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Abstract

This paper is devoted to the uniqueness of the coefficients L (R3), andy € L (R3, R3) for the nonlinear Helmholtz
equations—Av(x) — kzv(x) =0x)v(x)F(Jv(x)]) and—Av(x) — kzv(x) = (p(xX)v(x) + i (x).Vox))|Vox)|" |Jv(x)|S. For
small values of., a solutionw is uniquely constructed by adding a small outgoing perturbation to the planexvavie! -4
where|d| = 1 and > 0. We can writev = v(x, A, d) = Ae**4 1+ 45 (x/|x|, d, 1)e'k*l /x| + O(1/|x|?) for large|x|. For a
fixedk > 0, we would like to prove that, ¢ and divyy can be uniquely reconstructed from the behaviourigfx/|x|, d, A) as
A — 0. We prove the uniqueness in this paper.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

L'objet de ce papier est d’étudier I'unicité des coefficients € L>°(R3), ety € L (R3, R3) pour les Equations de Helm-
holtz non linéaires- Av(x) —kzv(x) =0x)v(x)F(Jv(x)|) et—Av(x) —kzv(x) = (e(xX)v(x) +iy (x).Vo(x)| V)| [v(x)|5.
Quand est assez petit, on construit de maniére unique une solutorajoutant a I'onde incidente plane> re'**-4 (|d| = 1,

2 > 0) une perturbatiok-sortante. On peut ainsi écrive= v(x, &, d) = e'**4 4 u5_(x/|x|,d, 1)e'k*1 /x| +0O(1/]x|?) quand
|x| = 4o00. Considérons qué > 0 est fixé. Le probléme abordé dans ce papier est de montret, quet divys peuvent étre
construits de maniére unigque a partir du comportement asymptotigug @€' |x|, 4, 1) quandi — 0. Nous démontrons |'uni-
cité pour ce probleme inverse, et développerons quelques aspects concernant la reconstruction.
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Introduction

Let (8, ¢, ¥) € L(R3) x L®(R3) x L®(R3, R%), and assume the supports of these functions, 8uppppy
and supp) are included in a fixed Euclidean ball = B(0, Rg) c R3. We consider an odd functiof : C — C
such thatF (z) = z|z|?(1+«(|z])), wherep > 0 ande is a complex valued function that satisfies C*([0, +o0[)
(in fact, it suffices to assume thate C1(]0, +ool), lim;_ge(r) =0 and lim_ot?+1e'(r) = 0).

We consider the nonlinear Helmholtz equation®th

—Av—k2v=0F(v) @
and
—Av — K2 = (pv + i V)| Vol o], @

wherer € {0} U[1, 2], s € {0} U[1, +oo[ andr + s > 0. _
Theses two equations are satisfied by the spatial pafttime-harmonic solutionsy(x, 1) = v(x)e'*’, with
circular frequency > 0, of the respective equations

2

%Tl;(x,t) — Aw(x, 1) =0(x)F (w(x,1), -
2
aa%(x, 1 — Aw(x,t) = (‘P(x)w(x, H+iv(x).Vw(x, I))}Vw(x, f)}r|w(x, DI, @

with (x,7) € R® x R.

Egs. (1) and (2) can be viewed as linear homogeneous Helmholtz equatidty perturbed with a localized
nonlinear term. Hence, by analogy with exterior problems and the Helmholtz equation perturbed by a short-range
potential, we search solutiomsin the form

v(x,d, ) =1t fy(x,d,r), rA>0,deS?

where u satisfies the so-called Sommerfetdoutgoing condition. Consequently, will have the following
asymptotic development

iklx|
u(x,d, A):e <uoo<i,d, A)—i—O(i)) as|x| +— oo. (5)
[x] [x] |x]

We callu, the scattering amplitude af, by analogy with the linear Helmholtz equation. For the linear case, one
only considers. = 1; in this case, the scattering amplitude is often denmtgtk/|x|, d, k), where the dependency
in k appears. This notation should not be confused with that introduced below.

Let us briefly describe the organization of this paper.

In Section 1, we study the two folldng equations (cf. Proposition 2)

—Au —k%u=0F (u+ re'*4) (6)

and
—Aw — k2w = (p(w + 1™ ) + iy . V(w + 1e*)) |V (w + 1e* )| Jw + re*r4)S. (7)

Section 2 is devoted to the behaviouncdndw asi — 0.

