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Abstract

We investigate nonexistence of local nonnegative solutionsdme semilinear elliptic and pbolic inequalities with first
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made. Instead, a direct bootstrap argument is used, which relies on a suitable choice of the functions used to test the differentic
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1. Introduction

In this paper we investigateonexistence of localonnegativesolutions— namely, nonexistence of nonnegative
solutions in any neighbourhood of the origin — for siémear elliptic inequalities of the following type:

—Au > x| M (x, Vi) + |x|"%u?  in £2,
u>0 in $2.
Here2 CR", n > 3 is a bounded smooth domain which contains the origin,1 andx, u, « are real parameters;
by (-, -) we denote the scalar productlitf. We also investigate the related phenomenanstintaneous blow-up
of local (honnegative) solutions to semilingerabolic inequalities of the following types:
uy — Au > Alx|7*(x, Vu) + |x|"%u? in Q=8 x (0, T],
u>0 in Q.
Our motivation comes from paper [1], where nonexistence of local nonnegative solutions was investigated for
the elliptic problem:

(1.1)

(1.2)

—Au>|x|"Pu? in £,
u=>0 in 2

forg > 1andg > 2 (this is a particular case of problem (1.1) with= 0 and a= 8). Moreover, instantaneous blow-
up of local nonnegative solutions was proved for the camgraparabolic inequality @mely, for problem (1.2)
with A = 0 anda = 8). The investigation in [1] was motivated by the “failure” of the Implicit Function Theorem
pointed out in [3] (related results are in [2,4,12]). Or thither hand, elliptic equations with singular coefficients
and/or solutions have been widely investigated with independent motivations, often of geometrical nature (e.g., see
[6,8,11,13]). Also instantaneous blow-up phenomena are currently investigated (in particular, see [5]).

It seems worth investigating how the presencérst order singular termsffects the situation already known
for problem (1.3). In this connection, let us first consider problem (1.1) with2 and the equality sign, namely:

—Au=Alx|"2(x, Vu) + |x|"%u? in 2,

u>0 in 2

(we refer the reader to [21] for an exhaustive analgéibis case). Any classical solution of this problenyan, {0}
satisfies there the equation

—div(|x[*Vu) = |x|*"*u?; (1.5)

the latter is a prototype for a class of degenerate talipquations, arising in phical problems related with
anisotropic continuous media (see [7]). It is worth observing that, if we introduce the new unknown function
v := |x|*/?u, problem (1.4) reads:

(1.3)

(1.4)

{ —Av—clx|%v= lefafq_glkvq in £, (1.6)
v>=0 in £2,
where

c=c(n,A) :=—%[A+2(n—2)]

(in particular, forx € (2(2—n), 0) there holds G< ¢ < co, co:= (n — 2)%/4 denoting the best constant in the Hardy
inequality). Thus the above change of unknown esthblisa useful link between problem (1.4) and semilinear
problems involving an inverse square potential (in particular, see [9,22,23]).

As a further motivation to investigate problem (1.1), observe that a natural generalization of (1.3) suggests to
study nonexistence of nonnegative solutions to the inequality

—Agu > x| Put @.7)
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on a Riemannian manifoldM, g) of dimension: > 3 containing the origin (as usuaLg denotes the Laplace—
Beltrami operator o1iM, g)). Assume for simplicity the metrig to be conformally flat, i.e g = ¢*/*=2§, where
8 denotes the Euclidean metric. Since in a system of local coordigeies ., x,) = x at a pointp € M there
holds:

Ay = «/EZ (Igg”aa)

i,j=1
(where|g| := det(g;;) and(g") := (g;;)~1), from (1.7) we obtain the problem

4 .
{ Au—2(Vp. Vu) > x| Plp(x)]2u? in 2, (1.8)
u>0 in 2.
Choosingp (x) = |x|*/2 we get:
2\ .
{ —Au = Ax| 72, Vu) > x| P Eud i @2, (1.9)
u>0 in .Q
— namely, problem (1.1) withh = 2 and o= g — .=5. We shall prove in the following that nonexistence of local

nonnegative solutions to problem (1.9) occurs for @gny 0; this is at variance from the situation encountered
in [1], whereix = 0 and nonexistence only occurs fore= 8 > 2 (see Theorem 2.3(a), (b) below).

