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Abstract

The abstract minimisation method introduced in a recent work by E. Séré, J.F. Toland and the author [Minimisation
for quasi-linear problems, with an application to periodic water waves, preprint] gives a new proof of the existence of c
gravity solitary water waves on the surface of a two-dimensional ocean of infinite depth. This problem was first stu
Iooss and Kirrmann [Arch. Rational Mech. Anal. 136 (1998) 1–19] in the setting of normal form theory for reversible in
dimensional “spatial” dynamical systems.

Résumé

La méthode de minimisation abstraite introduite dans un travail récent de E. Séré, J.F. Toland et l’auteur, donne une
preuve de l’existence d’ondes solitaires à la surface d’un océaninfiniment profond, sous l’action de la gravité et de tensio
superficielle. Ce problème a été étudié par Iooss et Kirrmann [Arch. Rational Mech. Anal. 136 (1998) 1–19] à l’aid
théorie des formes normales pour les systèmes dynamiques “spatiaux”, réversibles et de dimension infinie.

MSC:76B15; 35B38

Keywords:Capillary-gravity water waves; Solitary waves; Variational methods

Mots-clés :Ondes de surface ; Ondes solitaires ; Méthodes variationnelles

E-mail address:boris.buffoni@epfl.ch (B. Buffoni).
1 Supported by a grant of the Swiss National Science Foundation.

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2003.06.003

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



504 B. Buffoni / Ann. I. H. Poincaré – AN 21 (2004) 503–516

gating

nction

ves
n by

al, so
to

cent

n the

s, model
anifold
s,
d solitary
d.
aim at
to study
roof of
nal
xistence

adding
at the
re then

of his
y in [6]
al
see [4]
in two
h gravity

theory
s. The
1. Introduction

A two-dimensional layer of water of infinite depth is considered, on the surface of which a wave is propa
without changing its form. We work in a frame of reference(x, y) that follows the wave, wherex is the
propagation coordinate andy is the height coordinate. The surface is supposed to be the graph of a fu
y = η(x). Each molecule of water below the surface, i.e. located at some(x, y) with y � η(x), moves with speed
�v(x, y) ∈ R

2 in a constant gravity field(0,−λ) pointing downward (λ > 0). Since we assume that the wave mo
to the right with velocityν > 0, the asymptotic speed in the referential frame that follows the wave is give
limy→−∞ �v(x, y) = (−ν,0). The density of the water is constant, say equal to 1, and the flow is irrotation
that div�v ≡ 0 and rot�v ≡ 0. Moreover�v(x, η(x)) ‖ (1, η′(x)) for all x ∈ R. The free boundary being subjected
surface tension, the following Bernoulli condition holds:

1

2

∣∣�v(
x,η(x)

)∣∣2 + λη(x) − β
η′′(x)

(1+ η′(x)2)3/2 = ν2

2
∀x ∈ R,

whereβ > 0 is the surface-tension intensity and the constantν2/2 on the right has been chosen so that the quies
state

η ≡ 0, �v ≡ (−ν,0)

is a solution (the “trivial” one). We shall first study periodic waves of large periodP and then letP → ∞ to get
solitary waves (that is, lim|x|→∞ η(x) = 0). The energy carried by a periodic wave over a period is given by

1

2

P∫
0

η(x)∫
−∞

{∣∣�v(x, y)
∣∣2 − ν2}dx dy + λ

2

P∫
0

η2(x) dx + β

P∫
0

√
1+ η′(x)2dx,

where we have subtractedν2 so that the first integral is finite (this is related to the choice of the constant o
right-hand side of the Bernoulli condition).

The papers dealing with water waves are innumerable. The main approaches rely on experiment
equations, bifurcation theory (local and global), numerical analysis, the Calculus of Variations, centre m
theory, normal form theory, etc. Also other similar physical settings have been studied: three-dimensional problem
fixed upper surface, finite depth, no surface tension, many liquids and interfaces, etc. Besides periodic an
water waves, generalised solitary water waves (i.e. asymptotic to ripples) and fronts have been considere

Our purpose is to further develop the variational theory of the existence of water waves. We do not
new results on water waves, but rather at giving another viewpoint. Garabedian [7] seems to be the first
gravity (that is,β = 0) periodic water waves as saddle points of the energy and to sketch a variational p
their existence. However Turner [12] observed that his proof was incomplete and described the main functio
and variational features of the problem. Moreover, by a minimisation under constraint, he established the e
of gravity periodic water waves for a stratified fluid with a free upper surface. His method consists in
artificial coercivity, in proving a priori estimates for the solutions of the new problem and in deducing th
solutions of small energy belong to a region unaffected by the artificial coercivity. Solitary water waves a
obtained as limits of periodic waves of large periods. With E. Séré and J.F. Toland [5] we applied some
ideas to Babenko’s formalism for periodic water waves [1,2], but using a mountain-pass principle. It is onl
that we managed to develop an abstract and relatively simple framework for a class of quasi-linear variation
problems of the kind of those arising in the theory of periodic water waves with or without surface tension (
for a generalisation of Babenko’s formulation to the surface-tension setting). The works [12] and [6] differ
respects: the regularisation of the higher order terms and the class of examples they are applied to (althoug
water waves are dealt with in both).

