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Abstract

We consider a sequence of Dirichlet problems in varying domains (or, more generally, of relaxed Dirichlet problems in
measures inM+

0 (Ω)) for second order linear elliptic operators in divergence form with varying matrices of coefficients.

the matricesH -converge to a matrixA0, we prove that there exist a subsequence and a measureµ0 in M+
0 (Ω) such that the

limit problem is the relaxed Dirichlet problem corresponding toA0 andµ0. We also prove a corrector result which provides
explicit approximation of the solutions in theH1-norm, and which is obtained by multiplying the corrector for theH -converging
matrices by some special test function which depends both on the varying matrices and on the varying domains.

Résumé

Nous considérons une suite de problèmes de Dirichlet dans des ouverts variables (ou plus généralement un
problèmes de Dirichlet relaxés définis par des mesures deM+

0 (Ω)) pour des opérateurs elliptiques linéaires du deuxiè
ordre sous forme divergence avec des matrices de coefficients elles aussi variables. Quand les matricesH -convergent vers un
matriceA0, nous démontrons qu’il existe une sous suite et une mesureµ0 deM+

0 (Ω) telles qu’à la limite on obtienne l

problème de Dirichlet relaxé correspondant àA0 et µ0. Nous démontrons également un résultat de correcteur qui donn
approximation explicite des solutions en normeH1 ; ce correcteur est obtenu en multipliant le correcteur pour laH -convergence
des matrices par une fonction test spéciale qui dépend à la fois des matrices variables et des ouverts variables.
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1. Introduction

In this paper we consider a sequence of linear Dirichlet problems{
uε ∈ H 1

0

(
Ωε

)
,

−div
(
AεDuε

) = f in D′(Ωε
)
,

(1.1)

where the matricesAε and the domainsΩε both depend on the parameterε. We assume that the open setsΩε are
all contained in a fixed bounded open subsetΩ of Rn, and that the matricesAε, defined onΩ with measurable
coefficients, are coercive and bounded, uniformly with respect toε. Our goal is to study the behaviour of th
solutionsuε asε tends to zero.

In the special caseΩε = Ω it is known (see Section 3) that there exist a subsequence, still denoted by(Aε), and
a matrixA0, called theH -limit of (Aε), such that for everyf ∈ H−1(Ω) the solutionsvε of the problems{

vε ∈ H 1
0 (Ω),

−div
(
AεDvε

) = f in D′(Ω),

converge weakly inH 1
0 (Ω) to the solutionv0 of{

v0 ∈ H 1
0 (Ω),

−div
(
A0Dv0

) = f in D′(Ω),

and satisfy also

AεDvε ⇀ A0Dv0 weakly inL2(Ω,Rn
)
.

Without making any further hypothesis on the open setsΩε, we prove in the present paper that there ex
a subsequence, still denoted by(Ωε), such that for everyf ∈ H−1(Ω) the solutionsuε of (1.1) converge to the
solutionu0 of the problem

u0 ∈ H 1
0 (Ω) ∩ L2

(
Ω,µ0

)
,∫

Ω

A0Du0Dy dx +
∫
Ω

u0y dµ0 = 〈f,y〉 ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0), (1.2)

whereµ0 belongs toM+
0 (Ω), a class of nonnegative Borel measures which vanish on all sets of capacity ze

can take the value+∞ on some subsets ofΩ (see Section 2).
Problems like (1.2) are called relaxed Dirichlet problems (see Section 4) and have been extensively stu

to describe the limits of the solutions of (1.1) when the matricesAε do not depend onε. On the other hand
problems (1.1) can be written as relaxed Dirichlet problems (see Remark 4.1) by considering the measµε

defined by

µε(B) =
{

0, if cap
(
B \ Ωε

) = 0,

+∞, otherwise.
(1.3)

Actually in the paper we consider not only the case of Dirichlet problems (1.1), which correspond to the m
µε defined by (1.3), but more in general we study the case of a sequence of relaxed Dirichlet problems w
arbitraryµε ∈M+

0 (Ω).
In the limit problem (1.2) the measureµ0 does not depend onf , but, as shown in Section 6, it depends b

on the sequence of sets(Ωε) and on the sequence of matrices(Aε) (and not only on itsH -limit A0). Nevertheless
the sequence(Ωε) has a stronger influence than the sequence(Aε): indeed the limit measures corresponding to
same sequence(Ωε) but to different sequences(Aε) are equivalent (see Theorem 8.1).
i
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In Section 5 we give a fairly general and flexible method to construct the limit measureµ0 using suitable tes
functionsωε associated toΩε andAε. We then pass to the limit in the sequence of problems (1.1) by a du
argument and obtain (1.2).

In Section 7 we continue the study of the behaviour of the solutionsuε of (1.1) by giving a corrector result. B
this we mean the following: when the solutionu0 of the limit problem (1.2) can be written as

u0 = ψω0, (1.4)

whereω0 is the limit of the above test functionsωε andψ is sufficiently smooth (actually inH 2(Ω) ∩ W1,∞(Ω)),
we prove that

uε =
(

ψ +
n∑

j=1

Djψ zε
j

)
ωε + rε with rε → 0 strongly inH 1

0 (Ω), (1.5)

where the functionszε
j depend only on the matricesAε. This provides an approximation ofuε in the norm of

H 1
0 (Ω) by means of functions that are constructed explicitly.
When (1.4) is not satisfied with a smoothψ , a similar but more technical result holds (see Theorem 7.2)

also prove a local version of this corrector result.
Moreover, we prove (global and local) convergence and corrector results when also the right-hand side

depends onε and converges strongly in a convenient sense (see Section 10).
Let us finally note that the case where the matricesAε and the domainsΩε are periodic, with periods convergin

to zero with different speeds, has been studied in detail by Ansini and Braides in [1]. Results similar to those
in the present paper have been obtained by Kovalevsky in [18] for a class of nonlinear monotone elliptic equatio
under some geometric assumptions on the setsΩε, and more recently by Calvo Jurado and Casado Diaz in [6
the general case.

2. Preliminaries on capacity and measures

In this section we first introduce a few notation. Thenwe recall some known results on measures, capacity
fine properties of Sobolev functions.

2.1. Notation

Throughout the paperΩ is a bounded open subset ofRn, n � 1. The spaceD′(Ω) of distributions inΩ is
the dual of the spaceC∞

c (Ω). The spaceW1,p
0 (Ω), 1 � p < +∞, is the closure ofC∞

c (Ω) in the Sobolev spac
W1,p(Ω), while W−1,q (Ω), 1 � q < +∞, is the space of all distributions of the formf = f0 + ∑

j Djfj , with

f0, f1, . . . , fn ∈ Lq(Ω) (if 1/p + 1/q = 1, thenW−1,q(Ω) is the dual ofW1,p

0 (Ω)). In the Hilbert casep = q = 2
these spaces are denoted byH 1

0 (Ω), H 1(Ω), andH−1(Ω), respectively. The norm inH 1
0 (Ω) is defined by

‖u‖H1
0 (Ω) =

(∫
Ω

|Du|2 dx

)1/2

,

while the duality pairing betweenH−1(Ω) and H 1
0 (Ω) is denoted by〈· , ·〉. We shall sometimes use also t

Sobolev spaceH 2(Ω) = W2,2(Ω).
Theadjoint of a matrixA is denoted byĀ. Since complex numbers are not used in this paper,the bar never

denotes complex conjugation. If w is an object related to the matrixA, then
w denotes the corresponding obje
related to the adjoint̄A.
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Throughout the paperε varies in a stricly decreasing sequence of positive real numbers which converge
When we writeε > 0, we consider only the elements of this sequence, while when we writeε � 0 we also conside
its limit ε = 0.

2.2. Capacity and measures

For every subsetE of Ω thecapacityof E in Ω , denoted by cap(E), is defined as the infimum of
∫
Ω |Du|2 dx

over the set of all functionsu ∈ H 1
0 (Ω) such thatu � 1 a.e. in a neighbourhood ofE. We say that a propertyP(x)

holdsquasi everywhere(abbreviated asq.e.) in a setE if it holds for all x ∈ E except for a subsetN of E with
cap(N) = 0. The expressionalmost everywhere(abbreviated asa.e.) refers, as usual, to the analogous property
the Lebesgue measure.

A functionu :Ω → R is said to bequasi continuousif for everyε > 0 there exists a setE ⊆ Ω , with cap(E) < ε,
such that the restriction ofu to Ω \ E is continuous. A subsetU of Ω is said to bequasi openif for every ε > 0
there exists an open setV ⊆ Ω , with cap(V �U) < ε, where� denotes the symmetric difference.

Everyu ∈ H 1(Ω) has aquasi continuous representative, which is uniquely defined up to a set of capacity ze
In the sequel we shall always identifyu with its quasi continuous representative, so that the pointwise value
functionu ∈ H 1(Ω) are defined quasi everywhere inΩ . If u ∈ H 1(Ω), then

u � 0 a.e. inΩ ⇐⇒ u � 0 q.e. inΩ. (2.1)

If a sequence(uj ) converges tou strongly inH 1
0 (Ω), then a subsequence of(uj ) converges tou q.e. inΩ . For

all these properties concerning quasi continuous representatives of Sobolev functions we refer to [16], Section 4
[17], Section 4, [19], Section 7.2.4, or [27], Chapter 3.

The characteristic function 1E of a setE ⊆ Ω is defined by 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x ∈ Ω \ E.
The following lemma (see [9], Lemma 1.5, or [11], Lemma 1.1) concerns the pointwise approximation
characteristic function of a quasi open set.

Lemma 2.1. For every quasi open setU of Ω there exists an increasing sequence(zk) of nonnegative function
of H 1

0 (Ω) converging to1U pointwise q.e. inΩ .

By a nonnegative Borel measureon Ω we mean a countably additive set function defined on the Borel su
of Ω with values in[0,+∞]. By a nonnegative Radon measureon Ω we mean a nonnegative Borel meas
which is finite on every compact subset ofΩ . Every nonnegative Borel measureµ on Ω can be extended to
Borel regular outer measure onΩ by setting for every subsetE of Ω

µ(E) = inf
{
µ(B): B Borel,E ⊆ B ⊆ Ω

}
.

If µ is a nonnegative Borel measure onΩ , we shall useLr(Ω,µ), 1 � r � +∞, to denote the usual Lebesg
space with respect to the measureµ. We adopt the standard notationLr(Ω) whenµ is the Lebesgue measure.

We will consider the coneM+
0 (Ω) of all nonnegative Borel measuresµ onΩ such that

(a) µ(B) = 0 for every Borel setB ⊆ Ω with cap(B) = 0,

(b) µ(B) = inf{µ(U): U quasi open, B ⊆ U} for every Borel setB ⊆ Ω.

If E ⊆ Ω and cap(E) = 0, thenE is contained in a Borel setB ⊆ Ω with cap(B) = 0. ThereforeE is µ-measurable
by (a). Property (b) is a weak regularity property of the measureµ. It is always satisfied ifµ is a nonnegative
Radon measure. Since any quasi open set differs from a Borel set by a set of capacity zero, every quasi o
µ-measurable for every nonnegative Borel measureµ which satisfies (a).

Let us explicitly observe that the notation is not fixed in the literature and that in other works (see, e.g
M0(Ω) denotes the set of nonnegative Borel measures which only satisfy (a), while the set that we callM+

0 (Ω)

in the present paper is sometimes denoted byM∗(Ω) (see, e.g., [10]).
0
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For every quasi open setU ⊆ Ω we define the Borel measureµU by

µU(B) =
{

0, if cap(B \ U) = 0,

+∞, otherwise.
(2.2)

Roughly speaking,µU is identically zero onU and identically+∞ on Ω \ U . It is easy to see that this measu
belongs to the classM+

0 (Ω). Indeed, property (a) follows immediately from the definition, and it is enoug
verify (b) only for every Borel set withµU(B) < +∞; in this case cap(B \U) = 0, and this implies thatV = U ∪B

is quasi open (sinceU is quasi open), containsB, andµU(V ) = 0 (since cap(V \ U) = cap(B \ U) = 0), so that
(b) is satisfied. The measuresµU will be used to transform a sequence of Dirichlet problems on varying dom
into a sequence of relaxed Dirichlet problems on a fixed domain (see Remark 4.1 and the proof of Corolla

If µ ∈M+
0 (Ω), then the spaceH 1(Ω) ∩ L2(Ω,µ) is well defined, since every functionu in H 1(Ω) is defined

µ-almost everywhere and isµ-measurable inΩ (recall thatu is quasi continuous, so that{u > t} is quasi open for
everyt ∈ R). It is easy to see thatH 1(Ω) ∩ L2(Ω,µ) is a Hilbert space for the scalar product

(u, v)H1(Ω)∩L2(Ω,µ) =
∫
Ω

DuDv dx +
∫
Ω

uv dx +
∫
Ω

uv dµ (2.3)

(see [5], Proposition 2.1).
The space of all (signed) Radon measures onΩ will be denoted byM(Ω), whileMb(Ω) will be the space o

all µ ∈ M(Ω) with |µ|(Ω) < +∞, where|µ| denotes the total variation ofµ. A subsetA of M(Ω) is bounded if
for every compact setK ⊆ Ω we have

sup
µ∈A

|µ|(K) < +∞.

Every Radon measure onΩ will be identified with an element ofD′(Ω) in the usual way. Thereforeµ belongs
to M(Ω) ∩ W−1,q (Ω) if and only if there existf0, f1, . . . , fn ∈ Lq(Ω) such that∫

Ω

ϕ dµ =
∫
Ω

f0ϕ dx −
n∑

j=1

∫
Ω

fjDjϕ dx ∀ϕ ∈ C∞
c (Ω).

Note that, by Riesz’ theorem, every nonnegative element ofW−1,p(Ω) is a nonnegative Radon measure onΩ .
The cone of all nonnegative elements ofH−1(Ω) will be denoted byH−1(Ω)+. It is well known that every

element ofH−1(Ω)+ is a nonnegative Radon measure which belongs also toM+
0 (Ω). In other words we have th

inclusionH−1(Ω)+ ⊆M(Ω) ∩M+
0 (Ω).

3. H -convergence

In this section we recall the definition ofH -convergence and the corresponding corrector result. Moreove
prove a fairly general convergence theorem for right-hand sides which do not converge strongly inH−1(Ω).

Throughout the paper we fix two constantsα andβ such that

0< α � β < +∞.

We defineMβ
α (Ω) as the set of all matricesA in L∞(Ω,Rn×n) such that

A(x) � αI,
(
A(x)

)−1 � β−1I, for a.e.x ∈ Ω. (3.1)

In (3.1) I is the identity matrix inRn×n, and the inequalities are in the sense of the quadratic forms de
byA(x)ξξ for ξ ∈ Rn. Note that (3.1) implies that∣∣A(x)

∣∣ � β for a.e.x ∈ Ω, (3.2)

and that necessarilyα � β .
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3.1. Definition ofH -convergence

A sequence(Aε) of matrices inMβ
α (Ω) H -convergesto a matrixA0 in M

β
α (Ω) if for every f ∈ H−1(Ω) the

sequence(uε) of the solutions to the problems{
uε ∈ H 1

0 (Ω),

−div
(
AεDuε

) = f in D′(Ω),
(3.3)

satisfies

uε ⇀ u0 weakly inH 1
0 (Ω),

AεDuε ⇀ A0Du0 weakly inL2(Ω,Rn
)
,

whereu0 is the solution to the problem{
u0 ∈ H 1

0 (Ω),

−div
(
A0Du0

) = f in D′(Ω).
(3.4)

Every sequence of matrices inMβ
α (Ω) has a subsequence whichH -converges to a matrix inMβ

α (Ω)

(see [22,24,26]).
Denoting the adjoint ofAε by Āε, it is easy to prove that the sequence(Āε) H -converges toĀ0 when the

sequence(Aε) H -converges toA0.
If U is an open set contained inΩ , we can consider also the notion ofH -convergence inU , replacingΩ by U

in the definition. It is not difficult to prove that(Aε) H -converges toA0 in U , for every open setU ⊆ Ω , if (Aε)

H -converges toA0 in Ω .

