) N L2382, o),
& e & & 1 2 e (5-2)
A*Dw*Dydx + | w®ydu®= [ ydx Vye Hy(£2) N L(82, u°),
2 Q2 Q2
w® e HY}2)N L322, 1),
AE T E —e & 1 2 e (53)
A*Dw®Dydx + | weydu®= [ ydx Vye Hy(£2)N L2, u°).
Q2 Q2 Q2
By the comparison principle (Theorem 2.10 of [13]) we have
w®>0 and w®>0 g.e.ing. (5.4)
Moreover, by the maximum principle, we have also
supl|lw® =) < +oo and  suglw®| Le(e) < +00 (5.5)
e20 e
(see [11], Section 3). By Proposition 4.3 there exists two measfirasdi® in H~1(£2)* such that
—div(A°Dw’) +v* =1, —div(A°Dw®)+1°=1 inD'(R). (5.6)
Finally, from (4.2) we obtain
sup [ |Dw®[?dx < +o0, sup [ |Dw|?dx < 400, (5.7)
e20 e20
Q2 Q2
sup [ |w®|?du’ < +oo, sup [ |[w®?du’ < +oo. (5.8)
5209 6209

5.2. The main convergence result

Given, for every > 0, ¢ and f¢ in H~1(£2), we consider the solutiong andi® to the following problems
u® € H}(2) N L%(82, pn®),
& & & & & 1 2 e (5-9)
A*Du*Dydx + [ u®ydu® =(f",y) Vye Hy(2)NL (2, pu°),
2 2



G. Dal Maso, F. Murat / Ann. |. H. Poincaré — AN 21 (2004) 445-486 459

i® € HY(2) N L%(2, 1),
/ASDIZSDydx —i—/zfy duf = (f%,y) Vye HOl(Q) NL2(82, ub). (5.10)
2 2

Theorem 5.1. Assumg5.1) and letw® andw? be the solutions t¢5.2) and (5.3). The following conditions are
equivalent

(@) w® — w® weakly inH}(£2);

(b) w® — w° weakly inH(£2);

(c) for every(f¢) and (u®) satisfying(5.9), if ¢ — fO strongly inH~1(£2), thenu® — u® weakly inH(2);
(d) for every(f*) and (i®) satisfying(5.10) if /¢ — fO strongly inH ~1(£2), thenii® — i® weakly inH}(£2).

Proof. (a) = (d). Assume (a). By (4.2) it is enough to prove (d) whgh= 0= f e L>(£2). Since the equation
is linear, it suffices to consider the caselQf < 1 a.e. ins2, so that 0< ii® < w® q.e. in£2 by the comparison
principle (Theorem 2.10 of [13]).

By (4.2) the sequend@a®) is bounded irﬂol(.Q) and by (5.5) itis bounded ih*°(£2). Extracting a subsequence,
we may assume that

iaf — i weakly in H}(£2), (5.11)

for some functionz Hol(.Q) N L>(£2). We want to show thai = i°. Since the limit does not depend on the
subsequence, this will prove that the whole sequéteconverges ta°.
By Proposition 4.3 we have

—div(A*Di®) +y° = f inD'(2), (5.12)

for somep® € H~1(£2)*. By Theorem 3.1, from (5.6) and (5.12) we deduce that

A*Dw® — A°Du® weakly inL?(£2,R"),
(5.13)

A¢Dii® —~ A°Dii weakly inL2(£2, R").

Letp € C°(£2). Usingy = w®¢ as test function in (5.10) and= i°¢ as test function in (5.2), by difference we
obtain

/ASDﬁSwaSdX—/ASDwSDQDIZSdXZ/waQDdX—/ﬁ£¢dx, (5.14)
2 2 2 2

for everye > 0. Since(w?) converges tav? strongly inL2(£2) by (a) and(iif) converges tai strongly inL2(£2)
by (5.11), using (5.13) we can pass to the limit in each term of (5.14) and we obtain

/AODﬁDfp wldx — / A’DuDypadx = / Fuwlpdx — /ﬁ(p dx. (5.15)
2 2 2 2
Since (5.14), witke = 0, and (5.15) hold for every € C°(£2), the difference: = ii® — i belongs toH}(£2) N
L>®(£2) and satisfies (4.18) with = A, » = w?, andx = 1. This impliesii = ii° g.e. ins2 by Proposition 4.8.
(d) = (b). Itis enough to take'® = f0_= 1incondition (d). )
(b) = (c). Since(A?) H-convergestal®, we can replacd? by A¢ and f¢ by f¢ in the proof of the implication
(a)= (d).
(c) = (a). Itis enough to take® = 0 =1 in condition (c). O
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5.3. A compactness result
We now prove that the equivalent conditions of Theorem 5.1 are always satisfied by a subsequence.

Theorem 5.2. Assumg5.1). For every sequencéu®).-g in ME{(Q) there exist a subsequence, still denoted
by (1¢), and a measurg? in MS“(Q), such that the equivalent conditio(e—(d)of Theorenb.1are satisfied.

Proof. By (5.7) the sequencev?) is bounded ian}(.Q). Passing to a subsequence, we may assumeiliat
converges weakly iI‘HOl(.Q) to some functiorw € Hol(sz). By (5.4) we havew > 0 g.e. inf2. Now we want to
construct a measuye® e Mar(.Q) such thatw coincides with the solutiom?® of (5.2) fore = 0.

By (5.6) and Theorem 3.1 the sequerigé Dw?) converges toA° Dw weakly in L2(£2, R"). Therefore(v?)
converges to weakly in H~1(£2), wherev € H=1(£2)* is defined by

—div(A°Dw) +v=1 inD'(R). (5.16)
Let us define the measur® by
d
/ L cap(BN{w=0})=0,
w
1O(B) =13 (5.17)
oo if cap(B N{w = 0}) > 0.
Using (5.16), from Proposition 3.4 of [11] we obtain thaf e ME{(Q) and thatw coincides with the unique
solutionw? to problem (5.2) foe = 0. This shows that condition (a) of Theorem 5.1 is satisfied.

5.4. More general test functions

We introduce now a more general family of test functiga$). While it is very difficult to compute explicitly
the functionsw® defined by (5.2), in some interesting situations it will be very easy to construct explicitly the new
family (wf), from which one can determine immediately the limit meagtfte

For everys > 0 letA? € H~1(£2)* and letw® be a solution of the problem

of € HY(2) N L2(82, uo),

/AgDa)sDy dr +/w€y du® = / YA ¥y e HY2)N LA, uf). (5.18)
2 2 2
We assume that
A e H7Y(2)* foreverys >0, (5.19)
28— 29 strongly inH (), (5.20)
o >0 q.e.ing foreverye >0, (5.21)
o = ¥ weakly in HY(£2). (5.22)
Moreover we assume that for every quasi opertsat 2 we have
cafU n{’=0})>0 = A°%U)>0, (5.23)

and that
® e L®(£2). (5.24)
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Remark 5.3. If condition (a) of Theorem 5.1 is satisfied, then the functiaris ¢ > 0, defined by (5.2) satisfy
conditions (5.18)—(5.24) witih®* = 1 for everye > 0 (see Remark 4.4). Other sequent®@$).>0 and (A*),>0
satisfying (5.18)—(5.24), with® = 1, are constructed in [7] whex® € H~1(£2)*.

If conditions (5.18)—(5.24) are satisfied$n, then they are satisfied in every openBet 2.

Theorem 5.4. Assume tha5.1) holds and that(w®), >0 and (A*), >0 satisfy(5.18)—(5.24) Then the equivalent
conditions(a)—(d)of Theorenb.1are fulfilled.

Proof. We will prove that condition (b) holds. By (5.7) the sequefi@é) is bounded inH(}(.Q) and by (5.5) itis
bounded inL*>°(£2). Extracting a subsequence, we may assume that

w® —w weaklyin H3(£2), (5.25)

for some functionw € H(}(.Q) N L% (£2). We will show thatw = w°. Since the limit does not depend on the
subsequence, this will prove that the whole sequ&ncg converges tav©.
By Proposition 4.3 and Theorem 3.1 we have

(5.26)

A*Do® — A°D®  weakly inL?(£2, R"),
A?Dw® — A°Dw weakly inL?(s2,R").

