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Abstract

We investigate nonexistence of local nonnegative solutions for some semilinear elliptic and parabolic inequalities with first
order terms and singular coefficients. In contrast with previous investigations of the subject, no use of the maximum pr
made. Instead, a direct bootstrap argument is used, which relies on a suitable choice of the functions used to test the
inequalities.

Résumé

Nous étudions la non existence de solutions locales non négatives pour quelques inégalités elliptiques et paraboliques a
termes du premier ordre et coefficients singuliers. Au lieu de méthodes faisant appel au principe du maximum, on utilise une
méthode directe de “bootstrap” basée sur un choix convenable des fonctions test.
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1. Introduction

In this paper we investigatenonexistence of localnonnegativesolutions– namely, nonexistence of nonnegat
solutions in any neighbourhood of the origin – for semilinear elliptic inequalities of the following type:{−�u � λ|x|−µ(x,∇u) + |x|−αuq in Ω,

u � 0 in Ω.
(1.1)

HereΩ ⊆ R
n, n � 3 is a bounded smooth domain which contains the origin,q > 1 andλ,µ,α are real parameters

by (·, ·) we denote the scalar product inR
n. We also investigate the related phenomenon ofinstantaneous blow-u

of local (nonnegative) solutions to semilinearparabolic inequalities of the following types:{
ut − �u � λ|x|−µ(x,∇u) + |x|−αuq in Q := Ω × (0, T ],
u � 0 in Q.

(1.2)

Our motivation comes from paper [1], where nonexistence of local nonnegative solutions was investig
the elliptic problem:{−�u � |x|−βuq in Ω,

u � 0 in Ω
(1.3)

for q > 1 andβ � 2 (this is a particular case of problem (1.1) withλ = 0 and α= β). Moreover, instantaneous blow
up of local nonnegative solutions was proved for the companion parabolic inequality (namely, for problem (1.2
with λ = 0 andα = β). The investigation in [1] was motivated by the “failure” of the Implicit Function Theor
pointed out in [3] (related results are in [2,4,12]). On the other hand, elliptic equations with singular coefficie
and/or solutions have been widely investigated with independent motivations, often of geometrical nature (
[6,8,11,13]). Also instantaneous blow-up phenomena are currently investigated (in particular, see [5]).

It seems worth investigating how the presence offirst order singular termsaffects the situation already know
for problem (1.3). In this connection, let us first consider problem (1.1) withµ = 2 and the equality sign, namely{−�u = λ|x|−2(x,∇u) + |x|−αuq in Ω,

u � 0 in Ω
(1.4)

(we refer the reader to [21] for an exhaustive analysisof this case). Any classical solution of this problem inΩ \ {0}
satisfies there the equation

−div
(|x|λ∇u

) = |x|λ−αuq; (1.5)

the latter is a prototype for a class of degenerate elliptic equations, arising in physical problems related with
anisotropic continuous media (see [7]). It is worth observing that, if we introduce the new unknown fu
v := |x|λ/2u, problem (1.4) reads:{

−�v − c|x|−2v = |x|−α− q−1
2 λvq in Ω,

v � 0 in Ω,
(1.6)

where

c = c(n,λ) := −λ

4

[
λ + 2(n − 2)

]
(in particular, forλ ∈ (2(2−n),0) there holds 0< c � c0, c0 := (n − 2)2/4 denoting the best constant in the Har
inequality). Thus the above change of unknown establishes a useful link between problem (1.4) and semilin
problems involving an inverse square potential (in particular, see [9,22,23]).

As a further motivation to investigate problem (1.1), observe that a natural generalization of (1.3) sug
study nonexistence of nonnegative solutions to the inequality

−�gu � |x|−βuq (1.7)
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on a Riemannian manifold(M, g) of dimensionn � 3 containing the origin (as usual,�g denotes the Laplace
Beltrami operator on(M,g)). Assume for simplicity the metricg to be conformally flat, i.e.,g = φ4/(n−2)δ, where
δ denotes the Euclidean metric. Since in a system of local coordinates(x1, . . . , xn) ≡ x at a pointp ∈ M there
holds:

�g = 1√|g|
n∑

i,j=1

∂

∂xi

(√|g|gij ∂

∂xj

)

(where|g| := det(gij ) and(gij ) := (gij )
−1), from (1.7) we obtain the problem{

−�u − 2
φ
(∇φ,∇u) � |x|−β[φ(x)] 4

n−2 uq in Ω,

u � 0 in Ω.
(1.8)

Choosingφ(x) = |x|λ/2 we get:{
−�u − λ|x|−2(x,∇u) � |x|−β+ 2λ

n−2 uq in Ω,

u � 0 in Ω
(1.9)

– namely, problem (1.1) withµ = 2 and α= β − 2λ
n−2. We shall prove in the following that nonexistence of lo

nonnegative solutions to problem (1.9) occurs for anyβ > 0; this is at variance from the situation encounte
in [1], whereλ = 0 and nonexistence only occurs forα = β � 2 (see Theorem 2.3(a), (b) below).