3.2. Corrector result

Besides the compactness result mentioned above, one of the main theorems is the corrector result (se
and [3,23] in the periodic case). Let(e1, e2, . . . , en) be the canonical basis ofRn. Forj = 1,2, . . . , n there exists a
sequence(zε

j ) in H 1(Ω) such that

zε
j ⇀ 0 weakly inH 1(Ω), (3.5)

Aε
(
Dzε

j + ej

)
⇀ A0ej weakly inL2(Ω,Rn

)
, (3.6)

−div
(
Aε

(
Dzε

j + ej

)) → −div
(
A0ej

)
strongly inH−1(Ω). (3.7)

Throughout the paper we will also assume that

zε
j → 0 strongly inL∞(Ω), (3.8)

zε
j ⇀ 0 weakly inW1,p(Ω) for somep > 2; (3.9)

using De Giorgi’s and Meyers’ regularity theorems, such a sequence can be constructed, for instance, b
the problems{

zε
j ∈ H 1

0

(
Ω ′),

−div
(
Aε

(
Dzε

j + ej

)) = −div
(
A0ej

)
in D′(Ω ′),

whereΩ ′ is a bounded open set withΩ � Ω ′, andAε is extended byαI onΩ ′ \ Ω . (The use ofΩ ′ is needed here
only to obtain a globalW1,p(Ω) bound forzε in the case where∂Ω is not smooth.)
j
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Let f ∈ H−1(Ω), let (uε) be the sequence of the solutions to (3.3), and letu0 be the solution to (3.4). Give
δ > 0, letψδ be a function inC∞

c (Ω) which satisfies

β

∫
Ω

∣∣Du0 − Dψδ

∣∣2 dx < δ, (3.10)

and letvε
δ be defined by

vε
δ = ψδ +

n∑
j=1

Djψδ zε
j . (3.11)

Then (see [22,26])

lim sup
ε→0

α

∫
Ω

∣∣Duε − Dvε
δ

∣∣2 dx < δ. (3.12)

If u0 belongs toC∞
c (Ω), we can takeψδ = u0 in (3.10) for everyδ > 0, so that

vε
δ = vε = u0 +

n∑
j=1

Dju
0zε

j , (3.13)

and (3.12) implies that

Duε − Dvε → 0 strongly inL2(Ω,Rn
)
, (3.14)

which means thatDuε is equivalent toDvε (and also toDu0 + ∑
j Dju

0Dzε
j , using (3.5)), as far as convergenc

in L2(Ω,Rn) are concerned.
In the general case whereu0 only belongs toH 1

0 (Ω), we obtain from (3.12) that

Duε = Dψδ +
n∑

j=1

Djψδ Dzε
j + Rε

δ , with lim sup
ε→0

∥∥Rε
δ

∥∥2
L2(Ω,Rn)

<
δ

α
.

This is a corrector result: indeed it allows one to replaceDuε by an explicit expression, up to a remainderRε
δ which

is small inL2(Ω,Rn) for δ small, uniformly inε. Similar corrector results also hold in the case of local solutio
Applications can be found, e.g., in [2,8].

3.3. A convergence result

We conclude this section with the following convergence result, which is implicitly used in various works
e.g., [4]). Observe that there is no boundary condition on the solutionsuε and that the right-hand sidesf ε do not
converge strongly inH−1(Ω).

Theorem 3.1. Let (Aε) be a sequence of matrices inMβ
α (Ω) whichH -converges to a matrixA0 in M

β
α (Ω), and

let (uε) be a sequence inH 1(Ω) such that{
uε ⇀ u0 weakly inH 1(Ω),

−div
(
AεDuε

) = f ε in D′(Ω) for everyε � 0.
(3.15)

Assume thatf ε = gε + µε + νε for everyε > 0, where
(gε) is relatively compact inW−1,p

loc (Ω) for somep > 1,

(µε) is bounded inM(Ω),
ε ′

(3.16)
ν � 0 in D (Ω).
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Then{
f ε ⇀ f 0 weakly inH−1(Ω) and strongly inW−1,q

loc (Ω) for everyq < 2,

AεDuε ⇀ A0Du0 weakly inL2
(
Ω,Rn

)
.

(3.17)

In the present paper, this theorem will be used withµε = 0 and (gε) relatively compact (or even constan
in H−1(Ω).

Proof. Let K be any compact set ofRn with K ⊆ Ω , and letϕ ∈ C∞
c (Ω) with ϕ � 0 onΩ andϕ = 1 onK. We

have

0�
∫
K

dνε �
∫
Ω

ϕ dνε =
∫
Ω

AεDuεDϕ dx − 〈gε,ϕ〉 −
∫
Ω

ϕ dµε. (3.18)

Because of (3.2), (3.15), and (3.16), the right-hand side of (3.18) is bounded independently ofε. This implies that

(νε) is bounded inM(Ω). (3.19)

For every bounded open setU of Rn, the embeddingW1,r
0 (U) ⊆ C0

0(U) is compact for everyr > n. This
implies that the embeddingMb(U) ⊆ W−1,s (U) is compact for everys < n/(n− 1), and therefore the embeddin
M(Ω) ⊆ W

−1,s
loc (Ω) is compact for everys < n/(n − 1). Therefore (3.16) and (3.19) imply that(µε + νε) is

relatively compact inW−1,s
loc (Ω), which implies by (3.16) that(f ε) is relatively compact inW−1,t

loc (Ω) for some
t > 1. On the other hand, we deduce from (3.15) and (3.2) that(f ε) is bounded inH−1(Ω). By interpolation,(f ε)

is relatively compact inW−1,q
loc (Ω) for everyq < 2.

Let now v̄0 be an arbitrary function inC∞
c (Ω), and, for everyε > 0, let v̄ε be the solution to the problem{

v̄ε ∈ H 1
0 (Ω),

−div
(
ĀεDv̄ε

) = −div
(
Ā0Dv̄0

)
in D′(Ω).

(3.20)

Recall that the sequence(Āε) H -converges toĀ0, so that
v̄ε ⇀ v̄0 weakly inH 1

0 (Ω),

ĀεDv̄ε ⇀ Ā0Dv̄0 weakly inL2
(
Ω,Rn

)
,

v̄ε ⇀ v̄0 weakly in W
1,p

loc (Ω) for somep > 2,

(3.21)

where in the last assertion we have used Meyers’ regularity result (see [20]).
Let ϕ ∈ C∞

c (Ω). Usingv̄εϕ as test function in (3.15), anduεϕ as test function in (3.20), we have

〈
f ε, v̄εϕ

〉 = ∫
Ω

AεDuεDv̄εϕ dx +
∫
Ω

AεDuεDϕ v̄ε dx

= 〈−div
(
Ā0Dv̄0), uεϕ

〉 − ∫
Ω

ĀεDv̄εDϕ uε dx +
∫
Ω

AεDuεDϕ v̄ε dx.

(3.22)

Passing to a subsequence, we may assume that{
AεDuε ⇀ σ weakly inL2

(
Ω,Rn

)
,

f ε ⇀ f weakly inH−1(Ω) and strongly inW−1,q
loc (Ω) for everyq < 2,

(3.23)

for someσ ∈ L2(Ω,Rn) andf ∈ H−1(Ω). It is now easy to pass to the limit in the left and right-hand si
of (3.22) by using (3.15), (3.21), (3.23), and Rellich’s compactness theorem. One obtains



G. Dal Maso, F. Murat / Ann. I. H. Poincaré – AN 21 (2004) 445–486 453

o

nces

ith
d



〈
f, v̄0ϕ

〉 = 〈−div
(
Ā0Dv̄0), u0ϕ

〉 − ∫
Ω

Ā0Dv̄0Dϕ u0 dx +
∫
Ω

σDϕ v̄0 dx

=
∫
Ω

Ā0Dv̄0Du0ϕ dx +
∫
Ω

σDϕ v̄0 dx

=
∫
Ω

A0Du0Dv̄0ϕ dx +
∫
Ω

σDϕ v̄0 dx.

(3.24)

Since

−div(σ ) = f in D′(Ω), (3.25)

one deduces from (3.24) that∫
Ω

σDv̄0ϕ dx =
∫
Ω

A0Du0Dv̄0ϕ dx, (3.26)

for everyϕ ∈ C∞
c (Ω) and everyv̄0 ∈ C∞

c (Ω). Since, for every pointx ∈ Ω , the vectorDv̄0(x) can be chosen t
coincide with any prescribed vector ofRn, (3.26) implies that

σ = A0Du0 a.e. inΩ,

which, together with (3.25), givesf = f 0. The uniqueness of the limits in (3.23) implies that the whole seque
converge, and this completes the proof of (3.17).�

4. Relaxed Dirichlet problems

In this section we recall the definition, introduced in [13,14], of relaxed Dirichlet problems associated w
measuresµ ∈ M+

0 (Ω), and prove that, under some conditions on the data, the measureµ can be reconstructe
from a solution of the corresponding relaxed Dirichlet problem.

4.1. Relaxed Dirichlet problems

GivenA ∈ M
β
α (Ω), µ ∈ M+

0 (Ω), andf ∈ H−1(Ω), we callrelaxed Dirichlet problemthe problem of finding
u such that

u ∈ H 1
0 (Ω) ∩ L2(Ω,µ),∫

Ω

ADuDy dx +
∫
Ω

uy dµ = 〈f,y〉 ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ).

(4.1)

By a straightforward application of the Lax–Milgram lemma problem (4.1) has a unique solutionu (see [14],
Theorem 2.4) andu satisfies the estimate

α

∫
|Du|2 dx +

∫
|u|2 dµ � 1

α
‖f ‖2

H−1(Ω)
. (4.2)
Ω Ω
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A connection between classical Dirichlet problems on open subsets ofΩ and relaxed Dirichlet problems of th
form (4.1) is given by the following remark.

Remark 4.1. Using Theorem 4.5 of [17] it is easy to check that, ifU ⊆ Ω is open andµU is the measure introduce
in (2.2), thenu ∈ H 1

0 (Ω) ∩ L2(Ω,µU) if and only if the restriction ofu to U belongs toH 1
0 (U) andu = 0 q.e. in

Ω \ U . Therefore whenµ = µU problem (4.1) reduces to the following boundary value problem onU :{
u ∈ H 1

0 (U),

−div(ADu) = f in D′(U),
(4.3)

in the sense thatu is the solution of (4.1) if and only if its restriction toU is the solution of (4.3) andu = 0 q.e. in
Ω \ U .

The name “relaxed Dirichlet problem” is motivated by the fact that the limit of the solutions to Diri
problems on varying domainsΩε always satisfies a relaxed Dirichlet problem (see, e.g., [11,14], and
Corollary 5.5 below). Moreover, the results proved in [12,14] ensure that every relaxed Dirichlet problem onΩ can
be approximated in a convenient sense by classical Dirichlet problems on a suitable sequence of open s(Ωε)

included inΩ .

4.2. Reconstructing the measureµ

We now want to reconstruct the measureµ from one particular solution of the relaxed Dirichlet problem (4
In view of the applications we consider also solutions of the equation in (4.1) which do not necessarily
the homogeneous Dirichlet boundary condition on∂Ω , but we study only the case where the solution and
right-hand side are nonnegative. Let us fix

A ∈ Mβ
α (Ω), µ ∈M+

0 (Ω), λ ∈ H−1(Ω)+, (4.4)

and a solutionω to the problem
ω ∈ H 1(Ω) ∩ L2(Ω,µ),∫
Ω

ADωDy dx +
∫
Ω

ωy dµ =
∫
Ω

y dλ ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ),

(4.5)

which satisfies

ω � 0 q.e. inΩ. (4.6)

Remark 4.2. From the Lax–Milgram lemma, there exists a solution of (4.5) which belongs toH 1
0 (Ω); by the

comparison principle (Theorem 2.10 of [13]) this solution satisfies (4.6), so that the set of such functionsω is not
empty.

The following proposition (proved in [13], Proposition 2.6) will be frequently used throughout the paper.

Proposition 4.3. Assume(4.4), (4.5), and(4.6). Then there existsν ∈ H−1(Ω)+ such that

−div(ADω) + ν = λ in D′(Ω). (4.7)

For technical reasons, the reconstruction of the measureµ from ω requires the following assumption: for eve
quasi open setU in Ω we have

cap
(
U ∩ {ω = 0}) > 0 �⇒ λ(U) > 0. (4.8)
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Remark 4.4. Condition (4.8) is satisfied in the following (extreme) cases:

(a) ω > 0 q.e. inΩ;
(b) λ(U) > 0 for every quasi open setU ⊆ Ω with cap(U) > 0.

Note that (b) is always satisfied ifλ(U) = ∫
U f dx with f ∈ L1

loc(Ω) andf > 0 a.e. inΩ , since, by Lemma 2.1
and (2.1), every quasi open set with positive capacity has positive Lebesgue measure.

Proposition 4.5. Assume(4.4)–(4.6), and(4.8). Then

u ∈ H 1
0 (Ω) ∩ L2(Ω,µ) �⇒ u = 0 q.e. in{ω = 0}. (4.9)

Moreover for every Borel setB ⊆ Ω

cap
(
B ∩ {ω = 0}) > 0 �⇒ µ(B) = +∞. (4.10)

Proof. The proof follows along the lines of Lemma 3.2 of [11], with some important variants, due to the fa
nowλ is not the Lebesgue measure.

To prove (4.9) it is enough to consider a functionu ∈ H 1
0 (Ω) ∩ L2(Ω,µ) such that 0� u � 1 q.e. in Ω. For

everyk ∈ N let uk be the solution of the relaxed Dirichlet problem

uk ∈ H 1
0 (Ω) ∩ L2(Ω,µ),∫

Ω

ADukDy dx +
∫
Ω

uky dµ + k

∫
Ω

uky dλ = k

∫
Ω

uy dλ

∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ).

(4.11)

By the comparison principle (Theorem 2.10 of [13]) we have 0� uk � kω q.e. inΩ , henceuk = 0 q.e. in {ω = 0}.
Takingy = uk − u as test function in (4.11), from (3.1) we obtain, by using Cauchy’s inequality,

α

∫
Ω

|Duk |2 dx +
∫
Ω

|uk|2 dµ + 2k

∫
Ω

|uk − u|2 dλ � 1

α

∫
Ω

|ADu|2 dx +
∫
Ω

|u|2 dµ.

It follows that(uk) is bounded inH 1
0 (Ω) and converges tou strongly inL2(Ω,λ). Therefore a subsequence, s

denoted by(uk), converges weakly inH 1
0 (Ω) to some functionv in H 1

0 (Ω) such thatv = u λ-a.e. inΩ . Since
uk = 0 q.e. in {ω = 0}, and since suitable convex combinations of(uk) converge tov strongly in H 1

0 (Ω), we
conclude thatv = 0 q.e. in {ω = 0}. Let V = {v �= u}. ThenV is quasi open andλ(V ) = 0. It follows from (4.8)
that cap(V ∩ {ω = 0}) = 0. Asu = v in Ω \ V andv = 0 q.e. in {ω = 0}, this implies thatu = 0 q.e. in {ω = 0}.

