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Abstract

This paper is devoted to the uniqueness of the coefficientsθ,ϕ ∈ L∞(R3), andψ ∈ L∞(R3,R3) for the nonlinear Helmholtz
equations−�v(x) − k2v(x) = θ(x)v(x)F(|v(x)|) and−�v(x) − k2v(x) = (ϕ(x)v(x) + iψ(x).∇v(x))|∇v(x)|r |v(x)|s . For
small values ofλ, a solutionv is uniquely constructed by adding a small outgoing perturbation to the plane wavex → λeikx.d ,
where|d| = 1 andλ � 0. We can writev = v(x,λ, d) = λeikx.d + us∞(x/|x|, d,λ)eik|x|/|x| + O(1/|x|2) for large|x|. For a
fixedk > 0, we would like to prove thatθ , ϕ and divψ can be uniquely reconstructed from the behaviour ofus∞(x/|x|, d,λ) as
λ → 0. We prove the uniqueness in this paper.

Résumé

L’objet de ce papier est d’étudier l’unicité des coefficientsθ,ϕ ∈ L∞(R3), etψ ∈ L∞(R3,R3) pour les Équations de Helm
holtz non linéaires−�v(x)−k2v(x) = θ(x)v(x)F(|v(x)|) et−�v(x)−k2v(x) = (ϕ(x)v(x)+ iψ(x).∇v(x))|∇v(x)|r |v(x)|s .
Quandλ est assez petit, on construit de manière unique une solutionv en ajoutant à l’onde incidente planex → λeikx.d (|d| = 1,
λ � 0) une perturbationk-sortante. On peut ainsi écrirev = v(x,λ, d) = λeikx.d +us∞(x/|x|, d,λ)eik|x|/|x|+O(1/|x|2) quand
|x| → +∞. Considérons quek > 0 est fixé. Le problème abordé dans ce papier est de montrer queθ , ϕ et divψ peuvent être
construits de manière unique à partir du comportement asymptotique deus∞(x/|x|, d,λ) quandλ → 0. Nous démontrons l’uni
cité pour ce problème inverse, et développerons quelques aspects concernant la reconstruction.
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Introduction

Let (θ,ϕ,ψ) ∈ L∞(R3) × L∞(R3) × L∞(R3,R3), and assume the supports of these functions, suppθ , suppϕ
and suppψ are included in a fixed Euclidean ballU = B(0,R0) ⊂ R3. We consider an odd functionF :C → C

such thatF(z) = z|z|p(1+ ε(|z|)), wherep > 0 andε is a complex valued function that satisfiesε ∈ C1([0,+∞[)
(in fact, it suffices to assume thatε ∈ C1(]0,+∞[), limt→0 ε(t) = 0 and limt→0 tp+1ε′(t) = 0).

We consider the nonlinear Helmholtz equations inR
3

−�v − k2v = θF (v) (1)

and

−�v − k2v = (ϕv + iψ.∇v)|∇v|r |v|s, (2)

wherer ∈ {0} ∪ [1,2], s ∈ {0} ∪ [1,+∞[ andr + s > 0.
Theses two equations are satisfied by the spatial partv of time-harmonic solutionsw(x, t) = v(x)eikt , with

circular frequencyk > 0, of the respective equations

∂2w

∂t2
(x, t) − �w(x, t) = θ(x)F

(
w(x, t)

)
, (3)

∂2w

∂t2
(x, t) − �w(x, t) = (

ϕ(x)w(x, t) + iψ(x).∇w(x, t)
)∣∣∇w(x, t)

∣∣r ∣∣w(x, t)
∣∣s, (4)

with (x, t) ∈ R
3 × R.