Letp € C2°(£2). Usingy = o®¢ as test function in (5.3) and= w*®¢ as test function in (5.18), by difference we
obtain

/AsDweDgo w®dx — / A*Dw* Dy w? dx = /a)scp dx — / wepdA®, (5.27)

Q2 Q2 Q2 Q2

for everye > 0. Since(w?) converges ta.? strongly in Lﬁ)c(.{z) by (5.22) andw*®) converges tav strongly in

L?(£2) by (5.25), using (5.26) we can pass to the limit in each term of (5.27) and we obtain
/AODwap % dx —/AODa)OD(p wdx = /wofp dx —/E(p d0. (5.28)
2 2 2 2
Since (5.27), witle = 0, and (5.28) hold for every € C2°(2), the differencen® — w belongs taH}(2) N L= (£2)
and satisfies (4.18) with = A%, A = A% andw = «°. This impliesw = w° g.e. ing2 by Proposition 4.8. O

5.5. Dirichlet problems on varying domains

We conclude this section by considering the particular case of classical Dirichlet problems on varying domains.
Let (£2%).-0 be a sequence of open sets, Wizt C £2, and letu® be a measure irMar(.Q). For everys > 0 let
w? andw? be the unique solutions to the problems

w € Hy(£2°), 520
—div(A*Dw®) =1 inD'(2°), .
we € Hy(£2°), -
—div(A*Dw®) =1 inD'(£2°), :

and letw® andw? be the solutions of (5.2) and (5.3) with= 0.
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Given f¢ and f¢ in H=1(£2), for ¢ > 0, we consider the solutiong andi® to the following problems

u® € H}(£2°), (5.31)
—div(A*Du®) = f¢ inD'(2°), '
¢ € H(£2°), (5.32)
—div(A*Dif) = f¢ in D'(2°). '

Given f%and f0in H=1(£2), letu® andii® be the solutions of (5.9) and (5.10) with= 0. All functions in H} (22¢)
are considered as functionsH‘t}(Q) which are equal to 0 g.e. if? \ £2¢. (Observe that?, i¢, f¢, and f¢ are
defined in the whole of2, fore > 0.)

Corollary 5.5. Assumg5.1) and letw® and w® be the solutions 0{5.29)and (5.30)for ¢ > 0, and of (5.2)
and(5.3)for ¢ = 0. The following conditions are equivalent

(@) w® — w® weakly inHJ(£2);

(b) w® — w° weakly inH(£2);

(c) for every(f¢) and (u®) satisfying(5.31)for ¢ > 0 and (5.9)for ¢ =0, if f¢ — O strongly inH~1(£2), then
u® — u® weakly inH}(£2);

(d) for every( f¢) and (it¢) satisfying(5.32)for ¢ > 0 and(5.10)for e =0, if f¢ — fO strongly inH ~1(£2), then
i® — i weakly inH}(£2).

Proof. For everye > 0 let ugp: be the measures introduced in (2.2) with= £2¢. By Remark 4.1 the functions
w?® andw? defined in (5.29) and (5.30) coincide with the solutions of (5.2) and (5.3) mfith . For the same
reason the functiong® andu® defined in (5.31) and (5.32) coincide with the solutions of (5.9) and (5.10) with
uf = ngee. The conclusion now follows from Theorem 5.10

Remark 5.6. Let (A°) be a sequence iff ~1(£2)* and, for every > 0, letw® be a function inH1(£2) such that
w® =0g.e.in £2\ £2¢ and

—div(A°Dw®) =1° in D'(£2°).

Let 2.0 € H~1(£2)* and letw? be a solution of (5.18) witl = 0. If conditions (5.19)—(5.24) are satisfied, then the
equivalent conditions (a)—(d) of Corollary 5.5 are satisfied. To prove this fact, it is enough to use Remark 4.1 and
Theorem 5.4.

6. An example

In this section we present an example, not yet considered in the literature, which shows that the p¢asure
which appears in the limit problem depends not only on the sequedteand onA°, but also on the sequence
(A?). To identify the measurg® we apply Corollary 5.5 and Remark 5.6. Another interesting example is given in
Section 5 of [1].

To simplify the exposition, we assume> 3 (the case: = 2 requires obvious modifications, as done, e.g.,
in [7]). Let us fix an exponent with

1<y<L. (6.1)
n—2
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For everys > 0 andi € Z", we consider the point{ = ¢i and the open ball8’ andC; with centrex? and radii
¢"/"=2) ande?, respectively. By (6.1) we havgf C C¢ for 0 < & < 1, and the SetéC?);<z» are pairwise disjoint
for 0 < & < 2/=¥) We define

pr=JB. c=]c
ieZh ieZh
For two given constants, b € [«, 8], we define the matrices?, for e > 0, by

al forxe 2\ C¢,

& —
A (x)_{bl forx e 2 nNce,

(6.2)
where we set’? = ¢, so thatA%(x) = a! for everyx € 2. Since(A?) converges in measure #P by (6.1), it is
easy to prove thatA?) H-converges toA°. Finally, for everye > 0 we define
2°=0Q\ B
We will determineu® e ME{(.Q) such that the equivalent conditions (a)—(d) of Corollary 5.5 are satisfied. More

precisely, using Remark 5.6 we will construct, fop 0, a measura® in H~1(£2)* and, fore > 0, a functionw®
in H1(£2) such that® =0 g.e. inB? and

—div(A°De®) =1 inD'(2°), (6.3)

for which we will prove that conditions (5.19)—(5.24) are satisfied, whéris a solution of (5.18) witte = 0.
For everye > 0 andi € Z", letw] € Hl(CltE \ B;) be the solution of the equatiohw; =0 onC; \ Bf which
satisfies the boundary condition$ =0 on 0 B andw? = 1 on dC’. By an explicit computation we find that

i (x)=c® —ce"|x —x] 2" forx e Cf\ B, (6.4)
where
1
Ce = 1 (65)

1—gn—vn-2
by (6.1). For 0< & < 2%/(1=7) we definew® as the function which is equal taf on (C¢ \ Bf) N £2, and is extended
by 0 on £2n Bf and by 1 on §2 C¢. By an explicit computation we find that
|Dwf 12dx = (n — 2)S,—1c%€",
Ci\B;
wheres,,_1 is the(n — 1)-dimensional measure of the boundary of the unit baRtn This yields
/ |Do® |2 dx < (n — 2)S,_1¢E N°&", (6.6)
2

whereN*¢ is the number of indicese Z" such that the distance fromj to (2 is less thare. Since
lim N°&" = meag2) < +oo, (6.7)
e—0

we deduce from (6.5) and (6.6) th@t®) is bounded inH1(£2). As (»®) converges to 1 in measure, we conclude

that (w®) converges te’=1 weakly in H1(£2), i.e., condition (5.22) is fulfilled.
Leto? denote then — 1)-dimensional measure drC* and letA® be the measure aof? defined by

A =b(n —2)cte Y Dge,
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Since, by (6.4),
&

dw;
S =(n=2)c% " VY onacy,
v

we obtain that-bAw® = A% in D' (£2¢). As Do’ =0 a.e. in2¢ \ C¢, we haveA® Do’ = bDw*® a.e. inf2¢ by (6.2),
and we conclude that (6.3) holds. From the properties’adnd from (6.5) it follows thak® € H~1(£2)* and that

IimO/ edA® =b(n — 2)Sn,1/g0dx, (6.8)
E—

2 2
for everyp € C(£2). We now defing:® = A% = h(n — 2)5,_1. Then condition (5.19) is satisfied and = 1 is a
solution to problem (5.18) far = 0. It remains to prove that.?) converges ta.% strongly in H ~1(£2).