Let us prove (4.10). LetU be a quasi open subset ofΩ such thatµ(U) < +∞. By Lemma 2.1 there exists a
increasing sequence(zk) in H 1

0 (Ω) converging to 1U pointwise q.e. inΩ and such that 0� zk � 1U q.e. inΩ for
everyk ∈ N. As µ(U) < +∞, each functionzk belongs toL2(Ω,µ), hencezk = 0 q.e. on{ω = 0} by the previous
step. This implies that 1U = 0 q.e. on{ω = 0}, hence cap(U ∩ {ω = 0}) = 0.

Let us consider a Borel setB with cap(B ∩ {ω = 0}) > 0. For every quasi open setU containingB we have
cap(U ∩ {ω = 0}) > 0, henceµ(U) = +∞ by the previous step of the proof. Then the regularity property (b
the definition ofM+

0 (Ω) implies thatµ(B) = +∞. �
Proposition 4.6. Assume(4.4)–(4.6), and (4.8), and letν be the measure ofH−1(Ω)+ defined in(4.7). Then for
every Borel setB ⊆ Ω we have

µ(B) =


∫
B

dν

ω
if cap

(
B ∩ {ω = 0}) = 0,

+∞ if cap
(
B ∩ {ω = 0}) > 0,

(4.12)
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(
B ∩ {ω > 0}) =

∫
B

ωdµ. (4.13)

In particular, this implies thatν = ωµ on {ω > 0}.

Proof. The proof follows along the lines of Lemma 3.3 and Proposition 3.4 of [11]. For everyη > 0 let νη be the
Borel measure defined by

νη(B) =
∫

B∩{ω>η}
ωdµ. (4.14)

As ω ∈ L2(Ω,µ), we haveνη(Ω) � 1
η

∫
Ω

ω2 dµ < +∞. Let us prove that

νη(B) = ν
(
B ∩ {ω > η}), (4.15)

for every Borel setB ⊆ Ω . Sinceνη is a Radon measure, it is enough to prove thatνη(U) = ν(U ∩ {ω > η}) for
every open setU ⊆ Ω . Let us fix an open setU , and letUη = U ∩ {ω > η}. As Uη is quasi open, by Lemma 2.
there exists an increasing sequence(zk) of nonnegative functions ofH 1

0 (Ω) converging to 1Uη pointwise q.e. inΩ .
Sinceµ(Uη) < +∞, the functionszk belong toL2(Ω,µ). Usingzk as test function in (4.5) and (4.7) we obtain∫

Ω

zk dν =
∫
Ω

ωzk dµ.

Taking the limit ask tends to∞ we getν(U ∩ {ω > η}) = νη(Uη) = νη(U), which proves (4.15). Whenη tends
to 0, we obtain (4.13) from (4.14) and (4.15) (recall thatω � 0 q.e. in Ω).

From (4.13) we have

µ
(
B ∩ {ω > η}) =

∫
B∩{ω>η}

dν

ω
,

for every Borel setB ⊆ Ω and everyη > 0. Taking the limit asη tends to 0 we obtain

µ(B) =
∫
B

dν

ω
, (4.16)

for every Borel setB ⊆ {ω > 0}. Since µ vanishes on all sets with capacity zero, (4.16) holds also w
cap(B ∩ {ω = 0}) = 0. Finally, if cap(B ∩ {ω = 0}) > 0, thenµ(B) = +∞ by Proposition 4.5. �
4.3. Density and uniqueness results

In the next proposition we assume, in addition, that

ω ∈ L∞(Ω). (4.17)

The following density result will be crucial in Sections 7 and 9. The proof follows along the line
Proposition 5.5 of [15], with one important variant, due tothe fact that it is now possible that the solutionsuk

of the penalized problem (4.11) do not converge tou weakly inH 1
0 (Ω) (see the proof of Proposition 4.5).

Proposition 4.7. Assume(4.4)–(4.6), (4.8), and(4.17). Then the set{ωϕ: ϕ ∈ C∞
c (Ω)} is dense inH 1

0 (Ω) ∩
L2(Ω,µ).
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Proof. For everyu ∈ H 1
0 (Ω) ∩ L2(Ω,µ) we have to construct a sequence(ϕk) in C∞

c (Ω) such that(ωϕk)

converges tou both in H 1
0 (Ω) and inL2(Ω,µ). Clearly it is enough to consider the caseu � 0 q.e. in Ω. For

everyj ∈ N let vj = u ∧ (jω). Sinceω � 0 q.e. in Ωandu = 0 q.e. in {ω = 0} by Proposition 4.5, the sequen
(vj ) is nondecreasing and converges tou q.e. inΩ . By Lemma 1.6 of [9] there exists a sequence(uj ) in H 1

0 (Ω),
converging tou strongly in H 1

0 (Ω), such that 0� uj � vj � u q.e. in Ω for every j ∈ N. By the dominated
convergence theorem it turns out that(uj ) converges tou in L2(Ω,µ) too.

It is thus sufficient to consider the case whereu ∈ H 1
0 (Ω) is such that 0� u � cω q.e. in Ω for some

constantc > 0. Since{(u − c ε)+ > 0} ⊆ {ω > ε}, and (u − c ε)+ converges tou in H 1
0 (Ω) ∩ L2(Ω,µ) as ε

tends to 0, we may also assume that there existsε > 0 such that{u > 0} ⊆ {ω > ε}. Thenu/ω = u/(ω ∨ ε). Since
ω ∈ H 1(Ω) ∩ L∞(Ω), we haveu ∈ H 1

0 (Ω) ∩ L∞(Ω), and thusu/ω ∈ H 1
0 (Ω) ∩ L∞(Ω). Therefore there exist

a sequence(ϕk) in C∞
c (Ω), bounded inL∞(Ω), which converges toz = u/ω strongly inH 1

0 (Ω) and q.e. inΩ ,
henceµ-a.e. inΩ . Sinceω ∈ H 1(Ω) ∩ L∞(Ω), the sequence(ωϕk) converges toωz = u strongly inH 1

0 (Ω).
As ω ∈ L2(Ω,µ) and (ϕk) is bounded inL∞(Ω,µ) and converges toz = u/ω µ-a.e. inΩ , by the dominated
convergence theorem the sequence(ωϕk) converges toωz = u strongly inL2(Ω,µ). �

The following uniqueness result will be crucial in Theorems 5.1 and 5.4. The proof follows along the li
Lemma 3.5 of [11], with one important variant, due to the fact that now the condition

∫
Ω u2 dλ = 0 does not imply

thatu = 0 q.e. in Ω.

Proposition 4.8. Assume(4.4)–(4.6), (4.8), and(4.17). Letu be a solution of the problem
u ∈ H 1

0 (Ω) ∩ L∞(Ω),∫
Ω

ADϕDuω dx −
∫
Ω

ADωDϕ udx +
∫
Ω

uϕ dλ = 0 ∀ϕ ∈ C∞
c (Ω).

(4.18)

Thenu = 0 q.e. inΩ .

Proof. Sinceu andω belong toH 1(Ω) ∩ L∞(Ω), it is easy to see that the equation in (4.18) is satisfied als
ϕ ∈ H 1

0 (Ω) ∩ L∞(Ω). Usingϕ = u as test function in this equation we obtain∫
Ω

ADuDuωdx − 1

2

∫
Ω

ADωD
(
u2)dx +

∫
Ω

u2 dλ = 0. (4.19)

Usingy = u2 as test function in (4.7), from (4.19) we get∫
Ω

ADuDuωdx + 1

2

∫
Ω

u2 dν + 1

2

∫
Ω

u2 dλ = 0.

This implies

Du = 0 a.e. in{ω > 0}, (4.20)

u = 0 λ-a.e. inΩ. (4.21)

Let U = {u �= 0}. ThenU is quasi open andλ(U) = 0 by (4.21). Therefore (4.8) implies thatu = 0 q.e. in
{ω = 0}, and consequentlyDu = 0 a.e. in {ω = 0}. By (4.20) we conclude thatDu = 0 a.e. inΩ . Sinceu ∈ H 1

0 (Ω),
this yieldsu = 0 q.e. in Ω. �
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5. A global convergence result

For everyε � 0 we consider a matrixAε in M
β
α (Ω) and a measureµε in M+

0 (Ω), that will remain fixed
throughout the rest of the paper. We assume that

(Aε) H -converges toA0. (5.1)

In this section we use a duality argument to prove that, under suitable hypotheses on(µε) (which are always
satisfied by a subsequence), the solutionsuε of the relaxed Dirichlet problems (4.1) forA = Aε and µ = µε

converge to the solutionu0 of the relaxed Dirichlet problem forA = A0 andµ = µ0.

5.1. Definition of special test functions

For everyε � 0 we define the functionswε and
wε as the unique solutions to the problems
wε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
Ω

AεDwεDy dx +
∫
Ω

wεy dµε =
∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

(5.2)



wε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
Ω

ĀεD
wεDy dx +
∫
Ω


wεy dµε =
∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(5.3)

By the comparison principle (Theorem 2.10 of [13]) we have

wε � 0 and 
wε � 0 q.e. inΩ. (5.4)

Moreover, by the maximum principle, we have also

sup
ε�0

‖wε‖L∞(Ω) < +∞ and sup
ε�0

‖
wε‖L∞(Ω) < +∞ (5.5)

(see [11], Section 3). By Proposition 4.3 there exists two measuresνε andν̄ε in H−1(Ω)+ such that

−div
(
AεDwε

) + νε = 1, −div
(
ĀεD
wε

) + ν̄ε = 1 in D′(Ω). (5.6)

Finally, from (4.2) we obtain

sup
ε�0

∫
Ω

|Dwε|2 dx < +∞, sup
ε�0

∫
Ω

|D
wε|2 dx < +∞, (5.7)

sup
ε�0

∫
Ω

|wε|2 dµε < +∞, sup
ε�0

∫
Ω

|
wε|2 dµε < +∞. (5.8)

5.2. The main convergence result

Given, for everyε � 0, f ε andf̄ ε in H−1(Ω), we consider the solutionsuε andūε to the following problems
uε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
AεDuεDy dx +

∫
uεy dµε = 〈f ε, y〉 ∀y ∈ H 1

0 (Ω) ∩ L2(Ω,µε),
(5.9)
Ω Ω
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ūε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
Ω

ĀεDūεDy dx +
∫
Ω

ūεy dµε = 〈f̄ ε, y〉 ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(5.10)

Theorem 5.1. Assume(5.1) and letwε and 
wε be the solutions to(5.2) and (5.3). The following conditions are
equivalent:

(a) wε ⇀ w0 weakly inH 1
0 (Ω);

(b) 
wε ⇀ 
w 0 weakly inH 1
0 (Ω);

(c) for every(f ε) and(uε) satisfying(5.9), if f ε → f 0 strongly inH−1(Ω), thenuε ⇀ u0 weakly inH 1
0 (Ω);

(d) for every(f̄ ε) and(ūε) satisfying(5.10), if f̄ ε → f̄ 0 strongly inH−1(Ω), thenūε ⇀ ū0 weakly inH 1
0 (Ω).

Proof. (a) ⇒ (d). Assume (a). By (4.2) it is enough to prove (d) whenf̄ ε = f̄ 0 = f̄ ∈ L∞(Ω). Since the equatio
is linear, it suffices to consider the case 0� f̄ � 1 a.e. inΩ , so that 0� ūε � 
wε q.e. inΩ by the comparison
principle (Theorem 2.10 of [13]).

By (4.2) the sequence(ūε) is bounded inH 1
0 (Ω) and by (5.5) it is bounded inL∞(Ω). Extracting a subsequenc

we may assume that

ūε ⇀ ū weakly inH 1
0 (Ω), (5.11)

for some functionū ∈ H 1
0 (Ω) ∩ L∞(Ω). We want to show that̄u = ū0. Since the limit does not depend on t

subsequence, this will prove that the whole sequence(ūε) converges tōu0.
By Proposition 4.3 we have

−div
(
ĀεDūε

) + γ̄ ε = f̄ in D′(Ω), (5.12)

for someγ̄ ε ∈ H−1(Ω)+. By Theorem 3.1, from (5.6) and (5.12) we deduce that{
AεDwε ⇀ A0Dw0 weakly inL2

(
Ω,Rn

)
,

ĀεDūε ⇀ Ā0Dū weakly inL2
(
Ω,Rn

)
.

(5.13)

Let ϕ ∈ C∞
c (Ω). Usingy = wεϕ as test function in (5.10) andy = ūεϕ as test function in (5.2), by difference w

obtain∫
Ω

ĀεDūεDϕ wε dx −
∫
Ω

AεDwεDϕ ūε dx =
∫
Ω

f̄ wεϕ dx −
∫
Ω

ūεϕ dx, (5.14)

for everyε � 0. Since(wε) converges tow0 strongly inL2(Ω) by (a) and(ūε) converges tōu strongly inL2(Ω)

by (5.11), using (5.13) we can pass to the limit in each term of (5.14) and we obtain∫
Ω

Ā0DūDϕ w0 dx −
∫
Ω

A0Dw0Dϕ ūdx =
∫
Ω

f̄w0ϕ dx −
∫
Ω

ūϕ dx. (5.15)

Since (5.14), withε = 0, and (5.15) hold for everyϕ ∈ C∞
c (Ω), the differenceu = ū0 − ū belongs toH 1

0 (Ω) ∩
L∞(Ω) and satisfies (4.18) withA = A0, ω = w0, andλ = 1. This impliesū = ū0 q.e. inΩ by Proposition 4.8.

(d) ⇒ (b). It is enough to takef̄ ε = f̄ 0 = 1 in condition (d).
(b) ⇒ (c). Since(Āε) H -converges toĀ0, we can replaceAε by Āε andf̄ ε by f ε in the proof of the implication

(a)⇒ (d).
(c) ⇒ (a). It is enough to takef ε = f 0 = 1 in condition (c). �



460 G. Dal Maso, F. Murat / Ann. I. H. Poincaré – AN 21 (2004) 445–486

ted

new
5.3. A compactness result

We now prove that the equivalent conditions of Theorem 5.1 are always satisfied by a subsequence.

Theorem 5.2. Assume(5.1). For every sequence(µε)ε>0 in M+
0 (Ω) there exist a subsequence, still deno

by (µε), and a measureµ0 in M+
0 (Ω), such that the equivalent conditions(a)–(d)of Theorem5.1are satisfied.

Proof. By (5.7) the sequence(wε) is bounded inH 1
0 (Ω). Passing to a subsequence, we may assume that(wε)

converges weakly inH 1
0 (Ω) to some functionw ∈ H 1

0 (Ω). By (5.4) we havew � 0 q.e. inΩ . Now we want to
construct a measureµ0 ∈ M+

0 (Ω) such thatw coincides with the solutionw0 of (5.2) forε = 0.
By (5.6) and Theorem 3.1 the sequence(AεDwε) converges toA0Dw weakly inL2(Ω,Rn). Therefore(νε)

converges toν weakly inH−1(Ω), whereν ∈ H−1(Ω)+ is defined by

−div
(
A0Dw

) + ν = 1 inD′(Ω). (5.16)

Let us define the measureµ0 by

µ0(B) =


∫
B

dν

w
if cap

(
B ∩ {w = 0}) = 0,

+∞ if cap
(
B ∩ {w = 0}) > 0.