Eqs. (1) and (2) can be viewed as linear homogeneous Helmholtz equation onR3, perturbed with a localize
nonlinear term. Hence, by analogy with exterior problems and the Helmholtz equation perturbed by a sho
potential, we search solutionsv in the form

v(x, d,λ) = λeikx.d + u(x, d,λ), λ � 0, d ∈ S2,

where u satisfies the so-called Sommerfeldk-outgoing condition. Consequently,u will have the following
asymptotic development

u(x, d,λ) = eik|x|

|x|
(

u∞
(

x

|x| , d, λ

)
+ O

(
1

|x|
))

as|x| �→ ∞. (5)

We callu∞ the scattering amplitude ofu, by analogy with the linear Helmholtz equation. For the linear case,
only considersλ = 1; in this case, the scattering amplitude is often denotedu∞(x/|x|, d, k), where the dependenc
in k appears. This notation should not be confused with that introduced below.

Let us briefly describe the organization of this paper.
In Section 1, we study the two following equations (cf. Proposition 2)

−�u − k2u = θF (u + λeikx.d) (6)

and

−�w − k2w = (
ϕ(w + λeikx.d) + iψ.∇(w + λeikx.d)

)∣∣∇(w + λeikx.d)
∣∣r |w + λeikx.d |s . (7)

Section 2 is devoted to the behaviour ofu andw asλ → 0.
In Section 3, we showθ (respectivelyϕ and divψ) is uniquely determined from the knowledge

limλ→0 u∞(x̂, d, λ)/λp+1 (respectively limλ→0 w∞(x̂, d, λ)/λr+s+1) (see Lemma 3), for(x̂, d) lying in a subset
of S2 × S2 (Theorems 1 and 2). Ifθ (respectivelyϕ, ψ) is assumed to be a radial function, we can improve
latter result. Note that we only consider a fixedk > 0, except in Section 3.2.3 in which we considerk → ∞
for an approximated reconstruction. We finally provide ageneralisation of these last results for the equa
−�u(x) − k2u(x) = u(x)

∑+∞
an(x)|u(x)|n, with

∑+∞ ‖an‖L∞ tn < +∞, for somet > 0.
n=1 n=1
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This inverse problem is analogous with those concerning the linear Helmholtz equation with a shor
potential (see [5]) and the wave equation outside a smooth obstacle (see [1]); the potential and the obs
be uniquely recovered from the scattering amplitude, forall incident directions and a countable set of incid
directions respectively (see the above references).

A similar inverse problem associated with the following nonlinear Schrödinger equation

i
∂u

∂t
− �u = θu|u|p, (8)

has been investigated by several authors via the Scattering Operator that can be defined for a small init
(see [6] and [7]). Eq. (1) is satisfied by the spatial part of the time-harmonic solutions of Eq. (8), with c
frequencyk2 > 0. An explicit reconstruction ofθ is given in [6] (and [7] for a more general situation) from t
nonlinear Scattering Operator. Here we choose to use instead the scattering amplitudeu∞ defined in (5).

In fact, contrary to the Scattering Operator associated with the linear Schrödinger equation, the n
Scattering Operator does not seem to be directly connected to the scattering amplitudeu∞ defined in (5).

Many authors have also considered inverse problems associated with nonlinear elliptic equations differ
the nonlinear Helmholtz equation (see [3,4]). In [4] (and [3] for the two-dimensional case), the authors sh
uniqueness for the reconstruction of the nonlinear part of the operator−� + a(. , u) acting on a smooth bounde
domain from the knowledge of the Dirichlet-to-Neumann map.

Notations

Forx, y ∈ R3, x.y will denote the usual scalar product that defines the Euclidean norm|x| = √
x.x onR3. This

notation will be extended to complex vectorsx, y ∈ C3, but is not be confused with the Hermitian product onC3.
Form ∈ R3 and 0< r < r ′, B(m, r) is the Euclidean ball centered atm and of radiusr; its boundary is denote

S(m, r) = ∂B(m, r) andC(m, r, r ′) = {x ∈ R3, r < |x − m| < r ′}. For the sake of simplicity, we setS2 = S(0,1).
More generally, if(H,‖‖) is a Hilbert space and foru ∈ H, r > 0, we denoteBH(u, r) the Hilbertian ball centere
atu and of radiusr.