More generally, local nonexistence results are proved in Theorem 2.3 for any value of the parameµ in
the original problem (1.1). Forµ � 2 nonexistence is only proved ifα � 2 (see Theorem 2.3(a), (b)); in this ca
nonexistence of local solutions depends on the singularity of the source term as in [1]. On the other hand, ifµ >

2q
q−1

nonexistence can be proved also forα < 0 (see Theorem 2.3(c)); in this case the coefficient of the source te
regular inΩ , thus the nonexistence result depends on the singularity of the first order term. Let us mention t
order singular terms also influence existence of solutions of the Dirichlet problem for the equation corresp
to the inequality in (1.1) (see [16,17]).

It seems now natural to investigate, along with the elliptic problem (1.1), the parabolic problem (1
particular, we study the parabolic counterpart of the elliptic problem (1.9), namely:{

ut − �u − λ|x|−2(x,∇u) � |x|−β+ 2λ
n−2 uq in Ω,

u � 0 in Ω.
(1.10)

In analogy with the situation outlined before for the elliptic case, we prove instantaneous blow-up o
nonnegative solutions to problem (1.10) for anyβ > 0 (for a suitable class of initial data; see Theorem 2.7
below), at variance from the situation encountered in [1].More general instantaneous blow-up results are pro
in Theorem 2.7 for the original problem (1.2).

Let us add some remarks concerning our method of proof. A typical nonexistence result in [1] for p
(1.3) is about the so-calledvery weak solutions; these are defined testing the differential inequality only aga
functions with compact support inΩ and vanishing in a neighbourhhod of the origin (see the analogous Definitio
2.1 below). After proving aremovable singularity resultat the origin, such solutions can be extended toweak
solutions; then by the maximum principle nonexistence follows in any neighbourhhod of the origin. A s
argument can be used in the parabolic case.

In fact, it is the behaviour of the solution near the isolated singularity, as allowed by the differential inequal
itself, which determines local existence or nonexistence (for semilinear elliptic equations this has been known fo
a long time; in particular, see [10]). Instead of proving a removable singularity result, then using the ma
principle for the extended solutions, we take advantage of the local behaviour of solutions near the orig
direct bootstrap argument, which relies on a proper choice of the test functions. This approach – which d
make use of the maximum principle – allows us to deal not only with problems (1.1)–(1.2), but also with hyp
inequalities (see [19]). Let us mention that the same approach was used elsewhere (e.g., see [14,18]; gene
can be found in [15]).
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2. Mathematical background and results

Solutions to problem (1.1) are meant in the following sense.

Definition 2.1.By asolutionto problem (1.1) inΩ we mean any functionu ∈ H 1
loc(Ω \ {0}) ∩ L

q

loc(Ω \ {0}) such
that:

(i) u � 0 almost everywhere in Ω;
(ii) for any test functionζ ∈ C∞

0 (Ω \ {0}), ζ � 0 there holds:∫
Ω

(∇u,∇ζ ) + λ

∫
Ω

udiv
(|x|−µxζ

)
�

∫
Ω

|x|−αuqζ. (2.1)

Concerning solutions to problem (1.2), we make similarly the following definitions.

Definition 2.2.By asolutionto problem (1.2) inQ := Ω ×(0, T ] we mean any functionu ∈ C([0, T ];H 1
loc(Ω \{0})

∩ L
q

loc((Ω \ {0}) × (0, T )) such that:

(i) u � 0 almost everywhere in Q;
(ii) for any test functionζ ∈ C

∞,1
x,t ((Ω \ {0}) × [0, T ]), ζ � 0, ζ(·, t) ∈ C∞

0 (Ω \ {0}) (t ∈ [0, T ]), ζ(·, T ) = 0 there
holds:∫ ∫

Q

(∇u,∇ζ ) + λ

∫ ∫
Q

udiv
(|x|−µxζ

)
�

∫ ∫
Q

|x|−αuqζ +
∫
Ω

u(x,0)ζ(x,0) +
∫ ∫
Q

uζt . (2.2)

Concerning the elliptic problem (1.1) the following nonexistence results will be proved.

Theorem 2.3.Let either of the following assumptions be satisfied:

(a) µ < 2, α � 2;
(b) µ = 2 and eitherα > 2, λ � 2− n, or α = 2, λ > 2− n;
(c) µ > 2, α > µ + (2− µ)q andλ > 0.

Then the only solution to problem(1.1) in any neighbourhoodΩ1 ⊆ Ω containing the origin is trivial.

Remark 2.4.If the equality sign holds in problem (1.1),µ � 2,α > 2 and 1< q < n+2
n−2, then Corollary 3.2 in [10]

can be applied to obtain the same result of Theorem 2.3 above. In the same situation, ifα = 2 and 1< q < n+2
n−2, then

Theorem 3.1 in [10] can be applied; thus the solution is bounded at the origin and by [20] any possible sing
at the origin is removable.

Concerning the removability of singularity at the origin of solutions to problem (1.1), the following resul
be proved.