(5.17)

Using (5.16), from Proposition 3.4 of [11] we obtain thatµ0 ∈ M+
0 (Ω) and thatw coincides with the unique

solutionw0 to problem (5.2) forε = 0. This shows that condition (a) of Theorem 5.1 is satisfied.�
5.4. More general test functions

We introduce now a more general family of test functions(ωε). While it is very difficult to compute explicitly
the functionswε defined by (5.2), in some interesting situations it will be very easy to construct explicitly the
family (ωε), from which one can determine immediately the limit measureµ0.

For everyε � 0 letλε ∈ H−1(Ω)+ and letωε be a solution of the problem
ωε ∈ H 1(Ω) ∩ L2(Ω,µε),∫
Ω

AεDωεDy dx +
∫
Ω

ωεy dµε =
∫
Ω

y dλε ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(5.18)

We assume that

λε ∈ H−1(Ω)+ for everyε � 0, (5.19)

λε → λ0 strongly inH−1(Ω), (5.20)

ωε � 0 q.e. inΩ for everyε � 0, (5.21)

ωε ⇀ ω0 weakly inH 1(Ω). (5.22)

Moreover we assume that for every quasi open setU in Ω we have

cap
(
U ∩ {

ω0 = 0
})

> 0 �⇒ λ0(U) > 0, (5.23)

and that

ω0 ∈ L∞(Ω). (5.24)
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Remark 5.3. If condition (a) of Theorem 5.1 is satisfied, then the functionswε , ε � 0, defined by (5.2) satisf
conditions (5.18)–(5.24) withλε = 1 for everyε � 0 (see Remark 4.4). Other sequences(ωε)ε�0 and (λε)ε�0
satisfying (5.18)–(5.24), withω0 = 1, are constructed in [7] whenµ0 ∈ H−1(Ω)+.

If conditions (5.18)–(5.24) are satisfied inΩ , then they are satisfied in every open setU ⊆ Ω .

Theorem 5.4. Assume that(5.1) holds and that(ωε)ε�0 and (λε)ε�0 satisfy(5.18)–(5.24). Then the equivalen
conditions(a)–(d)of Theorem5.1are fulfilled.

Proof. We will prove that condition (b) holds. By (5.7) the sequence(
wε) is bounded inH 1
0 (Ω) and by (5.5) it is

bounded inL∞(Ω). Extracting a subsequence, we may assume that


wε ⇀ 
w weakly inH 1
0 (Ω), (5.25)

for some function
w ∈ H 1
0 (Ω) ∩ L∞(Ω). We will show that
w = 
w 0. Since the limit does not depend on t

subsequence, this will prove that the whole sequence(
wε) converges to
w 0.
By Proposition 4.3 and Theorem 3.1 we have{

AεDωε ⇀ A0Dω0 weakly inL2
(
Ω,Rn

)
,

ĀεD
wε ⇀ Ā0D
w weakly inL2
(
Ω,Rn

)
.

(5.26)

Let ϕ ∈ C∞
c (Ω). Usingy = ωεϕ as test function in (5.3) andy = 
wεϕ as test function in (5.18), by difference w

obtain∫
Ω

ĀεD
wεDϕ ωε dx −
∫
Ω

AεDωεDϕ 
wε dx =
∫
Ω

ωεϕ dx −
∫
Ω


wεϕ dλε, (5.27)

for everyε � 0. Since(ωε) converges toω0 strongly inL2
loc(Ω) by (5.22) and(
wε) converges to
w strongly in

L2(Ω) by (5.25), using (5.26) we can pass to the limit in each term of (5.27) and we obtain∫
Ω

Ā0D
wDϕ ω0 dx −
∫
Ω

A0Dω0Dϕ 
w dx =
∫
Ω

ω0ϕ dx −
∫
Ω


wϕ dλ0. (5.28)

Since (5.27), withε = 0, and (5.28) hold for everyϕ ∈ C∞
c (Ω), the difference
w 0− 
w belongs toH 1

0 (Ω)∩L∞(Ω)

and satisfies (4.18) withA = A0, λ = λ0 andω = ω0. This implies
w = 
w 0 q.e. inΩ by Proposition 4.8. �
5.5. Dirichlet problems on varying domains

We conclude this section by considering the particular case of classical Dirichlet problems on varying d
Let (Ωε)ε>0 be a sequence of open sets, withΩε ⊆ Ω , and letµ0 be a measure inM+

0 (Ω). For everyε > 0 let
wε and
wε be the unique solutions to the problems{

wε ∈ H 1
0

(
Ωε

)
,

−div
(
AεDwε

) = 1 inD′(Ωε
)
,

(5.29)

{ 
wε ∈ H 1
0

(
Ωε

)
,

−div
(
ĀεD
wε

) = 1 in D′(Ωε
)
,

(5.30)

and letw0 and
w 0 be the solutions of (5.2) and (5.3) withε = 0.
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Givenf ε andf̄ ε in H−1(Ω), for ε > 0, we consider the solutionsuε andūε to the following problems{
uε ∈ H 1

0

(
Ωε

)
,

−div
(
AεDuε

) = f ε in D′(Ωε
)
,

(5.31)

{
ūε ∈ H 1

0

(
Ωε

)
,

−div
(
ĀεDūε

) = f̄ ε in D′(Ωε
)
.

(5.32)

Givenf 0 andf̄ 0 in H−1(Ω), letu0 andū0 be the solutions of (5.9) and (5.10) withε = 0. All functions inH 1
0 (Ωε)

are considered as functions inH 1
0 (Ω) which are equal to 0 q.e. inΩ \ Ωε. (Observe thatuε, ūε , f ε, andf̄ ε are

defined in the whole ofΩ , for ε � 0.)

Corollary 5.5. Assume(5.1) and letwε and 
wε be the solutions of(5.29) and (5.30) for ε > 0, and of (5.2)
and (5.3) for ε = 0. The following conditions are equivalent:

(a) wε ⇀ w0 weakly inH 1
0 (Ω);

(b) 
wε ⇀ 
w 0 weakly inH 1
0 (Ω);

(c) for every(f ε) and(uε) satisfying(5.31)for ε > 0 and (5.9) for ε = 0, if f ε → f 0 strongly inH−1(Ω), then
uε ⇀ u0 weakly inH 1

0 (Ω);
(d) for every(f̄ ε) and(ūε) satisfying(5.32)for ε > 0 and(5.10)for ε = 0, if f̄ ε → f̄ 0 strongly inH−1(Ω), then

ūε ⇀ ū0 weakly inH 1
0 (Ω).

Proof. For everyε > 0 let µΩε be the measures introduced in (2.2) withU = Ωε. By Remark 4.1 the function
wε and
wε defined in (5.29) and (5.30) coincide with the solutions of (5.2) and (5.3) withµε = µΩε . For the same
reason the functionsuε and ūε defined in (5.31) and (5.32) coincide with the solutions of (5.9) and (5.10)
µε = µΩε . The conclusion now follows from Theorem 5.1.�
Remark 5.6. Let (λε) be a sequence inH−1(Ω)+ and, for everyε > 0, letωε be a function inH 1(Ω) such that
ωε = 0 q.e. in Ω\ Ωε and

−div
(
AεDωε

) = λε in D′(Ωε
)
.

Let λ0 ∈ H−1(Ω)+ and letω0 be a solution of (5.18) withε = 0. If conditions (5.19)–(5.24) are satisfied, then
equivalent conditions (a)–(d) of Corollary 5.5 are satisfied. To prove this fact, it is enough to use Remark
Theorem 5.4.

6. An example

In this section we present an example, not yet considered in the literature, which shows that the meaµ0

which appears in the limit problem depends not only on the sequence(Ωε) and onA0, but also on the sequenc
(Aε). To identify the measureµ0 we apply Corollary 5.5 and Remark 5.6. Another interesting example is giv
Section 5 of [1].

To simplify the exposition, we assumen � 3 (the casen = 2 requires obvious modifications, as done, e
in [7]). Let us fix an exponentγ with

1< γ <
n

. (6.1)

n − 2
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For everyε > 0 andi ∈ Zn, we consider the pointxε
i = εi and the open ballsBε

i andCε
i with centrexε

i and radii
εn/(n−2) andεγ , respectively. By (6.1) we haveBε

i ⊆ Cε
i for 0 < ε < 1, and the sets(Cε

i )i∈Zn are pairwise disjoin
for 0 < ε < 21/(1−γ ). We define

Bε =
⋃
i∈Zn

Bε
i , Cε =

⋃
i∈Zn

Cε
i .

For two given constantsa, b ∈ [α,β], we define the matricesAε, for ε � 0, by

Aε(x) =
{

aI for x ∈ Ω \ Cε,

bI for x ∈ Ω ∩ Cε,
(6.2)

where we setC0 = ∅, so thatA0(x) = aI for everyx ∈ Ω . Since(Aε) converges in measure toA0 by (6.1), it is
easy to prove that(Aε) H -converges toA0. Finally, for everyε > 0 we define

Ωε = Ω \ 
Bε.

We will determineµ0 ∈ M+
0 (Ω) such that the equivalent conditions (a)–(d) of Corollary 5.5 are satisfied.

precisely, using Remark 5.6 we will construct, forε � 0, a measureλε in H−1(Ω)+ and, forε > 0, a functionωε

in H 1(Ω) such thatωε = 0 q.e. in
Bε and

−div
(
AεDωε

) = λε in D′(Ωε
)
, (6.3)

for which we will prove that conditions (5.19)–(5.24) are satisfied, whereω0 is a solution of (5.18) withε = 0.
For everyε > 0 andi ∈ Zn, let ωε

i ∈ H 1(Cε
i \ 
Bε

i ) be the solution of the equation�ωε
i = 0 onCε

i \ 
Bε
i which

satisfies the boundary conditionsωε
i = 0 on ∂Bε

i andωε
i = 1 on ∂Cε

i . By an explicit computation we find that

ωε
i (x) = cε − cεεn|x − xε

i |2−n for x ∈ Cε
i \ 
Bε

i , (6.4)

where

cε = 1

1− εn−γ (n−2)
−→ 1 (6.5)

by (6.1). For 0< ε < 21/(1−γ ) we defineωε as the function which is equal toωε
i on (Cε

i \ 
Bε
i )∩Ω , and is extended

by 0 on Ω∩ 
Bε and by 1 on Ω\ Cε . By an explicit computation we find that∫
Cε

i \Bε
i

|Dωε
i |2 dx = (n − 2)Sn−1c

εεn,

whereSn−1 is the(n − 1)-dimensional measure of the boundary of the unit ball inRn. This yields∫
Ω

|Dωε|2 dx � (n − 2)Sn−1c
εNεεn, (6.6)

whereNε is the number of indicesi ∈ Zn such that the distance fromxε
i to Ω is less thanε. Since

lim
ε→0

Nεεn = meas
(
Ω

)
< +∞, (6.7)

we deduce from (6.5) and (6.6) that(ωε) is bounded inH 1(Ω). As (ωε) converges to 1 in measure, we conclu
that(ωε) converges toω0 = 1 weakly inH 1(Ω), i.e., condition (5.22) is fulfilled.

Let σε denote the(n − 1)-dimensional measure on∂Cε and letλε be the measure onΩ defined by

λε = b(n − 2)cεεn−γ (n−1)σ ε.
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Since, by (6.4),

∂ωε
i

∂ν
= (n − 2)cεεn−γ (n−1) on∂Cε

i ,

we obtain that−b�ωε = λε in D′(Ωε). AsDωε = 0 a.e. inΩε \ Cε , we haveAεDωε = bDωε a.e. inΩε by (6.2),
and we conclude that (6.3) holds. From the properties ofσε and from (6.5) it follows thatλε ∈ H−1(Ω)+ and that

lim
ε→0

∫
Ω

ϕ dλε = b(n − 2)Sn−1

∫
Ω

ϕ dx, (6.8)

for everyϕ ∈ C∞
c (Ω). We now defineµ0 = λ0 = b(n − 2)Sn−1. Then condition (5.19) is satisfied andω0 = 1 is a

solution to problem (5.18) forε = 0. It remains to prove that(λε) converges toλ0 strongly inH−1(Ω).
To this aim, for everyε > 0 andi ∈ Zn, we consider the open ballsDε

i andEε
i with centrexε

i and radiiε/4 and
ε/2, respectively. Then we introduce the functionsvε

i defined by

vε
i (x) =

{
bcεεn|x − xε

i |2−n if x ∈ Eε
i \ Cε

i ,

bcεεn−γ (n−2) if x ∈ Cε
i .

By computing the normal derivatives ofvε
i on both sides of∂Cε

i we obtain that

−�vε
i = λε onEε

i , (6.9)

for 0 < ε < 21/(1−γ ). We fix a cut-off functionϕε
i ∈ C∞

c (Eε
i ) such thatϕε

i = 1 onDε
i , and 0� ϕε

i � 1, |Dϕε
i | � c/ε,

and|�ϕε
i | � c/ε2 onEε

i , wherec is a suitable constant independent ofε andi. Finally, we definevε ∈ H 1(Ω) by

vε =
∑
i∈Zn

ϕε
i v

ε
i .

By (6.9) we have

−�vε = λε − gε, (6.10)

where

gε = 2
∑
i∈Zn

Dϕε
i Dvε

i +
∑
i∈Zn

�ϕε
i v

ε
i .

From the definition ofvε
i and from the estimates forDϕε

i and�ϕε
i we obtain that the sequence(gε) is bounded

in L∞(Ω). Therefore, passing to a subsequence, we may assume that

gε ⇀ g weakly inL2(Ω) and strongly inH−1(Ω). (6.11)

Moreover we have, for 0< ε < 41/(1−γ ),∫
Ω

|Dvε |2 dx � 2
∑
i∈Zn

{ ∫
Eε

i \Cε
i

|Dvε
i |2 dx + c2

ε2

∫
Eε

i \Dε
i

|vε
i |2 dx

}
� MNεεn

(
εn−γ (n−2) + ε2),

for a suitable constantM independent ofε. Taking (6.1) and (6.7) into account, we conclude that(Dvε) converges
to 0 strongly inL2(Ω,Rn), hence(�vε) converges to 0 strongly inH−1(Ω). By (6.10) and (6.11) this implie
that (λε) converges tog strongly inH−1(Ω), and by (6.8) we haveg = b(n − 2)Sn−1 = λ0. Since the limit does
not depend on the subsequence, wededuce that the whole sequence(λε) converges toλ0 strongly inH−1(Ω).

In conclusion, forε � 0 we have builtωε andλε such that conditions (5.19)–(5.24) are satisfied. Therefore
Remark 5.6, if(f ε) converges tof 0 strongly inH−1(Ω), then the solutionsuε of the classical Dirichlet problem{

uε ∈ H 1
0

(
Ωε

)
,

−div
(
AεDuε

) = f ε in D′(Ωε
)
,



G. Dal Maso, F. Murat / Ann. I. H. Poincaré – AN 21 (2004) 445–486 465

e, in

en

)

extended by 0 onΩ \ Ωε, converge weakly inH 1
0 (Ω) to the solutionu0 of the problem{

u0 ∈ H 1
0 (Ω),

−div
(
A0Du0

) + µ0u0 = f 0 in D′(Ω),

whereµ0 = b(n − 2)Sn−1 andA0 = aI .
If we change the constantb in the definition (6.2) ofAε, theH -limit A0 does not change, but the measureµ0

changes. This shows thatµ0 depends on the whole sequence(Aε), and not only onA0.