In Section 3, we showd (respectivelyy and divyy) is uniquely determined from the knowledge of
lim; ouso (X, d, 1)/APT1 (respectively lim_.o weo (£, d, 1) /A" T511) (see Lemma 3), fotx, d) lying in a subset
of §2 x 52 (Theorems 1 and 2). H (respectivelyy, v/) is assumed to be a radial function, we can improve the
latter result. Note that we only consider a fixed- 0, except in Section 3.2.3 in which we consides> co
for an approximated reconstruction. We finally providgeneralisation of these last results for the equation
—Au(x) — K2u(x) = u(x) Y20 an () lu(x)[", with 42 llay || 1" < +oo, for somer > 0.
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This inverse problem is analogous with those concerning the linear Helmholtz equation with a short-range
potential (see [5]) and the wave equation outside a smooth obstacle (see [1]); the potential and the obstacle ca
be uniquely recovered from the scattering amplitude albincident directions and a countable set of incident
directions respectivelysge the above references).

A similar inverse problem associated with the following nonlinear Schrédinger equation

Lou »

lat Au=0ulu|?, (8)
has been investigated by several authors via the Scattering Operator that can be defined for a small initial datun
(see [6] and [7]). Eq. (1) is satisfied by the spatial part of the time-harmonic solutions of Eq. (8), with circular
frequencyk? > 0. An explicit reconstruction of is given in [6] (and [7] for a more general situation) from the
nonlinear Scattering Operator. Here we cheotmsuse instead the scattering amplitudg defined in (5).

In fact, contrary to the Scattering Operator associated with the linear Schrédinger equation, the nonlinear
Scattering Operator does not seem to be directly connected to the scattering amplitdeéned in (5).

Many authors have also considered inverse problems associated with nonlinear elliptic equations different from
the nonlinear Helmholtz equation (see [3,4]). In [4] (and [3] for the two-dimensional case), the authors show the
unigueness for the reconstruction of the nonlinear part of the operatof a(., u) acting on a smooth bounded
domain from the knowledge of the Dirichlet-to-Neumann map.

Notations

Forx, y € R3, x.y will denote the usual scalar product that defines the Euclidean pgrm./x.x onR3. This
notation will be extended to complex vectarsy e C3, but is not be confused with the Hermitian product@h

Form e R3 and O< r </, B(m, r) is the Euclidean ball centeredsatand of radius-; its boundary is denoted
S(m,r)=09B(m,r)andC(m,r,r'") = {x e R3, r < |x —m| < r’'}. For the sake of simplicity, we s8¢ = S(0, 1).
More generally, iftH, || ||) is a Hilbert space and for€ H, r > 0, we denoteBy (u, r) the Hilbertian ball centered
atu and of radiug-.

For any subselV c R3, xw denotes the characteristic functionif

We defineC® (R3) as the set of smooth test functions BA with a bounded support. Ford p < +occ and
neZ, LP = LP(R% and W"? = W"P(R®) denote the usual Sobolev spaces. We defiffe! = w7 (R3)
to be the set of measurable functiansuch thatpu € W"-? for all ¢ € CS"(R:"). We denoteH” = W2 and

Hl.= Wli’cp. Foru e C§°(R3), F(u) is the Fourier transform af defined by

Fu)(E) = / =554 (x) dx.
R3

For any distribution: = (u1, u2, u3), we define the divergence operator, that isudiv Z?zl g%

We will use the spaceB and its associated dua* that are defined in [2] (Chapter 14.1) and satisfy

C®(R3) C B C L3(R®) C B* C L2 (R?) with bounded imbeddings. We recall the norms

. , \12
llull B =Z(2’_l/|u(x)| dx) ,
izl j

whereC; = C(0,2/=2,2/71)if j >2and G = B(0, 1), and

1 ) 1/2
llull B = SUp(E / |u(x)| dx) :
R>1

{Ix|<R}
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The subspac&*® = {u € B*, iMg_ 100 & Jixi<r lu(x)|2dx = 0} is closed inB*. In a similar manner, for € N,
we denoteB, the set of functiona € H; such that all the successive derivativé®y, of u for || < n, belong to
B*. Its norm is naturally defined.

1. Mathematical framework and the direct problem
1.1. Some well known results

1.1.1. The scattering amplitude
Letk > 0.

Definition 1. Letu € Hléc. The functionu is said to satisfy the Sommerfetdoutgoing condition if(g—,“l —iku) €
B*9, wheren = x/|x|. Such a function will be called ak-outgoing function.

A solution, sayu, to Helmholtz equation
—Au(x) —k2u(x)=0, for|x|>R
for someR > 0, that satisfies the Sommerfélebutgoing condition admits an asymptotic expansion of the form

iklx|
ulx)= e—(uoo(i) +O<i>> as|x| +— oo.
x| x| x|

The functionu is analytic ons? and is the so-called scattering amplitudeoNote thatu., = 0 implies that
u(x) =0 for|x| > R (see the Rellich Lemma, [1], p. 32).

