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Abstract

The abstract minimisation method introduced in a recent work by E. Séré, J.F. Toland and the author [Minimisation methods
for quasi-linear problems, with an application to periodic water waves, preprint] gives a new proof of the existence of capillary-
gravity solitary water waves on the surface of a two-dimensional ocean of infinite depth. This problem was first studied by
looss and Kirrmann [Arch. Rational Mech. Anal. 136 (1998) 1-19] in the setting of normal form theory for reversible infinite-
dimensional “spatial” dynamical systems.
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Résumé

La méthode de minimisation abstraite introduite dans un travail récent de E. Séré, J.F. Toland et I'auteur, donne une nouvelle
preuve de I'existence d'ondes solitaires a la surface d’'un og#ariment profond, sous l'actiode la gravité et de tension
superficielle. Ce probléme a été étudié par looss et Kirrmann [Arch. Rational Mech. Anal. 136 (1998) 1-19] a l'aide de la
théorie des formes normales pour les systemes dynamiques “spatiaux”, réversibles et de dimension infinie.
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1. Introduction

A two-dimensional layer of water of infinite depth is considered, on the surface of which a wave is propagating
without changing its form. We work in a frame of reference y) that follows the wave, where is the
propagation coordinate and is the height coordinate. The surface is supposed to be the graph of a function
y = n(x). Each molecule of water below the surface, i.e. located at geme with y < n(x), moves with speed
(x, y) € R? in a constant gravity field0, —1) pointing downwardX > 0). Since we assume that the wave moves
to the right with velocityv > 0, the asymptotic speed in the referential frame that follows the wave is given by
limy_ _ ¥(x, y) = (—v, 0). The density of the water is constant, say equal to 1, and the flow is irrotational, so
that divo = 0 and rot = 0. Moreoveri(x, n(x)) || (1, n’(x)) for all x € R. The free boundary being subjected to
surface tension, the following Bernoulli condition holds:

1 R 5 77//(.x) _ U2
§|v(x’ n())|"+ rnx) — 'BW =3

whereg > 0 is the surface-tension intensity and the constdy on the right has been chosen so that the quiescent
state

77507 EE(—I),O)

is a solution (the “trivial” one). We shall first study periodic waves of large pefioahd then letP — oo to get
solitary waves (that is, lifa— 17(x) = 0). The energy carried by a periodic wave over a period is given by

Vx e R,

P n(x)

P P

1 ﬁ A

5/ / {|v(x1y)\2—vz}dxdy+§/n2(x)dx+ﬁ/\/1+ 0 (x)2dx,
0 —o© 0 0

where we have subtracted so that the first integral is finite (this is related to the choice of the constant on the
right-hand side of the Bernoulli condition).

The papers dealing with water waves are innumerable. The main approaches rely on experiments, mode
equations, bifurcation theory (local and global), numerical analysis, the Calculus of Variations, centre manifold
theory, normal form theory, etc. Also other similar physical settings have been stintestdimensional problems,
fixed upper surface, finite depth, no surface tension, many liquids and interfaces, etc. Besides periodic and solitan
water waves, generalised solitary water waves (i.e. asymptotic to ripples) and fronts have been considered.

Our purpose is to further develop the variational theory of the existence of water waves. We do not aim at
new results on water waves, but rather at giving another viewpoint. Garabedian [7] seems to be the first to study
gravity (that is,8 = 0) periodic water waves as saddle points of the energy and to sketch a variational proof of
their existence. However Turner [12] observed that h@opwas incomplete and described the main functional
and variational features of the problem. Moreover, by a minimisation under constraint, he established the existenc
of gravity periodic water waves for a stratified fluid with a free upper surface. His method consists in adding
artificial coercivity, in proving a priori estimates for the solutions of the new problem and in deducing that the
solutions of small energy belong to a region unaffected by the artificial coercivity. Solitary water waves are then
obtained as limits of periodic waves of large periods. With E. Séré and J.F. Toland [5] we applied some of his
ideas to Babenko’s formalism for periodic water waves [1,2], but using a mountain-pass principle. It is only in [6]
that we managed to develop an abstract and relativelplsifitamework for a class of quasi-linear variational
problems of the kind of those arising in the theory of periodic water waves with or without surface tension (see [4]
for a generalisation of Babenko’s formulation to the surface-tension setting). The works [12] and [6] differ in two
respects: the regularisation of the higher order terms and the class of examples they are applied to (although gravit
water waves are dealt with in both).