Proposition 2.5.Letu be a solution to problem(1.1) in some neighbourhoodΩ1 ⊆ Ω containing the origin.
(i) Let either assumption(a)or assumption(b) of Theorem2.3be satisfied. Then∫

B

|x|−α+2−nuq < ∞,

∫
B

|x|1−n|∇u| < ∞, (2.3)
η η
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whereBη := {x ∈ R
n | |x| < η}.

(ii) Let assumption(c) of Theorem2.3be satisfied. Then∫
Bη

|x|−α+µ−nuq < ∞,

∫
Bη

|x|3−µ−n|∇u| < ∞. (2.4)

Proposition 2.6.Letu be any solution to problem(1.1) in some neighbourhoodΩ1 ⊆ Ω containing the origin. Let
either assumption of Theorem2.3be satisfied; if assumption(c) holds, assumeµ < n. Then

(i) |x|−αuq ∈ L1
loc(Ω), |x|−1|∇u| ∈ L1

loc(Ω), |x|1−µ|∇u| ∈ L1
loc(Ω);

(ii) for any test functionζ ∈ C∞
0 (Ω), ζ � 0 there holds:∫

Ω

(∇u,∇ζ ) � λ

∫
Ω

|x|−µ(x,∇u)ζ +
∫
Ω

|x|−αuqζ. (2.5)

In connection with the above proposition, let us notice that solutions to problem (1.1) defined in Definition 2.1
are analogous to the very weak solutions in [1]. In the same spirit, any functionu ∈ L

q

loc(Ω), u � 0 a.e. in Ω

satisfying the properties (i)–(ii) of Proposition 2.6 can bedefined to be a weak solution to problem (1.1) (see [1
Concerning the parabolic problem (1.2), the following instantaneous blow-up result will be proved.

Theorem 2.7.Let either assumption of Theorem2.3be satisfied. Moreover, let

lim inf
x→0

|x|−γ u(x,0) > 0 (2.6)

for someγ < 0. Then the only solution to problem(1.2) in any cylinderΩ1 × (0, τ ], Ω1 ⊆ Ω containing the origin
andτ ∈ (0, T ), is trivial.

Remark 2.8.With the exception of the caseα = 2, Theorem 2.7 still holds if we assumeγ < α
q−1 in (2.6) (see par

(iii) of the proof of Theorem 2.7).

3. Elliptic inequalities: Proofs

The proof of Theorem 2.3 makes use of a proper choice of the test functionζ in inequality (2.1). For this purpos
some preliminary remarks are needed.

Let Ω1 ⊆ Ω be any neighbourhood containing the origin, 0< ε < η, η > 2ε so small thatAε,η := {x ∈ R
n | ε <

|x| < η} ⊆ Ω1 \ {0}. Forr ∈ [ε, η] defineφ0(r) := rσ − ησ , whereσ < 0 will be fixed later. Define also

φ1(r) := φ̄(r/ε) (r ∈ [ε, η]),
whereφ̄ ∈ C∞([0, η/ε]) is nondecreasing, such that

φ̄(s) :=
{

0 if s ∈ (0,1),

1 if s ∈ (2, η/ε).

Finally, set

ζ̄ (r) := rρφ0(r)φ1(r) (r ∈ [ε, η]),
whereρ is a real parameter to be chosen later.



492 S.I. Pohozaev, A. Tesei / Ann. I. H. Poincaré – AN 21 (2004) 487–502
Some relevant properties of the functionζ̄ are the content of the following lemma.

Lemma 3.1.(i) There holds:

ζ̄ (ε) = ζ̄ (η) = 0; dζ̄

dr
(ε) � 0,

dζ̄

dr
(η) � 0.

(ii) There exists a sequence{ζk} ⊆ C∞
0 (Aε,η), ζk � 0 for anyk, such thatζk → ζ̃ in W

1,p

0 (Aε,η) (p ∈ (1,∞)),
where

ζ̃ (x) := ζ̄ (|x|) (x ∈ Āε,η). (3.1)

Proof. Claim (i) follows immediately from the definition of̄ζ . Concerning (ii), observe that̃ζ ∈ C0(Āε,η) ∩
W1,p(Aε,η), thusζ̃ ∈ W

1,p

0 (Aε,η) for anyp ∈ (1,∞); then the conclusion follows.

Proposition 3.2.Letu be a solution to problem(1.1) in some neighbourhoodΩ1 ⊆ Ω containing the origin. Then
for any0 < ε < η, η sufficiently small there holds:∫

Aε,η

|x|−αuq ζ̃ (x) � −
∫

Aε,η

|x|−(n−1) dψ

dr
(|x|)u, (3.2)

where

ψ(r) := rn−1dζ̄

dr
(r) − λrn−µζ̄ (r) (r ∈ [ε, η]). (3.3)

Proof. Setζ = ζk in inequality (2.1), withζk as in Lemma 3.1(ii). Lettingk → ∞ we obtain∫
Aε,η

|x|−αuq ζ̃ (x) �
∫

Aε,η

(∇u,∇ ζ̃ ) + λ

∫
Aε,η

udiv
(|x|−µxζ

)
.