1.1.2. Limiting absorption principle
We remind the reader of a well known limiting absorption principle that will be useful to us.

Proposition 1. Let us consider the operaterA : H2(R3) — L2(R3) and, forz € C\[0, +o0], its resolvent map
R(z):L2R% 3u+> (—A —z2)1u. Then
(i) The resolvent map can be extendedfer]0, +oo[ to a bounded operatoR* (z) : B — B* such that

Vk >0, Vf, g€ B, im (R [.8)ge p=(RTUK)[.8) g p-

z—k2,Imz>0

(i) Moreover, forz € C\{0} with Imz > 0, R™ (z) is a continuous operator fror8 into B3.
(iii) If £ € B andk > 0, the functioru = R (k?) f is the uniquek-outgoing solution of
—Au—k’u= f
(iv) Let be f € B andk, R > 0. If suppf € B(0, R), the functionR* (k2)(f), that can be viewed as &
outgoing solution to the homogeneous Helmholtz equation ouBgidleRr), admits the scattering amplitude given
by the following expansion
iklx|

e X 1
4n|x|f<f)<"m> +O(W)'

For a proof, see [2] (Theorem 14.3.2, pp. 238) for (i), &iid (iii). Points (iii) and (iv) are direct consequences
of the following well known relation

RT3 f(x)=

e

iklx—y|
F)dy.
lx — yl

RY () f(x) = 4i /
TT
R3
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Point (iii) can also be deduced from Theorem 14.3.4 in [2].
Point (iv) is also a consequence of the following

FHE) e
— et d
(112 — k?) :
FE) = F(Hkx/Ix]) ey (kx)/ 1 i£.x
= e dE+F(f)l — ———e'5 M dE.
/ (€12 = k?) : ! x| €12 — k2 :
The first integral is small for large values jof| by standard stationary phase argument and the second is exactly

the fundamental solutio#i**! /(47| x|) of the Helmholtz operator. We deduce point (iv), and the advantage of this
argument is that it can be generalized to more general operators.

RT3 f(x)=

1.2. The direct problem

We are interested here in solving (6) and (7). First, note that far € Hlf)c(R?’), the two sides of (6) and (7)
are well defined, as square-integrable functions.

We aim at obtaining functions, w € Hlf)c that solve (6) and (7), and also satisfy the Sommerfetditgoing
condition. Note that, from Proposition 1(iii), Eqgs. (6) and (7) are strictly equivalent to

u=RYK?[OF (u + re*)] 9)
and
W= R+(k2)[((w 2 g 4 iy Y (w +)Leikx.d))‘v(w _i_)Leikx.d)‘r'w _i_)Leikx.d's]' (10)
Thus, the solutions andw must belong ta3;. The following result will enable us to uniquely defin@ndw.
Proposition 2.Let M > 0, fixed, and assume a prioft || < M (respectively|¢ |, |V llco < M). Then
(i) 3 > 0 such that(6) (respectively(7)) possesses a unique solutiore Hl(z)c (respectivelyw € Hlf)c) that

satisfiesj|u||35 < o (respectivelyw|| = < @), provided thats < «.
(i) Moreover, with the above conditions and notations, we have the following estimates

lull gy < ClION0AP T, (11)
lwls; < C(llelloo + 1¥lloo) A T, (12)

where( is a constant that does not dependdry, ¥, A andd € S2.

Proof. We make use of the Banach contraction theorem. We set
&:Bj — B3,
ur> RY(K?)(OF (u + re*))
and
v :B) — B},
w> RY KD ((pw + 1e™) + iy V(w + 2™ D) [V (w + 1™ )| |w + 2e'**4%).

The proof involves the two following lemma artwill always denote a positive constant that does not depend on
60,9, ¥, »andd € S2.
We have

Lemma 1 (stability). There is a constant’ > 0 such that®[Bp;(0,a")] C Bp;(0,«') and ¥[Bp;(0,a")] C
Bps (0, o’) provided thatx < o'.
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Proof. We first consider Eq. (6). Let’ > 0 (that will be fixed later) and assunaec 335(0, a’). For technical
reasons, we will assume that the real numidgs less than 1. Then, via Proposition 1(ii)

@@ (13)

ikx.d

gy < CllOlloo| Fu+ 2™ D ).

From the assumptions made énthe boundedness &f, and the continuous imbedding
H?(U) — %),

(CO(U) is the set of continuous functions @f) there exists” > 0 (that does not depend arandd sincea’ < 1)
such that

|t 2™ D] oy < Culg ™ + 277,
From (13) we thus obtain

|ea]

1
53 < Collflloo (Ilull ;™ +27%1). (14)

We now check that the right-hand side member of (14) is smallerdhin:’ = (ﬁ)l/l’.