The present proof, wich concerns capillary-gravity solitary waves, relies on the abstract minimisation theory
in [6], test functions inspired by solutions of model equations, and a limiting procedure to get solitary waves. The
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main steps are analogous with those in the variational theory of bifurcation from the essential spectrum (see e.g
[10,11]).

In this way a part of the results of looss and Kirrmann [8] obtained by the theory of normal forms is recovered.
We have not tried to get, like them, two distinct solitarywes, and it is unclear if the solution found variationally
is among those obtained by looss and Kirrmann. However it would be interesting to know if multiplicity is also
within the reach of the Calilus of Variations.

Finally we mention the work [3] where stability of solitary water waves on an ocean of finite depth is proved
variationally.

2. Abstract setting

Let us recall the abstract setting introduced in [6]. Consider a real Hilbert spawéth inner-product-, -)o
and norm|| - ||, and suppose that is a (possibly unbounded) positive-definite self-adjoint operatak@such
that its spectrum is included ifi, co). Fork > 1 let X denote the domain ad*/2, which is dense iXo. Then
Xy is a Hilbert space with inner-product and norm definedibyw)x = (A¥/2u, AK2w)q and|w||x = | A 2w 0.
Moreover|w|x < ||lw|x+1 forall w € Xy41.

For R, > 0, let U C X, be the open baljw € X2: |wll2 < Rz} and suppose that, £ € CL(U; R). We are
interested in the equation

yK'(w)+ L (w)y=0, weU\{0}, y >0,

when the following inequalities hold for constarits to C3 > 0 andC4 to Ce > 0:

KO =0andW e U: K(w)>Cilw|?, (1a)
VweXanU: K (w)Aw > Callw|3, (1b)
VweU: |L(w)|<Calwli, (1c)
Ywe X4sNU: L' (w)Aw > —Callw|} — Cswl3 — Cellwllzl|wl2. (1d)

In Theorem 1 below, it is assumed thgt> 2Cs5/C2 and therefore it may be convenient to allay = 0. Observe
thatX’(0) = £'(0) = 0 and thatC(0) = £(0) = 0. The next hypothesis is about solutions of a regularised problem:
forally > 0,e >0andw e U,

yK'(w) + £ (w) + ¢A%w = 0 in X3 implies thatw € X4, (le)

where A2w denotes the functional i3 taking the valugAw, Au)o = (u, w)2 at anyu € X». Furthermore we
suppose that
if {w,} C U converges weakly iiXs to w € U, then
1f
liminf C(w,) > K(w) and liminfL(w,) > L(w). (10
n—o0

n— oo

We also need to distinguish the super-quadratic parks afid L:
1 1
M(w) :=K(w) — EIC"(O)(w, w), Nw) = L(w) — EE"(O)(w, w),
and we assume that

VweU: |[Mw)|<C7llwl] and|N(w)| < Cgllwlf

for some constantg > 2, C7 > 0 and G > 0 such thatC7Cg > 0.

Theorem 1. Letyg > 2Cs/ C> be such that there exists € U with
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YoKC(us) + L(uy) < 0= pok(0) + L(0), (2a)
200C2Ca+C3 4 1,

Ci K(uy) < =R5. 2b

(0C22 — 2y0CaCs (1 ) = 3K2 (2b)

Assume also that there exigts > 0 such that
1

Vu € Xo: %K"(O)(u, u) + Eﬁ”(o)(u, u) > C9||u||f 3)
Then there exists € U\{0} andy > yp such that

yK'(w) + L' (w) =0,

yoK(w) + L(w) < poK(uy) + L(uy) <0
and

Cco Y72

7} (4)
v0C7 + Cs
Moreovery is bounded above by a constant that depends onlg0to Cg, o and R2.

—yoM(w) — N(w) > Cg{

Proof. Note that foru ¢ U N X4
VoK' () Au + L' (u)Au > yoCallull3 — Callull — Csllull3 — Cellullzllull2

1 _
> EyoCz||u||%—c4||u||%—Csnun%—<2y062> ye M
2 szi 2
= {(1/2)y0C2 — Cs}|u|| —{c4+ }nun
{ /2)y } 2 270C2 1
= (llullz, lull2).