More generally, local nonexistence results are proved in Theorem 2.3 for any value of the payarimeter
the original problem (1.1). Far < 2 nonexistence is only proveddf> 2 (see Theorem 2.3(a), (b)); in this case
nonexistence of local solutions depends on the singularity of the source term as in [1]. On the othephand
nonexistence can be proved also ok 0 (see Theorem 2.3(c)); in this case the coefficient of the source term is
regular in§2, thus the nonexistence result depends on the singularity of the first order term. Let us mention that first
order singular terms also influence existence of solutions of the Dirichlet problem for the equation corresponding
to the inequality in (1.1) (see [16,17]).

It seems now natural to investigate, along with the elliptic problem (1.1), the parabolic problem (1.2). In
particular, we study the parabolic courgart of the elliptic problem (1.9), namely:

2 .

{u,—Au—,\|x|—2(x,vu)> x| Ptizud in 9, (1.10)
u>0 in$2.

In analogy with the situation outlined before for the elliptic case, we prove instantaneous blow-up of local

nonnegative solutions to problem (1.10) for afiy> O (for a suitable class of initial data; see Theorem 2.7(b)

below), at variance from the situation encountered in Agre general instantaneous blow-up results are proved

in Theorem 2.7 for the original problem (1.2).

Let us add some remarks concerning our method of proof. A typical nonexistence result in [1] for problem
(1.3) is about the so-callegery weak solutionghese are defined testing the differential inequality only against
functions with compact support i2 and vanishing in a neighbourhhod of thegin (see the analogous Definition
2.1 below). After proving aemovable singularity resulat the origin, such solutions can be extendedveak
solutions; then by the maximum principle nonexistence follows in any neighbourhhod of the origin. A similar
argument can be used in the parabolic case.

In fact, it is the behaviour of the solution near the isethsingularity, as allowed by the differential inequality
itself, which determines local existence or nonexiste(for semilinear elliptic equins this has been known for
a long time; in particular, see [10]). Instead of proving a removable singularity result, then using the maximum
principle for the extended solutions, we take advantage of the local behaviour of solutions near the origin by a
direct bootstrap argument, which relies on a proper choice of the test functions. This approach — which does no
make use of the maximum principle — allows us to deal not only with problems (1.1)—(1.2), but also with hyperbolic
inequalities (see [19]). Let us mention that the same approach was used elsewhere (e.g., see [14,18]; generalizatio
can be found in [15]).
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2. Mathematical background and results
Solutions to problem (1.1) are meant in the following sense.

Definition 2.1. By asolutionto problem (1.1) inf2 we mean any function H%c(-‘? \{Oh N quoc(.Q \ {O}) such
that:

(i) u >0 almost everywherein §2
(ii) for any test functiory € C3°($2 \ {0}), ¢ > O there holds:

/(Vu,V{)—i—)»/udiV(le“x{) >/|x|*“uq;. (2.1)
2 2 2

Concerning solutions to problem (1.2), we make similarly the following definitions.

Definition 2.2.By asolutionto problem (1.2) inQ := £2 x (0, T] we mean any function € C([0, T1; H;.($2\ {0}
N Libo((2\ {0}) x (0, T)) such that:

(i) u > 0 almost everywherein
(i) for any test functior; e c;?;l((.(z \ {0} x[0,T]),¢ >0,¢(,1) e CF(2\{0}) (t € [0, T]), ¢(-, T) = O there
holds:

//(Vu,V{)+k//udiv(|x|_“x§) 2// |x|_°‘uq§+/u(x,0)§(x,0)+//u§,. (2.2)
0 0 0 2 0

Concerning the elliptic problem (1.1) thellimving nonexistence results will be proved.
Theorem 2.3.Let either of the following assumptions be satisfied

@ u<2a=2;
(b) u=2andeithere >2, A >2—n,0ra =2, 1 >2—n,
€ u>2,a>u+@2—pn)qandir > 0.

Then the only solution to proble(t.1)in any neighbourhooe?; C §2 containing the origin is trivial.