For Eq. (7), the proof is similar (use the continuous imbeddifdgU) c L8(U) for Vi and note that < 2). In
particular it yields

[ )] g < Colllglloo + 19 lloo) (Il +27+41). o (15)

Lemma 2 (contraction)There is a constani” > 0 such that® and¥ are %-contractions onBp; (0, o) provided
thatA <a”.

Proof. Letu,v € Bp;(0,a") andi < «”, wherea” is supposed to be less thah and will be fixed later. We set
A(x) = u(x) + e*4 §(x) = v(x) + ¢**4 and we have

| = @@ 5 < CllOlIoc| F@) = FO)| 21, (16)

and

@ @) — ¥ @)

By S Cllgllool|@lal Val" — 5[o]* VD" ||L2(U)
+ CllY lloo | Vala* Vil — Voo |V | L2y 17)
(a) Eq. (6). From the assumptions madefoande, we can viewF as a differentiable map frof? ~ C into

itself, and lim, o DF(z) =0, whereDF is the R2-differential of F. Assumey > 0. Provided that” is small
enough, we have from the hypothesis't7)| = o(1/:7*1)”,

sup |DF(@)| <n
lz|<(A+Dea”

where

— |IDF(2)| is the Euclidean norm ab F(z), viewed as a linear operator froR? into itself.
— A is the norm of the continuous map

Bs — C%0),

W= oU.
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Hence, forx € U, we havei(x)], [3(x)| < (A + 1)a”, so
|F(ii(x)) — F(3(x))| < nfux) —vx)];

hence
| F i) = F(5)) | 20, < Crllu = vl 5,

andC only depends oiRg.
From (16), we can deduce

[E4OR

B3 < CMnllu — vl w)-

Chooseg = ZCM, chooseax” according tag, and the lemma is proven.
(b) Eq. (7). Here we have to use another method sincés not necessarily a bounded function.
We have the following inequalities

Vx,yeC, VvVt > 1,

Il = Iyl < Cle =yl (T 1y, [xlxl” = yIyl'] < Clx =yl (1x [ + 1y
and similar inequalities hold far, y € C3. We deduce, for, s # 0 (if » = 0 ors = 0, the proof still holds with
obvious modifications) the two following points.

() On the one hand,
HﬂIﬂISIVﬁIr - 1~)IﬁISIVﬁIrH L2y S Cllu = vlleo, v (il y + 19115, )IIVﬁIIrLzr(U)
+CIIBI IV — wnLem(HlWl’ Hozw) + VI 3

Note that

Jivir-

" s < IVl

wWﬂWMU)

and the above equality turns into

|t 1val™ — o151 Vol | Loy < Cllu = vloo,u (lills,y + 1315, U)HWHFLZ,(U)

+ CIBIEE Y 1V — Vol o, (1 Vil sy, + V3]

LSU) LG(U))

(2) On the other hand, we have

|Valal |Val" = Volsl IVl | Loy, < Cllill, I Vu — Vv||Le(U>(||W||’Ls,(U) + ||W||13,(U))
+CIVIIE i e = vloe,w (11T + D15 T)-

We conclude from (17) and the following Sobolev imbeddings (notertkaR)
HYcL' <8,
H2c L™
that
| @) -

< C(lglloo + 1 lloc) lu = vllgs (N l5" + 151155") < ACM @)™ lu —vllgg.  (18)
We conclude from (18) thak is a%—contraction as soon ag’ is chosen small enough.O

Going back to the proof of Proposition 2, we see that (ai$ a direct consequence of the two above lemmas,
and the Banach contraction theorem. We only prove (11) (the proofis similar for (12), using (15)).
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We write (14) foru € Bp;(0, ") and note that from the choice of we have||u||’;;1 < ﬁ”u”B;. We

conclude tha1|cb(u)||35 < %||u||35 + Cor?*1|6] ». Since the solution provided in (i) is a fixed point &f we
obtain (11) which completes the proofmO

2. Behaviour ofu(x,d, A) for A — 0

Along the next sections), ¢ and are supposed to satisfy an a priori estimgbd .., ¢l oo, |V lloo < M.
Hence, thanks to PropositioniZ(. , d, ») andw(., d, A) can be defined without ambiguity as solutions of (6) and
(7) for small values of..