7. Global and local corrector results

In this section we prove a corrector result for the solutions of problems (5.9) in the special casef ε = f 0 = f ,
with f ∈ L∞(Ω). In Section 10 we shall consider the case where(f ε) converges tof 0 strongly inH−1(Ω),
together with the case of more general data.

Assume that(ωε)ε�0 and(λε)ε�0 satisfy (5.18)–(5.24). In order to obtain the corrector result we assum
addition, that

sup
ε�0

‖ωε‖L∞(Ω) < +∞, (7.1)

sup
ε�0

∫
Ω

|ωε|2 dµε < +∞. (7.2)

Remark 7.1. If conditions (5.18)–(5.24), (7.1), and (7.2) are satisfied inΩ , then they are satisfied in every op
setU ⊆ Ω .

The functionswε introduced in (5.2) satisfy conditions (7.1) and (7.2), as stated in (5.5) and (5.8).

7.1. Global corrector result

For j = 1,2, . . . , n let us fix a sequence(zε
j ) in H 1(Ω) satisfying (3.5)–(3.9). Letu0 be the solution of (5.9

with ε = 0 and f0 = f ∈ L∞(Ω). Let us fixδ > 0 andψδ ∈ H 2(Ω) ∩ W1,∞(Ω) such that

β

∫
Ω

∣∣Du0 − D
(
ψδω

0)∣∣2 dx +
∫
Ω

∣∣u0 − ψδω
0
∣∣2 dµ0 < δ. (7.3)

Such aψδ exists since the set{ω0ϕ: ϕ ∈ C∞
c (Ω)} is dense inH 1

0 (Ω) ∩ L2(Ω,µ0) by Proposition 4.7.
For everyε > 0 let vε

δ be the function defined by

vε
δ =

(
ψδ +

n∑
j=1

Djψδ zε
j

)
ωε. (7.4)

By (3.5), (3.8), (5.22), and (7.1) we have

vε
δ ⇀ ψδω

0 weakly inH 1(Ω) and weakly∗ in L∞(Ω). (7.5)

Moreover we have

Dvε
δ =

(
ψδ +

n∑
j=1

Djψδ zε
j

)
Dωε +

n∑
j=1

Djψδ(ej + Dzε
j )ω

ε +
n∑

j=1

DDj ψδ zε
jω

ε.

The last sum in the right-hand side converges to 0 strongly inL2(Ω,Rn) by (3.8) and (7.1), while(Djψδ zε
jDωε)

converges to 0 strongly inL2(Ω,Rn) by (3.8) and (5.22). Therefore
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Dvε
δ = ψδDωε +

n∑
j=1

Djψδ(ej + Dzε
j )ω

ε + Hε
δ , (7.6)

where(H ε
δ ) converges to 0 strongly inL2(Ω,Rn) asε tends to 0.

Sinceψδ ∈ W1,∞(Ω) and(zε
j ) is bounded inL∞(Ω), from (7.2) we deduce that

sup
ε>0

∫
Ω

|vε
δ |2 dµε < +∞. (7.7)

Theorem 7.2. Assume(5.1), (5.18)–(5.24), (7.1), and (7.2). Let δ > 0 and let ψδ be a function inH 2(Ω) ∩
W1,∞(Ω) which satisfies(7.3). Assume that the functionsvε

δ defined by(7.4) belong toH 1
0 (Ω). Then for every

f ∈ L∞(Ω) the solutionsuε of problems(5.9)with f ε = f satisfy the estimate

lim sup
ε→0

{
α

∫
Ω

|Duε − Dvε
δ |2 dx +

∫
Ω

|uε − vε
δ |2 dµε

}
< δ. (7.8)

Remark 7.3. In the special caseu0 = ψω0, for some ψ∈ H 2(Ω)∩W1,∞(Ω), we can takeψδ = ψ for everyδ > 0
in (7.3), so that

vε
δ = vε =

(
ψ +

n∑
j=1

Djψ zε
j

)
ωε. (7.9)

Therefore whenνε ∈ H 1
0 (Ω), (7.8) implies

lim
ε→0

{
α

∫
Ω

|Duε − Dvε |2 dx +
∫
Ω

|uε − vε|2 dµε

}
= 0, (7.10)

which is a corrector result.
When the measuresµε are fixed and equal to 0 (so that we can chooseωε = ω0 = 1 and ψ= u0), formulas (7.9)

and (7.10) provide the classical corrector result forH -converging operators stated in (3.14) (see [22,26] and
the periodic case, [3,23]). When the matricesAε are fixed and equal to some matrixA0 (so that we can choos
zε
j = 0), formulas (7.9) and (7.10) withωε = wε defined by (5.2) provide the corrector result of [11,15]; with

different choice ofωε, which leads toω0 = 1, the same formulas give also the corrector result of [7] in the peri
case. When bothAε andµε depend onε, butω0 = 1, so that we haveψ = u0, the combination ofH -converging
operators and varying domains results in the multiplication of the corresponding correctors.

In the general case,ψδ andvε
δ depend onδ and we obtain from (7.8) that

Duε = Dvε
δ + Rε

δ with lim sup
ε→0

∥∥Rε
δ

∥∥2
L2(Ω,Rn)

<
δ

α
,

which is still a corrector result, but in a more technical form.

7.2. Local convergence and corrector results

We consider now the case where the functionsuε are solutions of the problems
uε ∈ H 1(Ω) ∩ L2(Ω,µε),∫

AεDuεDy dx +
∫

uεy dµε =
∫

fy dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

(7.11)
Ω Ω Ω
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but are not required to satisfy the boundary conditionuε = 0 on ∂Ω . We still consider the case of fixed da
f ∈ L∞(Ω). More general data will be studied in Section 10.

The following theorem is a local version of the convergence result given in Theorem 5.4. It will be proved
Section 9.

Theorem 7.4. Assume(5.1), (5.18)–(5.24), (7.1), and (7.2). Let f ∈ L∞(Ω) and, for everyε > 0, let uε be a
solution of (7.11). Assume that

uε ⇀ u0 weakly inH 1(Ω), (7.12)

for some functionu0 ∈ H 1(Ω), and that

sup
ε>0

‖uε‖L∞(Ω) < +∞, (7.13)

sup
ε>0

∫
Ω

|uε|2 dµε < +∞. (7.14)

Thenu0 is a solution of(7.11)for ε = 0.

The following lemma, which will be proved in Section 9, shows that (under the other assumptio
Theorem 7.4) conditions (7.13) and (7.14) are always satisfied in every open setU � Ω , and also inΩ if everyuε

belongs toH 1
0 (Ω).

Lemma 7.5. Assume(5.1), (5.18)–(5.24), (7.1), and(7.2). Letf ∈ L∞(Ω) and, for everyε > 0, letuε be a solution
of (7.11). Assume that(7.12)holds for some functionu0 ∈ H 1(Ω). Then we have

sup
ε>0

‖uε‖L∞(U) < +∞, (7.15)

sup
ε>0

∫
U

|uε|2 dµε < +∞, (7.16)

for every open setU � Ω . If, in addition,uε ∈ H 1
0 (Ω) for everyε > 0, then(7.15)and(7.16)also hold forU = Ω .

In the next corollaryH 1
c (Ω) denotes the space of all functionsu ∈ H 1(Ω) with compact support inΩ . The first

assertion of the corollary follows immediately from Theorem 7.4 and Lemma 7.5, while the last assertion i
obtained by approximating any nonnegative functiony ∈ H 1

0 (Ω) ∩ L2(Ω,µ0) by the sequence(|ϕj | ∧ y), where
ϕj ∈ C∞

c (Ω) converges toy in H 1
0 (Ω).

Corollary 7.6. Under the assumptions of Lemma7.5, u0 is a solution to the problem
u0 ∈ H 1(Ω) ∩ L2

loc

(
Ω,µ0

)
,∫

Ω

A0Du0Dy dx +
∫
Ω

u0y dµ0 =
∫
Ω

fy dx ∀y ∈ H 1
c (Ω) ∩ L2(Ω,µ0). (7.17)

If, in addition,u0 ∈ L2(Ω,µ0), then the last line of(7.17)holds for everyy ∈ H 1(Ω) ∩ L2(Ω,µ0).
0
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eed, by
hat (7.8)
7.5,
.8

tion.
Let us fix an open setU � Ω and a functionζ ∈ C∞
c (Ω) such thatζ = 1 in U. Given u0 ∈ H 1

loc(Ω) ∩
L2

loc(Ω,µ0), by Proposition 4.7 we can approximate the functionζu0 in H 1
0 (Ω) ∩ L2(Ω,µ0) by functions of

the formψω0 with ψ ∈ C∞
c (Ω). Therefore for everyδ > 0 there existsψδ ∈ H 2(U) ∩ W1,∞(U) such that

β

∫
U

∣∣Du0 − D
(
ψδω

0)∣∣2 dx +
∫
U

∣∣u0 − ψδω
0
∣∣2 dµ0 < δ. (7.18)

The following theorem is a local version of the corrector result given in Theorem 7.2.

Theorem 7.7. Under the hypotheses of Lemma7.5, letU be an open set withU � Ω , let δ > 0, letψδ be a function
in H 2(U) ∩ W1,∞(U) which satisfies(7.18), and letvε

δ be the functions defined inU by (7.4). Then

lim sup
ε→0

{
α

∫
V

|Duε − Dvε
δ |2 dx +

∫
V

|uε − vε
δ |2 dµε

}
< δ, (7.19)

for every open setV � U .

Theorems 7.2 and 7.7 can be deduced from the following theorem, which will be proved in Section 9. Ind
Theorem 5.4 and Lemma 7.5, the assumptions of Theorem 7.2 imply all assumptions of Theorem 7.4, so t
follows from (3.1), (3.2), and (7.21) withϕ = 1. Similarly, the assumptions of Theorem 7.7 imply, by Lemma
that all assumptions of Theorem 7.4 are satisfied in every open setU � Ω , so that we can apply Theorem 7
with Ω replaced byU and withϕ ∈ C∞

c (U) such thatϕ = 1 in V andϕ � 0 in U \ V .

Theorem 7.8. Under the hypotheses of Theorem7.4, let ψ be a function inH 2(Ω) ∩ W1,∞(Ω), and letvε be
defined by

vε =
(

ψ +
n∑

j=1

Djψ zε
j

)
ωε. (7.20)

Then for everyϕ ∈ C∞
c (Ω) we have

lim
ε→0

{∫
Ω

AεD(uε − vε)D(uε − vε)ϕ dx +
∫
Ω

|uε − vε|2ϕ dµε

}

=
∫
Ω

A0D
(
u0 − ψω0)D(

u0 − ψω0)ϕ dx +
∫
Ω

∣∣u0 − ψω0
∣∣2ϕ dµ0.

(7.21)

If the functionsuε andvε belong toH 1
0 (Ω) ∩ L2(Ω,µε) for everyε > 0, then(7.21)also holds withϕ = 1.

8. A comparison theorem

In this section we state and prove a comparison result for the limit measuresµ0
1 andµ0

2 corresponding to the
same sequence of measures(µε) but to two different sequences ofH -convergent matrices(Aε

1) and(Aε
2). This

result has its own interest and will be crucial in the proof of the corrector results stated in the previous sec
For everyε � 0 letAε

1 andAε
2 be two matrices inMβ

α (Ω). We assume that

(Aε
i ) H -converges toA0

i for i = 1,2. (8.1)



G. Dal Maso, F. Murat / Ann. I. H. Poincaré – AN 21 (2004) 445–486 469
For everyε > 0 let µε be a measure inM+
0 (Ω), and letµ0

1 andµ0
2 be two measures inM+

0 (Ω). For i = 1,2
andε > 0 letwε

i be the solutions of the problems
wε

i ∈ H 1
0 (Ω) ∩ L2(Ω,µε),∫

Ω

Aε
i Dwε

i Dy dx +
∫
Ω

wε
i y dµε =

∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

(8.2)

and letw0
i be the solutions of the problems

w0
i ∈ H 1

0 (Ω) ∩ L2
(
Ω,µ0

i

)
,∫

Ω

A0
i Dw0

i Dy dx +
∫
Ω

w0
i y dµ0

i =
∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0

i

)
.

(8.3)

We assume that

wε
i ⇀ w0

i weakly inH 1
0 (Ω) for i = 1,2. (8.4)

Note that, by Theorem 5.2, these hypotheses are always satisfied by a subsequence.
In this section we shall prove the following comparison theorem.

Theorem 8.1. Assume(8.1)and(8.4). Then

α2

β2
µ0

2 � µ0
1 � β2

α2
µ0

2 in Ω, (8.5)

cap
({

w0
1 > 0

}
�
{
w0

2 > 0
}) = 0. (8.6)

In particular we haveL2(Ω,µ0
1) = L2(Ω,µ0

2).

In order to prove Theorem 8.1, forε � 0 andi = 1,2 we consider the measuresνε
i ∈ H−1(Ω)+ defined by

−div
(
Aε

i Dwε
i

) + νε
i = 1 inD′(Ω) (8.7)

(see Proposition 4.3). By Proposition 4.6 we have

ν0
i = w0

i µ
0
i on

{
w0

i > 0
}
. (8.8)

By Theorem 3.1 we have

Aε
i Dwε

i ⇀ A0
i Dw0

i weakly inL2(Ω,Rn
)
. (8.9)

Therefore

νε
i ⇀ ν0

i weakly inH−1(Ω). (8.10)

As νε
i � 0, by Theorem 1 of [21] we have

ψνε
i → ψν0

i strongly inW−1,q (Ω), (8.11)

for everyψ ∈ C∞
c (Ω) and for everyq < 2.

Let ζ ε
i be the solution of the problem{
ζ ε
i ∈ H 1

0 (Ω),

−div
(
Aε

i Dζ ε
i

) = −div
(
A0

i Dw0
i

)
in D′(Ω).

(8.12)

By the definition ofH -convergence we have
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ζ ε
i ⇀ w0

i weakly inH 1
0 (Ω), (8.13)

Aε
i Dζ ε

i ⇀ A0
i Dw0

i weakly inL2(Ω,Rn
)
. (8.14)

Lemma 8.2. For everyϕ ∈ C∞
c (Ω) andi = 1,2 we have

lim
ε→0

{∫
Ω

Aε
1D

(
wε

1 − ζ ε
1

)
D

(
wε

2 − ζ ε
2

)
ϕ dx +

∫
Ω

wε
1w

ε
2ϕ dµε

}
=

∫
Ω

w0
2ϕ dν0

1, (8.15)

lim
ε→0

{∫
Ω

Aε
i D

(
wε

i − ζ ε
i

)
D

(
wε

i − ζ ε
i

)
ϕ dx +

∫
Ω

|wε
i |2ϕ dµε

}
=

∫
Ω

w0
i ϕ dν0

i . (8.16)

Proof. Let us first prove (8.15). For everyε > 0 we write∫
Ω

Aε
1D

(
wε

1 − ζ ε
1

)
D

(
wε

2 − ζ ε
2

)
ϕ dx +

∫
Ω

wε
1w

ε
2ϕ dµε = I ε + II ε + III ε, (8.17)

where

I ε =
∫
Ω

Aε
1Dwε

1Dwε
2ϕ dx +

∫
Ω

wε
1w

ε
2ϕ dµε,

II ε = −
∫
Ω

Aε
1Dwε

1Dζε
2ϕ dx,

III ε = −
∫
Ω

Aε
1Dζε

1D
(
wε

2 − ζ ε
2

)
ϕ dx.

Usingy = wε
2ϕ as test function in (8.2) we get

I ε =
∫
Ω

wε
2ϕ dx −

∫
Ω

Aε
1Dwε

1Dϕ wε
2 dx.