For any subsetW ⊂ R3, χW denotes the characteristic function ofW .
We defineC∞

c (R3) as the set of smooth test functions onR3 with a bounded support. For 1� p � +∞ and
n ∈ Z, Lp = Lp(R3) and Wn,p = Wn,p(R3) denote the usual Sobolev spaces. We defineW

n,p

loc = W
n,p

loc (R3)

to be the set of measurable functionsu such thatϕu ∈ Wn,p for all ϕ ∈ C∞
c (R3). We denoteHn = Wn,2 and

Hn
loc = W

2,p

loc . Foru ∈ C∞
c (R3), F(u) is the Fourier transform ofu defined by

F(u)(ξ) =
∫
R3

e−ix.ξu(x) dx.

For any distributionu = (u1, u2, u3), we define the divergence operator, that is divu = ∑3
j=1

∂uj

∂xj
.

We will use the spaceB and its associated dualB∗ that are defined in [2] (Chapter 14.1) and sati
C∞

c (R3) ⊂ B ⊂ L2(R3) ⊂ B∗ ⊂ L2
loc(R

3) with bounded imbeddings. We recall the norms

‖u‖B =
∑
j�1

(
2j−1

∫
Cj

∣∣u(x)
∣∣2 dx

)1/2

,

whereCj = C(0,2j−2,2j−1) if j � 2 and C1 = B(0,1), and

‖u‖B∗ = sup
R>1

(
1

R

∫ ∣∣u(x)
∣∣2 dx

)1/2

.

{|x|<R}
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The subspaceB∗0 = {u ∈ B∗, limR→+∞ 1
R

∫
|x|<R

|u(x)|2dx = 0} is closed inB∗. In a similar manner, forn ∈ N,
we denoteB∗

n the set of functionsu ∈ Hn
loc such that all the successive derivatives,∂αu, of u for |α| � n, belong to

B∗. Its norm is naturally defined.

1. Mathematical framework and the direct problem

1.1. Some well known results

1.1.1. The scattering amplitude
Let k > 0.

Definition 1. Let u ∈ H 1
loc. The functionu is said to satisfy the Sommerfeldk-outgoing condition if( ∂u

∂n
− iku) ∈

B∗0, wheren = x/|x|. Such a functionu will be called ak-outgoing function.

A solution, sayu, to Helmholtz equation

−�u(x) − k2u(x) = 0, for |x| � R

for someR > 0, that satisfies the Sommerfeldk-outgoing condition admits an asymptotic expansion of the for

u(x) = eik|x|

|x|
(

u∞
(

x

|x|
)

+ O

(
1

|x|
))

as|x| �→ ∞.

The functionu∞ is analytic onS2 and is the so-called scattering amplitude ofu. Note thatu∞ = 0 implies that
u(x) = 0 for |x| � R (see the Rellich Lemma, [1], p. 32).

1.1.2. Limiting absorption principle
We remind the reader of a well known limiting absorption principle that will be useful to us.

Proposition 1. Let us consider the operator−� :H 2(R3) → L2(R3) and, forz ∈ C\[0,+∞[, its resolvent map
R(z) :L2(R3) � u �→ (−� − z)−1u. Then

(i) The resolvent map can be extended forz ∈]0,+∞[ to a bounded operatorR+(z) :B → B∗ such that

∀k > 0, ∀f,g ∈ B, lim
z→k2,Im z>0

(
R(z)f,g

)
B∗,B

= (
R+(k2)f, g

)
B∗,B

.

(ii) Moreover, forz ∈ C\{0} with Im z � 0, R+(z) is a continuous operator fromB into B∗
2 .

(iii) If f ∈ B andk > 0, the functionu = R+(k2)f is the uniquek-outgoing solution of

−�u − k2u = f.