Moreovery (/K (u.)/C1, R2) is bounded from below by a positive number that depends onlgoto Cg, 1o
andRo.

The existence oy is now a direct consequence of Theorem 16]; the proof of which we briefly recall because
we need it to show the last assertion on the sizg.dfet R1, Rmin > 0 be finite numbers such that

R
K(uy) < R]2_7 lsll2 < Rmin < R2, w(\/—é—l, Rmin) > 0. (5)

These numbers can be chosen so ﬂ?%at— K(u,) depends only o1 to Cg, Yo and R2. We then consider two
smooth, non-decreasing penalisation functipg0, Rl?) — R such that

pi(s) > o0 ass S Riz, i=12,
0<s <K@us) = p1(s) =0, 0<s < RZ,= p2(s) =0,
and the functional defined by
J (W) = yoK(w) + L(w) + p2(llwll3) + p1(K(w))
inthe domainV :={w e U: K(w) < Rf}. Observe thay is bounded from below o, with
Jw)— oo as|lwlz2 /Ry and J(w)— oo asK(w) /' R?

by the existence of the constants and C3. From (1f) it follows that7 has a minimiserw € V that satisfies
K(w) < R?, |w|2 < Rz and

{0+ PL(Kw)) }K' () + £ (w) + 2p5(l|w|5) A%w = 0. (6)
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Assume, by contradiction, that= 2p§(||w||§) > 0. Then, by (1e)w € X4,
0=J w)Aw = ¥ (lwl1, [wl2) + p1 (Kw)) K (w)Aw + 8||w||§
and
v (llwllz, [lw]l2) <O. (7)

Since|lwl|1 < R1/+/C1 (which follows fromK(w) < R%), we get||lwl|l2 < Rmin by (5) and (7), which leads to the
contradictiono)(||wl|3) = O.
Hence, we have proved thate U satisfies

yK'(w) + L' (w)=0  withy := yo + p3 (K(w)),

YoK(w) + L(w) < J(w) < T (ux) = yoK(usx) + L(us) <0
andw = 0 by (2a). The inequalities

—C3R5 + p1(Kw)) < L(w) + p1(K(w)) < T (w) <0

lead to an upper bound gn ((w)) that only depends 063 and R3. As the functions — p1(s + K(u,)) can be
chosen fors > 0 in a way that depends only @y to Cg, yo and Rz, the uniform bound ory = yo + o] (K(w))
follows.

It remains to prove (4):

1
Collw||? < %K”(O)(w, w) + EE”(O)(w, w) = yoK(w) + L(w) — yoM(w) — N (w)

< —poM(w) — N (w) < yoCrllwll} + Csllwlf,

Co
v0C7+ Cs
and (4) follows. O

p—2
lwlly = >

Remark (see Theorer of [6]). If Theorem 1 holds for som&; > 0, it also holds for any smalleR, for which
llusll2 < R2 and (2b) are still satisfied. This leads to thédaing additional bound on the critical point in the
theorem:

2y0C2C4 + C3
(Y0C2)?2 — 2)9C2Cs

lwll3 <2 max{ luxll3. 2 cglm(u*)}. (8)

3. Gravity-capillary water waves

For P > 2, let L% denote the usual real Banach spacePaperiodic, real-valued, locally square-integrable
measurable functions dR and letL%’ denote the analogous space of essentially bounded functions. We denote
by C’;, (resp.C%°), the space ofP-periodic functionsu which arek-times continuously differentiable (resp.
infinitely differentiable).

With respect to the orthonormal bag—1/2e27ik!/P: k e 7}, let the Fourier coefficients of € L3, be denoted

by iy fork € Z. Thenii_,, = lin andL% is a real Hilbert space with inner product

(u,v) = Zﬁnﬁn.

nez



508 B. Buffoni / Ann. |. H. Poincaré — AN 21 (2004) 503-516

The fractional order Sobolev spagg) is the Hilbert space of functionse L% with norm given by

Il =" (1+ 27k/ PI?)" ik |? < 00 )
keZ

Note that
2 2 m2 1
lully=llully2 +lull;. ifueHp
P P
and
7 : 2
llullz = llu —u"l 2 if ue Hp.