Remark 2.4.1f the equality sign holds in problem (1.1),> 2, > 2 and 1< g < Z_J:g then Corollary 3 in [10]

can be applied to obtain the same result of Theorem 2.3 above. In the same situatier, #nd 1< g < % then
Theorem 3L in [10] can be applied; thus the solution is bounded at the origin and by [20] any possible singularity
at the origin is removable.

Concerning the removability of singularity at the origin of solutions to problem (1.1), the following result will
be proved.

Proposition 2.5.Letu be a solution to probler(iL.1)in some neighbourhoa@; C 2 containing the origin.
(i) Let either assumptiofa) or assumptior{b) of Theoren®.3be satisfied. Then

/|x|*°‘+2*”uq <00, /|x|1*”|v14| < 0, (2.3)

By By
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whereB, :={x e R" | |x| < n}.
(i) Let assumptioric) of Theoren®.3be satisfied. Then

/|x|*°‘+“*"uq < 00, /|x|3*“*”|vu| < o0. (2.4)
B’l B’l

Proposition 2.6.Letu be any solution to probleifi.1)in some neighbourhoa@; C £2 containing the origin. Let
either assumption of Theore2n3 be satisfiedif assumptior(c) holds, assumg < n. Then

() Ix17%u? € Liy(82), |x]7YVul € Lt (), [x|*7#|Vu| € LL (2);

(i) for any test functior € C3°(£2), ¢ > O there holds

/(w, Vo) > A/ [ e, Vu)e +/|x|*“u‘fc. (2.5)
2 2 2

In connection with the above proposition, let us notice Hrdutions to problem (1)ldefined in Definition 2.1

are analogous to the very weak solutions in [1]. In the same spirit, any functénﬂf’oc(ﬂ), u>0a.e.in 2

satisfying the properties (i)—(ii) of Proposition 2.6 candwdined to be a weak solution to problem (1.1) (see [1]).
Concerning the parabolic problem (1.2), the following instantaneous blow-up result will be proved.
Theorem 2.7.Let either assumption of TheoreéyB be satisfied. Moreover, let
lim inf0 [x]7"u(x,0)>0 (2.6)

for somey < 0. Then the only solution to problegh.2)in any cylinder21 x (0, 7], £21 € £2 containing the origin
andz € (0, T), is trivial.

Remark 2.8.With the exception of the cage= 2, Theorem 2.7 still holds if we assume< q%l in (2.6) (see part
(iii) of the proof of Theorem 2.7).

3. Elliptic inequalities: Proofs

The proof of Theorem 2.3 makes use of a proper choice of the test furgcitidnequality (2.1). For this purpose
some preliminary remarks are needed.

Let £21 C £2 be any neighbourhood containing the originc@ < n, n > 2e so small thatd, , :={x e R" | ¢ <
|x] <n} € 21\ {0}. Forr € [¢, n] definego(r) :=r° — n°, wheres < 0 will be fixed later. Define also

¢1(r) :=¢(r/e) (r € [e.n)),
whereg € C*([0, n/¢]) is nondecreasing, such that

[0 ifse@©D),
"“""{1 if s € (2, /).

Finally, set
C(r)=rfor)pi(r) (r €le, nl),

wherep is a real parameter to be chosen later.
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Some relevant properties of the functipmre the content of the following lemma.
Lemma 3.1.(i) There holds
_ _ d d¢
Fo=tm=0  Fez0 “Lm<o
r dr

(i) There exists a sequengg.} € C3° (A, ), & = 0 for anyk, such that;, — zin W()l”’(Ag,n) (p e (1, 00)),
where

) =c(x])  (x € Agp). (3.1)

Proof. Claim (i) follows immediately from the definition of. Concerning (ii), observe that e Co(Aep) N
WhP(A, ), thust e Wol”’(Ag,n) for any p € (1, 00); then the conclusion follows.