Here, we show thait(x, d, ) = A» L (v(x, d) + eo(x, d, 1)) andw(x, d, ») = XV T (w(x, d) + eo(x, d, 1)),
wheresg(x, d, 1) converges to 0 uniformly fad € S2 and bounded, if 2 — 0 andv can easily be deduced from
0, (respectivelyy andy).

Lemma 3. The following convergences hold B3

couCd A o ik
iy = = R EDE
and
w(.,d, ) L2 o
lim = = R (O[K (¢ — kdyye™ ],

Proof. (1) Eq. (6). From (9), we have

ux,d,r,0) . 5 U ikxd \|% | ikxd

p(1+8(|u+keikx'd|)):| (19)

and we use (11) to prove that the term between square brackétim (19) converges t@ (x)e’**? if » — 0,
uniformly in (x, d) € U x S2. Hence, by Proposition 1(ii), the lemma holds.
(2) Eq. (7). We divide both sides of (10) by ™**1 and the termw—lﬁl[ ] converges inL2(U) to

k" (¢ — kd.y)e’*? (use (12)). Hence the proof follows as in the case of Eq. (6).

3. The inverse problem

This last section is devoted to the inverse problem announced in the Introduction. We state the uniqueness. Wi
point out the case for which, ¢ andyr are spherical functions, and show that the hypothesis on the scattering data
we need for Theorem 1 are optimal for the general case. Forlarge give an explicite way of reconstruction for
6. Questions of stability are also raised.

3.1. Main result

First, note that foi sufficiently smallu(x, d, A, 0) andw(x, d, A, (¢, ¥)), solutions to (6) and (7), exist and are
k-outgoing solutions to the homogeneous Helmholtz equation outsidence these functions admit a scattering
amplitude, denoted, (x, d, A, 0) andw (x, d, 1, (@, ¥)) (see Section 1.1.1).
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3.1.1. Zero-order perturbation
Here we are concerned with the Eg. (6).

Theorem 1.Supposé;, 62 € L>, withsuppd; C U and||6;]| ,, < M for j = 1, 2. For small values of, we denote
u(x,d, A, 0) the solution of(6) andu(x, d, A, 0) its scattering amplitude.
(i) Let Z c $2 a non-finite countable subset, such that

X _ 2.d. 0.0 _ ¢ d X0
Vdez. Vies? lim "= D _ iy Y@ 2)
A—0 Ap+1 r—0 Apt+l

Thendy = 6s.

(if) Moreover, assume thai, 6, are radial functiongi.e.,f; (x) = 9;‘(|x|) forx e R, j =1, 2), and letdy € §2
andy :[0, 1] — S2 a continuous path such that the functior> y (¢).do does not remain constant. If the following
relation holds

L Uoo(Y (1), do, A 01) . Uso(Y (1), do, A, B2)
vielo 1y, x“Lno Ap+1 _)!ILnO AP+l

3

thend; = 6o.

Proof.
(i) Let d € 2, and A € (0, +00) small enough. Fop = 61, 6>, note that from(19) and Proposition 1(iv),
Uoo(X,d, 1, 0)/2P11is given by the Fourier transform of

G(M(X’fi’k’e) +eikx.d>

p

u(x,d,r,0) 4 oikxd (1+g(|u(x,d,k,9)+)»eikx'd|))

A

calculated akx. Moreover the following family of functions

u(x, fi A, 0) +eikx.d)

p

u(x,d,r,0) + e (Lt e(luCe.d, 1, 6) + A1)

A

x|—>9(x)<

converges irL2(R3), uniformly ind € $2 asx — 0 and, as its support remains includedinits Fourier transform
and all its derivatives converge uniformly on any bounded subsg8oThus, by Proposition(lv) and Lemma 3,
we conclude that
L Ueo(X,d, N, 0) 1
lim ——————~ = —
A—0 aptl 4
Going back to the proof of (i), we see that, with the above remarks, the Fourier transférm 6f — 6, is an
analytic functiong, onR® that cancels ofk (X — d); % € $2, d € Z} = U, S(—kd, k). We now prove thag is
Zero.
Consider a sequencel,) C Z such thatd, — ds, and Vn € N, d, # ds. We can suppose that =
liM - o0 (29 exists ins2.
Let us choosé € S? such that.x # 0 and define

FOe™ ) (kz) = %f(@)(k()% —d)). (20)

fR—C,
t > g(kx — kdyo + 18).
We havef () = 0 for everyr € R that satisfies
IneN, |t64kX+k(dy —doo)| =k,
sincekx — kdoo + 18 € S(—kdy, k).
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We would like to show that the subdete R 3n € N, |16 +kx +k(d, —d~)| = k} is non-finite. Hence, consider
the following smooth application

F:R x SZ—>R,
(t,0) > |18+ k& + k(e — doo)|* — K2,

Since F (0, do) = 0 and i) |, — 253 £ 0, the Implicit Functions Theorem ensures that, for sufficiently
large values ofi € N, there is a sequendg,) — 0 such thatF (z,, d,) = 0. A straightforward calculation shows
that

F(0,dy) = k?|dy — doo|(2%.8 +0(1)) asn — oo.