To this aim, for every > 0 andi € Z", we consider the open ball3f andE; with centrex; and radiie /4 and
e/2, respectively. Then we introduce the functiefisiefined by

. bc€8"|x—xf|2’" if xe E\ C7,
v (x) =

bt v (n=2) if xeC;.
By computing the normal derivatives of on both sides 0§ C; we obtain that
—Avi =A% OnE;, (6.9)

for0 < e < 2/7) We fix a cut-off functionpf € C°(Ef) such thatf =1 onD¢, and 0< ¢f < 1,|Dgf| < c/e,
and|Ag?| < c/e2on E?, wherec is a suitable constant independentaind:. Finally, we define)® e HY(2) by

& _ e.&
v = E ©;v; .

ieZ"
By (6.9) we have
—Av® =A% — g%, (6.10)
where
g° =ZZ Dy; Dv; + Z Ap; vt
ieZ" ieZ"

From the definition ob; and from the estimates fddy; andA¢; we obtain that the sequengg’) is bounded
in L*°(£2). Therefore, passing to a subsequence, we may assume that

g — g weakly inL2(£2) and strongly ind ~1(£2). (6.11)
Moreover we have, for & ¢ < 41/1-v),

2
Z{ / |va|2dx+g—2 / |uf|2dx}<MN€e”(e”V("2)+82),

/ |Dv® % dx < 2
'EZH
2 ! ES\CE Ef\Df

for a suitable constant independent of. Taking (6.1) and (6.7) into account, we conclude {tiab®) converges
to 0 strongly inL?(£2, R™), hence(Av?) converges to 0 strongly i —1(£2). By (6.10) and (6.11) this implies
that (1¢) converges t@ strongly in H~1(£2), and by (6.8) we have = b(n — 2)S,_1 = A9. Since the limit does
not depend on the subsequence deduce that the whole sequen@é) converges ta.° strongly in H ~1(£2).

In conclusion, fore > 0 we have builtv® andA® such that conditions (5.19)—(5.24) are satisfied. Therefore, by
Remark 5.6, if f¢) converges tgf® strongly in H ~1(£2), then the solutions? of the classical Dirichlet problems

u® € H}(£2°),
—div(A*Du®) = f¢ inD'(£2°),
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extended by 0 o2 \ £2¢, converge weakly irHol(Q) to the solution:? of the problem
{ u® e H}($2),
—div(A°Du®) + %% = 0 inD'(2),
whereu® = b(n — 2)S,_1 andA® =al.

If we change the constaatin the definition (6.2) ofA¢, the H-limit A° does not change, but the measufe
changes. This shows thaf depends on the whole sequeri@g), and not only om°.

7. Global and local corrector results

In this section we prove a corrector result for the solutions of problems (5.9) in the speciglécasg® = f,
with f e L(£2). In Section 10 we shall consider the case whef&) converges tof? strongly in H=1(£2),
together with the case of more general data.

Assume thatw®), >0 and (A°), >0 satisfy (5.18)—(5.24). In order to obtain the corrector result we assume, in
addition, that

supllo® || (@) < +00, (7.1)
e>0

sup [ |0°|?du’ < 4o0. (7.2)
5209

Remark 7.1. If conditions (5.18)—(5.24), (7.1), and (7.2) are satisfied2inthen they are satisfied in every open
setU C £2.
The functionsw? introduced in (5.2) satisfy conditions (7.1) and (7.2), as stated in (5.5) and (5.8).

7.1. Global corrector result

Forj=1,2,...,nletusfix a sequencetj.) in H1($2) satisfying (3.5)—(3.9). Le#® be the solution of (5.9)
withe =0and £ = f € L®(£2). Letus fixs > 0 andys € H2($2) N W12 (£2) such that

ﬁ/‘DuO—D(wgwo)‘zdx—i—/ho—wga)o‘zd,u,o<5. (7.3)
2 2

Such ays exists since the sét%: ¢ € C2°(£2)} is dense inHg (£2) N L?($2, 1% by Proposition 4.7.
For everye > 0 letvg be the function defined by

Vs = (I/fa +) Dy zj)ws. (7.4)
=1
By (3.5), (3.8), (5.22), and (7.1) we have
v§ — Y5’  weakly in H1(£2) and weakly in L>(£2). (7.5)

Moreover we have

n n n

DU§ = (1//5 + Z Djrs Zj)Da)s + Z Djys(e; + DZ?)C{)S + Z DD ;s Zja)s.

j=1 j=1 j=1

The last sum in the right-hand side converges to 0 strongly/iis2, R") by (3.8) and (7.1), whiléD ;s zj Dw?)

converges to 0 strongly ih?(£2, R") by (3.8) and (5.22). Therefore
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n
Dv§ = y5Dof + Y Djyis(ej + D)o’ + Hj, (7.6)
j=1
where(Hy) converges to 0 strongly ih2(£2, R") ase tends to 0.
Sinceys € WL (£2) and(zj) is bounded inL*°(£2), from (7.2) we deduce that

sup [ |v512du® < +oo. (7.7)

e>0

Theorem 7.2. Assumg(5.1), (5.18)—(5.24), (7.1)and (7.2). Let § > 0 and let s be a function inH2(£2) N
wlo°(2) which satisfie7.3). Assume that the function§ defined by(7.4) belong toH3(2). Then for every
f € L*(£2) the solutions:® of problemdq5.9)with ¢ = f satisfy the estimate

Iimsup{a/|Du6—Dv§|2dx+/|u€—v§|2d,u€} <. (7.8)
2 2

e—0

Remark 7.3. In the special case’ = y?, for some ye H2(£2) N Wh°(£2), we can takay; = v for everys > 0
in (7.3), so that

j=1
Therefore when?® € H&(.Q), (7.8) implies
Iimo{a/ |Du® — Dve|%dx + / luf — v8|2d,f} =0, (7.10)
£—
Q2 2

which is a corrector result.

When the measurgs’ are fixed and equal to 0 (so that we can chaose: »° = 1 and y= «°), formulas (7.9)
and (7.10) provide the classical corrector result #biconverging operators stated in (3.14) (see [22,26] and, in
the periodic case, [3,23]). When the matric&sare fixed and equal to some matr® (so that we can choose
zj. = 0), formulas (7.9) and (7.10) with®* = w® defined by (5.2) provide the corrector result of [11,15]; with a
different choice ofv?, which leads taw? = 1, the same formulas give also the corrector result of [7] in the periodic
case. When botA? andu? depend ore, butw® = 1, so that we haves = u°, the combination o# -converging
operators and varying domains results in thdtiplication of the corresponding correctors.

In the general case)s andv§ depend ord and we obtain from (7.8) that

1)

Duf = Dv§ + R} with limsup| R; ”22(9 Ry < =
e—0 ' o

which is still a corrector result, but in a more technical form.
7.2. Local convergence and corrector results
We consider now the case where the functiehare solutions of the problems
uf € HY(2) N L3(2, u),
(7.11)

/AeDueDydx+/u€ydp,€=/fydx VyEH&(.Q)ﬂLZ(.Q,;LS),
2 2 2
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but are not required to satisfy the boundary conditidn= 0 on 352. We still consider the case of fixed data
f € L*(£2). More general data will be studied in Section 10.

The following theorem is a local version of the coryence result given in Theorem 5.4. It will be proved in
Section 9.

Theorem 7.4. Assumg5.1), (5.18)—(5.24), (7.1)and (7.2). Let f € L°°(£2) and, for everye > O, let u® be a
solution of (7.11) Assume that

u® =~ u® weakly inH(£2), (7.12)

for some function® € H1(£2), and that

supllu®||Le(2) < 400, (7.13)
e>0
sup [ |uf?du’ < +oo. (7.14)
e>0

Thenu? is a solution of(7.11)for ¢ = 0.

The following lemma, which will be proved in Section 9, shows that (under the other assumptions of
Theorem 7.4) conditions (7.13) and (7.14) are always satisfied in every op€ns&, and also in2 if every u®
belongs toH}(£2).

Lemma7.5. Assumé5.1), (5.18)—(5.24), (7.1and(7.2). Let f € L*>°(£2) and, for every > 0, letu® be a solution
of (7.11) Assume tha{7.12)holds for some function® € H1(s2). Then we have

supllu® || L) < +o0, (7.15)
e>0
sup | |uf)?du’ < +o0, (7.16)
e>0

for every open sdt € £2. If, in addition,u® € Hol(.Q) for everye > 0, then(7.15)and(7.16)also hold forU = 2.

In the next corollary1(s2) denotes the space of all functioms H(£2) with compact support 2. The first
assertion of the corollary follows immediately from Theorem 7.4 and Lemma 7.5, while the last assertion is easily
obtained by approximating any nonnegative functioa Hg (£2) N L?(52, u°) by the sequencég;| A y), where
@j € C2°(£2) converges ty in H(£2).