Proposition 3.2.Letu be a solution to probler(iL.1)in some neighbourhoaf®1 C §2 containing the origin. Then
for any0 < ¢ < n, n sufficiently small there holds

/|x| U9 (x) < /| |=(=D I/’<|x|)u 3.2)
where
nfldE n—i s
Y =T ) = AT (e lesn)). (3.3)

Proof. Set¢ = ¢ in inequality (2.1), with; as in Lemma 3.1(ii). Letting — oo we obtain

/|x|*°‘u‘15(x)< /(VM,VE)H/udiv(|x|*“xg).

AS»'I AS»'I Aé\ﬂ

Due to Lemma 3.1(ii), we obtain
/ x| 7%ul (x) < — / {AL — adiv(|x|7#x¢) }u.
AS»'I As,n

An elementary calculation shows that
~ ) d
AL —rdiv(x|Txr) = |x|*<"*1>d—””(|x|>;
r
hence the conclusion follows.

Let us observe that the functiah defined in (3.3) reads:

d
¥ =11+ r"_l+p¢0%’ (3.4)

where

d
Y1 =y1(r) == rHZ [rP¢o(r)] — A" Pgo(r)  (r € [e, ).
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The following technical lemma plays an important role in the sequel; its proof is postponed until the end of this
section.

Lemma 3.3.Let either of the following assumptions be satisfied

) u<2,p<2—n,0<0;

(i) u<2,pe@-—n,0,p<4—n—pu,0=—p+2—mn;
(i) u=2,p<2—n<Ar,0<0;

(V) u=2,p=A>2—n,0=—p+2—n,;

V) u>2,p<u—n,2>0,0<0.

Then there existgg > 0 (depending om, A, «, p, o) such that for any; < ng there holds
d
ﬂ >0 in(en). (3.5)
dr

Proposition 3.4.Letu be a solution to probler(iL.1)in some neighbourhoof®1 C 2 containing the origin. Let
either assumption of Lemn&a3be satisfied ang < no. Then for any > 0 sufficiently small there holds

/ Ix|~%u?Z (x) < Ce’ (3.6)
Acy

for some constant > 0, where

9::n—a+p+a+(a—2)i.
q

= (3.7)

Proof. (i) Let u be any solution to problem (1.1) in a neighbourh@@dC 2 containing the origin. Due to the
choicen < ng and to Lemma 3.3, from inequality (3.2) we obtain easily

/|x|*°‘u‘f2(x><—/|x|*<”*1>x(|x|>u, (3.8)
Aen Aen
where
d
x(r): —ﬂl//1+— "”%o%} (r €[e, nl). (3.9)

Using Holder inequality, the right-hand side of inequality (3.8) can be estimated as follows:

1
‘/IXI_(”_l)x(le)u <{ / |x|—“uq<§(x>}q{ f |04 e ()] x(lxl)"} (3.10)
A, As,r]

&1

-Q‘H

whereq’ := . From (3.8) and (3.10) we obtain
/ | utE () < / [ ()] T (e dr (3.11)
Aen

(whereC > 0 only depends on), sincey =0 in (g, 2¢) by definition of¢;.
(ii) Let us now estimate the integral in the right-hand side of inequality (3.11). To this purposesséte
[1, 2]. Itis easily seen that
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C(es) = 16”7 g (s),
X (e5) < coe" P[P (5) + ¢ (5)].
for somec1, c2 > 0 and any € [1, 2]; here use of the equalities

oo ddy P dP¢r, ¢
P1(es) = P(s); W(&V)— : W(b‘s)— o2

has been made. Moreover, choosin@) = O((s — 1)7) with y > max2, Z—j} ass — 1T, there holds:

2 1 2_ 1
/[qs’(s)q}q—l e /[qs"(s)q } T

b(s) ’ o (s)
1 1

It follows that
2¢
- 1 ~

/‘[I’niail{(l’)]imx(l’)ﬁ dl" g C(C/‘H (312)

&

for someC > 0, where

1
el —(m—a—14+p+o0) +1=n—a+p+o+(a—2)L.
qg-—1 qg-—1 qg—1

Then by inequalities (3.11)—(3.12) the conclusion follows.

0:=mn—3+p+o0)

Now we can prove Theorem 2.3.