Since (wε
2) converges tow0

2 strongly in L2(Ω) by (8.4) and since(Aε
1Dwε

1) converges toA0
1Dw0

1 weakly in
L2(Ω,Rn) by (8.9), we have

lim
ε→0

I ε =
∫
Ω

w0
2ϕ dx −

∫
Ω

A0
1Dw0

1Dϕ w0
2 dx

=
∫
Ω

A0
1Dw0

1Dw0
2ϕ dx +

∫
Ω

w0
2ϕ dν0

1,

(8.18)

where in the last equality we used (8.7) forε = 0. Note that we cannot usew0
2ϕ as test function in (8.3) fori = 1

because we do not know yet thatw0
2ϕ ∈ L2(Ω,µ0

1).
From (8.7) we obtain

II ε = −
∫
Ω

Aε
1Dwε

1D
(
ζ ε

2ϕ
)
dx +

∫
Ω

Aε
1Dwε

1Dϕ ζ ε
2 dx

= 〈
νε

1, ζ ε
2ϕ

〉 − ∫
ζ ε

2ϕ dx +
∫

Aε
1Dwε

1Dϕ ζ ε
2 dx.

(8.19)
Ω Ω
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Since(ζ ε
2 ) converges tow0

2 strongly inL2(Ω) by (8.13) and(Aε
1Dwε

1) converges toA0
1Dw0

1 weakly inL2(Ω,Rn)

by (8.9), we have

lim
ε→0

{
−

∫
Ω

ζ ε
2ϕ dx +

∫
Ω

Aε
1Dwε

1Dϕ ζ ε
2 dx

}
= −

∫
Ω

w0
2ϕ dx +

∫
Ω

A0
1Dw0

1Dϕ w0
2 dx. (8.20)

We will prove in Lemma 8.3 that

lim
ε→0

〈
νε

1, ζ ε
2ϕ

〉 = 〈
ν0

1,w0
2ϕ

〉
. (8.21)

From (8.19), (8.20), and (8.21) it follows that
lim
ε→0

II ε =
∫
Ω

w0
2ϕ dν0

1 −
∫
Ω

w0
2ϕ dx +

∫
Ω

A0
1Dw0

1Dϕ w0
2 dx

= −
∫
Ω

A0
1Dw0

1Dw0
2ϕ dx,

(8.22)

where the last equality is obtained by usingw0
2ϕ as test function in (8.7) forε = 0.

From (8.12) it follows that
III ε = −

∫
Ω

Aε
1Dζε

1D
((

wε
2 − ζ ε

2

)
ϕ
)
dx +

∫
Ω

Aε
1Dζε

1Dϕ
(
wε

2 − ζ ε
2

)
dx

= −
∫
Ω

A0
1Dw0

1D
((

wε
2 − ζ ε

2

)
ϕ
)
dx +

∫
Ω

Aε
1Dζε

1Dϕ
(
wε

2 − ζ ε
2

)
dx.

Since(wε
2 − ζ ε

2 ) converges to 0 weakly inH 1
0 (Ω) and strongly inL2(Ω) by (8.4) and (8.13), while(Aε

1Dζε
1 )

converges toA0
1Dζ 0

1 weakly inL2(Ω,Rn) by (8.14), we have

lim
ε→0

III ε = 0. (8.23)

Equality (8.15) now follows from (8.17), (8.18), (8.22), and (8.23).
Let us prove now (8.16) for a giveni = 1,2. To this aim for everyε > 0 we defineÂε

1 = Âε
2 = Aε

i andµ̂ε = µε,
so thatŵε

1 = ŵε
2 = wε

i , ζ̂ ε
1 = ζ̂ ε

2 = ζ ε
i , andν̂0

1 = ν̂0
2 = ν0

i . Applying (8.15) in this new setting gives (8.16).�
Lemma 8.3. For everyϕ ∈ C∞

c (Ω) we have

lim
ε→0

〈
νε

1, ζ ε
2ϕ

〉 = 〈
ν0

1,w0
2ϕ

〉
. (8.24)

Proof. Givenδ > 0, letζ 0 ∈ C∞
c (Ω) be a function such that∥∥ζ 0 − w0

2

∥∥
H1

0 (Ω)
< δ, (8.25)

and letζ ε be the solution of the problem{
ζ ε ∈ H 1

0 (Ω),

−div
(
Aε

2Dζε
) = −div

(
A0

2Dζ 0
)

in D′(Ω).
(8.26)

Usingζ ε − ζ ε
2 as test function in (8.12) and (8.26), from (3.1) and (3.2) we obtain∥∥ζ ε − ζ ε
2

∥∥
H1(Ω)

� β ∥∥ζ 0 − w0
2

∥∥
H1(Ω)

. (8.27)

0 α 0
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t
As (νε
1) is bounded inH−1(Ω), form (8.25) and (8.27) we obtain that there exists a constantM, independen

of δ, such that{∣∣〈νε
1, ζ ε

2ϕ
〉 − 〈

ν0
1,w0

2ϕ
〉∣∣ �

∣∣〈νε
1,

(
ζ ε

2 − ζ ε
)
ϕ
〉∣∣ + ∣∣〈νε

1, ζ εϕ
〉 − 〈

ν0
1, ζ 0ϕ

〉∣∣ + ∣∣〈ν0
1,

(
ζ 0 − w0

2

)
ϕ
〉∣∣

� Mδ + ∣∣〈νε
1, ζ εϕ

〉 − 〈
ν0

1, ζ 0ϕ
〉∣∣. (8.28)

By Meyers’ estimate, there existsp > 2 such that(ζ εϕ) is bounded inW1,p

0 (Ω). As (ζ ε) converges toζ 0 weakly

in H 1
0 (Ω) by the definition ofH -convergence, we conclude that(ζ εϕ) converges toζ 0ϕ weakly in W

1,p
0 (Ω).

Since by (8.11) the sequence(ψνε
1) converges toψν0

1 strongly inW−1,q(Ω) for 1/p + 1/q = 1 and for every
ψ ∈ C∞

c (Ω), we obtain that

lim
ε→0

〈
νε

1, ζ εϕ
〉 = lim

ε→0

〈
ψνε

1, ζ εϕ
〉 = 〈

ψν0
1, ζ 0ϕ

〉 = 〈
ν0

1, ζ 0ϕ
〉
,

whereψ is any function inC∞
c (Ω) which is equal to 1 in a neighbourhood of supp(ϕ).

Therefore by (8.28)

lim sup
ε→0

∣∣〈νε
1, ζ ε

2ϕ
〉 − 〈

ν0
1,w0

2ϕ
〉∣∣ � Mδ.

As δ > 0 is arbitrary, we obtain (8.24).�
Lemma 8.4. For everyϕ ∈ C∞

c (Ω), with ϕ � 0 in Ω , and for everyt > 0 we have∫
Ω

w0
2ϕ dν0

1 � β

α

{
t

2

∫
Ω

w0
1ϕ dν0

1 + 1

2t

∫
Ω

w0
2ϕ dν0

2

}
. (8.29)

Proof. By (3.1) and (3.2) we have the estimates

∫
Ω

Aε
1D

(
wε

1 − ζ ε
1

)
D

(
wε

2 − ζ ε
2

)
ϕ dx +

∫
Ω

wε
1w

ε
2ϕ dµε

� β

∫
Ω

∣∣D(
wε

1 − ζ ε
1

)∣∣∣∣D(
wε

2 − ζ ε
2

)∣∣ϕ dx +
∫
Ω

wε
1w

ε
2ϕ dµε

� t

2

{
β

∫
Ω

∣∣D(
wε

1 − ζ ε
1

)∣∣2ϕ dx +
∫
Ω

|wε
1|2ϕ dµε

}
+ 1

2t

{
β

∫
Ω

∣∣D(
wε

2 − ζ ε
2

)∣∣2ϕ dx +
∫
Ω

|wε
2|2ϕ dµε

}

� β

α

t

2

{∫
Ω

Aε
1D

(
wε

1 − ζ ε
1

)
D

(
wε

1 − ζ ε
1

)
ϕ dx +

∫
Ω

|wε
1|2ϕ dµε

}

+ β

α

1

2t

{∫
Ω

Aε
2D

(
wε

2 − ζ ε
2

)
D

(
wε

2 − ζ ε
2

)
ϕ dx +

∫
Ω

|wε
2|2ϕ dµε

}
.

Inequality (8.29) is obtained by applying Lemma 8.2.�
Lemma 8.5. The following inequality holds:

w0
2ν

0
1 � β2

α2
w0

1ν
0
2 in Ω. (8.30)

Proof. Let ν = ν0
1 + ν0

2. From Lemma 8.4 it follows that for everyt > 0

w0
2

dν0
1 � β

{
t
w0

1
dν0

1 + 1
w0

2
dν0

2
}

ν-a.e. inΩ. (8.31)

dν α 2 dν 2t dν
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hat

4).

7) it
If we minimize with respect tot we obtain

w0
2

dν0
1

dν
� β2

α2
w0

1
dν0

2

dν
ν-a.e. inΩ,

which implies (8.30). �
Proof of Theorem 8.1. We prove only the second inequality in (8.5) and

cap
({

w0
2 > 0

} \ {
w0

1 > 0
}) = 0. (8.32)

The other inequality and the equality cap({w0
1 > 0} \ {w0

2 > 0}) = 0 are proved by exchanging the roles ofAε
1

andAε
2.

By (8.8) we haveν0
2 = w0

2µ
0
2 on {w0

2 > 0}, so that (8.30) gives

ν0
1 � β2

α2
w0

1µ
0
2 on

{
w0

2 > 0
}
. (8.33)

If y ∈ H 1
0 (Ω)∩L2(Ω,µ0

2), theny = 0 q.e. on{w0
2 = 0} (see Proposition 4.5). From (8.7) and (8.33) it follows t∫

Ω

A0
1Dw0

1Dy dx + β2

α2

∫
Ω

w0
1y dµ0

2 �
∫
Ω

y dx (8.34)

for everyy ∈ H 1
0 (Ω) ∩ L2(Ω,µ0

2) with y � 0 q.e. in Ω.
Let w be the solution of the problem

w ∈ H 1
0 (Ω) ∩ L2

(
Ω,µ0

2

)
,∫

Ω

A0
1DwDy dx + β2

α2

∫
Ω

wy dµ0
2 =

∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0

2

)
.

(8.35)

As 0� (w − w0
1)

+ � w q.e. inΩ , the functiony = (w − w0
1)+ can be taken as test function in (8.35) and (8.3

By difference we obtain∫
Ω

A0
1D

(
w − w0

1

)
D

(
w − w0

1

)+ dx + β2

α2

∫
Ω

(
w − w0

1

)(
w − w0

1

)+ dµ0
2 � 0,

which implies(w − w0
1)

+ = 0 a.e. in Ω, and hencew � w0
1 q.e. inΩ by (2.1). Therefore

cap
({w > 0} ∩ {

w0
1 = 0

}) = 0. (8.36)

Let us prove that

cap
({

w0
2 > 0

} ∩ {w = 0}) = 0. (8.37)

It is enough to show that

cap
({

w0
2 > δ

} ∩ {w = 0}) = 0 (8.38)

for every δ > 0. If (8.38) is not satisfied, by Proposition 4.5 we have(β2/α2)µ0
2({w0

2 > δ}) = +∞, which
contradicts the fact thatw0

2 ∈ L2(Ω,µ0
2). This proves (8.37).

As w � 0 andw0
1 � 0 q.e. onΩ by the comparison principle (Theorem 2.10 of [13]), from (8.36) and (8.3

follows that

cap
({

w0 > 0
} ∩ {

w0 = 0
}) = cap

({
w0 > 0

} \ {
w0 > 0

}) = 0, (8.39)
2 1 2 1
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ction 7

s the
which proves (8.32).
Sinceν0

1 = w0
1µ

0
1 on {w0

1 > 0} by (8.8), it follows from (8.39) thatν0
1 = w0

1µ
0
1 on {w0

2 > 0}, so that (8.33) yields

w0
1µ

0
1 � β2

α2 w0
1µ

0
2 on

{
w0

2 > 0
}
.

As w0
1 > 0 q.e. on{w0

2 > 0}, we conclude that

µ0
1 � β2

α2
µ0

2 on
{
w0

2 > 0
}
. (8.40)

Let us finally prove that

µ0
1 � β2

α2 µ0
2 on

{
w0

2 = 0
}
. (8.41)

Let B be a Borel set contained in{w0
2 = 0}. If cap(B) = 0, thenµ0

1(B) = µ0
2(B) = 0, becauseµ0

1 andµ0
2 belong

toM+
0 (Ω). If cap(B) > 0, thenµ0

2(B) = +∞ by Proposition 4.5. In both cases we haveµ0
1(B) � β2

α2 µ0
2(B), hence

(8.41) is proved.
Inequality (8.5) now follows from (8.40) and (8.41).�

9. Proofs of the corrector results

In this section we prove Lemma 7.5 and Theorems 7.4 and 7.8, which give immediately all results of Se
(see the comments before the statement of Theorem 7.8).

We begin by the following theorem, which is proved by using the comparison result of Section 8.

Theorem 9.1. Assume(5.1), and(5.18)–(5.24). For everyε > 0, let yε ∈ H 1(Ω) ∩ L2(Ω,µε) be such that

yε ⇀ y0 weakly inH 1(Ω), (9.1)

sup
ε>0

∫
Ω

|yε|2 dµε < +∞. (9.2)

Theny0 ∈ L2(Ω,µ0).