Corollary 7.6. Under the assumptions of Lemm, «° is a solution to the problem

u®e HY ()N LE (2, 1O,

loc

/AODWODde+/MOydMO=/fydx VyGHéL(.Q)ﬂLZ(.Q,,u,O), (717)
2

2 2

If, in addition,u® € L2(£2, u0), then the last line of7.17)holds for every e H}(2) N L?($2, ).
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Let us fix an open sel/ € £2 and a function € C°(§2) such that; =1 in U. Given ul e ngc(.Q) N
L2 (52, 1%, by Proposition 4.7 we can approximate the functior? in H}(s2) N L?($2, u°) by functions of
the formyw® with ¥ € C°(£2). Therefore for every > 0 there exists/; € H2(U) N W1°(U) such that

ﬂ/\Duo— D(wgwo)\zdx+/|u°—w5w°\2du°<5. (7.18)
U U

The following theorem is a local version of the corrector result given in Theorem 7.2.

Theorem 7.7. Under the hypotheses of Lemin&, let U be an open set withh € £2, lets > 0, let s be a function
in H2(U) N W1 (U) which satisfie$7.18) and letv5 be the functions defined i by (7.4). Then

e—0

Iimsup{a/ |Du® — Dv§|2dx +/ |u® — vglzdu‘g} <38, (7.19)
4 4
for every opensev € U.

Theorems 7.2 and 7.7 can be deduced from the following theorem, which will be proved in Section 9. Indeed, by
Theorem 5.4 and Lemma 7.5, the assumptions of Theorem 7.2 imply all assumptions of Theorem 7.4, so that (7.8
follows from (3.1), (3.2), and (7.21) withh = 1. Similarly, the assumptions of Theorem 7.7 imply, by Lemma 7.5,
that all assumptions of Theorem 7.4 are satisfied in every opetl g2, so that we can apply Theorem 7.8
with £2 replaced byU and withg € C°(U) suchthapy =1in Vande >0inU\ V.

Theorem 7.8. Under the hypotheses of Theor@m, let ¢ be a function inH2($2) N W1%°(£2), and letv® be
defined by

v€=(¢+ZDj1//zj>w€. (7.20)
j=1

Then for every € C2°(£2) we have

Iimo{/ A*Du® — v ) D’ —v9)pdx + / lu® — v° % dus}
E—>

2 $ (7.21)
= / A°D(u® — wwO)D(uo - wwo)go dx + /‘uo - ww0|2<p .
7] 1?)

If the functions:® andv® belong toH(£2) N L?($2, u*) for everye > 0, then(7.21)also holds withy = 1.

8. A comparison theorem

In this section we state and prove a comparison result for the limit meaﬂ@rmsd Mg corresponding to the
same sequence of measura$) but to two different sequences &f-convergent matricegA?) and(A5). This
result has its own interest and will be crucial in the proof of the corrector results stated in the previous section.

For everys > 0 let A7 and A5 be two matrices inZ (2). We assume that

(A%) H-convergestor? fori =1,2. (8.1)
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For everye > 0 let u* be a measure img(sz), and Ietu‘l) andug be two measures iJMar(Q). Fori=1,2
ande > 0 letw; be the solutions of the problems

wf € Hy(2) N L3282, 1),

/Awany dx + / wty du’ :/ydx Vy € H3(£2) N L3(2, u°), (82)
2 2 2
and Ietw? be the solutions of the problems
wle HY )N L?(2, 19),
8.3
/A?Dw?z)y dx + / wly dul = / ydx Vye HF(2)nL3 (2, 1d). (8.3)
2 2 2
We assume that
wf —w? weakly inH3(2) fori =1,2. (8.4)
Note that, by Theorem 5.2, these hypotheses are always satisfied by a subsequence.
In this section we shall prove the following comparison theorem.
Theorem 8.1. Assumég8.1)and(8.4). Then
o? ,32 .
ﬁugéugé ;Mg in $2, (8.5)
cap({wf > 0}a{w? > 0}) =0. (8.6)

In particular we haveL.2($2, u9) = L2($2, u9).

In order to prove Theorem 8.1, fer> 0 andi = 1, 2 we consider the measurese H~1(2)* defined by

—div(AfDw}) +vf =1 inD'(2) (8.7)
(see Proposition 4.3). By Proposition 4.6 we have
vl.o = w,oy,? on {w,o > 0}. (8.8)
By Theorem 3.1 we have
AfDwf — A?Duw?  weakly inL?(2,R"). (8.9)
Therefore
vE =19 weakly inH (). (8.10)

Asv? > 0, by Theorem 1 of [21] we have
Y — Y strongly inW 14 (), (8.11)

for everyyr € C2°(£2) and for everyy < 2.
Let ¢/ be the solution of the problem

¢f € Hy(£2),
—div(A?D¢f) = —div(A2Dw?) inD'(£2).

By the definition ofH -convergence we have

(8.12)
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¢f—w? weakly in H}(£2), (8.13)

i

ASDEE — A%Du?  weakly inL?(s2, R"). (8.14)

Lemma 8.2. For everyp € C2°(£2) andi = 1, 2 we have

g“Lno{ / 1D(wi — &) D (w5 — ¢5)p dx + / wiwse d;f} = / wg(p dv?, (8.15)
2 2 2
sllino{ / ALD(wi — ¢f)D(wf — ) dx +/ |wf|2<p dyf} = / w?go dvio. (8.16)
2 2 2
Proof. Let us first prove (8.15). For every> 0 we write
/AiD(wi —¢7)D(wh — ¢5)pdx + / wiwgedu® =1° + 11 +111°, (8.17)
Q2 2
where

If :/Atitiggodx—i—/wiwi(p du®,
2 2

e =— / A]Dwi D5 ¢ dx,
2
e = — / A5D¢E D(ws — ¢5)p .
2
Usingy = w5¢ as test function in (8.2) we get

Ingwggodx—/A‘tiiD(pwgdx.
2 2

Since (w3) converges toug strongly in L2($2) by (8.4) and sincgA] Dwj) converges tm(l)Dw(l) weakly in
L?(£22,R") by (8.9), we have

IimOI‘E =/wgg0dx—/Ang?D(p wgdx

£—
« « (8.18)
=/A(l)Dw(l)Dwg<pdx+/wg<pdvg,
2 2

where in the last equality we used (8.7) foe 0. Note that we cannot usegq) as test function in (8.3) foar=1

because we do not know yet thafp € L2(£2, 119).
From (8.7) we obtain

||€=—/ tiiD@;(p)dx+/ 1DwiDe &3 dx
k] 2
=(u§,§§cp)—/§§¢dx+/A‘tiiD<p§§ dx.
2 2

(8.19)
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Since(¢5) converges tavd strongly inL2(£2) by (8.13) and A§ Dw$) converges toA?Dw? weakly in L2(2, R")
by (8.9), we have

Iimo{—/gzsgodx—i—/A‘tiiDgogzs dx} :—/wg(pdx—l—/A(l)Dw(l)D(pwgdx. (8.20)
E—
2 2 2 2

We will prove in Lemma 8.3 that
|im0<vi, t50)= (v(l), wggo). (8.21)
£—
From (8.19), (8.20), and (8.21) it follows that

I|m ¢ = /wgfpdvg—/wgq)dx+/A2Dw8D<p wgdx

e—0
§ $ $ (8.22)
:—/A(l)Dw(l)Dwgwdx,
2

where the last equality is obtained by usim§<p as test function in (8.7) far = 0.
From (8.12) it follows that

= [ 45068 D((uh — e5)o) v+ [ 45D¢ (s — 5)

2 2
—-/A?Dwg’D((wg—gg)@) dx—i—/A D¢i Do (wh — ¢5) dx
2 2

Since (w4 — ¢5) converges to 0 weakly i }(£2) and strongly inL?($2) by (8.4) and (8.13), whilgA{D¢;)
converges to19D¢? weakly in L2(2, R") by (8.14), we have

lim 111€ = 0. (8.23)
e—0

Equality (8.15) now follows from (8.17), (8.18), (8.22), and (8.23).
Let us prove now (8 16) foragiven=1,2. To thls aim for every > 0 we defmpAe = Ae A andi® = pf,

so thatwf] = w3 = w?, gl {2 =¢f, andul = v2 = v . Applying (8.15) in this new setting gives (8.16)0
Lemma 8.3. For everyp € C2°(£2) we have

lim (v, £50) = (2. w3). (8.24)