The present proof, wich concerns capillary-gravity solitary waves, relies on the abstract minimisation
in [6], test functions inspired by solutions of model equations, and a limiting procedure to get solitary wave
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main steps are analogous with those in the variational theory of bifurcation from the essential spectrum
[10,11]).

In this way a part of the results of Iooss and Kirrmann [8] obtained by the theory of normal forms is reco
We have not tried to get, like them, two distinct solitary waves, and it is unclear if the solution found variationa
is among those obtained by Iooss and Kirrmann. However it would be interesting to know if multiplicity i
within the reach of the Calculus of Variations.

Finally we mention the work [3] where stability of solitary water waves on an ocean of finite depth is p
variationally.

2. Abstract setting

Let us recall the abstract setting introduced in [6]. Consider a real Hilbert spaceX0 with inner-product〈· , ·〉0
and norm‖ · ‖0, and suppose thatA is a (possibly unbounded) positive-definite self-adjoint operator onX0 such
that its spectrum is included in[1,∞). For k � 1 let Xk denote the domain ofAk/2, which is dense inX0. Then
Xk is a Hilbert space with inner-product and norm defined by〈u,w〉k = 〈Ak/2u,Ak/2w〉0 and‖w‖k = ‖Ak/2w‖0.
Moreover‖w‖k � ‖w‖k+1 for all w ∈ Xk+1.

For R2 > 0, let U ⊂ X2 be the open ball{w ∈ X2: ‖w‖2 < R2} and suppose thatK,L ∈ C1(U ;R). We are
interested in the equation

γK′(w) +L′(w) = 0, w ∈ U \ {0}, γ > 0,

when the following inequalities hold for constantsC1 to C3 > 0 andC4 to C6 � 0:

K(0) = 0 and ∀w ∈ U : K(w) � C1‖w‖2
1, (1a)

∀w ∈ X4 ∩ U : K′(w)Aw � C2‖w‖2
2, (1b)

∀w ∈ U :
∣∣L(w)

∣∣ � C3‖w‖2
1, (1c)

∀w ∈ X4 ∩ U : L′(w)Aw � −C4‖w‖2
1 − C5‖w‖2

2 − C6‖w‖1‖w‖2. (1d)

In Theorem 1 below, it is assumed thatγ0 > 2C5/C2 and therefore it may be convenient to allowC5 = 0. Observe
thatK′(0) = L′(0) = 0 and thatK(0) = L(0) = 0. The next hypothesis is about solutions of a regularised prob
for all γ > 0, ε > 0 andw ∈ U ,

γK′(w) +L′(w) + εA2w = 0 in X∗
2 implies thatw ∈ X4, (1e)

whereA2w denotes the functional inX∗
2 taking the value〈Aw,Au〉0 = 〈u,w〉2 at anyu ∈ X2. Furthermore we

suppose that

if {wn} ⊂ U converges weakly inX2 to w ∈ U, then

lim inf
n→∞ K(wn) � K(w) and lim inf

n→∞ L(wn) � L(w).
(1f)

We also need to distinguish the super-quadratic parts ofK andL:

M(w) :=K(w) − 1

2
K′′(0)(w,w), N (w) := L(w) − 1

2
L′′(0)(w,w),

and we assume that

∀w ∈ U :
∣∣M(w)

∣∣ � C7‖w‖p
1 and

∣∣N (w)
∣∣ � C8‖w‖p

1

for some constantsp > 2, C7 � 0 and C8 � 0 such thatC7C8 > 0.

Theorem 1. Let γ0 > 2C5/C2 be such that there existsu∗ ∈ U with
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se
γ0K(u∗) +L(u∗) < 0 = γ0K(0) +L(0), (2a)

2γ0C2C4 + C2
6

(γ0C2)2 − 2γ0C2C5
C−1

1 K(u∗) <
1

2
R2

2. (2b)

Assume also that there existsC9 > 0 such that

∀u ∈ X2:
γ0

2
K′′(0)(u,u) + 1

2
L′′(0)(u,u) � C9‖u‖2

1. (3)

Then there existsw ∈ U\{0} andγ � γ0 such that

γK′(w) +L′(w) = 0,

γ0K(w) +L(w) � γ0K(u∗) +L(u∗) < 0

and

−γ0M(w) −N (w) > C9

{
C9

γ0C7 + C8

}2/(p−2)

. (4)

Moreoverγ is bounded above by a constant that depends only onC1 to C6, γ0 andR2.