The conjugation operation [13] ohf, is defined by

(Cpu)o=0 and Cpu)x = —isgnk)iy forkeZ\ {0}, whenu € L3; (10)
equivalently,

Cp(cos2nnt/P)) =sin(2rnt/P), n >0,

and
Cp(sin(2rnt/P)) = —cog2wnt/P), n>1

ClearlyCp :L% — L% is a bounded linear operator and> Cpu’ is non-negative symmetric in the sense that
0< (u,Cpv’)y=(Cpu',v) forallu,veCy.

For any functioru € H3,

1/2 1/2
maxju| < % > il < %{ > o+ (an/mz)muz} {Z(H <2nk/P)2)‘l}

keZ keZ keZ

1/2 1
1+ P(Zn)_lf(l—i-sz)_lds} = {14 P/2}"?|lully < Jlulx (11)

1
< ﬁ”ll”l{ N

becauseP > 2.
When surface-tension effects are included, theeriodic steady water-wavproblem can be formulated as

follows [4]: find w such that

2 AN/, 1 NG
v /2 oy -1 A+ CpwHw” —w' (14 Cpw') 1,
- 1+C Aw — — =

> w2+ @+Cpw)*}) " +rw—B w2t (L1 Cruw)2)32 5V

almost everywhete (12a)

w'? 4+ @1+Cpw)?>0 onR, we H3\ {0}, A, B,v>0. (12b)

The wave is then given in parametric form by
t— (14 Cpw)(1), w(t))

or, using the functiom of the introduction, by
x=t+Cpw)(t), nkx)=w().

This is a generalisation of Babenko’s formulation in absence of surface tension [1,2]. The paramgtenslv2
are dimensionless measures of gravity, the surface tension coefficient and the square of the wave velocity. Sinc
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we can divide (12a) by any one of these, there are effectively only two parameters in the problem. After rescaling,
we are even left with only one independent parameter (here the fact that the depth is infinite is crucial).

It is known [4] that (12a) is satisfied by any e H2 such thatw'? + (1 + Cpw’)? > 0 and such that, almost
everywhere,

0= —v2Cpuw’ + A{w +wCpw’ +Cp(ww’)}
/ / 1+C / /
—,8{ e } +ﬂcp{ pw } (13)
\/w’2+(1+pr’)2 \/w’2+(1+pr’)2
Eq. (13) is the Euler equation of the functional

1 1
J(w) = /{—EvszPw' + Esz(l—i—pr') + BV w2+ (14 Cpw')2 — ﬁ(l+pr’)}dt.

For all w, the integral of the last term isg P and it is included here to ensure that the constant and linear parts of
the integrand vanish when = 0.
Henceforth we assumg = A by considering(¢) := \/A/8 w(s/B/A t) instead ofw(t). Moreover letA = 1
or, equivalently, divide (13) and by A, so thatv? is replaced by?/x (that we still denote by?). We now apply
the abstract result of Section 1 Join such a way that the various constapts 2 andC; to Cg do not depend on
P > 2. To put the functional in the context of Section 2, let

Xo=L%, Aw=-w"+w, Xi=HSsk>1). (14)
If R» <1/2 then (11) implies that

suplCpw'| <1/2 and supw'| <1/2 when|w|§, < R3. (15)
Forw € U, the ball of radiusk, centred at the origin iX, let

P P
1
/Cp(w):/\/w’2+(1+CPw’)2—(1+pr/)dt+E/w2(1+pr/)dt
0 0

" /2d 1 P

= +—/w (1+Cpw')dt,
0/\/w’2+(1+pr’)2+(1+pr') 20

P

1
Lpw) = —E/wCPw’dt.
0

With v2 represented from now on by~ 1, we check the hypotheses of Theorem 1. In (1a) the conétanan be
chosen, when (15) holds, to equal i, 2/7} = 1/4:

2 f 1
?/w’zdt+2/w2dt
0 0
P P
w/2 1 5 , 2
g/cp(w)=/ dt+—/w (1+Cpw')dt < 2wl (16)
Vw2 + 1+ Cpw')2+ (1+Cpw') 2
0 0
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In the same way we can prove the existence of the othetatssneeded for the abstract theorem, independently
of P > 2. In particular we can tak€4 = C5 = Cg = 0 (note that\/p = 0 because p is quadratic). We thus get