We deduce thaf'(0, d,) # 0 for sufficiently large values of, hencer, £ 0. Since we haveyn € N, f(¢,) =0,
we conclude thay cancels on a bounded non-finite subseRoff is analytic, we deduce that is zero. Hence,
g vanishes on the non-empty open suligs®\ {5} — ds,) + RS, sincex is arbitrary in the two open half-sphere
$2\{8}+. Theng is identically zero, and = 0.

(i) As in (i), we obtain thatg, the Fourier transform af = 01 — 6, vanishes ok (y (t) — do), t € [0, 1]}. We
denotem, = minse(o,1)ldo — ¥ ()| andM,, = maxc(o,1) |[do — v (¢)| and we haven, < M,, from the hypothesis
of the theorem. Sincg is a radial function, ang’ is a continuous path, it is easily seen tizgatancels on
C(0, km,,, kM, ). The functiong is analytic orR3, hencey is identically zero, thu; =6,. O

Remark. An alternative proof of Theorem 1(i) that uses a geometrical approach has been suggested to us. Here i
a sketch of this proof.

Let us start from (20). Note that tangential derivatives of all orderg wénish onS(—kd«, k). All spheres
S(—kd,, k) pass through 0 and are not tangential ther§(ekd~,, k) and to each other, because theare not
colinear. Choose a sequeneg) C S(—kdwo, k), en, # 0, such thate,,) — 0. LetL,, be the lingle,, +1d, t € R}.

Then everyL,, intersects all sphere—kd,,, k) for largen, andg is 0 at the points of intersection. So, from Rolle
Theorem, for every ordgr € N, the directional derivative qf of orderp alongL,, vanishes at a poir},, , € L.
The direction ofZ,, is d, that is transversal t8(—kd, k) at 0, andY,, , — 0 whenm — oco.

Hence, sincely is transversal t&(—kdo, k) at 0, all derivatives of of all orders vanish at 0. By analyticity,

g=0.

3.1.2. First-order perturbation
We extend Theorem 1 to Eq. (7) with stronger hypothesis.

Theorem 2. Supposep, g2 € L®(R3, R), ¥, ¥2 € L¥(R3, R3) with suppy;, suppy; C U and fig; ...
[Vjllo <M forj=1,2.
For small values of., we denotev(x, d, 1, §) the solution of(7) andus (x, d, 1, 0) its scattering amplitude.
(i) Assume that

. 2 o WX, d A (91, Y1) L Woeo(R,d, A, (92, Y2))
vrdes, ,\“Lno Arts+l _;{ILno Arts+l ’

then (g1, divyrr) = (p2, div ), in the sense of distributions.

(if) Moreover, assume th&p;, ;) are radial functiongi.e.,¢; (x) = goj.‘(|x|) andy;(x) = w;‘(lx|)%, x #£0)
and letdp € $2 andy : [0, 1] — 2 a continuous path such that the functior> y (1).do does not remain constant.
If the following relation holds

woo(V(t): d07 )"1 ((01: wl)) _ I|m woo(J/(t)» dO: )"7 ((p21 1”2))
Ar+s+1 ) Arts+l

Vit €[0,1], lim
r—0

’

then(pz, ¥1) = (p2, ¥2).
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Remark. Concerning (i), the proof will show that diy; = div ¢, is the most one can obtain, unlggsandyr, are
supposed to be potential vector fields; more precisely, supposé&lihal, are distributions such that; = VII;
onR3 for j =1,2. Then, we can conclude in (i) thet, = v». Note that under the assumptions in point (i) of the
theoremyr; andyr2 are potential vector fields, therefore it is not surprising that one obtains uniquengssiiod
not only for divy.

Proof of Theorem 2.
(i) Like for (20), we have

A—0 krarts+l " 4m

Vi, d e 2, (F@) (k& — ) —kF @) (kX — d)).d). (21)
Now, we would like to sety = k(x — d) in the above equation. Consequently, we define,yferR3 such that
0 < |yl < 2k, the subse€, = {d € % | d.y = — 4 |y|?}.