Proof. Note that foru ∈ U ∩ X4

γ0K′(u)Au +L′(u)Au � γ0C2‖u‖2
2 − C4‖u‖2

1 − C5‖u‖2
2 − C6‖u‖1‖u‖2

� 1

2
γ0C2‖u‖2

2 − C4‖u‖2
1 − C5‖u‖2

2 − (2γ0C2)
−1C2

6‖u‖2
1

= {
(1/2)γ0C2 − C5

}‖u‖2
2 −

{
C4 + C2

6

2γ0C2

}
‖u‖2

1

:= ψ
(‖u‖1,‖u‖2

)
.

Moreoverψ(
√
K(u∗)/C1,R2) is bounded from below by a positive number that depends only onC1 to C6, γ0

andR2.
The existence ofw is now a direct consequence of Theorem 1 in [6], the proof of which we briefly recall becau

we need it to show the last assertion on the size ofγ . Let R1,Rmin > 0 be finite numbers such that

K(u∗) < R2
1, ‖u∗‖2 � Rmin < R2, ψ

(
R1√
C1

,Rmin

)
> 0. (5)

These numbers can be chosen so thatR2
1 − K(u∗) depends only onC1 to C6, γ0 andR2. We then consider two

smooth, non-decreasing penalisation functionsρi : [0,R2
i ) → R such that

ρi(s) → ∞ ass ↗ R2
i , i = 1,2,

0� s � K(u∗) ⇒ ρ1(s) = 0, 0 � s � R2
min ⇒ ρ2(s) = 0,

and the functional defined by

J (w) = γ0K(w) +L(w) + ρ2
(‖w‖2

2

) + ρ1
(
K(w)

)
in the domainV := {w ∈ U : K(w) < R2

1}. Observe thatJ is bounded from below onV , with

J (w) → ∞ as‖w‖2 ↗ R2 and J (w) → ∞ asK(w) ↗ R2
1

by the existence of the constantsC1 andC3. From (1f) it follows thatJ has a minimiserw ∈ V that satisfies
K(w) < R2

1, ‖w‖2 < R2 and{
γ0 + ρ′

1

(
K(w)

)}
K′(w) +L′(w) + 2ρ′

2

(‖w‖2
2

)
A2w = 0. (6)
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e

ble
enote

p.
Assume, by contradiction, thatε := 2ρ′
2(‖w‖2

2) > 0. Then, by (1e),w ∈ X4,

0= J ′(w)Aw � ψ
(‖w‖1,‖w‖2

) + ρ′
1

(
K(w)

)
K′(w)Aw + ε‖w‖2

3

and

ψ
(‖w‖1,‖w‖2

)
< 0. (7)

Since‖w‖1 < R1/
√

C1 (which follows fromK(w) < R2
1), we get‖w‖2 < Rmin by (5) and (7), which leads to th

contradictionρ′
2(‖w‖2

2) = 0.
Hence, we have proved thatw ∈ U satisfies

γK′(w) +L′(w) = 0 with γ := γ0 + ρ′
1

(
K(w)

)
,

γ0K(w) +L(w) � J (w) � J (u∗) = γ0K(u∗) +L(u∗) < 0

andw �= 0 by (2a). The inequalities

−C3R
2
2 + ρ1

(
K(w)

)
� L(w) + ρ1

(
K(w)

)
� J (w) < 0

lead to an upper bound onρ1(K(w)) that only depends onC3 andR2. As the functions → ρ1(s +K(u∗)) can be
chosen fors � 0 in a way that depends only onC1 to C6, γ0 andR2, the uniform bound onγ = γ0 + ρ′

1(K(w))

follows.
It remains to prove (4):

C9‖w‖2
1 � γ0

2
K′′(0)(w,w) + 1

2
L′′(0)(w,w) = γ0K(w) +L(w) − γ0M(w) −N (w)

< −γ0M(w) −N (w) � γ0C7‖w‖p

1 + C8‖w‖p

1 ,

‖w‖p−2
1 >

C9

γ0C7 + C8

and (4) follows. �
Remark (see Theorem2 of [6]). If Theorem 1 holds for someR2 > 0, it also holds for any smallerR2 for which
‖u∗‖2 < R2 and (2b) are still satisfied. This leads to the following additional bound on the critical pointw in the
theorem:

‖w‖2
2 � 2 max

{
‖u∗‖2

2,2
2γ0C2C4 + C2

6

(γ0C2)2 − 2γ0C2C5
C−1

1 K(u∗)
}
. (8)

3. Gravity-capillary water waves

For P � 2, let L2
P denote the usual real Banach space ofP -periodic, real-valued, locally square-integra

measurable functions onR and letL∞
P denote the analogous space of essentially bounded functions. We d

by Ck
P (resp.C∞

P ), the space ofP -periodic functionsu which arek-times continuously differentiable (res
infinitely differentiable).