Proof. We use the notion ofγ -convergence, introduced in [14] and further developed in [10], which concern
convergence of minima and minimizers of the functionalsJ ε

f defined onH 1
0 (Ω) ∩ L2(Ω,µε) by

J ε
f (y) = α

∫
Ω

|Dy|2 dx +
∫
Ω

|y|2 dµε − 2〈f,y〉,

for any givenf ∈ H−1(Ω). Note that the minimizer ofJ ε
f is the unique solution to problem (4.1) withA = αI

andµ = µε. By Theorem 4.14 of [14] there exists a subsequence, still denoted by(µε), whichγ -converges (with
respect to the operator−α�) to a measurêµ0 ∈ M+

0 (Ω) (the regularity property (b) of̂µ0 is obtained by using
Theorem 3.10 of [10]). By Lemma 5.5 of [10] we have

α

∫ ∣∣Dy0
∣∣2 dx +

∫ ∣∣y0
∣∣2 dµ̂0 � lim inf

ε→0

{
α

∫
|Dyε|2 dx +

∫
|yε|2 dµε

}
< +∞. (9.3)
Ω Ω Ω Ω



G. Dal Maso, F. Murat / Ann. I. H. Poincaré – AN 21 (2004) 445–486 475

ung’s
Let ŵ ε be the unique solution to the problem
ŵ ε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),

α

∫
Ω

DŵεDy dx +
∫
Ω

ŵ εy dµε =
∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(9.4)

By Proposition 4.10 of [14] the sequence(ŵ ε) converges weakly inH 1
0 (Ω) to the solution̂w 0 of the problem

ŵ 0 ∈ H 1
0 (Ω) ∩ L2

(
Ω, µ̂0

)
,

α

∫
Ω

Dŵ 0Dy dx +
∫
Ω

ŵ 0y dµ̂0 =
∫
Ω

y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω, µ̂0). (9.5)

If we apply Theorem 8.1 withAε
1 = Aε andAε

2 = αI , we obtain

µ0 � β2

α2
µ̂0, (9.6)

so that (9.3) implies thaty0 ∈ L2(Ω,µ0). �
Lemma 9.2. Under the hypotheses of Theorem7.4, we have

AεDuε ⇀ A0Du0 weakly inL2(Ω,Rn
)
. (9.7)

Moreover there existsσ 0 ∈ M(Ω) ∩ H−1(Ω), with |σ 0| ∈M(Ω) ∩ H−1(Ω), such that

−div
(
A0Du0) + σ 0 = f in D′(Ω). (9.8)

Proof. Since the positive and the negative parts(uε)+ and (uε)− of uε belong toH 1(Ω) ∩ L2(Ω,µε), by
Theorem 2.4 of [13] for everyε > 0 we can consider the solutionsuε⊕ anduε� to the problems

uε⊕ − (uε)+ ∈ H 1
0 (Ω) ∩ L2(Ω,µε),∫

Ω

AεDuε⊕Dy dx +
∫
Ω

uε⊕y dµε =
∫
Ω

f +y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

(9.9)


uε� − (uε)− ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
Ω

AεDuε�Dy dx +
∫
Ω

uε�y dµε =
∫
Ω

f −y dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(9.10)

By linearity we have

uε = uε⊕ − uε� q.e. inΩ. (9.11)

Using y = uε⊕ − (uε)+ as test function in (9.9), and then (3.1) and (3.2), as well as Poincaré’s and Yo
inequalities, we obtain

sup
ε>0

‖uε⊕‖H1(Ω) < +∞. (9.12)

Passing to a subsequence, we can assume that(uε⊕) converges weakly inH 1(Ω) to some functionu0⊕. Sinceuε⊕ � 0
q.e. inΩ by the comparison principle (Theorem 2.10 of [13]), by Proposition 4.3 there existsσε⊕ ∈ H−1(Ω)+ such
that

−div
(
AεDuε⊕

) + σε⊕ = f + in D′(Ω). (9.13)
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From Theorem 3.1 we obtain that

AεDuε⊕ ⇀ A0Du0⊕ weakly inL2(Ω,Rn
)
, (9.14)

and we deduce from (9.13) that there existsσ 0⊕ ∈ H−1(Ω)+ such that

−div
(
A0Du0⊕

) + σ 0⊕ = f + in D′(Ω). (9.15)

Properties (9.7) and (9.8) now follow from (9.14) and (9.15), from the analogous results foruε�, and
from (9.11). �
Proof of Lemma 7.5. By (9.11) we haveuε = uε⊕ − uε� q.e. inΩ , whereuε⊕ anduε� are the solutions of (9.9
and (9.10). Letvε⊕ be the solution to the problem{

vε⊕ − (uε)+ ∈ H 1
0 (Ω),

−div
(
AεDvε⊕

) = f + in D′(Ω).

By the comparison principle (Theorem 2.10 of [13]) we have 0� uε⊕ � vε⊕ q.e. inΩ .
As (uε)+ is bounded inH 1(Ω), the sequence(vε⊕) is bounded inH 1(Ω) too. On the other hand the classic

localL∞ estimate for solutions of elliptic equations (see, e.g., [25]) asserts that for every open setU � Ω

‖vε⊕‖L∞(U) � CU‖vε⊕‖L2(Ω), (9.16)

therefore(vε⊕), and hence(uε⊕), is bounded inL∞(U). If uε ∈ H 1
0 (Ω), we have alsovε⊕ ∈ H 1

0 (Ω), and the globa
L∞ estimate inΩ implies that(vε⊕), and hence(uε⊕), is bounded inL∞(Ω). A similar argument holds for(uε�),
so that(uε) is bounded inL∞(U) (and also inL∞(Ω) if uε ∈ H 1

0 (Ω)) and (7.15) is proved.
Let ϕ be a function inC∞

c (Ω) such thatϕ = 1 in U. Usingy = uεϕ2 as test function in (7.11), and then (3.1
(3.2), and the boundedness of(uε) in H 1(Ω), we easily obtain (7.16). Ifuε ∈ H 1

0 (Ω), we simply usey = uε as
test function in (7.11). �

The proof of Theorems 7.4 and 7.8 will be divided in three lemmas. For everyε > 0 let yε be a function of
H 1(Ω) ∩ L2(Ω,µε) such that

yε ⇀ y0 weakly inH 1(Ω), (9.17)

for some functiony0 in H 1(Ω). Assume that

sup
ε>0

‖yε‖L∞(Ω) < +∞, (9.18)

sup
ε>0

∫
Ω

|yε|2 dµε < +∞. (9.19)

Lemma 9.3. Under the hypotheses of Theorem7.8, let yε, ε � 0, be functions inH 1(Ω) which satisfy(9.17),
(9.18), and(9.19). Theny0 belongs toL2(Ω,µ0) and for everyϕ ∈ C∞

c (Ω) we have

lim
ε→0

{∫
Ω

AεDvεDyεϕ dx +
∫
Ω

vεyεϕ dµε

}
=

∫
Ω

A0D
(
ψ ω0)Dy0ϕ dx +

∫
Ω

y0ψω0ϕ dµ0. (9.20)

If, in addition,yε ∈ H 1
0 (Ω) for everyε > 0, then(9.20)also holds withϕ = 1.

Proof. We prove (9.20) only in the caseϕ ∈ C∞
c (Ω), since, under the additional hypothesisyε ∈ H 1

0 (Ω), the proof
with ϕ = 1 is similar. In this proof(ηε) will denote a sequence of real numbers converging to 0 asε tends to 0,
whose value can change from line to line.
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it
Theorem 9.1, (9.17), and (9.19) imply thaty0 ∈ L2(Ω,µ0).
By (7.6) for everyϕ ∈ C∞

c (Ω) we have∫
Ω

AεDvεDyεϕ dx =
n∑

j=1

∫
Ω

DjψAε(ej + Dzε
j )Dyεωεϕ dx +

∫
Ω

ψAεDωεDyεϕ dx + ηε.

By (5.22) and (7.1) the sequence(ωε) converges toω0 strongly inLr(Ω) for every 1� r < +∞. Since, by (3.9),
(zε

j ) converges to 0 weakly in inW1,p(Ω) for somep > 2, we conclude that∫
Ω

DjψAε(ej + Dzε
j )Dyεωεϕ dx =

∫
Ω

DjψAε(ej + Dzε
j )Dyεω0ϕ dx + ηε.

Therefore∫
Ω

AεDvεDyεϕ dx +
∫
Ω

vεyεϕ dµε = I ε + II ε + III ε + ηε, (9.21)

where

I ε =
n∑

j=1

∫
Ω

DjψAε(ej + Dzε
j )Dyεω0ϕ dx,

II ε =
∫
Ω

ψAεDωεDyεϕ dx,

III ε =
∫
Ω

vεyεϕ dµε.

We now pass to the limit inI ε , II ε, andIII ε . For what concernsI ε , we write

I ε
j =

∫
Ω

DjψAε(ej + Dzε
j )Dyεω0ϕ dx

= 〈−div
(
Aε(ej + Dzε

j )
)
,Djψ yεω0ϕ

〉 − ∫
Ω

Aε(ej + Dzε
j )DDjψ yεω0ϕ dx

−
∫
Ω

Aε(ej + Dzε
j )Djψ yεDω0ϕ dx −

∫
Ω

Aε(ej + Dzε
j )Djψ yεω0Dϕ dx.

Properties (3.6) and (3.7) ofzε
j , together with properties (9.17) and (9.18) ofyε, imply that we can pass to the lim

in each term of the right-hand side of the previous formula, so that

I ε =
n∑

j=1

∫
Ω

DjψA0ejDy0ω0ϕ dx + ηε =
∫
Ω

A0DψDy0ω0ϕ dx + ηε. (9.22)

As for II ε, we write

II ε =
∫
Ω

ψAεDωεDyεϕ dx =
∫
Ω

AεDωεD(yεψϕ)dx −
∫
Ω

AεDωεyεD(ψϕ)dx. (9.23)

As ωε satisfies (5.18), we have∫
AεDωεD(yεψϕ)dx +

∫
ωεyεψϕ dµε =

∫
yεψϕ dλε,
Ω Ω Ω
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the
and by (5.20) and (9.17) we conclude that∫
Ω

AεDωεD(yεψϕ)dx =
∫
Ω

y0ψϕ dλ0 −
∫
Ω

ωεyεψϕ dµε + ηε. (9.24)

By Proposition 4.3 and Theorem 3.1(AεDωε) converges toA0Dω0 weakly inL2(Ω,Rn), while by (9.17)(yε)

converges toy0 strongly inL2
loc(Ω). Therefore

−
∫
Ω

AεDωεyεD(ψϕ)dx = −
∫
Ω

A0Dω0y0D(ψϕ)dx + ηε. (9.25)

From (9.23), (9.24), and (9.25) we obtain that
II ε =

∫
Ω

y0ψϕ dλ0 −
∫
Ω

ωεyεψϕ dµε −
∫
Ω

A0Dω0y0D(ψϕ)dx + ηε

=
∫
Ω

A0Dω0Dy0ψϕ dx +
∫
Ω

ω0y0ψϕ dµ0 −
∫
Ω

ωεyεψϕ dµε + ηε,

(9.26)

where the last equality follows from (5.18) forε = 0, sincey0 ∈ L2(Ω,µ0).
Finally, we writeIII ε as

III ε =
∫
Ω

vεyεϕ dµε =
∫
Ω

ψωεyεϕ dµε +
n∑

j=1

∫
Ω

Djψ zε
jω

εyεϕ dµε.

Since, by (3.8),(zε
j ) converges to 0 uniformly, while, by (7.2) and (9.19), the norms ofωε andyε in L2(Ω,µε)

remain bounded, we conclude that

III ε =
∫
Ω

ψωεyεϕ dµε + ηε. (9.27)

From (9.21), (9.22), (9.26), and (9.27) we obtain (9.20).�
Lemma 9.4. Under the hypotheses of Theorem7.8, for everyϕ ∈ C∞

c (Ω) we have
lim
ε→0

{∫
Ω

AεD(uε − vε)D(uε − vε)ϕ dx +
∫
Ω

|uε − vε |2ϕ dµε

}

=
∫
Ω

A0D
(
u0 − ψω0)D(

u0 − ψω0)ϕ dx +
∫
Ω

(
u0 − ψω0)ϕ dσ 0 −

∫
Ω

(
u0 − ψ ω0)ψω0ϕ dµ0,

(9.28)

whereσ 0 is defined by(9.8). If the functionsuε andvε belong toH 1
0 (Ω) for everyε > 0, then(9.28)also holds

with ϕ = 1.

Proof. We prove (9.28) only in the caseϕ ∈ C∞
c (Ω), since, under the additional hypothesisuε, vε ∈ H 1

0 (Ω), the
proof withϕ = 1 is similar.

Let yε = uε − vε and let y0 = u0 − ψω0. Then properties (9.17), (9.18), and (9.19) are satisfied by
definition (7.20) ofvε and by (3.5), (3.8), (5.22), (7.1), (7.2), (7.12), (7.13), and (7.14). Usingy = yεϕ as test
function in (7.11) we get∫

AεDuεDyεϕ dx +
∫

uεyεϕ dµε =
∫

fyεϕ dx −
∫

AεDuεDϕ yε dx. (9.29)
Ω Ω Ω Ω
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9.4
Using (9.7) and (9.8) we obtain
lim
ε→0

{∫
Ω

AεDuεDyεϕ dx +
∫
Ω

uεyεϕ dµε

}
=

∫
Ω

fy0ϕ dx −
∫
Ω

A0Du0Dϕ y0 dx

=
∫
Ω

A0Du0Dy0ϕ dx +
∫
Ω

y0ϕ dσ 0.

(9.30)

From (9.30) and (9.20) we deduce (9.28).�
Lemma 9.5. Under the hypotheses of Theorem7.8, for everyy ∈ H 1

0 (Ω) ∩ L2(Ω,µ0) we have∫
Ω

y dσ 0 =
∫
Ω

yu0 dµ0, (9.31)

whereσ 0 is defined by(9.8).

Proof. First of all we recall thatu0 ∈ H 1(Ω) ∩ L2(Ω,µ0) by Theorem 9.1. Let us fixϕ ∈ C∞
c (Ω) with ϕ � 0

in Ω . By Lemma 9.4 we have∫
Ω

A0D
(
u0 − ψ ω0)D(

u0 − ψ ω0)ϕ dx +
∫
Ω

(
u0 − ψ ω0)ϕ dσ 0 −

∫
Ω

(
u0 − ψ ω0)ψω0ϕ dµ0 � 0, (9.32)

for everyψ ∈ H 2(Ω)∩W1,∞(Ω). By Proposition 4.7 the set{ψω0: ψ ∈ C∞
c (Ω)} is dense inH 1

0 (Ω)∩L2(Ω,µ0).
Therefore (9.32) implies that∫

Ω

A0D
(
u0 − z

)
D

(
u0 − z

)
ϕ dx +

∫
Ω

(
u0 − z

)
ϕ dσ 0 −

∫
Ω

(
u0 − z

)
zϕ dµ0 � 0, (9.33)

for everyz ∈ H 1
0 (Ω) ∩ L2(Ω,µ0).

We now use Minty’s trick, and we take in (9.33)z = u0ζ + ty, with t ∈ R, y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0), and

ζ ∈ C∞
c (Ω) with ζ = 1 on suppϕ. Dividing by t and passing to the limit ast tends to 0 we obtain∫
Ω

yϕ dσ 0 =
∫
Ω

yu0ϕ dµ0.

Sinceu0 ∈ L2(Ω,µ0), we obtain (9.31) by approximating 1 by a sequence(ϕk) of functions inC∞
c (Ω). �

Proof of Theorem 7.4. In view of Theorem 9.1 the functionu0 belongs toH 1(Ω) ∩ L2(Ω,µ0). From (9.8) we
have ∫

Ω

A0Du0Dy dx +
∫
Ω

y dσ 0 =
∫
Ω

fy dx ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0).

By Lemma 9.5 this implies (7.11) forε = 0. �
Proof of Theorem 7.8. Sinceu0 belongs toH 1(Ω)∩L2(Ω,µ0) by Theorem 9.1, it is enough to apply Lemmas
and 9.5. �
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10. Problems with more general data

In this section we state and prove global and local convergence and corrector results for relaxed Dirich
problems of the form (5.9) and (7.11), when the right-hand sidesf ε andf are replaced by more general line
functionalsLε , and when the strong convergence of(f ε) in H−1(Ω) is replaced by the strong convergence of(Lε)

“along the sequence” of spaces(H 1
0 (Ω) ∩ L2(Ω,µε))′.