Proof of Theorem 2.3. Assume that a nontrivial solution to problem (1.1) exists in some neighbou@ggds?
of the origin. The result will follow, if we prove that under the present hypothe@eseither assumption of
Lemma 3.3 is satisfied, thus inequality (3.6) hol@®) from inequality (3.6) a contradiction with the assumption
u # 0 follows.

(i) Let assumption (a) be satisfied with> 2. We claim that in this case the parameters of the test function
¢ can be chosen so that assumption (i) of Lemma 3.3 is satisfied and mofles\&rif so, use of Proposition 3.4
can be made; hence by inequality (3.6) for any no there holds:

/|x|*°‘u‘12(x)= lim f|x|*°‘qu:(x)=o.
e—01
B’I

Aey

Then the conclusion follows.
To prove the above claim, observe that the requiremend reads:
p+a>a—n—(a—2)L
qg—1
(see (3.7)). On the other hand, choosing as in Lemma 3.3(i) gives
p+o<2—n.

The above inequalities are compatible siace 2, thus the claim follows. This completes the proof in the present
case.

(i) Let assumption (a) be satisfied with= 2. In this case choosing the parameters as in Lemma 3.3(i)
would gived < 0; hence a more convenient choice is that of Lemma 3.3(ii), which g@give®. Now inequality
(3.6) reads
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/ x| *uf¢ (x) < C. (3.13)
Asy
On the other hand, from inequalities (3.10) and (3.12) (with 0) we obtain:

'/le(”l)x(IXI)u =’ / x|~y (xu
Ae,r] A£,2£

(recall thaty =0 in (g, 2¢)). .

Now observe that the left-hand side of inequality (3.13) monotonically increases-ad™ (in fact, ¢ (r) =
rP¢o(r)¢(%) is a decreasing function af since¢’ > 0). Then by monotone convergence and inequality (3.13)
there holds:

A / x|~ *uit (x) < C.
Ag,,,

This implies:
lim / x| ~%u9Z (x) = 0;
e—0F
Ag 20

hence from inequality (3.14) the conclusion follows in this case, too.

(i) Let assumption (b) be satisfied. Singe= 2, we can use Lemma 3.3(iii), (iv) in the present case. We choose
the parameters, o of the test functiort as in Lemma 3.3(iii) ifx > 2, or as in Lemma 3.3(iv) if = 2. Arguing
as in (i)—(ii) above the conclusion follows.

(iv) Let assumption (c) be satisfied. In this case use can be made of Lemma 3.3(v). As in part (i) above, requiring
0 > 0 gives the compatibility condition

1
< (’Z‘ql/{ / |x|°‘uq5<x)} (3.14)
AsZs

lim
e—0

/L—n>a—n—(a—2)L,
qg—1

which can be satisfied sinee> 1 + (2 — 1)q; then the conclusion follows. This completes the proof.
The main point in the proof of Theorem 2.3 was showing that the assumptions of Lemma 3.3 concerning the

parameterg, o could be satisfied, so as to make use of inequality (3.6). The same argument gives the proof of
Proposition 2.5.

Proof of Proposition 2.5. (a) Suppose first = 2; in this case the differential inequality in (1.1) can be rewritten
as follows:

—[x| 7 divf|x [*Vau} > [x]"%ud, (3.15)
hence

f x|~ *u?¢ (x) < / x| VuV[|x| 74 (x0)]. (3.16)

Ay Ay

Due to the definition of, it is easily seen that
V[xIT @] < x|t Tl

choosing the parameters as in Lemma 3.3(iii), (iv) gives o < 2 — n, whence the second inequality in (2.3)
follows. The proof of the first one is similar, due to inequality (3.16). This completes the proof of (2.3) when
w=2.
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(b) Suppose now = 2; in this case the differential inequality in (1.1) reads:

—em 7 T div]e i N ) > ol (3.17)
hence

/|x|_aqu:(x)< /62%‘lxl%ﬂVuV[e*z%‘lle?Hg:(x)]. (3.18)

Agy Agy

It is easily seen that

S
V[e 7= M|X| (x)] <e =z Xl maX{|x|p+0—1’ |x|p+a+l—u}.