With respect to the orthonormal basis{P−1/2e2πikt/P : k ∈ Z}, let the Fourier coefficients ofu ∈ L2
P be denoted

by ûk for k ∈ Z. Thenû−n = ûn andL2
P is a real Hilbert space with inner product

〈u,v〉 =
∑

ûnv̂n.
n∈Z
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s

ity. Since
The fractional order Sobolev spaceHs
P is the Hilbert space of functionsu ∈ L2

P with norm given by

‖u‖2
s =

∑
k∈Z

(
1+ |2πk/P |2)s |ûk|2 < ∞. (9)

Note that

‖u‖2
1 = ‖u‖2

L2
P

+ ‖u′‖2
L2

P

if u ∈ H 1
P

and

‖u‖2 = ‖u − u′′‖L2
P

if u ∈ H 2
P .

The conjugation operation [13] onL2
P is defined by

(ĈP u)0 = 0 and (̂CP u)k = −i sgn(k)ûk for k ∈ Z \ {0}, whenu ∈ L2
P ; (10)

equivalently,

CP

(
cos(2πnt/P )

) = sin(2πnt/P ), n � 0,

and

CP

(
sin(2πnt/P )

) = −cos(2πnt/P ), n � 1.

ClearlyCP :L2
P → L2

P is a bounded linear operator andu �→ CP u′ is non-negative symmetric in the sense that

0� 〈u,CP v′〉 = 〈CP u′, v〉 for all u,v ∈ C∞
P .

For any functionu ∈ H 1
P ,

max|u| � 1√
P

∑
k∈Z

|ûk| � 1√
P

{∑
k∈Z

(
1+ (2πk/P)2)|ûk|2

}1/2{∑
k∈Z

(
1+ (2πk/P)2)−1

}1/2

� 1√
P

‖u‖1

{
1+ P(2π)−1

∫
R

(
1+ s2)−1

ds

}1/2

= 1√
P

{1+ P/2}1/2‖u‖1 � ‖u‖1 (11)

becauseP � 2.
When surface-tension effects are included, theP -periodic steady water-wave problem can be formulated a

follows [4]: find w such that

ν2

2

{
w′2 + (1+ CP w′)2}−1 + λw − β

(1+ CP w′)w′′ − w′(1+ CP w′)′

{w′2 + (1+ CP w′)2}3/2
= 1

2
ν2

almost everywhere, (12a)

w′2 + (1+ CP w′)2 > 0 onR, w ∈ H 2
P \ {0}, λ,β, ν > 0. (12b)

The wave is then given in parametric form by

t → (
t + (CP w)(t), w(t)

)
or, using the functionη of the introduction, by

x = t + (CP w)(t), η(x) = w(t).

This is a generalisation of Babenko’s formulation in absence of surface tension [1,2]. The parametersλ, β andν2

are dimensionless measures of gravity, the surface tension coefficient and the square of the wave veloc
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scaling,

t

rts of
we can divide (12a) by any one of these, there are effectively only two parameters in the problem. After re
we are even left with only one independent parameter (here the fact that the depth is infinite is crucial).

It is known [4] that (12a) is satisfied by anyw ∈ H 2
P such thatw′2 + (1 + CP w′)2 > 0 and such that, almos

everywhere,

0= −ν2CP w′ + λ
{
w + w CP w′ + CP (ww′)

}
− β

{
w′√

w′2 + (1+ CP w′)2

}′
+ βCP

{
1+ CP w′√

w′2 + (1+ CP w′)2

}′
. (13)

Eq. (13) is the Euler equation of the functional

J (w) =
P∫

0

{
−1

2
ν2w CP w′ + 1

2
λw2(1+ CP w′) + β

√
w′2 + (1+ CP w′)2 − β(1+ CP w′)

}
dt.

For allw, the integral of the last term is−βP and it is included here to ensure that the constant and linear pa
the integrand vanish whenw = 0.

Henceforth we assumeβ = λ by considering̃w(t) := √
λ/β w(

√
β/λ t) instead ofw(t). Moreover letλ = 1

or, equivalently, divide (13) andJ by λ, so thatν2 is replaced byν2/λ (that we still denote byν2). We now apply
the abstract result of Section 1 toJ in such a way that the various constantsp > 2 andC1 to C9 do not depend on
P � 2. To put the functionalJ in the context of Section 2, let

X0 = L2
P , Aw = −w′′ + w, Xk = Hk

P (k � 1). (14)

If R2 � 1/2 then (11) implies that

sup|CP w′| < 1/2 and sup|w′| < 1/2 when‖w‖2
X2

< R2
2. (15)

Forw ∈ U , the ball of radiusR2 centred at the origin inX2, let

KP (w) =
P∫

0

√
w′2 + (1+ CP w′)2 − (1+ CP w′) dt + 1

2

P∫
0

w2(1+ CP w′) dt

=
P∫

0

w′2 dt√
w′2 + (1+ CP w′)2 + (1+ CP w′)

+ 1

2

P∫
0

w2(1+ CP w′) dt,

LP (w) = −1

2

P∫
0

w CP w′ dt.