Theorem 2. Let R2 > 0 be small enough? > 2, yo > 1/2 and suppose that there existgs HIZ) such that
P
/ lup —u'p|?dt < RS,
0

yoKp(up)+ Lp(up) <0

and
P P
1 2 7’02C§ 2
/cp(up)zf W2+ (1+Cpulp)? — (1+CPu'p)dt+§/up(1+CP”'P)df< G152 Rer
0 0 6
Then there existap € H2 such that
P
0</|wp—w',’3|2dt<R%, a7
0

YoKp(wp) + Lp(wp) < yokp(up) + Lp(up)
and (13) holds with0 < v2 < yo‘l andA = 1. Hence(12a)is satisfied. Moreover, for som@& = Cg(yp) > 0,
Cy 2/(p=2)
yoC7+ Csg }
andv? is bounded from below by a positivertstant that deends only orC1 to Cg, o and R>.

—yoMp(wp) > Cg{ (18)

Proof. It remains to verify hypothesis (3) of Theorem 1:
1
2K O, ) + 5 L3O w, )
1 p
=3 /{you'2 + you? — uCpu'}dt
0

1 " A~ A
=5 Z{Vokzlukl2 + yolik|? — Iklluk|2}

keZ
le— . o1 , 1 1 1 2 2
=35 likl {—Vok +—yo—|k|}+—{1——}2|uk| {yok? + yo
2= 2y0 2y0 2 2w =
Sl PR > likl*{yok® + yo}
~2 2y0
keZ
> Collu .

Note that, for the critical valugg = 1/2, the minimum of the function
R 5k — yok? — [k +yo
is 0 and it is attained &t= (2y0)~* = 1. This explains why casappears in the test function considered below.
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4. Periodic solutions of large periods

To apply Theorem 2 for larg€, we need to find: p.
Forv € L2(R), we denote by+v its Hilbert transform:
Ho(s) = —i Sgns)i(s),

where

1 .
b(s) = — [ e () dt.

e
R

For almost alk € R,
1
Hv(t)z—/ LIC

s t—s
R
where the integral exists in the sense of Cauchy’s principal value (around) for almost allz. Whenv €
L?(R)NCL(R), the integral exists in the sense of Cauchy’s principal value far @llearly {Hv(x-)} (1) = Hv(at)
almost everywhereé® commutes with differentiation ifv12(R), andH% is self-adjoint inL2(R) and positive
definite. Moreover, similarly to [9], we get

t+1 , t—1 , [e'e) ,
nHt/(t):/ vs) ds—i—/ vEs) ds—i—/ vEs) ds

t — r—s r—s

—1 —00 t+1

t+1 t—1 ( ) o0 ( )
" _ _ vis _po | Y8

:/v (s)Injr—s|ds / (t_s)zds+v(t 1) / (t_s)2d5+v(t+1)
t—1 —00 t+1

for all v € W12(R) N C3(R) and, as a consequence, forak W22(R). Therefore there exists a constaht- 0
such that

|H' (1)| < C{1+dist(r, suppv)) )~ 2 lvll 22w (19)

for all v e W22(R) with compact suppori{ being independent of the size of the support). & W%2(R) N L1(R),
this can be improved to lead to

|HY' ()] gc{1+dist(t,supnu))}‘z{nvnwz,z(R)+/|u|dt}. (20)
R

For all¢ € C3°(R), it follows from the definitions of< andCp that

/ e MIPHY (1) dt =21
R

n d .
2 ¢(%) = / ¢(r)(cp5e'"'“’>(t)dr
R

P

for all n € Z. By continuity

/va/dtzvapw/dt (21)
R R

for all w € H} andv € W22(R) such that supf) is compact. Fop € W22(R) with compact support ang > 0,
we define

vp(t) = Zv(t —kP)

keZ
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(for P large enoughyp is the periodic extension af) and note that the seri€s ., Hv'(- — kP) is absolutely
convergentinL = (R). By (21),

loc
Cpvp =Y HV'(-—kP)
keZ
(R) because

in 7 00
In L5

/qscpv’P dt:/vaq)’dt:/Zv(- —kP)HqS’dt:/qSZHv/(- —kP)dt
R R R keZ R keZ
for all ¢ € C3°(R). Therefore
HY = Jim Y HY(—kP)= Plianva} in L (R) (22)
keZ
(and also SUP>» ICpvp Il =(®) < o). Another consequence of (21) is thaifif — oo, v € wi2(R),

wy € Hp,,  supllwplle <oo, w,—v ae.ink,
n n
then

/¢CP,, w), dt:/wanS’dt—>/vH¢’dt=/¢Hv’dt (23)
R R R R

for all $ € W22(R) with compact support.
To check the assumptions of Theorem 2, we first modify them by replacing every@hereH and integration
over (0, P) by integration oveRR. We are thus looking for € W22(R) such that
22