Note thatC, is the 1-dimensional sphere contained in a plane orthogong| tentered at—% and of radius

V1—1yl2/4k2.
From (21) applied fop = @1 — @2 andyr = 1 — Y2, we obtain
VdeCy, Flp)(y)—kF@)(y).d=0 (22)

(note thatd € C, implies thaty = k(X — d) for a convenient choice of 52).
For y € B(0, 2k)\{0}, we deduce from (22) that the angle betweE®/)(y) andd € C, is constant and

consequentlyF(v)(y) = %ﬁ for y € B(0, 2k)\{0}. This last equality remains valid for € R3\{0}
(analyticity).
From (22), the definition of , and the colinearity of- (y)(y) andy we deduce
1
Vy € B(0,20\{0}, F(p)(y)+ Ey.f(t/f)(y) =0.

Thanks to an argument of analyticity, we actually obtain
1
Yy R F@)0) + 5y FW)() =0. (23)

Note that the left-hand side of (23) is the Fourier transforra efié divy. We conclude by extracting the real and
imaginary parts of this last equation.
(i) We have

Vi €[0,1],  F(p)(k(y () —do)) — kF () (k(y (1) — do)).do=0. (24)
A straightforward calculation shows the§ e R3\{0}, F(y)(€) = r(é)% wheret (¢) is a radial function

+00

/ (W10 — 3 (0)[r1€] codt|]) — sin(z|€])] dr.
0

From (24), we have

r@)—‘“—”
EE

(v(®) = do).do _

Vi €[0,1],  F(e)(k(y (1) —do)) — kr (kly (1) — dol ) O = dbol

Sincey ().do = 1 — |y (t) — do|? we finally obtain

k
vt €[0,1], F(p)(k(y () —do)) + Er(kyy(r) —dol)|y () — do| =0.
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Now, use the same arguments as those used for Theorem 1(ii)g watilaced by the radial function

|x|
x> Fp)(x) + 7r(|x|),

to conclude that
vy e R3, fwxw+¢§ﬂw0=a

Note that the left-hand side of the above equality is the Fourier transf0r¢n+)f§ divy,. One concludes, by
extracting the real and imaginary part of this last equation,ghai0 and divy = 0.
It yields thaty] (x) = ¥ (x) + ﬁ for some constan€ andx # 0. The functions/;" andv; are bounded,

which implies thalC =0, hencey; =v5. O
3.2. Zero-order perturbation: some remarks

3.2.1. Scattering data

Concerning the point (i) of Theorem 1 the hypothess is a countable set” is optimal. More exactly, if
di,...,dy € S?, there exists a functiofl # 0 such that lim_ouco(X,d;, »,0)/AP 1 =0for j=1,...,N. In
order to construct such a functiénconsider: € C2°(U) such thal[]_[ﬁ’:l(A + 2ikd,.V)]u # 0 on U (choose an
ad hoc polynomial function and use a cut-off function) and%et[]_[f;’:l(A + 2ikd,,.V)]u; its Fourier transform
vanishes ot JY_; S(—kdy, k). It follows that

. Moo(isdjs)"ve) L uoo(xAvdjv)‘fs 0)
1@0 AP+l - ,\“Lno ap+l
whereas # 0.
3.2.2. Stability

In this section, we show that the inverse problem for which we have proven uniqueness in Theorem 1 is not
stable with respect to the scattering data, for any order of regularity.
In fact, the knowledge of
Uoo(X,d, 1, 01) Uoo(X,d, 1, 02)

— lim
AP+l A—0 AP+l

(G, d) — lim
r—0

for %, d € §2 is equivalent to the knowledge of the Fourier transforrt oh B(0, 2k). This will be detailed in the
Section 3.2.3. For each p € N, one cannot however find any constéht, such that

Vo € CZWU), N0 u-r < Cup | FO || 50,200 (25)

If such a constant exists, then consider any distributtoe H 7~ such that® ¢ H~?, with supp® C U.

Choose a sequence@;); C CSO(INJ) that converges iti ~?~1 to @, wherelU is a bounded open set containibig

We deduce that the sequenCE(®;)); converges inH" (B(0, 2k)) sinceU is bounded (note thal?”*(R3) and

H*"(R®) are isomorphic by the Fourier transform), hence from (25), we could concludé®hatconverges in
H~?, thatis® € H~?, which is a contradiction with the choice &f.

3.2.3. Approximate reconstruction fer
Here, we assume that limous (%, d, 1, 0)/2P11 is known for all values of(%, d) € §2 x S2. Theorem 1
only yields uniqueness fo#, but does not provide a reconstruction. Note that to reconsfruone needs to
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know its Fourier transform omB(0, 2k). However, Section 3.2.2 shows that there is no hope for stability in this
reconstruction. More precisely, we have
. Moo(i, d7 )"1 9) A
)ILILnO = F©O) (k& —d))

and the applicationt, d) — k(X —d) mapsS? x S2 onto B(0, 2k). Thus, for large the knowledge of the scattering
data lim_ouco(%,d, A, 0)/AP*1 is nearly equivalent to the knowledge éfvia the inverse Fourier transform,
which will be shown by the next proposition.