With ν2 represented from now on byγ −1, we check the hypotheses of Theorem 1. In (1a) the constantC1 can be
chosen, when (15) holds, to equal min{1/4,2/7} = 1/4:

2

7

P∫
0

w′2 dt + 1

4

P∫
0

w2 dt

� KP (w) =
P∫

w′2√
w′2 + (1+ CP w′)2 + (1+ CP w′)

dt + 1

2

P∫
w2(1+ CP w′) dt � 2‖w‖2

1. (16)
0 0



510 B. Buffoni / Ann. I. H. Poincaré – AN 21 (2004) 503–516

ntly
In the same way we can prove the existence of the other constants needed for the abstract theorem, independe
of P � 2. In particular we can takeC4 = C5 = C8 = 0 (note thatNP ≡ 0 becauseLP is quadratic). We thus get

Theorem 2. LetR2 > 0 be small enough,P � 2, γ0 > 1/2 and suppose that there existsuP ∈ H 2
P such that

P∫
0

|uP − u′′
P |2dt < R2

2,

γ0KP (uP ) +LP (uP ) < 0

and

KP (uP ) =
P∫

0

√
u′2

P + (1+ CP u′
P )2 − (1+ CP u′

P ) dt + 1

2

P∫
0

u2
P (1+ CP u′

P ) dt < C1
γ 2

0 C2
2

2C2
6

R2
2.

Then there existswP ∈ H 2
P such that

0<

P∫
0

|wP − w′′
P |2 dt < R2

2, (17)

γ0KP (wP ) +LP (wP ) � γ0KP (uP ) +LP (uP )

and (13)holds with0 < ν2 � γ −1
0 andλ = 1. Hence(12a)is satisfied. Moreover, for someC9 = C9(γ0) > 0,

−γ0MP (wP ) > C9

{
C9

γ0C7 + C8

}2/(p−2)

(18)

andν2 is bounded from below by a positive constant that depends only onC1 to C6, γ0 andR2.

Proof. It remains to verify hypothesis (3) of Theorem 1:

γ0

2
K′′

P (0)(u,u) + 1

2
L′′

P (0)(u,u)

= 1

2

P∫
0

{γ0u
′2 + γ0u

2 − uCpu′}dt

= 1

2

∑
k∈Z

{
γ0k

2|ûk|2 + γ0|ûk|2 − |k||ûk|2
}

= 1

2

∑
k∈Z

|ûk|2
{

1

2γ0
γ0k

2 + 1

2γ0
γ0 − |k|

}
+ 1

2

{
1− 1

2γ0

}∑
k∈Z

|ûk|2
{
γ0k

2 + γ0
}

� 1

2

{
1− 1

2γ0

}∑
k∈Z

|ûk|2
{
γ0k

2 + γ0
}

� C9‖u‖2
1.

Note that, for the critical valueγ0 = 1/2, the minimum of the function

R � k → γ0k
2 − |k| + γ0

is 0 and it is attained atk = (2γ0)
−1 = 1. This explains why cost appears in the test function considered below.�
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4. Periodic solutions of large periods

To apply Theorem 2 for largeP , we need to finduP .
Forv ∈ L2(R), we denote byHv its Hilbert transform:

Ĥv(s) = −i sgn(s)v̂(s),

where

v̂(s) = 1√
2π

∫
R

e−istv(t) dt.

For almost allt ∈ R,

Hv(t) = 1

π

∫
R

v(s)

t − s
ds

where the integral exists in the sense of Cauchy’s principal value (arounds = t) for almost all t . When v ∈
L2(R)∩C1(R), the integral exists in the sense of Cauchy’s principal value for allt . Clearly{Hv(α·)}(t) =Hv(αt)

almost everywhere,H commutes with differentiation inW1,2(R), andH d
dt

is self-adjoint inL2(R) and positive
definite. Moreover, similarly to [9], we get

πHv′(t) =
t+1∫

t−1

v′(s)
t − s

ds +
t−1∫

−∞

v′(s)
t − s

ds +
∞∫

t+1

v′(s)
t − s

ds

=
t+1∫

t−1

v′′(s) ln |t − s|ds −
t−1∫

−∞

v(s)

(t − s)2
ds + v(t − 1) −

∞∫
t+1

v(s)

(t − s)2
ds + v(t + 1)

for all v ∈ W1,2(R) ∩ C2(R) and, as a consequence, for allv ∈ W2,2(R). Therefore there exists a constantC > 0
such that∣∣Hv′(t)

∣∣ � C
{
1+ dist

(
t,supp(v)

)}−3/2‖v‖W2,2(R) (19)

for all v ∈ W2,2(R) with compact support (C being independent of the size of the support). Ifv ∈ W2,2(R)∩L1(R),
this can be improved to lead to∣∣Hv′(t)

∣∣ � C
{
1+ dist

(
t,supp(v)