C

/|u—u”|2dt<R§, YoKoo () + Loo(u) <0 and lgo(u)<c1y2°C22R§, (24)

R 6
where

1
/Coo(u)zf\/u/2+(1+7'{u’)2—(1+Hu/)dt+§/u2(1+7'{u')dt
R R
12
dt 1
- " —i——/uz(l—i—Hu’)dt,
S Vu?+ A+ Hu)2+ A+ He) 2
1 /
Eoo(u)z—é uHu' dt.
R
Since, for|s| < 1,
1 1 1 5
VIFs=14 25— 2524 =3~ 44,
H - S T T (N
we get
2 2 / 1 12 1 12941 1 14 1 12 \2
vu'c+ (14 Hu') —(1+Hu)=§u — S Hu — g —l—éu (Hu )+ ---
We set
u(t) = ag(at) cost + ay (ar) cog21), (25)

whereg, ¥ € C3°(R) will be chosen later and > 0 is small. We get
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u'(t) = —ap(at) sint + «®@’ (at) cost — 20y (at) SiN(2r) + oy (ar) cO21)
and, for alln € N,

Hu' (1) = ap(at) COSt + a2’ (at) Sint + 20y (at) cOS2t) + a3y (aut) SiN(2t) + " O(L + 12,
where O(14 t—2) depends on too. Indeed ify = 0 (for simplicity), we have

1
[p(a)eti) (s)-oz%b(”F )

-4 ()
S

o @ ]lsl=s ||+ -1
Hu/(t)={a¢(ar)smr}+°‘—/e'°‘”{—¢(s—a )+ ——(s +a )}ds
V4 2
ZJTR

and

Two integrations by parts show that, for ale N, the second term is of the type& O(1 + t~?) because the map
s — |s| — s vanishes ofiR,, the maps — |s| + s vanishes ofR_ and|¢p(s)| + |¢’(s)| + |¢” (s)| decreases atoo
faster than anys|~". Going back to (25), we get, thanks to the fact that

92 ¢2. Y2 @¢. Gy V. V. ¢3 ¢ ¢Zy and ¢
decrease atoo faster than anys| ™", the following estimates:

3
/u/zdtza/qﬁz(t)sinz(t/a)dt+%/¢'2dt+2a3/1//2dt+0(a4)
R R R R

3
:%/¢2(I){1—Cos(2t/a)}dt+%/¢/2dt+2a3/1//2dt+0(ot4)
R R R

3
=%/¢2dt+%/¢’2dt+2a3/w2dt+0(a4),
R R R

o Ol3
/uzdtz§/¢2dt+7/¢2dt+0(a4),
R R

R

/qu/dt:%/¢2dt+a3/w2dt+0(a4),

R R R

/ u' >Hu' dt = 2a° / &)Y () sin(t /o) cOS2t /o) dit
R R

+4Oé3/¢(t)21ﬁ(t) sin(t /a) coqt /) SiN(2t /) dr + O(a™)

013
=% / 620 di + O,
R
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uPHu' dt = 2 x 2a° / d )2 (1) coL(t o) cOS2t Jor) dt + O(a™) = o / >y di + O(a™),
R

3
Widr = o / d ) *sin(t/a) dt + O = 3% / ¢*dt + O™

%\ %\

and

3
W 2(Hu')2 dt = ‘% / o*di + O

%\

Settingy, ' = 2— o? andy = —A¢? for some constant, we obtain

Koo() + vg *Loo(u) = afl/4+ 1/4— 1/2}/¢ dt + — /¢ dt +o®{1+(1/4) — /wzdt

12 - 3
/qb dt+< + ) /¢wdt+16/¢dt 64/¢dt+0(oz)
{ /¢ dr+ - /¢’2dt} ( A2—}A+ )/q) dt + o(e).