If u < 2, choosing the parameters as in Lemma 3.3(i), (ii) givéso < 2 — n, whence the second inequality in
(2.3) follows. The proof of the first one is similar, due to inequality (3.18). On the other hand; i the choice

of Lemma 3.3(v) give® + o < u — n, whence the second inequality in (2.4) follows. Again, the first one follows
similarly by inequality (3.18). This completes the proof.

Proof of Proposition 2.6. Claim (i) follows easily from inequalities (2.3)—(2.4) under the present assumptions.
Concerning (i), for any test functione C3°(£2), ¢ > 0 set

Ze(x) —C(X)fb(' l) (¢ >0),

the functiong being as above. Then e CP($2\ {0}, &e =2 0 and¢, — ¢ a.e.in2 ase — 0T. Moreover, by
Definition 2.1 there holds:

/(VM,VCS)+A/udiv(|x|_“x§’8) >/|x|—°‘uq;g. (3.19)
2 2 2
Due to (i), it is immediately seen that

/|x|‘“u‘7§8—>/|x|‘°‘uq§
2 2

/udiv(|x|*“x;€) — /udiv(|x|7"x§)

2 2

ase — 01. On the other hand,

/(w vg)-/(w vc)qb( ) / Lk, V)@ ('x')c.

Since|x|~Y|Vu| € L, (£2) by (i), there holds:

/IXI* (xV)¢>( )‘ /IXI YVu| -0

Ae 2¢

ase — 0T, Lettinge — 0T in inequality (3.19) the conclusion follows.

Let us finally prove Lemma 3.3.
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Proof of Lemma 3.3. Observe first that

% — pn=3+pto 1”0(1)’
dr n

where
Yo(s) = (p+0)(n =24 p +0) = p(n =2+ p)s~*
i —p+p+o)—(n—p+p)s ¥ P (s €[0,1]),

as an elementary calculation shows.
(i) Sincep < 2—n < 0ando < 0, there holds:

(p+to)n—24+p+0)—pn—24+p)s °Z2(+o)n—24+p+0)—pn—2+4p)>0;

in fact, it is easily seen that the functigi(s) := s(n — 2+ s) is strictly increasing in the intervab + o, p]. Since
by assumption 2- 1 > 0, choosing; sufficiently small proves the claim.

(i) Inthiscasen —2+ p+o=0and—p(n —2+p) >0;since 2= u+o=4—n—pu— p >0, the claim
follows as in (i).

(iii) In this case

Vvo(s):=(p+0—-MNn—-24+p+0)—(p—ANm—2+p)s .

A slight change of the argument used in (i) proves the claim.
(iv) In this caseyg = 0 in the intervalO, 1].
(v) Rewriteyrg as follows:

Yo(s) =° ¥ =A[(n =+ p+0) = (n—p+p)s 7]
+[(o+ ) —2+p+0)—pn—2+p)s™ " 2s"72} (s €0, 1]).
Since—(n — u+p) > 0,1 > 0and o <0, there holds:
—Mn—p+p+0)—(n—pn+p)s 7] =rlo] >0.
Sinceu — 2 > 0 we can argue as in (i); hence the conclusion follows.

4. Parabolic inequalities: Proofs

As in the elliptic case, the proof of Theorem 2.7 relies on a proper choice of the test function in inequality (2.2).
This gives the following result, analogous to Proposition 3.2.

Proposition 4.1.Letu be a solution to probler(iL.2)in some cylindet2; x (0, 7] € Q, £21 containing the origin
andt € (0, T). Then for any0 < ¢ < n, n sufficiently small and any € (0, T') there holds

/(T — t)/s dt / |x|_°‘uq(x, t)f(x) < —/(T - f)/S dt / |x|_("_l)—(|x|)u(x, 1)
dr
0 A

Ay 0 e
+ﬂ/(r—t)/f‘—1dt/u(x,t)&(x)—rﬁ/u(x,O)E(x), (4.1)
0 As,n AS»'I

wheres > max1, q—fl} andz andy are the functions defined {§8.1), respectively in(3.3).
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Proof. Lett € (0, T); set