)}−2
{
‖v‖W2,2(R) +

∫
R

|v|dt

}
. (20)

For allφ ∈ C∞
0 (R), it follows from the definitions ofH andCP that∫

R

e−int/PHφ′(t) dt = √
2π

∣∣∣∣ n

P

∣∣∣∣φ̂
(

n

P

)
=

∫
R

φ(t)

(
CP

d

dt
e−in·/P

)
(t) dt

for all n ∈ Z. By continuity∫
R

wHv′ dt =
∫
R

vCP w′ dt (21)

for all w ∈ H 1
P andv ∈ W2,2(R) such that supp(v) is compact. Forv ∈ W2,2(R) with compact support andP > 0,

we define

vP (t) =
∑

v(t − kP )
k∈Z
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(for P large enough,vP is the periodic extension ofv) and note that the series
∑

k∈Z
Hv′(· − kP ) is absolutely

convergent inL∞
loc(R). By (21),

CP v′
P =

∑
k∈Z

Hv′(· − kP )

in L∞
loc(R) because∫

R

φCP v′
P dt =

∫
R

vPHφ′ dt =
∫
R

∑
k∈Z

v(· − kP )Hφ′ dt =
∫
R

φ
∑
k∈Z

Hv′(· − kP ) dt

for all φ ∈ C∞
0 (R). Therefore

Hv′ = lim
P→∞

∑
k∈Z

Hv′(· − kP ) = lim
P→∞CP v′

P in L∞
loc(R) (22)

(and also supP�2 ‖CP v′
P ‖L∞(R) < ∞). Another consequence of (21) is that ifPn → ∞, v ∈ W1,2(R),

wn ∈ H 1
Pn

, sup
n

‖wn‖L∞
Pn

< ∞, wn → v a.e. inR,

then ∫
R

φCPn
w′

n dt =
∫
R

wnHφ′ dt →
∫
R

vHφ′ dt =
∫
R

φHv′ dt (23)

for all φ ∈ W2,2(R) with compact support.
To check the assumptions of Theorem 2, we first modify them by replacing everywhereCP byH and integration

over(0,P ) by integration overR. We are thus looking foru ∈ W2,2(R) such that∫
R

|u − u′′|2 dt < R2
2, γ0K∞(u) +L∞(u) < 0 and K∞(u) < C1

γ 2
0 C2

2

2C2
6

R2
2, (24)

where

K∞(u) =
∫
R

√
u′2 + (1+Hu′)2 − (1+Hu′) dt + 1

2

∫
R

u2(1+Hu′) dt

=
∫
R

u′2 dt√
u′2 + (1+Hu′)2 + (1+Hu′)

+ 1

2

∫
R

u2(1+Hu′) dt,

L∞(u) = −1

2

∫
R

uHu′ dt.

Since, for|s| < 1,
√

1+ s = 1+ 1

2
s − 1

8
s2 + 1

16
s3 − 5

128
s4 + · · · ,

we get√
u′2 + (1+Hu′)2 − (1+Hu′) = 1

2
u′2 − 1

2
u′2Hu′ − 1

8
u′4 + 1

2
u′2(Hu′)2 + · · · .

We set

u(t) = αφ(αt)cost + α2ψ(αt)cos(2t), (25)

whereφ,ψ ∈ C∞(R) will be chosen later andα > 0 is small. We get
0
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p

u′(t) = −αφ(αt)sint + α2φ′(αt)cost − 2α2ψ(αt)sin(2t) + α3ψ ′(αt)cos(2t)

and, for alln ∈ N,

Hu′(t) = αφ(αt)cost + α2φ′(αt)sint + 2α2ψ(αt)cos(2t) + α3ψ ′(αt)sin(2t) + αnO(1+ t−2),

where O(1+ t−2) depends onn too. Indeed ifψ ≡ 0 (for simplicity), we have{
φ(α·)e±i·}̂

(s) = α−1φ̂

(
s ∓ 1

α

)
,

Ĥu′(s) = |s|
2

{
φ̂

(
s − 1

α

)
+ φ̂

(
s + 1

α

)}

= s

2

{
φ̂

(
s − 1

α

)
− φ̂

(
s + 1

α

)}
+ |s| − s

2
φ̂

(
s − 1

α

)
+ |s| + s

2
φ̂

(
s + 1

α

)
and

Hu′(t) = {
αφ(αt)sint

}′ + α2
√

2π

∫
R

eiαts

{ |s| − s

2
φ̂(s − α−1) + |s| + s

2
φ̂(s + α−1)

}
ds.