Due to Lemma 3.1(ii), we obtain∫
Aε,η

|x|−αuq ζ̃ (x) � −
∫

Aε,η

{
�ζ̃ − λdiv

(|x|−µxζ
)}

u.

An elementary calculation shows that

�ζ̃ − λdiv
(|x|−µxζ

) = |x|−(n−1) dψ

dr
(|x|);

hence the conclusion follows.

Let us observe that the functionψ defined in (3.3) reads:

ψ = φ1ψ1 + rn−1+ρφ0
dφ1

dr
, (3.4)

where

ψ1 = ψ1(r) := rn−1 d [
rρφ0(r)

] − λrn−µ+ρφ0(r) (r ∈ [ε, η]).

dr
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The following technical lemma plays an important role in the sequel; its proof is postponed until the end
section.

Lemma 3.3.Let either of the following assumptions be satisfied:

(i) µ < 2, ρ � 2− n, σ < 0;
(ii) µ < 2, ρ ∈ (2− n,0), ρ � 4− n − µ, σ = −ρ + 2− n;
(iii) µ = 2, ρ � 2− n � λ, σ < 0;
(iv) µ = 2, ρ = λ > 2− n, σ = −ρ + 2− n;
(v) µ > 2, ρ � µ − n, λ > 0, σ < 0.

Then there existsη0 > 0 (depending onn,λ,µ,ρ,σ ) such that for anyη < η0 there holds:

dψ1

dr
� 0 in (ε, η). (3.5)

Proposition 3.4.Let u be a solution to problem(1.1) in some neighbourhoodΩ1 ⊆ Ω containing the origin. Let
either assumption of Lemma3.3be satisfied andη < η0. Then for anyε > 0 sufficiently small there holds:∫

Aε,η

|x|−αuq ζ̃ (x) � C̄εθ (3.6)

for some constant̄C > 0, where

θ := n − α + ρ + σ + (α − 2)
q

q − 1
. (3.7)

Proof. (i) Let u be any solution to problem (1.1) in a neighbourhoodΩ1 ⊆ Ω containing the origin. Due to th
choiceη < η0 and to Lemma 3.3, from inequality (3.2) we obtain easily∫

Aε,η

|x|−αuq ζ̃ (x) � −
∫

Aε,η

|x|−(n−1)χ(|x|)u, (3.8)

where

χ(r) := dφ1

dr
ψ1 + d

dr

[
rn−1+ρφ0

dφ1

dr

]
(r ∈ [ε, η]). (3.9)

Using Hölder inequality, the right-hand side of inequality (3.8) can be estimated as follows:∣∣∣∣
∫

Aε,η

|x|−(n−1)χ(|x|)u
∣∣∣∣ �

{ ∫
Aε,η

|x|−αuq ζ̃ (x)

} 1
q
{ ∫

Aε,η

|x|−(n−1)q ′[|x|−αζ̃ (x)
]−(q ′−1)

χ(|x|)q ′
} 1

q′
, (3.10)

whereq ′ := q
q−1. From (3.8) and (3.10) we obtain

∫
Aε,η

|x|−αuq ζ̃ (x) � C

2ε∫
ε

[
rn−α−1ζ̄ (r)

]− 1
q−1 χ(r)

q
q−1 dr (3.11)

(whereC > 0 only depends onn), sinceχ ≡ 0 in (ε,2ε) by definition ofφ1.
(ii) Let us now estimate the integral in the right-hand side of inequality (3.11). To this purpose, sets := r

ε
∈

[1,2]. It is easily seen that
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ζ̄ (εs) � c1ε
ρ+σ φ̄(s),

χ(εs) � c2ε
n−3+ρ+σ

[
φ̄′(s) + φ̄′′(s)

]
,

for somec1, c2 > 0 and anys ∈ [1,2]; here use of the equalities

φ1(εs) = φ̄(s); dφ1

dr
(εs) = φ̄′(s)

ε
; d2φ1

dr2 (εs) = φ̄′′(s)
ε2

has been made. Moreover, choosingφ̄(s) = O((s − 1)γ ) with γ > max{2,
q+1
q−1} ass → 1+, there holds:

2∫
1

[
φ̄′(s)q

φ̄(s)

] 1
q−1

< ∞,

2∫
1

[
φ̄′′(s)q

φ̄(s)

] 1
q−1

< ∞.

It follows that

2ε∫
ε

[
rn−α−1ζ̄ (r)

]− 1
q−1 χ(r)

q
q−1 dr � C̃εθ (3.12)

for someC̃ > 0, where

θ := (n − 3+ ρ + σ)
q

q − 1
− (n − α − 1+ ρ + σ)

1

q − 1
+ 1 = n − α + ρ + σ + (α − 2)

q

q − 1
.

Then by inequalities (3.11)–(3.12) the conclusion follows.

Now we can prove Theorem 2.3.

Proof of Theorem 2.3. Assume that a nontrivial solution to problem (1.1) exists in some neighbourhoodΩ1 ⊆ Ω

of the origin. The result will follow, if we prove that under the present hypotheses:(α) either assumption o
Lemma 3.3 is satisfied, thus inequality (3.6) holds;(β) from inequality (3.6) a contradiction with the assumpt
u 
= 0 follows.