Proof. Givens > 0, letz% ¢ C2°(£2) be a function such that
Hfo - w%“H&(Q) <34, (8.25)

and letz?® be the solution of the problem

¢° € Hy($2),
) ) . (8.26)
—div(A5D¢®) = —div(AID:0) inD'(R2).
Using¢® — ¢ as test functionin (8.12) and (8.26), from (3.1) and (3.2) we obtain
B
le® =& ||H(}(9) < o H§O - wg“Hé(m' (8.27)
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As (vf) is bounded ing ~1(£2), form (8.25) and (8.27) we obtain that there exists a constgrindependent
of §, such that

{ (v c50) = (o we) [ < [{vi. (65 — ¢)o)| +[(v1. ¢ %) = 1. %) + (11 (€ — w)o)]
M5+ |{vi. ) — (2. %))

By Meyers’ estimate, there exists> 2 such thatz¢¢) is bounded irW&”’(.Q). As (¢%) convergestq® weakly

in H(}(.Q) by the definition ofH-convergence, we conclude th@t¢) converges ta:% weakly in Wol”’(Q).

Since by (8.11) the sequenc¢gv]) converges to//vg strongly in W=149(£2) for 1/p + 1/q = 1 and for every
Y € C°(£2), we obtain that

lim (v5, £) = lim (yf, ¢} = (12, ¢ %) = b2, ),

wherey is any function inCZ°($2) which is equal to 1 in a neighbourhood of sipp
Therefore by (8.28)

limsup|(v{, &5¢) — (v, wp)| < Ms.
e—0

< (8.28)
_ :

As § > 0 is arbitrary, we obtain (8.24).0

Lemma 8.4. For everyp € C°(£2), with ¢ > 0in §2, and for every > 0 we have
Bt 1
/wggodv(ljg " E/w(l)(pdv(l)+5/wg(pdvg . (8.29)
2 2 2

Proof. By (3.1) and (3.2) we have the estimates

/ AiD(wi — ;f)D(wg — {5)(p dx + / wiwse du’

2 2

<# / (i = ) [ D — 5) s + / wfugedi’

{/\D r:l\<pdx+/|w|¢du} {/|D g2|¢dx+/|w2|(pdﬂ}

1
52{/A5 (wi—{f)D(wi—{f)godx—i—/lwilzgodyf}
2

1
+§Z{/A D(wh —&5)D(w g—gf)godx—l—/lwilzgod,us}.
2 2
Inequality (8.29) is obtained by applying Lemma 8.21
Lemma 8.5. The following inequality holds
wgv(l) < 'B—w(l)vg in 2. (8.30)
o

Proof. Letv = +19. From Lemma 8.4 it follows that for every> 0

dvl <P B {t dvl 1 Odv2

2dv SW1 g —|— w2 g, } v-a.e. ing2. (8.31)
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If we minimize with respect to we obtain
0 2 0

00T B odvy

2dv a2 v

which implies (8.30). O

v-a.e. in$,

Proof of Theorem 8.1. We prove only the second inequality in (8.5) and
cap({w$ > 0} \ {w? > 0}) =0. (8.32)

The other inequality and the equality o:azpcl’ > 0} \ {wg > 0}) = 0 are proved by exchanging the roles 4§
andAs.
By (8.8) we have)d = wdu3 on {w9 > 0}, so that (8.30) gives

B o

v? < ley,g on {wg > 0}. (8.33)

If y e HX($2)NL?(82, 1Y), theny = 0 g.e. on{w3 = O} (see Proposition 4.5). From (8.7) and (8.33) it follows that

2
/A?chl]Dy dx + % / w?y dy,g > /y dx (8.34)
2 2 2
for everyy € H}(£2) N L?(2, u9) with y > 0 g.e.in 2
Let w be the solution of the problem
w e HE(2) N L2(2, 1Y),

2 8.35
/A(l)DwDy dx + % / wy dud :/ydx Vy € H3(£2) N L%($2, 119). (8.35)

2 2 2
As 0< (w — wd)* < w g.e.ins2, the functiony = (w — w$)* can be taken as test function in (8.35) and (8.34).
By difference we obtain

2
/A(l)D(w — w(l))D(w — w(l))+ dx + % /(w — w(l))(w — w(l))+du(2) <0,
Q Q

which implies(w — w?)* = 0 a.e. in £2 and hencev < w? g.e. in2 by (2.1). Therefore

cap({w > 0} N {wf =0}) =0. (8.36)
Let us prove that
cap({wd > 0} N {w=0}) =0. (8.37)
It is enough to show that
cap{wd > 38} N{w=0})=0 (8.38)

for every§ > 0. If (8.38) is not satisfied, by Proposition 4.5 we hay##/a?)u3({w3 > §}) = +oo, which
contradicts the fact that9 € L2(s2, n9). This proves (8.37).

Asw >0 andwg’ > 0 g.e. onf2 by the comparison principle (Theorem 2.10 of [13]), from (8.36) and (8.37) it
follows that

cap({wd > 0} N {w? = 0}) = cap({w? > 0} \ {uwl > 0}) =0, (8.39)
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which proves (8.32).
Sincev? = w19 on {(w? > 0} by (8.8), it follows from (8.39) that? = w92 on {w9 > 0}, so that (8.33) yields
00_h8 00 0
wipg < leuz on {w2 > 0}.
Asw{ > 0 g.e. on{w3 > 0}, we conclude that

2

W< 48 onful>o}. (8.40)
o

Let us finally prove that

2
B o
2

0
1\a2H‘

N

m on{w3=0}. (8.41)

Let B be a Borel set contained fw) = 0}. If cap(B) = 0, thenu{(B) = uI(B) = 0, because and 3 belong

to MJ (£2). If cap(B) > 0, thenu3(B) = +oo by Proposition 4.5. In both cases we hafB) < g—iug(B), hence
(8.41) is proved.
Inequality (8.5) now follows from (8.40) and (8.41)O

9. Proofsof the corrector results

In this section we prove Lemma 7.5 and Theorems 7.4 and 7.8, which give immediately all results of Section 7
(see the comments before the statement of Theorem 7.8).

We begin by the following theorem, which is proved by using the comparison result of Section 8.

Theorem 9.1. Assumé5.1), and(5.18)—(5.24)For everye > 0, let y¢ € H1(£2) N L2($2, 1) be such that

y¢ =9 weakly inH(£2), (9.1)
sup [ [y¢1%du’ < +oo. (9.2)
e>0

Theny e L2(2, u9).

Proof. We use the notion of -convergence, introduced in [14] and further developed in [10], which concerns the
convergence of minima and minimizers of the functionlj]sjeﬁned onH01(.(2) N L2($2, uf) by

J5 () =a/ |Dy|?dx +/ P du’ —2(f. y).
2 2

for any givenf € H~1(£2). Note that the minimizer ofi¢ is the unique solution to problem (4.1) with= oI

andu = uf. By Theorem 4.14 of [14] there exists a subsequence, still denotéd®dywhich y-converges (with

respect to the operatefaA) to a measur@® e Mar(.Q) (the regularity property (b) of.° is obtained by using
Theorem 3.10 of [10]). By Lemma 5.5 of [10] we have

a/\Dy°|2dx+/\y°\2dﬁ0<|imigf{a/|Dy€|2dx+/|y£|2dm} < +o0. (9.3)
e—
2 2 2 2
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Letw* be the unique solution to the problem
W € Hy(2) N LA(82, 1),

a/D@SDydx—i—/ﬂ?SyduS:/ydx Vy € HY(2) N L2382, ). ©4)

2 2 2

By Proposition 4.10 of [14] the sequen@e®) converges weakly irH&(Q) to the solutionw © of the problem

w0 e H}(2) N L?(2, 2°),

a/Dz’DODy dx + / % d/l():/ydx Vy € H3(£2) N L?($2, i°). (9.5)
2 2 2
If we apply Theorem 8.1 witth] = A® andA% =/, we obtain
2

wo< e (9.6)
so that (9.3) implies that® € L2(2, 1%). O
Lemma 9.2. Under the hypotheses of Theorém, we have