~oo @ =-nf ifre(,1),
¢(t)"{o if 1 € (2, 7),

with B > max1, q—fl}. Let {&} € CS°(A,,) be the approximating sequence in Lemma 3.1(ii); et 1) =
G(x)p@) in inequality (2.2). Lettingk — oo we obtain easily:

/(z—t)ﬁdt / Ix]™%ud (x, ) (x)
0 Aey
g/u-r)%r(/(Vu(x,t),vE)JrA/u(x,t)div(|x|“x;)>
0 As,n AS»'I
+ﬁ/(r—t)/f‘—1dt / u(x, 0t (x) —f / u(x, 0)Z (x).
0 As,n AS»'I

On the other hand, as in the proof of Proposition 3.2 foraay0, ) there holds:

/(Vu(x,t),vE)Jr)\/u(x,t)div(|x|*ﬂxg)
Aen Aen
ind . — 7(1171)611”
<— | uGx,n{A¢ —adiv(jx|*xt)}=— | Ix| ;(|x|)u(x,t).
Agy Agy

Then from the above inequalities the conclusion follows.

Proposition 4.2.Letu be a solution to probler(iL.2)in some cylinder2; x (0, 7] € Q, £21 containing the origin
andrt € (0, T). Let the assumptions of LemiB&8be satisfied ang < no accordingly. Moreover, let

o

p+o>— 1 4.2)

Then for any > 0 sufficiently small and any € (0, T') there holds

. q
/(r —nh dt{ / u(x, t)E(x)}
0

Aey
1

< MTPCye, n){Cl(e, n)q_ilfm +Ca(e,m)t — / u(x, O)E(x)}, (4.3)
for someM = M (8, q) > 0, where

n

q—1
Ci(e, ) = :/rq“l*”lg(r)dr} , (4.4)

&

Cale, ) = / 709 1 22 ()] 7Py (1x)? dx. (4.5)
Agt,,



S.I. Pohozaey, A. Tesei / Ann. |. H. Poincaré — AN 21 (2004) 487-502

Proof. (i) Observe that for anye (0O, 1)

1
/u(x,r>5(x><{ f |x|“uq(x,r)2<x)}q{ / |x|q“12(x>}q
A Agyy]

AE,YI &1

1, 0
:{ / |x|auq(x,t)g‘(x)}q{/rﬂﬁfrnlé_'(r)dr}

Agy &

[

1
Py

Set

() :=/u(x,t)2(x> (t €(0,7));

Acn

then by definition (4.4) the above inequality reads:

v? (1) < Ca(e, ) f x|~ %ud (x, )¢ (x)

Ay

foranyr € (0, 7).
(ii) Due to Lemma 3.3 and the choige< g, for anyt € (0, ) we have:

d
—/|x|*<”*l>%<|x|)u<x,r)<—/|x|*<”*l>x(|x|)u<x,r),
A

&1 As,n

wherey is the function defined in (3.9). Using inequality (3.10) and Young inequality we obtain:

‘ f e~y (xDu(x, 1)

Aey

1 Y . 1
<= /IXI ul (x, )¢ (x)| + —Ca(e, n)
‘]A q
£,

for anyr € (0, ) (see definition (4.5)). Then from the above inequality and (4.1) we get easily:

/(r -0 ar
0

g+1

/ x|~ %u? (x, )¢ (x)

Aep

< Ca(e, n)+ﬂq’/(r—r)ﬁ—ldr/u(m)&(x)—q/r“ / u(x,0¢(x) (1€(0,1)).
0

Agy Agy

Hence by inequality (4.6) and the definitionwthere holds:

B+1

T T
f (r —fvi)dt < Ca(e, n){ Ca(e.n) + Bq' / (r —0f Yoty dt — q'tPv(0) }
0 0
(iif) Due to Young inequality, it is easily seen that:

T

T q, /q/fl
Bq'Ci(e, ) / (r =P u@) dr < 2 / (t —)Pvi(t)dt + Pra)
0 0

B—q'+1

cf (e, mrfr+t
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(4.6)

4.7)

(4.8)

(4.9)
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(here use of the assumptign> q—}l has been made). From the above inequality and inequality (4.9) we obtain:

T ’

1 ThHl 4 (gH"t .

<1— 5) /(T — 0Pl () dr < i 1C1(8, nCa(e, n) + @_Clqﬁci (e, TP~ —¢'Ca(e, n)TPv(0).
0

Then the conclusion follows.