10.1. Strong convergence of the data

For everyε � 0 we consider an element of the dual space(H 1
0 (Ω) ∩ L2(Ω,µε))′, i.e., a linear functiona

Lε :H 1
0 (Ω) ∩ L2(Ω,µε) → R such that∣∣Lε(y)

∣∣ � Cε

{
α

∫
Ω

|Dy|2 dx +
∫
Ω

|y|2 dµε

}1/2

∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

for a suitable constantCε < +∞ (the constantα is introduced in this formula for future convenience). It is eas
prove that each functionalLε can be represented in the form

Lε(y) = 〈
f ε, y

〉 + ∫
Ω

gεy dµε, (10.1)

wheref ε ∈ H−1(Ω) andgε ∈ L2(Ω,µε).
In this section we assume that

Lε → L0 strongly along the sequence
(
H 1

0 (Ω) ∩ L2(Ω,µε)
)′
, (10.2)

in the sense that

lim
ε′→0

Lε′(
yε′) = L0(y0), (10.3)

for every subsequenceε′ of ε (see Section 2) and every sequence(yε′
) which satisfies

yε′ ∈ H 1
0 (Ω) ∩ L2(Ω,µε′) ∀ε′ > 0, (10.4)

yε′
⇀ y0 weakly inH 1

0 (Ω), (10.5)

sup
ε′>0

∫
Ω

∣∣yε′∣∣2 dµε′
< +∞. (10.6)

When (5.1), and (5.18)–(5.24) hold, Theorem 9.1 implies thaty0 ∈ L2(Ω,µ0). Since (10.3) holds true for ever
sequence(yε′

) which satisfies (10.4), (10.5), and (10.6), it is easy to prove by contradiction that there e
constantC < +∞ such that for everyε > 0∣∣Lε(y)

∣∣ � C

{
α

∫
Ω

|Dy|2 dx +
∫
Ω

|y|2 dµε

}1/2

∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε). (10.7)

WhenLε is represented as in (10.1) withgε = 0, it is easy to see that (10.2) is satisfied if(f ε) converges tof 0

strongly inH−1(Ω) (this condition is also necessary if all measuresµε are zero). The case where the functio
gε are not identically zero is of course more difficult to handle, since the measuresµε vary, and the correspondin
spacesL2(Ω,µε) may be different for different values ofε. This leads in a natural way to definition (10.2), whe
we used the word “strongly” since the test functionsyε′

in (10.3) are only assumed to be uniformly bounded in
corresponding spacesH 1(Ω) ∩ L2(Ω,µε).
0
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In this definition the presence in (10.3) of subsequencesε′ (and not just of the whole sequenceε) is due, among
other reasons, to the fact that we want that the convergence of(Lε) implies the convergence of any subsequenc

10.2. Global convergence and corrector results

By the Lax–Milgram lemma for everyε � 0 there exists a unique solutionuε to the problem
uε ∈ H 1

0 (Ω) ∩ L2(Ω,µε),∫
Ω

AεDuεDy dx +
∫
Ω

uεy dµε = Lε(y) ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε).

(10.8)

The following theorem is a generalization of Theorem 5.4.

Theorem 10.1. Assume(5.1), (5.18)–(5.24), and (10.2). For every ε � 0, let uε be the unique solution t
problem(10.8). Then(uε) converges tou0 weakly inH 1

0 (Ω).

Proof. By (3.1), (3.2), and (10.7), usingy = uε as test function in (10.8) we obtain the estimate

α

∫
Ω

|Duε|2 dx +
∫
Ω

|uε|2 dµε � C2. (10.9)

Extracting a subsequence, we may assume that

uε ⇀ u weakly inH 1
0 (Ω), (10.10)

for some functionu ∈ H 1
0 (Ω). By Theorem 9.1 we haveu ∈ L2(Ω,µ0). We will prove thatu = u0. Since the limit

does not depend on the subsequence, this will prove that the whole sequence(uε) converges tou0.
If y ∈ H 1

0 (Ω) ∩ L2(Ω,µ0) satisfies
∫
Ω fy dx = 0 for everyf ∈ L∞(Ω), theny = 0 a.e. in Ω. By the Hahn–

Banach theorem, this implies thatL∞(Ω) is dense in the dual space ofH 1
0 (Ω) ∩ L2(Ω,µ0). Therefore, given

η > 0, there existsfη ∈ L∞(Ω) such that∣∣∣∣L0(y) −
∫
Ω

fηy dx

∣∣∣∣ � η

{
α

∫
Ω

|Dy|2 dx +
∫
Ω

|y|2 dµ0
}1/2

∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µ0). (10.11)

For everyε � 0 letuε
η be the unique solution to problem (5.9) withf ε = fη. By Theorem 5.4 we have

uε
η ⇀ u0

η weakly inH 1
0 (Ω), (10.12)

and takingy = uε
η as test function in (5.9), withf ε = fη, we obtain

sup
ε>0

∫
Ω

|uε
η|2 dµε < +∞. (10.13)

Usingy = uε − uε
η as test function in (10.8) and (5.9), withf ε = fη , we obtain by difference

α

∫
Ω

∣∣D(uε − uε
η)

∣∣2 dx +
∫
Ω

|uε − uε
η|2 dµε � Lε(uε − uε

η) −
∫
Ω

fη(u
ε − uε

η)dx, (10.14)

for everyε � 0. By (10.3), (10.9), (10.10), (10.12), and (10.13) we have

lim
ε→0

{
Lε(uε − uε

η) −
∫

fη(u
ε − uε

η)dx

}
= L0(u − u0

η

) −
∫

fη

(
u − u0

η

)
dx. (10.15)
Ω Ω
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Let µ̂0 be the measure defined in the proof of Theorem 9.1. By (9.3) we have

α

∫
Ω

∣∣D(
u − u0

η

)∣∣2 dx +
∫
Ω

∣∣u − u0
η

∣∣2 dµ̂0 � lim inf
ε→0

{
α

∫
Ω

∣∣D(uε − uε
η)

∣∣2 dx +
∫
Ω

|uε − uε
η|2 dµε

}
. (10.16)

From (9.6), (10.11), (10.14), (10.15), and (10.16) we obtain that

α

∫
Ω

∣∣D(
u − u0

η

)∣∣2 dx +
∫
Ω

∣∣u − u0
η

∣∣2 dµ0 � β4

α4 η2. (10.17)

Using (10.14) forε = 0, we obtain from (10.11)

α

∫
Ω

∣∣D(
u0 − u0

η

)∣∣2 dx +
∫
Ω

∣∣u0 − u0
η

∣∣2 dµ0 � η2. (10.18)

From (10.17) and (10.18) we get

α

∫
Ω

∣∣D(
u − u0)∣∣2 dx � 4

β4

α4
η2.

Sinceη > 0 is arbitrary, we conclude thatu = u0. �
The next theorem is a generalization of Theorem 7.2.

Theorem 10.2. Assume(5.1), (5.18)–(5.24), (7.1), (7.2), and (10.2). Let δ > 0 and let ψδ be a function in
H 2(Ω)∩W1,∞(Ω) which satisfies(7.3). Assume that the functionsvε

δ defined by(7.4)belong toH 1
0 (Ω). Then the

solutionsuε to the problems(10.8)satisfy the estimate

lim sup
ε→0

{
α

∫
Ω

|Duε − Dvε
δ |2 dx +

∫
Ω

|uε − vε
δ |2 dµε

}
< δ. (10.19)

Proof. Let us fixδ′ < δ such that

β

∫
Ω

∣∣Du0 − D
(
ψδω

0)∣∣2 dx +
∫
Ω

∣∣u0 − ψδω
0
∣∣2 dµ0 < δ′. (10.20)

For η > 0, let fη , uε
η, andu0

η be as in the proof of Theorem 10.1. Using (10.20) and (10.18), we fixη > 0 small
enough such that

√
δ′ + β

α
η <

√
δ, (10.21)

β

∫
Ω

∣∣Du0
η − D

(
ψδω

0)∣∣2 dx +
∫
Ω

∣∣u0
η − ψδω

0
∣∣2 dµ0 < δ′. (10.22)

Therefore we can apply Theorem 7.2 withf = fη and we obtain

lim sup
ε→0

{
α

∫
|Duε

η − Dvε
δ |2 dx +

∫
|uε

η − vε
δ |2 dµε

}
< δ′. (10.23)
Ω Ω
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duce
As (uε) converges tou0 weakly inH 1
0 (Ω) by Theorem 10.1, using (10.11), (10.14), (10.15), and (10.17) we de

that

lim sup
ε→0

{
α

∫
Ω

|Duε − Duε
η|2 dx +

∫
Ω

|uε − uε
η|2 dµε

}
� β2

α2 η2. (10.24)

From (10.21), (10.23), and (10.24) we obtain (10.19).�
10.3. Local convergence and corrector results

We consider now the case where the functionsuε are solutions to the problems
uε ∈ H 1(Ω) ∩ L2(Ω,µε),∫
Ω

AεDuεDy dx +
∫
Ω

uεy dµε = Lε(y) ∀y ∈ H 1
0 (Ω) ∩ L2(Ω,µε),

(10.25)

but are not required to satisfy the boundary conditionuε = 0 on∂Ω .
The next theorem is a generalization of Corollary 7.6.

Theorem 10.3. Assume(5.1), (5.18)–(5.24), (7.1), (7.2), and(10.2). For everyε > 0, let uε be a solution to
problem(10.25). Assume that

uε ⇀ u0 weakly inH 1(Ω), (10.26)

for some functionu0 ∈ H 1(Ω). Thenu0 is a solution to the problem
u0 ∈ H 1(Ω) ∩ L2

loc

(
Ω,µ0

)
,∫

Ω

A0Du0Dy dx +
∫
Ω

u0y dµ0 = L0(y) ∀y ∈ H 1
c (Ω) ∩ L2(Ω,µ0), (10.27)

where H 1
c (Ω) denotes the space of all functionsu ∈ H 1(Ω) with compact support inΩ . If, in addition,

u0 ∈ L2(Ω,µ0), then the last line in(10.27)holds for everyy ∈ H 1
0 (Ω) ∩ L2(Ω,µ0).

Proof. As we have seen in the proof of Theorem 10.1, for everyη > 0 there existsfη ∈ L∞(Ω) which
satisfies (10.11). Let us fix an open setU � Ω and letϕ ∈ C∞

c (Ω) such thatϕ = 1 on U . Usingy = uεϕ2 as
test function in (10.25), and then (3.1), (3.2), (10.7), and (10.26) we obtain

sup
ε>0

∫
U

|uε|2 dµε < +∞, (10.28)

which implies thatu0 ∈ L2(U,µ0) by Theorem 9.1. For everyε � 0 letuε
η be the unique solution to the problem

uε
η − uε ∈ H 1

0 (U) ∩ L2(U,µε),∫
U

AεDuε
ηDy dx +

∫
U

uε
ηy dµε =

∫
U

fηy dx ∀y ∈ H 1
0 (U) ∩ L2(U,µε).

(10.29)

Takingy = uε
η − uε (extended by 0 onΩ ∩ 
U ) as test function in (10.29) and (10.25), we obtain by difference

α

∫ ∣∣D(uε − uε
η)

∣∣2 dx +
∫

|uε − uε
η|2 dµε � Lε(uε − uε

η) −
∫

fη(u
ε − uε

η)dx, (10.30)
U U U
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t

for everyε � 0. By (10.7) this implies that(uε − uε
η) is bounded inH 1

0 (U) and that the integrals
∫
U

|uε − uε
η|2 dµε

are bounded. Using (10.26) and (10.28), we conclude that(uε
η) is bounded inH 1(U) and

sup
ε>0

∫
U

|uε
η|2 dµε < +∞. (10.31)

Extracting a subsequence, we may assume that

uε
η ⇀ u weakly inH 1(U), (10.32)

for some functionu ∈ H 1(U) with u − u0 ∈ H 1
0 (U). By (10.31) and by Theorem 9.1 the functionu belongs to

L2(U,µ0). Using both assertions of Corollary 7.6,u is a solution to the problem
u ∈ H 1(U) ∩ L2

(
U,µ0

)
,∫

U

A0DuDy dx +
∫
U

uy dµ0 =
∫
U

fηy dx ∀y ∈ H 1
0 (U) ∩ L2(U,µ0).

Sinceu − u0 ∈ H 1
0 (U) ∩ L2(U,µ0), by uniqueness, we haveu = u0

η.
By (10.2), (10.26), (10.28), (10.31), and (10.32) we have

lim
ε→0

{
Lε(uε − uε

η) −
∫
U

fη(u
ε − uε

η)dx

}
= L0(u0 − u0

η

) −
∫
U

fη

(
u0 − u0

η

)
dx. (10.33)

Let µ̂0 be the measure defined in the proof of Theorem 9.1. By (9.3) we have
α

∫
U

∣∣D(
u0 − u0

η

)∣∣2 dx +
∫
U

∣∣u0 − u0
η

∣∣2 dµ̂0

� lim inf
ε→0

{
α

∫
U

∣∣D(uε − uε
η)

∣∣2 dx +
∫
U

|uε − uε
η|2 dµε

}
.

(10.34)

From (9.6), (10.11), (10.30), (10.33), and (10.34) we obtain that

α

∫
U

∣∣D(
u0 − u0

η

)∣∣2 dx +
∫
U

∣∣u0 − u0
η

∣∣2 dµ0 � β4

α4 η2. (10.35)

Since, by (10.11),fη converges toL0 in the dual space ofH 1
0 (Ω) ∩ L2(Ω,µ0) asη tends to 0, the solutionu0

η

of (10.29) forε = 0 converges in H10 (U) ∩ L2(U,µ0), asη tends to 0, to the solutionv0 of the problem
v0 − u0 ∈ H 1(U) ∩ L2

(
U,µ0

)
,∫

U

A0Dv0Dy dx +
∫
U

v0y dµ0 = L0(y) ∀y ∈ H 1
0 (U) ∩ L2(U,µ0). (10.36)

On the other hand, by (10.35),(u0
η) converges tou0 in H 1(U) ∩ L2(U,µ0) asη tends to 0. We conclude tha

u0 = v0 and thatu0 is the unique solution of (10.36). Since this holds for every open setU � Ω , this implies that
u0 is a solution of (10.27).

The final statement of the theorem can be proved as explained before Corollary 7.6.�
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The next theorem is a generalization of Theorem 7.7.

Theorem 10.4. Assume(5.1), (5.18)–(5.24), (7.1), (7.2), and(10.2). For everyε > 0, letuε be a solution to problem
(10.25). Assume that

uε ⇀ u0 weakly inH 1(Ω),

for some functionu0 ∈ H 1(Ω). Let U be an open set withU � Ω , let δ > 0, let ψδ be a function in
H 2(U) ∩ W1,∞(U) which satisfies(7.18), and letvε

δ be the functions defined inU by (7.4). Then

lim sup
ε→0

{
α

∫
V

|Duε − Dvε
δ |2 dx +

∫
V

|uε − vε
δ |2 dµε

}
< δ, (10.37)

for every open setV � U .

Proof. Let us fixδ′ < δ such that

β

∫
U

∣∣Du0 − D
(
ψδω

0)∣∣2 dx +
∫
U

∣∣u0 − ψδω
0
∣∣2 dµ0 < δ′. (10.38)

Forη > 0, letfη , uε
η, andu0

η be as in the proof of Theorem 10.3. Since(u0
η) converges tou0 in H 1(U)∩L2(U,µ0),

we fix η small enough such that

√
δ′ + β

α
η <

√
δ, (10.39)

β

∫
U

∣∣Du0
η − D

(
ψδω

0)∣∣2 dx +
∫
U

∣∣u0
η − ψδω

0
∣∣2 dµ0 < δ′. (10.40)

Therefore we can apply Theorem 7.7 withf = fη and we obtain

lim sup
ε→0

{
α

∫
V

|Duε
η − Dvε

δ |2 dx +
∫
V

|uε
η − vε

δ |2 dµε

}
< δ′, (10.41)

for every open setV � U . Using (10.11), (10.30), (10.33), and (10.35) we deduce that

lim sup
ε→0

{
α

∫
U

|Duε − Duε
η|2 dx +

∫
U

|uε − uε
η|2 dµε

}
� β2

α2
η2. (10.42)

From (10.39), (10.41), and (10.42) we obtain (10.37).�
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