A*Duf — A°Du® weakly inL?(2,R"). (9.7)
Moreover there exists? € M (£2) N H~1(2), with |69 € M (£2) " H~1(£2), such that

—div(A°Du®) + %= f inD'(2). (9.8)

Proof. Since the positive and the negative pa$)™ and (u®)~ of u® belong to H1(£2) N L2(82, uf), by
Theorem 2.4 of [13] for every > 0 we can consider the solution§, andug, to the problems

ug — )t € Hy(2) N LA(2, 1),
/AeDu%Dydx—i—/u%yd,us :/f+ydx Vy € HY(2) N L2382, 1), (9.9)
2 2 2
uf, — (W)~ € Hy(2) N LA(82, 1),
/ASDu%Dydx+/u89yd/f :/f_ydx Vy € H}(2) N L3(2, ). (9.10)
2 2 2
By linearity we have
u® =ug —ug Qg.e.ing2. (9.11)

Using y = u§, — (u®)T as test function in (9.9), and then (3.1) and (3.2), as well as Poincaré’s and Young’s
inequalities, we obtain

e>0
Passing to a subsequence, we can assumeadhatonverges weakly i 1(£2) to some functiom%. Sinceug, >0

g.e. ing2 by the comparison principle (Theorem 2.10 of [13]), by Proposition 4.3 there exjstsi ~1(£2) ™ such
that

—div(A*Dug) + 05 =fT InD'(R). (9.13)
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From Theorem 3.1 we obtain that

A*Duf, — A°Dud  weakly inL?($2, R"), (9.14)
and we deduce from (9.13) that there exisgse H~1(£2)" such that
—div(A°Dul) +od = fT inD'(£2). (9.15)

Properties (9.7) and (9.8) now follow from (9.14) and (9.15), from the analogous results;foand
from (9.11). O

Proof of Lemma 7.5. By (9.11) we have:® = u§, — ug, g.e. in$2, whereug, andug, are the solutions of (9.9)
and (9.10). Lebg, be the solution to the problem

vh, — )T e HY(R2),
—div(A*Dv) = fT inD'(2).
By the comparison principle (Theorem 2.10 of [13]) we have &, < v§, g.e. in2.

As (u®)7 is bounded inH1(£2), the sequencevg,) is bounded inH1(£2) too. On the other hand the classical
local L*° estimate for solutions of elliptic equations (see, e.g., [25]) asserts that for every operEset

lvgllLe@) < Cullvg L2 (9.16)

therefore(v,), and hencéu?,), is bounded inL>® (U). If u® € Hy(£2), we have alsaf, € Hy(£2), and the global
L estimate in2 implies that(vg,), and hencéug,), is bounded inL*>°(£2). A similar argument holds foug,),
so that(u®) is bounded in.°°(U) (and also inL*°(£2) if u® e H&(.Q)) and (7.15) is proved.

Let ¢ be a function inC2°(£2) such thatp = 1 in U. Usingy = u®¢? as test function in (7.11), and then (3.1),
(3.2), and the boundedness(@f) in H(£2), we easily obtain (7.16). li* € H}(£2), we simply usey = u® as
test function in (7.11). O

The proof of Theorems 7.4 and 7.8 will be divided in three lemmas. For every let y¢ be a function of
HY(2)N L%(2, uf) such that
y& =9 weakly inH1(£2), (9.17)
for some functiony® in H1(£2). Assume that

sugllysllmm < +o0, (9.18)
E>

sup [ 1y*12duf < +oo. (9.19)
e>0

Lemma 9.3. Under the hypotheses of Theordn8, let y°, ¢ > 0, be functions inH1(£2) which satisfy(9.17),
(9.18) and(9.19) Theny® belongs taL?(s2, 1°) and for everyy € C°(£2) we have

Iim{/ASDU‘EDyegodx+/v€y€<pdue} =/AOD(1//a)O)Dy0(p dx+/y01//wo(pduo. (9.20)
2 2 2 2

E—>

If, in addition, y* Hol(Q) for everye > 0, then(9.20)also holds withy = 1.

Proof. We prove (9.20) only in the cagec C2°(2), since, under the additional hypothesgise H&(Q), the proof
with ¢ = 1 is similar. In this proof(n®) will denote a sequence of real numbers converging to 8 tasds to 0,
whose value can change from line to line.
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Theorem 9.1, (9.17), and (9.19) imply théte L2(s2, 9.
By (7.6) for everyp € C2°(£2) we have

n

/ASDUeg Dy*pdx = Z/ Dy A®(ej + Dz5)Dy* o pdx + / v A® Dw® Dy* g dx + n°.
2 i=lg 2

By (5.22) and (7.1) the sequen@e®) converges ta? strongly inL’” ($2) for every 1< r < 4o0. Since, by (3.9),

(zj) converges to 0 weakly in i 17 (£2) for somep > 2, we conclude that

/Dijg(ej+Dz§)Dy€a)€<pdx=/Dj¢A5(ej+Dzj)Dy€w0(pdx—i—ns.

2 Q
Therefore
/AgDv‘sDyefpdx + / Vo yeodu® =15 +11° +111° +5°, (9.21)
2 Q
where

n
I¢ = Z/Djl//As(ej + Dzj)DySa)O(p dx,
J=1g
IleszAgDa)eDyegodx,
2
Illszfvsyswdus.
2
We now pass to the limit id?, 11 ¢, andlll ¢. For what concerng®, we write

Ij :/Djl//Ag(ej +Dzj~)Dy€a)0go dx
2
= (—div(A®(e; +Dzj.)),Dj¢y8w°<p)—/A€(e,-+Dz§)DD,-¢y8w°¢dx

2
_/Ag(ej+Dz§.)Dj1ﬁy6Da)o(pdx—/As(ej+Dzj~)Dj1ﬁy€a)ng0dx.
2 2

Properties (3.6) and (3.7) af, together with properties (9.17) and (9.18)y6f imply that we can pass to the limit
in each term of the right-hand side of the previous formula, so that

n
I*= Z / Djl//AOej Dy % dx + 1 = / A°Dy Dy%w 0 dx + n°. (9.22)
jzlg Q
As for 114, we write
e :/wAgDa)gDyggo dx :/AeDa)eD(yelﬁ(p) dx —/AgDa)gygD(iﬁgo) dx. (9.23)
2 2 2

As w® satisfies (5.18), we have

/ASDwSD(ySW) dx+/w£y£¢<pdus=/ysl/f¢d)\g,

2 2 2
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and by (5.20) and (9.17) we conclude that

/ASDweD(ysww) dx =/y°w<p da% — /wsyew du® +n°. (9.24)
2 2 2

By Proposition 4.3 and Theorem 3(4¢ Dw?) converges tA°Dw® weakly in L2(£2, R"), while by (9.17)(y®)
converges to'® strongly leoc(Q). Therefore

—/ASDa)SySD(w(p) dx = —/AODwaOD(W)dx +7t. (9.25)
2 2
From (9.23), (9.24), and (9.25) we obtain that

e =/y°w¢dx°—/w8y81/f¢ dp? —/AODwaOD(I/fw)dx+n8

2 2 2 (9.26)

=/A°Dw°Dy°de+/w°y°1//ga duo—/wgyel//so du® +1n°,
2 2 2

where the last equality follows from (5.18) fer= 0, sincey® e L2($2, u©).
Finally, we writelll ¢ as

llls:/ Ydut —/wwsyswdu +Z/D Y ity o dut.

2 i=1lg

Since, by (3.8)(zj) converges to 0 uniformly, while, by (7.2) and (9.19), the normedand y¢ in L2($2, u?)
remain bounded, we conclude that

|||8=/1ﬁa)8y£(pdu8+778. (9.27)
Q2
From (9.21), (9.22), (9.26), and (9.27) we obtain (9.2Q)n

Lemma 9.4. Under the hypotheses of Theor&, for everyp € C2°(£2) we have

Iimo{ / A*Du® —v*)Du® —v¥)pdx + / lu® — %% d;f}
2 (9.28)
:/AOD(MO—I/IQ)O) ( — Yy (pdx—i—/ u® — ya® (pdcr /(uo—l/fwo)wwocpdy,o,
2 2 2

whereo? is defined by9.8). If the functions:® andv¢ belong toHol(.Q) for everye > 0, then(9.28)also holds
with ¢ = 1.