Remark 4.3. Observe that assumption (4.2) of Proposition .Zompatible with the assumptions made in
Lemma 3.3(i), (iv) ife > —2(¢ — 1), or respectively with those of Lemma 3.3(vpif> —u(g — 1).

Now we can prove Theorem 2.7.

Proof of Theorem 2.7. The idea of the proofis the same as for Theorem 2.3, making use of inequality (4.3) instead
of inequality (3.6). Let us suppose that assumption (a) &orem 2.3 is satisfied, the proof being the same in the
remaining cases (b)—(c).

(i) Observe first that, due to assumption (2.6), there éxist0 andn1 > 0 such that for anyx| < n < n1 there
holds:u(x,0) > k|x|”. Hence

o n "
/|x|p+o[1_ <|77’|> i|u(x,0)dx>k/r}’+p+a+nl|:l_ <Q> :|dr.
,
B 0

n

If y < —2, the integral in the right-hand side of the above inequality diverges. On the other hand,-f2 we
obtain:

o
firefie () s e
X
B’l

for somek > 0.
(ii) Let us take the limit of inequality (4.3) as— 0T. To this purpose, observe that for ang [0, 7]:

lim /u(x,t)f(x):/|x|p+a|:l— <l> j|u(x,t)
e—0t |x|
A By,

&n

by monotonicity, due to the choice of the functipn
Concerning the coefficiert1 (¢, n) we have (see definition (4.4)):

n qg-1
Cale.n) < {/rm+ﬂ+a+n—ldr, ’

&

thus by monotonicity

lim Ci(e,n) < Lna+(p+0+n)(q—1)
e—0t

for someL > 0, provided that condition (4.2) is satisfied.
Finally, from the proof of Proposition 3.4 we obtain (see (3.10), (3.12)):

Ca(e,n) = Ca(e, 26) < Cé?

for some constar@ > 0, where
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9::n—a+p+a+(a—2)i.
qg-—1
(iif) Let us first assumer < 2, « > 2. As in part (i) of the proof of Theorem 2.3, in this case we can choose the
parameterg, o so thatd > 0 and condition (4.2) is satisfied (see Remark 4.3). Taking the limit of inequality (4.3)
ase — 07T gives (see (i)—(ii) above):

T . . q
/(r—t)/f‘dt{f|x|ﬂ+"[1— <m> i|u(x,t)dx}
0 B,

< MePp@THPo o g ) (4.10)

for any r € (0,7), if y > —2. In this case the right-hand side of the above inequality is negative for any
T > 1, = To(n) := K~@ Dpe=v@=D: sincer,(n) — 0t asn — 0T, the conclusion follows in this case. On
the other hand, ify < —2 the right-hand side of inequality (4.3) tends-tec ase — 0T, thus a contradiction
follows in this case, too. This proves the result in the ease2.

(iv) Finally, let u < 2, = 2. As in the proof of Lemma 3.3(ii), (iv) we choose the parameters so that
p + o0 +n=2,thush =0 (clearly, condition (4.2) is satisfied by this choice). Taking the limit of inequality (4.3)
ase — 0T now gives:

T . q
/(r—t)/f‘dt{f|x|ﬂ+"[1— <|—'7|> j|u(x,t)dx} <MPlfn,v) - Kn' 2}, (4.11)
X
0 B,
where
2q 1 —
f(n,t):=na1lt 14+ Cr.

g=1

It is easily seen that _the functiofi(n, -) has a unique minimum, = 7,(n) := [(¢ — 1)C]Jq n2in [0, T;
moreover.f (1, t.) = ¢Ct«. Then by inequality (4.11) there holds:

T . g
/(z —nf dt{ / Falad [1— <|7'7|> i|u(x, t)} <M'tPH2C — Kn") (4.12)
0 B,

for someM’ > 0. Sincey < 0 andr,(y) — 0" asy — 0T, the conclusion follows also in this case. This completes
the proof.
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