(i) Let assumption (a) be satisfied withα > 2. We claim that in this case the parametersρ,σ of the test function
ζ̃ can be chosen so that assumption (i) of Lemma 3.3 is satisfied and moreoverθ > 0. If so, use of Proposition 3.
can be made; hence by inequality (3.6) for anyη < η0 there holds:∫

Bη

|x|−αuq ζ̃ (x) = lim
ε→0+

∫
Aε,η

|x|−αuq ζ̃ (x) = 0.

Then the conclusion follows.
To prove the above claim, observe that the requirementθ > 0 reads:

ρ + σ > α − n − (α − 2)
q

q − 1

(see (3.7)). On the other hand, choosingρ,σ as in Lemma 3.3(i) gives

ρ + σ < 2− n.

The above inequalities are compatible sinceα > 2, thus the claim follows. This completes the proof in the pres
case.

(ii) Let assumption (a) be satisfied withα = 2. In this case choosing the parametersρ,σ as in Lemma 3.3(i)
would giveθ < 0; hence a more convenient choice is that of Lemma 3.3(ii), which givesθ = 0. Now inequality
(3.6) reads
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∫
Aε,η

|x|−αuq ζ̃ (x) � C̄. (3.13)

On the other hand, from inequalities (3.10) and (3.12) (withθ = 0) we obtain:∣∣∣∣
∫

Aε,η

|x|−(n−1)χ(|x|)u
∣∣∣∣ =

∣∣∣∣
∫

Aε,2ε

|x|−(n−1)χ(|x|)u
∣∣∣∣ � C̃

1
q′

{ ∫
Aε,2ε

|x|−αuq ζ̃ (x)

} 1
q

(3.14)

(recall thatχ ≡ 0 in (ε,2ε)).
Now observe that the left-hand side of inequality (3.13) monotonically increases asε → 0+ (in fact, ζ̄ (r) =

rρφ0(r)φ̄( r
ε
) is a decreasing function ofε sinceφ̄′ � 0). Then by monotone convergence and inequality (3

there holds:

lim
ε→0+

∫
Aε,η

|x|−αuq ζ̃ (x) � C̄.

This implies:

lim
ε→0+

∫
Aε,2ε

|x|−αuq ζ̃ (x) = 0;

hence from inequality (3.14) the conclusion follows in this case, too.
(iii) Let assumption (b) be satisfied. Sinceµ = 2, we can use Lemma 3.3(iii), (iv) in the present case. We ch

the parametersρ,σ of the test functioñζ as in Lemma 3.3(iii) ifα > 2, or as in Lemma 3.3(iv) ifα = 2. Arguing
as in (i)–(ii) above the conclusion follows.

(iv) Let assumption (c) be satisfied. In this case use can be made of Lemma 3.3(v). As in part (i) above, r
θ > 0 gives the compatibility condition

µ − n > α − n − (α − 2)
q

q − 1
,

which can be satisfied sinceα > µ + (2− µ)q ; then the conclusion follows. This completes the proof.

The main point in the proof of Theorem 2.3 was showing that the assumptions of Lemma 3.3 concern
parametersρ,σ could be satisfied, so as to make use of inequality (3.6). The same argument gives the p
Proposition 2.5.

Proof of Proposition 2.5. (a) Suppose firstµ = 2; in this case the differential inequality in (1.1) can be rewrit
as follows:

−|x|−λ div
{|x|λ∇u

}
� |x|−αuq, (3.15)

hence∫
Aε,η

|x|−αuq ζ̃ (x) �
∫

Aε,η

|x|λ∇u∇[|x|−λζ̃ (x)
]
. (3.16)

Due to the definition of̃ζ , it is easily seen that

∇[|x|−λζ̃ (x)
]
� |x|−λ+ρ+σ−1;

choosing the parameters as in Lemma 3.3(iii), (iv) givesρ + σ � 2 − n, whence the second inequality in (2.
follows. The proof of the first one is similar, due to inequality (3.16). This completes the proof of (2.3)
µ = 2.
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in

ows

tions.
(b) Suppose nowµ 
= 2; in this case the differential inequality in (1.1) reads:

−e
− λ

2−µ |x|2−µ

div
{
e

λ
2−µ |x|2−µ∇u

}
� |x|−αuq, (3.17)

hence∫
Aε,η

|x|−αuq ζ̃ (x) �
∫

Aε,η

e
λ

2−µ |x|2−µ∇u∇[
e
− λ

2−µ |x|2−µ

ζ̃ (x)
]
. (3.18)

It is easily seen that

∇[
e
− λ

2−µ |x|2−µ

ζ̃ (x)
]
� e

− λ
2−µ |x|2−µ

max
{|x|ρ+σ−1, |x|ρ+σ+1−µ

}
.

If µ < 2, choosing the parameters as in Lemma 3.3(i), (ii) givesρ + σ � 2 − n, whence the second inequality
(2.3) follows. The proof of the first one is similar, due to inequality (3.18). On the other hand, ifµ > 2 the choice
of Lemma 3.3(v) givesρ + σ � µ − n, whence the second inequality in (2.4) follows. Again, the first one foll
similarly by inequality (3.18). This completes the proof.