Two integrations by parts show that, for alln ∈ N, the second term is of the typeαnO(1 + t−2) because the ma
s → |s| − s vanishes onR+, the maps → |s| + s vanishes onR− and|φ̂(s)| + |φ̂′(s)| + |φ̂′′(s)| decreases at±∞
faster than any|s|−n. Going back to (25), we get, thanks to the fact that

φ̂2, φ̂′2, ψ̂2, φ̂φ′, φ̂ψ, φ̂ψ ′, φ̂′ψ, φ̂3, φ̂2φ′, φ̂2ψ and φ̂4

decrease at±∞ faster than any|s|−n, the following estimates:∫
R

u′2 dt = α

∫
R

φ2(t)sin2(t/α) dt + α3

2

∫
R

φ′2 dt + 2α3
∫
R

ψ2 dt + O(α4)

= α

2

∫
R

φ2(t)
{
1− cos(2t/α)

}
dt + α3

2

∫
R

φ′2 dt + 2α3
∫
R

ψ2 dt + O(α4)

= α

2

∫
R

φ2 dt + α3

2

∫
R

φ′2 dt + 2α3
∫
R

ψ2 dt + O(α4),

∫
R

u2 dt = α

2

∫
R

φ2 dt + α3

2

∫
R

ψ2 dt + O(α4),

∫
R

uHu′ dt = α

2

∫
R

φ2 dt + α3
∫
R

ψ2 dt + O(α4),

∫
R

u′2Hu′ dt = 2α3
∫
R

φ(t)2ψ(t)sin2(t/α)cos(2t/α) dt

+ 4α3
∫
R

φ(t)2ψ(t)sin(t/α)cos(t/α)sin(2t/α) dt + O(α4)

= α3

2

∫
φ2ψ dt + O(α4),
R
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if
∫
R

u2Hu′ dt = 2× 2α3
∫
R

φ(t)2ψ(t)cos2(t/α)cos(2t/α) dt + O(α4) = α3
∫
R

φ2ψ dt + O(α4),

∫
R

u′4 dt = α3
∫
R

φ(t)4 sin4(t/α) dt + O(α4) = 3α3

8

∫
R

φ4dt + O(α4)

and ∫
R

u′2(Hu′)2 dt = α3

8

∫
R

φ4 dt + O(α4).

Settingγ −1
0 = 2− α2 andψ = −Aφ2 for some constantA, we obtain

K∞(u) + γ −1
0 L∞(u) = α{1/4+ 1/4− 1/2}

∫
R

φ2 dt + α3

4

∫
R

φ2 dt + α3{1+ (1/4) − 1
}∫

R

ψ2 dt

+ α3

4

∫
R

φ′2 dt +
(

−1

4
+ 1

2

)
α3

∫
R

φ2ψ dt + α3

16

∫
R

φ4 dt − 3α3

64

∫
R

φ4 dt + o(α3)

= α3
{

1

4

∫
R

φ2 dt + 1

4

∫
R

φ′2 dt

}
+ α3

(
1

4
A2 − 1

4
A + 1

64

)∫
R

φ4 dt + o(α3).

We can now chooseA > 0 such that
1

4
A2 − 1

4
A + 1

64
< 0

and thenφ such thatK∞(u) + γ −1
0 L∞(u) < 0 for smallα > 0. The other conditions in (24) are clearly satisfied

α > 0 is small enough.
For such a smallα > 0 and for large enoughP > 0, we now check the assumptions of Theorem 2 withuP

defined by

uP :=
∑
k∈Z

u(· − kP ).

In fact they follow from

P∫
0

|uP − u′′
P |2dt =

∫
R

|u − u′′|2 dt for largeP > 0,

Hu′ = lim
P→∞CP u′

P in L∞
loc(R)

by (22), supP�2 ‖CP u′
P ‖L∞(R) < 1/2 if α > 0 is small enough,

lim
P→∞KP (uP ) = K∞(u) and lim

P→∞LP (uP ) = L∞(u)

by Lebesgue’s dominated convergence theorem.

Remark. We could have soughtu in a larger class of functions, namely

u(t) = αφ(αt)cost + α2ψ(αt)cos(2t) + α2ξ(αt)

with φ,ψ, ξ ∈ C∞(R) andα > 0 small.
0
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ves.

ort
5. Solitary water waves

Our aim is to findw ∈ W2,2(R) andν > 0 such that

ν2

2

{
w′2 + (1+Hw′)2}−1 + w − (1+Hw′)w′′ − w′(1+Hw′)′

{w′2 + (1+Hw′)2}3/2 = 1

2
ν2 a.e., (26a)

w′2 + (1+Hw′)2 > 0. (26b)

As in the periodic case, (26a) is satisfied by anyw ∈ W2,2(R) such that (26b) holds and, almost everywhere,

0= −ν2Hw′ + w + wHw′ +H(w2/2)′

−
{

w′√
w′2 + (1+Hw′)2

}′
+H

{
1+Hw′√

w′2 + (1+Hw′)2
− 1

}′
. (27)

We follow the method of Turner, explained in [12], consisting in taking the limit of periodic water wa
By (17), there exists a sequencePn → ∞ andw∞ ∈ W2,2(R) such that{νPn} converges to someν∞ ∈ (0, γ

−1/2
0 ]

andwPn ⇀ w∞ weakly inW
2,2
loc (R). Hence, for every bounded intervalI , wPn → w∞, w′

Pn
→ w′∞ andCP w′

Pn
→

Hw′∞ in C(I) asn → ∞ (this follows from (23)).
We now multiply (13) in whichw = wPn andλ = β = 1 by an arbitrary smooth function with compact supp

and take the limitn → ∞, which shows thatw∞ ∈ W2,2(R) satisfies Eq. (27) (thanks to (21)). Moreover∫
R

(−w′′∞ + w∞)2 dt � R2
2.