Proof. We prove (9.28) only in the cagec C2°(£2), since, under the additional hypothesis v* € Hol(.Q), the
proof withg =1 is similar.

Let y¢ = u® — v® and lety? = 4 — yP. Then properties (9.17), (9.18), and (9.19) are satisfied by the
definition (7.20) ofv® and by (3.5), (3.8), (5.22), (7.1), @, (7.12), (7.13), and (7.14). Using= y°¢ as test
function in (7.11) we get

/ASDusDys(pdx—i—/usyS(pd,u,g:/fygcpdx—/AsDungoysdx. (9.29)
2 2 2 2
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Using (9.7) and (9.8) we obtain

Iimo{/AsDusDysgodx+/u£y£<pd;f} :/fyogodx—/AODuoD(pyde
£—
2 2 2 2 (9.30)
=/A DuODyocpdx+/y°<p do©.
2 2
From (9.30) and (9.20) we deduce (9.28)1

Lemma 9.5. Under the hypotheses of Theor&@:s, for everyy e H3(£2) N L?(2, n°) we have

/yda():/yuoduo, (9.31)

2 2

whereo? is defined by9.8).

Proof. First of all we recall thau® e H(£2) N L?(s2, u% by Theorem 9.1. Let us fiy € C2°(£2) with ¢ >0
in £2. By Lemma 9.4 we have

/AOD(MO - a)O)D(uo - Wwo)(p dx + /(uo - Wwo)(p do® — /(uo - wa)o)l//a)o(p du® >0, (9.32)

2 2 2

foreveryy e H2(2)NnW1>(£2). By Proposition 4.7 the s¢tr«%: ¥ € C°(£2)} is dense inHZ (2)NL2($2, uO).
Therefore (9.32) implies that

/AOD(MO—Z)D(uo—z)godx+/(u0—z)<pd00—/(uo—z)zwdu0>0, (9.33)
2 2 2

for everyz € H}(2) N L2(2, 10).
We now use Minty’s trick, and we take in (9.33)= u% + ty, with t € R, y € H}(2) N L?(2, 10, and
¢ € C2°(82) with ¢ =1 on supw. Dividing by r and passing to the limit astends to O we obtain

/yso do® =/yu°<p dp®.
2 2
Sinceu® € L?(£2, 1%, we obtain (9.31) by approximating 1 by a seque@gg of functions inC°(£2). O

Proof of Theorem 7.4. In view of Theorem 9.1 the functiom® belongs toH1(£2) N L2($2, 1%). From (9.8) we
have

/AODuoDydx—i—/ydcrO:/fydx Vy € H3(2) N L3(2, 1°).
2 2 2

By Lemma 9.5 this implies (7.11) fer=0. O

Proof of Theorem 7.8. Sinceu® belongs taH1(£2)NL2($2, %) by Theorem 9.1, itis enough to apply Lemmas 9.4
and 9.5. O
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10. Problemswith more general data

In this section we state and prove global and local eogence and corrector results for relaxed Dirichlet
problems of the form (5.9) and (7.11), when the right-hand sitfeand f are replaced by more general linear
functionalsL?, and when the strong convergencé gf) in H~1(£2) is replaced by the strong convergenceibf)
“along the sequence” of spaceHOl(Q) NL2(82, uo)).

10.1. Strong convergence of the data

For everye > 0 we consider an element of the dual spaﬁ{g}(.{z) N L2(2, uf)), i.e., a linear functional
Lf:H}(22) N L%(£2, 1*) — R such that

1/2
|L€(y>|<c€{a/|1)y|2dx+/|y|2dm} Vy € H}(£2) N L3(2, i),
2 2

for a suitable constan® < +oo (the constant is introduced in this formula for future convenience). It is easy to
prove that each functiondl can be represented in the form

Le(y)=(f€,y)+/g€ydu€, (10.1)
2

where ¢ € H~1(£2) andg® € L2(£2, u).
In this section we assume that

L*— L° strongly along the sequen¢83(22) N L2(2, u%)), (10.2)
in the sense that

|im0L8’(y€’) =L12(y°), (10.3)

g'—

for every subsequeneé of ¢ (see Section 2) and every sequeng®) which satisfies

v e HE@2)NLA(2, 1) Ve >0, (10.4)
y& =0 weakly in H}(£2), (10.5)
sup ‘y£/|2dyf9/ < +o00. (10.6)
e'>0

When (5.1), and (5.18)—(5.24) hold, Theorem 9.1 implies tfat L2(s2, u°). Since (10.3) holds true for every
sequencedy® ) which satisfies (10.4), (10.5), and (10.6), it is easy to prove by contradiction that there exists a
constaniC < +oo such that for every > 0

1/2
|LE ()] gC{aley|2dx+/|y|2d;f} Vy € H}(2) N L3(2, ). (10.7)
2 2

WhenL? is represented as in (10.1) wigh = 0, it is easy to see that (10.2) is satisfiedff) converges tof©
strongly in H~1(£2) (this condition is also necessary if all measurgsare zero). The case where the functions
g¢ are not identically zero is of course more difficult to handle, since the meastinesy, and the corresponding
spaced.?(£2, uf) may be different for different values ef This leads in a natural way to definition (10.2), where
we used the word “strongly” since the test functigﬁsin (10.3) are only assumed to be uniformly bounded in the
corresponding spaceé# (£2) N L2($2, u®).
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In this definition the presence in (10.3) of subsequencénd not just of the whole sequencges due, among
other reasons, to the fact that we want that the convergende pfmplies the convergence of any subsequence.

10.2. Global convergence and corrector results

By the Lax—Milgram lemma for every > 0 there exists a unique solutiaf to the problem
u® € HY(2) N L2(82, o),

/AsDusDy dx +/u8y du® =L°(y) Vye HOl(-Q) NL2(82, 1b). (10.8)

2 2
The following theorem is a generalization of Theorem 5.4.

Theorem 10.1. Assume(5.1), (5.18)—(5.24)and (10.2) For everye > O, let u® be the unique solution to
problem(10.8) Then(u®) converges ta® weakly inH2}(£2).

Proof. By (3.1), (3.2), and (10.7), using= u® as test function in (10.8) we obtain the estimate

a/|Du€|2dx+/|u€|2dyﬁ<CZ. (10.9)
2 2

Extracting a subsequence, we may assume that
u® —u weakly in H}(2), (10.10)

for some function: € Hg(52). By Theorem 9.1 we havee L2(£2, 1°). We will prove thatu = u°. Since the limit
does not depend on the subsequends il prove that the whole sequen¢e’) converges ta°.

If y e H3(£2) N L?(82, uO) satisfies[, fy dx = 0 for every f € L>®(£2), theny =0 a.e. in £2 By the Hahn—
Banach theorem, this implies thaf°(52) is dense in the dual space 8§ (2) N L2($2, u%). Therefore, given
n > 0, there exists;, € L°°(£2) such that

1/2
LO(y)—/fnydx gn{a/|Dy|2dx+/|y|2d;L0} Vy € HJ(2) N L3(2, u°). (10.11)
2 2 2

For everye > 0 letu; be the unique solution to problem (5.9) wifti = f,,. By Theorem 5.4 we have

ut —ud  weakly in Hy(£2), (10.12)

and takingy = u;, as test functionin (5.9), witlf* = f;;, we obtain

sup [ |uf | duf < +o0. (10.13)

e>0

Usingy = u® — uj, as test function in (10.8) and (5.9), witff = f;;, we obtain by difference
a/|D(u8 - uf7)|2dx +/ |uf — uf,lzdp,g < Lf(uf — uf’) — / fou® — uf’)dx, (10.14)
Q2 2 Q2
for everye > 0. By (10.3), (10.9), (10.10), (10.12), and (10.13) we have

SIiLnO{LS(us —up) — / o (u® — u;;)dx} =L%u —ul) — / fo(u —ul)dx. (10.15)
2 2
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Let 2° be the measure defined in the proof of Theorem 9.1. By (9.3) we have
a/‘D(u - u2)|2dx + /‘u — uS‘ZdﬁO < |i£n_)i[)lf{a/|D(u£ — uf’)‘zdx + / |u® — uf;lzdy,s}. (10.16)
Q2 Q2 Q2 Q2
From (9.6), (10.11), (10.14), (10.15), and (10.16) we obtain that
D 0)2g 0Pg0< B2 10.17
@ [ D= QP+ [ fu—uSdu® < En. (10.17)
Q2 Q2
Using (10.14) for: = 0, we obtain from (10.11)
a/‘D(uo—ug)}zdx+/|uo—u2|2d,u,0<r)z. (10.18)
Q2 2
From (10.17) and (10.18) we get

4
/|D u—u)| dx<4'3

Sincen > 0 is arbitrary, we conclude that=u®. O
The next theorem is a generalization of Theorem 7.2.