Proof of Proposition 2.6. Claim (i) follows easily from inequalities (2.3)–(2.4) under the present assump
Concerning (ii), for any test functionζ ∈ C∞

0 (Ω), ζ � 0 set

ζε(x) := ζ(x)φ̄

( |x|
ε

)
(ε > 0),

the functionφ̄ being as above. Thenζε ∈ C∞
0 (Ω \ {0}), ζε � 0 andζε → ζ a.e. inΩ asε → 0+. Moreover, by

Definition 2.1 there holds:∫
Ω

(∇u,∇ζε) + λ

∫
Ω

udiv
(|x|−µxζε

)
�

∫
Ω

|x|−αuqζε. (3.19)

Due to (i), it is immediately seen that∫
Ω

|x|−αuqζε →
∫
Ω

|x|−αuqζ,

∫
Ω

udiv
(|x|−µxζε

) →
∫
Ω

udiv
(|x|−µxζ

)

asε → 0+. On the other hand,∫
Ω

(∇u,∇ζε) =
∫
Ω

(∇u,∇ζ )φ̄

( |x|
ε

)
+ 1

ε

∫
Aε,2ε

|x|−1(x,∇u)φ̄′
( |x|

ε

)
ζ.

Since|x|−1|∇u| ∈ L1
loc(Ω) by (i), there holds:

1

ε

∣∣∣∣
∫

Aε,2ε

|x|−1(x,∇u)φ̄′
( |x|

ε

)
ζ

∣∣∣∣ � C

∫
Aε,2ε

|x|−1|∇u| → 0

asε → 0+. Lettingε → 0+ in inequality (3.19) the conclusion follows.

Let us finally prove Lemma 3.3.
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y (2.2).
Proof of Lemma 3.3. Observe first that

dψ1

dr
= rn−3+ρ+σ ψ0

(
r

η

)
,

where

ψ0(s) := (ρ + σ)(n − 2+ ρ + σ) − ρ(n − 2+ ρ)s−σ

− λ
[
(n − µ + ρ + σ) − (n − µ + ρ)s−σ

]
η2−µs2−µ (s ∈ [0,1]),

as an elementary calculation shows.
(i) Sinceρ � 2− n � 0 andσ < 0, there holds:

(ρ + σ)(n − 2+ ρ + σ) − ρ(n − 2+ ρ)s−σ � (ρ + σ)(n − 2+ ρ + σ) − ρ(n − 2+ ρ) > 0;
in fact, it is easily seen that the functionf (s) := s(n − 2+ s) is strictly increasing in the interval[ρ + σ,ρ]. Since
by assumption 2− µ > 0, choosingη sufficiently small proves the claim.

(ii) In this casen − 2 + ρ + σ = 0 and−ρ(n − 2 + ρ) > 0; since 2− µ + σ = 4 − n − µ − ρ � 0, the claim
follows as in (i).

(iii) In this case

ψ0(s) := (ρ + σ − λ)(n − 2+ ρ + σ) − (ρ − λ)(n − 2+ ρ)s−σ .

A slight change of the argument used in (i) proves the claim.
(iv) In this caseψ0 ≡ 0 in the interval[0,1].
(v) Rewriteψ0 as follows:

ψ0(s) = η2−µs2−µ
{−λ

[
(n − µ + ρ + σ) − (n − µ + ρ)s−σ

]
+ [

(ρ + σ)(n − 2+ ρ + σ) − ρ(n − 2+ ρ)s−σ
]
ηµ−2sµ−2} (s ∈ [0,1]).

Since−(n − µ + ρ) � 0, λ > 0 and σ <0, there holds:

−λ
[
(n − µ + ρ + σ) − (n − µ + ρ)s−σ

]
� λ|σ | > 0.

Sinceµ − 2 > 0 we can argue as in (i); hence the conclusion follows.

4. Parabolic inequalities: Proofs

As in the elliptic case, the proof of Theorem 2.7 relies on a proper choice of the test function in inequalit
This gives the following result, analogous to Proposition 3.2.

Proposition 4.1.Letu be a solution to problem(1.2) in some cylinderΩ1 × (0, τ ] ⊆ Q, Ω1 containing the origin
andτ ∈ (0, T ). Then for any0< ε < η, η sufficiently small and anyτ ∈ (0, T ) there holds:

τ∫
0

(τ − t)β dt

∫
Aε,η

|x|−αuq(x, t)ζ̃ (x) � −
τ∫

0

(τ − t)β dt

∫
Aε,η

|x|−(n−1) dψ

dr
(|x|)u(x, t)

+ β

τ∫
0

(τ − t)β−1 dt

∫
Aε,η

u(x, t)ζ̃ (x) − τβ

∫
Aε,η

u(x,0)ζ̃ (x), (4.1)

whereβ > max{1, 1 } and ζ̃ andψ are the functions defined in(3.1), respectively in(3.3).

q−1
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Proof. Let τ ∈ (0, T ); set