It remains to discuss how this argument can be modified to yield thatw∞ �≡ 0.
From

MP (wP ) =
P∫

0

w′2
P

(
1√

w′2
P + (1+ CP w′

P )2 + (1+ CP w′
P )

− 1

2

)
dt + 1

2

P∫
0

w2
P CP w′

P dt,

we get

∣∣MP (wP )
∣∣ � K

P∫
0

w′2
P

(|w′
P | + |CP w′

P |)dt + 1

4

{
max

t
|wP (t)|}

P∫
0

{
w2

P + w′2
P

}
dt

�
{
max

t

∣∣w′
P (t)

∣∣ + max
t

∣∣wP (t)
∣∣}(2K + 1/4)

P∫
0

{
w2

P + w′2
P

}
dt

for someK > 0 independent ofP . From (18), we deduce that

inf
P�2

(
max

t

∣∣wP (t)
∣∣ + max

t

∣∣w′
P (t)

∣∣) > 0.

We now set̂wP (t) = wP (t + tP ), wheretP is such that

max
{∣∣wP (tP )

∣∣, ∣∣w′
P (tP )

∣∣} = max
{
max

t

∣∣wP (t)
∣∣,max

t

∣∣w′
P (t)

∣∣}
and replace in the previous argument the family{wP : P � 2} by {ŵP : P � 2}. The correspondingw∞ ∈ W2,2(R)

is then not identically 0 because max{|w∞(0)|, |w′∞(0)|} > 0. Moreover, by (8),

‖w∞‖2
W2,2(R)

� Cα

for some positive constantC. Thus we have proved the following theorem:
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Theorem 3. For all α > 0 small enough, there exists

(να,wα) ⊂ (0,∞) × W2,2(R)

such that

ν2
α � 2− α2 and 0 < ‖wα‖2

W2,2(R)
� Cα

for some positive constantC,

sup
t

∣∣w′
α(t)

∣∣ � 1/2 and sup
t

∣∣Hw′
α(t)

∣∣ � 1/2,

and

ν2
α

2

{
w′2

α + (1+Hw′
α)2}−1 + wα − (1+Hw′

α)w′′
α − w′

α(1+Hw′
α)′

{w′2
α + (1+Hw′

α)2}3/2
= 1

2
ν2
α

almost everywhere. Finally

lim
α→0+ να = √

2

because the linearisation of(27) aroundw = 0 seen as an operator fromW2,2(R) to L2(R) is invertible when
ν2 < 2 and therefore, for such a value ofν, there is a neighbourhood of0 such that(27)has no solution.

References

[1] K.I. Babenko, Some remarks on the theory of surfacewaves of finite amplitude, Soviet Math. Dokl. 35 (1987) 599–603.
[2] K.I. Babenko, On a local existence theorem in the theory of surface waves of finite amplitude, Soviet Math. Dokl. 35 (1987) 647–650
[3] B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation, preprint.
[4] B. Buffoni, E.N. Dancer, J.F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Rational Mech. Anal.

(2000) 207–240.
[5] B. Buffoni, É. Séré, J.F. Toland, Surface water waves as saddle points of the energy, Calculus of Variations and Partial Di

Equations, submitted for publication.
[6] B. Buffoni, É. Séré, J.F. Toland, Minimisation methods for quasi-linear problems, with an application to periodic water waves, preprint.
[7] P.R. Garabedian, Surface waves of finite depth, J. Anal. Math. 14 (1965) 161–169.
[8] G. Iooss, P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth, Existence of solitary wave

Rational Mech. Anal. 136 (1998) 1–19.
[9] B.F. Logan, Hilbert transform of a function having a bounded integral and a bounded derivative, SIAM J. Math. Anal. 14 (1983) 2

[10] C.A. Stuart, Bifurcation into Spectral Gaps, Bull. Belg. Math. Soc. Simon Stevin, 1995.
[11] C.A. Stuart, Bifurcation from the essential spectrum, in: Topological Nonlinear Analysis II (Frascati, 1995), in: Progr. Nonlinea

Differential Equations Appl., vol.27, Birkhäuser, Boston, 1997, pp. 397–443.
[12] R.E.L. Turner, A variational approach to surface solitary waves, J. Differential Equations 55 (1984) 401–438.
[13] A. Zygmund, Trigonometric Series I, II, Cambridge University Press, Cambridge, 1959.