We can now choosa > 0 such that

12 1,1
SA2_ZA4+ =<0
A T e

and thenp such thattC (1) + yo’lﬁoo (u) < 0 for smalle > 0. The other conditions in (24) are clearly satisfied if
a > 0 is small enough.

For such a smallk > 0 and for large enougl? > 0, we now check the assumptions of Theorem 2 with
defined by

up:=y u(-—kP).

keZ
In fact they follow from

/|up—uj£,|2dt=/|u—u”|2dt for largeP > 0,

Hu'= lim Cpu’p in Lig(R)

P—o0
by (22), sup >, [ICpu'p || o) < 1/2 if @ > O is small enough,
Iim Kpup)=Ke(u) and Iim Lp(up) = Loo(ut)
P—o0 P—o0

by Lebesgue’s dominated convergence theorem.
Remark. We could have soughitin a larger class of functions, namely

u(t) = ag(ar) cost + oy (ar) cog2r) + o’ (at)
with ¢, ¥, & € C°(R) anda > 0 small.
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5. Solitary water waves

Our aim is to findw € W22(R) andv > 0 such that

2 AN/, / N/
v /2 oy —1 A+ Hw)Hw” —w' A+ Hw') 1,
— 1 — i
5 (w2 + A+ HH T +w 0P AT w2 i
w2+ (14 Hw)?> 0. (26b)
As in the periodic case, (26a) is satisfied by ang W22(R) such that (26b) holds and, almost everywhere,

0= —v?Huw' +w+ wHw' +Hw?/2)
/ / 1 2 /
—{ v } +H{ 7w —1}. 27)
\/w’z—i-(l—i—Hw’)2 \/uﬂz—i-(l—i—’}-lw/)2
We follow the method of Turner, explained in [12], consisting in taking the limit of periodic water waves.

By (17), there exists a sequengg — oo andws, € W22(R) such thafvp,} converges to somey, € (O, yo’l/z]

andw p, — wo, weakly in W22(R). Hence, for every bounded intervalw p, — woo, wp, —> We, andCpwp —
Hw/, in C(I) asn — oo (this follows from (23)).

We now multiply (13) in whichw = wp, andi = 8 =1 by an arbitrary smooth function with compact support
and take the limitz — oo, which shows thatv,, € W22(R) satisfies Eq. (27) (thanks to (21)). Moreover

a.e, (26a)

/(—wgo + weo)?dt < RS.
R

It remains to discuss how this argument can be modified to yielduthas 0.

From
’ 1 1 1 ’
MP(wP)z'/w/PZ( —E)dt+§/w%pr})dt,
b N\ W+ A Cpwp)2+ (4 Cpu)) 5
we get

P big
1
|Mp(wp)| <K/w}2(|w})|+|pr}|)dt+Z{mtax|wp(t)|}/{w129+w}2}dt
0 0

P
< {mtaﬁw}(t)\ +mta>4wp(t)|}(21< +1/4)/{w% +wi?}de
0

for somekK > 0 independent oP. From (18), we deduce that

inf (maxw (0] + maxu 1)]) > 0.

We now setiwp (1) = wp(t +tp), Wheretp is such that

max{|wp (tp)|, |[wpp)|} = max{mta>4wp(t) ,mta>4w/P(t)|}

3

and replace in the previous argument the farfily>: P > 2} by {p: P > 2}. The correspondings, € W22(R)
is then not identically 0 because nff..(0)|, |w,,(0)|} > 0. Moreover, by (8),

2
” Woo ” WZ’Z(R) g CO{

for some positive constaiit. Thus we have proved the following theorem:
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Theorem 3. For all @ > 0 small enough, there exists
(V- War) C (0,00) x W22(R)
such that
2 2 2
v <2—a° and O< ”w“”WZvZ(R) < Ca
for some positive constant,
sugw, ()| <1/2 and sugHw, ()| <1/2,
t 13
and

1+ Hw))w — w1+ Hw,)
(w2 + (1+ Hw,,)?}3/2

N |QCM

_ 1
{w&2+(1+Hw&)2} 1+wa = Evs

almost everywhere. Finally

lim vy, =+/2

a—0t

because the linearisation dR7) aroundw = 0 seen as an operator fro22(R) to L2(R) is invertible when
12 < 2 and therefore, for such a value of there is a neighbourhood 6fsuch thai(27) has no solution.
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