φ̂(t) :=
{

(τ − t)β if t ∈ (0, τ ),

0 if t ∈ (τ, T ),

with β > max{1, 1
q−1}. Let {ζk} ⊆ C∞

0 (Aε,η) be the approximating sequence in Lemma 3.1(ii); setζ(x, t) =
ζk(x)φ̂(t) in inequality (2.2). Lettingk → ∞ we obtain easily:

τ∫
0

(τ − t)β dt

∫
Aε,η

|x|−αuq(x, t)ζ̃ (x)

�
τ∫

0

(τ − t)β dt

( ∫
Aε,η

(∇u(x, t),∇ ζ̃
) + λ

∫
Aε,η

u(x, t)div
(|x|−µxζ

))

+ β

τ∫
0

(τ − t)β−1 dt

∫
Aε,η

u(x, t)ζ̃ (x) − τβ

∫
Aε,η

u(x,0)ζ̃ (x).

On the other hand, as in the proof of Proposition 3.2 for anyt ∈ (0, τ ) there holds:∫
Aε,η

(∇u(x, t),∇ ζ̃
) + λ

∫
Aε,η

u(x, t)div
(|x|−µxζ

)

� −
∫

Aε,η

u(x, t)
{
�ζ̃ − λdiv

(|x|−µxζ
)} = −

∫
Aε,η

|x|−(n−1) dψ

dr
(|x|)u(x, t).

Then from the above inequalities the conclusion follows.

Proposition 4.2.Letu be a solution to problem(1.2) in some cylinderΩ1 × (0, τ ] ⊆ Q, Ω1 containing the origin
andτ ∈ (0, T ). Let the assumptions of Lemma3.3be satisfied andη < η0 accordingly. Moreover, let

ρ + σ > − α

q − 1
− n. (4.2)

Then for anyε > 0 sufficiently small and anyτ ∈ (0, T ) there holds:

τ∫
0

(τ − t)β dt

{ ∫
Aε,η

u(x, t)ζ̃ (x)

}q

� MτβC1(ε, η)

{
C1(ε, η)

1
q−1 τ

− 1
q−1 + C2(ε, η)τ −

∫
Aε,η

u(x,0)ζ̃ (x)

}
, (4.3)

for someM = M(β,q) > 0, where

C1(ε, η) :=
{ η∫

ε

r
α

q−1+n−1
ζ̄ (r) dr

}q−1

, (4.4)

C2(ε, η) :=
∫

A

|x|−(n−1)q ′[|x|−αζ̃ (x)
]−(q ′−1)

χ(|x|)q ′
dx. (4.5)
ε,η
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Proof. (i) Observe that for anyt ∈ (0, τ )

∫
Aε,η

u(x, t)ζ̃ (x) �
{ ∫

Aε,η

|x|−αuq(x, t)ζ̃ (x)

} 1
q
{ ∫

Aε,η

|x| α
q−1 ζ̃ (x)

} 1
q′

=
{ ∫

Aε,η

|x|−αuq(x, t)ζ̃ (x)

} 1
q

{ η∫
ε

r
α

q−1+n−1
ζ̄ (r) dr

} 1
q′

.

Set

v(t) :=
∫

Aε,η

u(x, t)ζ̃ (x) (t ∈ (0, τ ));

then by definition (4.4) the above inequality reads:

vq(t) � C1(ε, η)

∫
Aε,η

|x|−αuq(x, t)ζ̃ (x) (4.6)

for anyt ∈ (0, τ ).
(ii) Due to Lemma 3.3 and the choiceη < η0, for anyt ∈ (0, τ ) we have:

−
∫

Aε,η

|x|−(n−1) dψ

dr
(|x|)u(x, t) � −

∫
Aε,η

|x|−(n−1)χ(|x|)u(x, t),

whereχ is the function defined in (3.9). Using inequality (3.10) and Young inequality we obtain:∣∣∣∣
∫

Aε,η

|x|−(n−1)χ(|x|)u(x, t)

∣∣∣∣ � 1

q

∣∣∣∣
∫

Aε,η

|x|−αuq(x, t)ζ̃ (x)

∣∣∣∣ + 1

q ′ C2(ε, η) (4.7)

for anyt ∈ (0, τ ) (see definition (4.5)). Then from the above inequality and (4.1) we get easily:

τ∫
0

(τ − t)β dt

∫
Aε,η

|x|−αuq(x, t)ζ̃ (x)

� τβ+1

β + 1
C2(ε, η) + βq ′

τ∫
0

(τ − t)β−1 dt

∫
Aε,η

u(x, t)ζ̃ (x) − q ′τβ

∫
Aε,η

u(x,0)ζ̃ (x) (t ∈ (0, τ )). (4.8)

Hence by inequality (4.6) and the definition ofv there holds:

τ∫
0

(τ − t)βvq(t) dt � C1(ε, η)

{
τβ+1

β + 1
C2(ε, η) + βq ′

τ∫
0

(τ − t)β−1v(t) dt − q ′τβv(0)

}
. (4.9)

(iii) Due to Young inequality, it is easily seen that:

βq ′C1(ε, η)

τ∫
(τ − t)β−1v(t) dt � 1

q

τ∫
(τ − t)βvq(t) dt + βq ′

(q ′)q
′−1

β − q ′ + 1
C

q ′
1 (ε, η)τβ−q ′+1
0 0
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ain:

in

nstead
the
(here use of the assumptionβ > 1
q−1 has been made). From the above inequality and inequality (4.9) we obt

(
1− 1

q

) τ∫
0

(τ − t)βvq(t) dt � τβ+1

β + 1
C1(ε, η)C2(ε, η) + βq ′

(q ′)q
′−1

β − q ′ + 1
C

q ′
1 (ε, η)τβ−q ′+1 − q ′C1(ε, η)τβv(0).