In practice, one has to agree upon a quartdity O that measures and control the lack of precision of the
measurements; one can consigler y as soon agx — y| < €. The following proposition shows that, for large
and smallks, 6 can be reconstructed approximately from the scattering data.

Proposition 3. Let # € L®(R3) with supp c B(0,Ro) C R® and [|f],, < M. We define the function
w:B(0,2k) — C by w(y) = lim)_ous(x,d, x,0)/2AP*1 and w is defined without ambiguity if = k(x —
d), ,d € $%. Lete > 0, ¢ €11, %[ and suppose the a priori estimat@| 11 < M’ holds. Let bev, €
L*®(B(0, 2k)) such thatv,(y) — w(y, 0)| < & Vy € B(0, 2k).

Then, there exist€ > 0 that only depends o, M’, U andq (and does not depend @nk, ¢), such that the
following estimate holds

1\2 "
_ ikx.y
H@(y) <2 ) / e v (x)dx

|x|<2k

1 _3
<c< ek’ q). (26)
L) ka2

Proof (sketch. Note that there exist€ that only depends o/’ such that|F(6)(x)| < %‘x‘ Thus, for

y € B(0, 2k), we havgv (y) — F(0)(y)| < ¢ and for|x| > 2k, we havgv. (y) — F () (y)| < %le if v, is extended
by 0 outsideB(0, 2k).

Now, use the boundedness of the Inverse Fourier transform extended.fionto L4 to complete the proof
with straightforward calculations.o

Note that the real numberhas been introduced to obtain the time-harmonic solutions to (3); we can choose
arbitrary large values of that yields high-frequency solutions. In practice, it would be convenient to consider
k ~ 1, sincek = kmin= %;—L minimizes the right-hand side 026). Then Proposition 3 implies that

9( _ i 3 ikx.y
y) = e Yu(x)dx

|x|<2k

3
3_»
< Ceq

L)

fork ~1/e.

In practice, one has to use an incident wave with a wavelenght of the same ordehasmeasures out the
uncertainty of the measurement.

Note that fore = 0O (i.e, v, is exactly the scattering datum, that is there is no uncertainty), formula (26) shows
thaté can be exactly reconstructed by lettihg> +o0.

3.2.4. Generalisation

In this paragraph, a nonlinear Helmholtz equation with a more general form than (1) is studied. We consider
a sequenceés,), C L®(R3), with suppz, C U, such that the serie :[;"i llan |l L p™ converges for somg > 0.
Then, we define the following function:

+00
S:(x,2)—~ Zan(x)lzl'l (27)

n=1
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that is defined for € R® and for each complex numbersuch thafz| < p. We are interested in generalizing the
results proven in the last two sections for the equation

—Av—kzvzvS(x,|v|) (28)

with k > 0.
Ford e 52 and small values of > 0, we search for solutionsto (28) of the form

vix,d, ) =re*™ 4 L yx,d,n), A>0,deS?,

whereu satisfies the outgoing Sommerfeld condition. The inverse problem we propose is the identification of the
function S from the knowledge of the behaviour of the scattering ampliiudéx, d, 1) asi — 0. We have to note

that Eq. (1) is a particular case of (28)eif= 0 andp € N. Using methods similar to those used for Eqg. (1), we
obtain

Theorem 3.(i) There is a constant > 0 such that Eq(28) admits a unique solution B (0, @) provided that
A<
(if) Moreover, there is a countable family, (., d)),>2 C B; such that, for any: > 2, we have

lim =0 (29)
A—0t A

where the limit is taken in the spad.
(iii) Let us consider two functiorfy and S, such that

+00
S1:(x,2) > Y an(@)ll” (30)
n=1
and
+00
S2:(x,2) > Y ba(x)lz]" (31)
n=1

and the solution® and v of (28) with S respectively replaced by, and S, defined for small values of via
the part(i). We define the coefficients of the development @i the solutions: and v, that is, respectively, the
families {u;};>» and {v;};>> that are k-outgoing solutions to the homogeneous Helmholtz equation outside
Now, suppose that there is a non-finite countable subsets? such that for eaclt € S?2 andd € Z, the equalities
of the scattering amplitudes; o (X, d) = v; o (%, d) hold for every integey > 2. ThenSy = S>.

This theorem can be proven using methods similar to those used in the last sections.
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