Theorem 10.2. Assume(5.1), (5.18)—(5.24), (7.1), (7.2pnd (10.2) Let § > 0 and letys be a function in
H?(22) n Wl°°(£2) which satisfie$7.3). Assume that the function§ defined by(7.4)belong toH(52). Then the
solutionsu® to the problemg10.8)satisfy the estimate

Iimsup{a/|Du8—Dv§|2dx+/|u8—v§|2d,u,g} <. (10.19)
2 2

e—0

Proof. Let us fixé’ < § such that

ﬁ/‘Du wga) )| dx+/|u wga)o‘ dul <&’ (10.20)

Forn >0, let f;, uj, andug be as in the proof of Theorem 10.1. Using (10.20) and (10.18), we 0 small
enough such that

Vo + én < /8, (10.21)
o
ﬂ/‘DuS - D(I//(;a)o)‘zdx +/|u3 - wga)o‘zduo <4 (10.22)
2 Q2

Therefore we can apply Theorem 7.2 with= f,, and we obtain

e—0

Iimsup{a/ | Duj, — Dv§|2dx +/|uf’ - U§|2d’u€} <&, (10.23)
2 2
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As (u) converges ta® weakly ian}(.Q) by Theorem 10.1, using (10.11), (10.14), (10.15), and (10.17) we deduce
that

e—0

2

lim Sup{a/ |Du® — Duf7|2dx +/ |u® — u%lzdug} < %nz. (10.24)
2 2

From (10.21), (10.23), and (10.24) we obtain (10.19)

10.3. Local convergence and corrector results

We consider now the case where the functiehare solutions to the problems
ut e HY(2) N L3(2, u®),

/AsDusDy dx + / ufydu® =LE(y) Vye H3(2)NL3(2, 1), (10.25)

2 2

but are not required to satisfy the boundary conditiér= 0 onas2.
The next theorem is a generalization of Corollary 7.6.

Theorem 10.3. Assumg(5.1), (5.18)—(5.24), (7.1), (7.2), and0.2) For everye > 0, let u®* be a solution to
problem(10.25) Assume that

u® —u® weakly inH(£2), (10.26)
for some functiom® € H1(£2). Thenu? is a solution to the problem
u®e HY(2)n LE (2, 1O,

/AODuoDy dx —i—/uoy d,[,LOZ Lo(y) Vy e Hél'(.Q) N LZ(.Q, ,U«O): (10.27)

2 2
where H!($2) denotes the space of all functiomse H'(£2) with compact support in2. If, in addition,
u® e L2(£2, %), then the last line i{10.27)holds for every € H}(2) N L2(52, uO).

Proof. As we have seen in the proof of Theorem 10.1, for evgry O there existsf; € L*°(£2) which
satisfies (10.11). Let us fix an open €éte 2 and letp € C>°(£2) such thaty =1 onU. Usingy = utp? as
test function in (10.25), and then (3.1), (3.2), (10.7), and (10.26) we obtain

sup [ |uf1?du’ < +oo, (10.28)

e>0

which implies that.® € L2(U, 1°) by Theorem 9.1. For every> 0 letu be the unique solution to the problem
ué —uf € HY(U) N LU, p*),

/ASDM‘;Dy dx +/uf’y duf = / foydx Vye H&(U) NL%(U, u%). (10.29)
U U U

Takingy = u; — u® (extended by 0 o2 N U) as test function in (10.29) and (10.25), we obtain by difference

a/‘D(ue — u;)‘zdx +/ |u® — uf,lzd,u,‘E < LE(uf — uf’) - / Sfou® — uf’)dx, (10.30)
U U U
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for everye > 0. By (10.7) this implies that® — u}) is bounded ian}(U) and that the integral§, |u® — u;|2du5
are bounded. Using (10.26) and (10.28), we conclude(ttjatis bounded inH1(U) and

sup [ |uf > duf < 4o00. (10.31)

e>0

Extracting a subsequence, we may assume that
uf —u weakly in H'(U), (10.32)

for some functionv € HX(U) with u — u® € H}(U). By (10.31) and by Theorem 9.1 the functierbelongs to
L2(U, u9). Using both assertions of Corollary 7:6js a solution to the problem

ue HY(U)NLA(U, 1°),
/AODuDydx+/uyd;L0=/f,,ydx VyEHOl(U)ﬂLZ(U,;LO).
U U U

Sinceu —u® € H}(U) N L2(U, %), by unigueness, we have= u9.
By (10.2), (10.26), (10.28), (10.31), and (10.32) we have

e—0

lim {Le(ue —uf) — / fy @t — u;)dx} =L0u®—ud) - / o (u® —ul) dx. (10.33)
U U

Let 2° be the measure defined in the proof of Theorem 9.1. By (9.3) we have

cx/|D(u0—u2)|2dx+/|u0—u3‘2d,&0
U U

(10.34)
< Iiminf{oz/|D(u‘g — uf’)|2dx —l—/lu8 — uf7|2dy,8}.
e—0
U U
From (9.6), (10.11), (10.30), (10.33), and (10.34) we obtain that
a/|D(uo—u0)|2dx+/|u0—u0|2d 0 B (10.35)
n nl SRS ot '
U U

Since, by (10.11)f, converges td.? in the dual space af§(£2) N L%(£2, u°) asn tends to 0, the solution?
of (10.29) fore = 0 converges in f(U) N L?(U, u%), asy tends to 0, to the solutiovP of the problem

W0 —u®e HY(U) N L3(U, 10),

/AODUODy dx +/U0y du=1%y) Vye H&(U) N LZ(U, MO)~ (10.36)

U U

On the other hand, by (10.35)2) converges ta:® in H1(U) N L?(U, u°) asy tends to 0. We conclude that

u® = v and that© is the unique solution of (10.36). Since this holds for every opet/sets?2, this implies that
uY is a solution of (10.27).
The final statement of the theorem can be proved as explained before Corollaryi7.6.
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The next theorem is a generalization of Theorem 7.7.

Theorem 10.4. Assumé5.1), (5.18)—(5.24), (7.1), (7.2and(10.2) For everye > 0, letu® be a solution to problem
(10.25). Assume that
u® = u% weakly inHY(£2),

for some functionu® € H1(£2). Let U be an open set wittU € £, let § > 0, let ys be a function in
H?(U) N Wl (U) which satisfie§7.18) and letv§ be the functions defined ti by (7.4). Then

|imsup{a/|1)u8—Dv§|2dx+/|u8—v§|2dm} <34, (10.37)
\4 \4

e—0

for every open se¥ € U.

Proof. Let us fixs’ < § such that

,8/|Du0 — D(lﬁga)o)|2dx +/|u0 — 1&5w0|2du0 <4 (10.38)
U U

Forn >0, let f,, uf, andu be as in the proof of Theorem 10.3. Sir@d) convergesta®in H*(U)NLA(U, 10,
we fix n small enough such that

v+ én < /8, (10.39)
o
ﬁ/\Dug— D(t/f(ga)o)‘zdx+/|u3—w5w0‘2duo<8'. (10.40)
U U
Therefore we can apply Theorem 7.7 with= f,, and we obtain
lim sup| a/ | Du;, — Dv§|2dx + / luyy — vglzd,u,‘€ <&, (10.41)
e—0 v y
for every open se¥ € U. Using (10.11), (10.30), (10.33nd (10.35) we deduce that
limsu 3 &2 3 £124,,€ 132 2
Pa | |Du® — Duj| dx + | |u —uy | du < 0" (10.42)
e—0 v v o

From (10.39), (10.41), and (10.42) we obtain (10.37%n
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