Then the conclusion follows.

Remark 4.3. Observe that assumption (4.2) of Proposition 4.2is compatible with the assumptions made
Lemma 3.3(i), (iv) ifα > −2(q − 1), or respectively with those of Lemma 3.3(v) ifα > −µ(q − 1).

Now we can prove Theorem 2.7.

Proof of Theorem 2.7. The idea of the proof is the same as for Theorem 2.3, making use of inequality (4.3) i
of inequality (3.6). Let us suppose that assumption (a) of Theorem 2.3 is satisfied, the proof being the same in
remaining cases (b)–(c).

(i) Observe first that, due to assumption (2.6), there existk > 0 andη1 > 0 such that for any|x| < η < η1 there
holds:u(x,0) � k|x|γ . Hence

∫
Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x,0) dx � k

η∫
0

rγ+ρ+σ+n−1
[
1−

(
η

r

)σ ]
dr.

If γ � −2, the integral in the right-hand side of the above inequality diverges. On the other hand, ifγ > −2 we
obtain:∫

Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x,0) dx � Kηγ+ρ+σ+n

for someK > 0.
(ii) Let us take the limit of inequality (4.3) asε → 0+. To this purpose, observe that for anyt ∈ [0, τ ]:

lim
ε→0+

∫
Aε,η

u(x, t)ζ̃ (x) =
∫
Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x, t)

by monotonicity, due to the choice of the functionζ̃ .
Concerning the coefficientC1(ε, η) we have (see definition (4.4)):

C1(ε, η) �
{ η∫

ε

r
α

q−1+ρ+σ+n−1
dr

}q−1

,

thus by monotonicity

lim
ε→0+ C1(ε, η) � Lηα+(ρ+σ+n)(q−1)

for someL > 0, provided that condition (4.2) is satisfied.
Finally, from the proof of Proposition 3.4 we obtain (see (3.10), (3.12)):

C2(ε, η) = C2(ε,2ε) � C̄εθ

for some constant̄C > 0, where
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e the
(4.3)

any
n

4.3)

tes

.

cad.

th,
θ := n − α + ρ + σ + (α − 2)
q

q − 1
.

(iii) Let us first assumeµ < 2, α > 2. As in part (i) of the proof of Theorem 2.3, in this case we can choos
parametersρ,σ so thatθ > 0 and condition (4.2) is satisfied (see Remark 4.3). Taking the limit of inequality
asε → 0+ gives (see (i)–(ii) above):

τ∫
0

(τ − t)β dt

{∫
Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x, t) dx

}q

� Mτβη
α

q−1+ρ+σ+n{
τ

− 1
q−1 − Kη

γ− α
q−1

}
(4.10)

for any τ ∈ (0, T ), if γ > −2. In this case the right-hand side of the above inequality is negative for
τ > τ∗ = τ∗(η) := K−(q−1)ηα−γ (q−1); sinceτ∗(η) → 0+ as η → 0+, the conclusion follows in this case. O
the other hand, ifγ � −2 the right-hand side of inequality (4.3) tends to−∞ asε → 0+, thus a contradiction
follows in this case, too. This proves the result in the caseα > 2.

(iv) Finally, let µ < 2, α = 2. As in the proof of Lemma 3.3(ii), (iv) we choose the parametersρ,σ so that
ρ + σ + n = 2, thusθ = 0 (clearly, condition (4.2) is satisfied by this choice). Taking the limit of inequality (
asε → 0+ now gives:

τ∫
0

(τ − t)β dt

{∫
Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x, t) dx

}q

� Mτβ
{
f (η, τ ) − Kηγ+2}, (4.11)

where

f (η, τ ) := η
2q

q−1 τ
− 1

q−1 + C̄τ.

It is easily seen that the functionf (η, ·) has a unique minimumτ∗ = τ∗(η) := [(q − 1)C̄]− q−1
q η2 in [0, T ];

moreover,f (η, τ∗) = qC̄τ∗. Then by inequality (4.11) there holds:

τ∫
0

(τ − t)β dt

{∫
Bη

|x|ρ+σ

[
1−

(
η

|x|
)σ ]

u(x, t)

}q

� M ′τβ+2{C̄ − Kηγ } (4.12)

for someM ′ > 0. Sinceγ < 0 andτ∗(η) → 0+ asη → 0+, the conclusion follows also in this case. This comple
the proof.
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