(iv) Let bef ∈ B and k,R > 0. If suppf ∈ B(0,R), the functionR+(k2)(f ), that can be viewed as ak-
outgoing solution to the homogeneous Helmholtz equation outsideB(0,R), admits the scattering amplitude give
by the following expansion

R+(k2)f (x) = eik|x|

4π |x|F(f )

(
k

x

|x|
)

+ O

(
1

|x|2
)

.

For a proof, see [2] (Theorem 14.3.2, pp. 238) for (i), (ii)and (iii). Points (iii) and (iv) are direct consequenc
of the following well known relation

R+(k2)f (x) = 1

4π

∫
3

eik|x−y|

|x − y| f (y) dy.
R
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Point (iii) can also be deduced from Theorem 14.3.4 in [2].
Point (iv) is also a consequence of the following

R+(k2)f (x) =
∫ F(f )(ξ)

(|ξ |2 − k2)
eiξ.x dξ

=
∫ F(f )(ξ) −F(f )(kx/|x|)

(|ξ |2 − k2)
eiξ.x dξ +F(f )

(
kx

|x|
)∫

1

|ξ |2 − k2
eiξ.x dξ.

The first integral is small for large values of|x| by standard stationary phase argument and the second is e
the fundamental solutioneik|x|/(4π |x|) of the Helmholtz operator. We deduce point (iv), and the advantage o
argument is that it can be generalized to more general operators.

1.2. The direct problem

We are interested here in solving (6) and (7). First, note that foru,w ∈ H 2
loc(R

3), the two sides of (6) and (7
are well defined, as square-integrable functions.

We aim at obtaining functionsu,w ∈ H 2
loc that solve (6) and (7), and also satisfy the Sommerfeldk-outgoing

condition. Note that, from Proposition 1(iii), Eqs. (6) and (7) are strictly equivalent to

u = R+(k2)
[
θF (u + λeikx.d)

]
(9)

and

w = R+(k2)
[(

(w + λeikx.d)ϕ + iψ.∇(w + λeikx.d)
)∣∣∇(w + λeikx.d)

∣∣r |w + λeikx.d |s]. (10)

Thus, the solutionsu andw must belong toB∗
2 . The following result will enable us to uniquely defineu andw.

Proposition 2.LetM > 0, fixed, and assume a priori‖θ‖∞ � M (respectively‖ϕ‖∞,‖ψ‖∞ � M). Then
(i) ∃α > 0 such that(6) (respectively(7)) possesses a unique solutionu ∈ H 2

loc (respectivelyw ∈ H 2
loc) that

satisfies‖u‖B∗
2
� α (respectively‖w‖B∗

2
� α), provided thatλ � α.

(ii) Moreover, with the above conditions and notations, we have the following estimates

‖u‖B∗
2

� C‖θ‖∞λp+1, (11)

‖w‖B∗
2

� C
(‖ϕ‖∞ + ‖ψ‖∞

)
λr+s+1, (12)

whereC is a constant that does not depend onθ , ϕ, ψ , λ andd ∈ S2.

Proof. We make use of the Banach contraction theorem. We set

Φ :B∗
2 → B∗

2,

u �→ R+(k2)
(
θF (u + λeikx.d)

)
and

Ψ :B∗
2 → B∗

2,

w �→ R+(k2)
((

ϕ(w + λeikx.d) + iψ.∇(w + λeikx.d)
)∣∣∇(w + λeikx.d)

∣∣r |w + λeikx.d |s).
The proof involves the two following lemma andC will always denote a positive constant that does not depen
θ,ϕ,ψ , λ andd ∈ S2.

We have

Lemma 1 (stability). There is a constantα′ > 0 such thatΦ[BB∗
2
(0, α′)] ⊂ BB∗

2
(0, α′) and Ψ [BB∗

2
(0, α′)] ⊂

BB∗(0, α′) provided thatλ � α′.

2
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Proof. We first consider Eq. (6). Letα′ > 0 (that will be fixed later) and assumeu ∈ BB∗
2
(0, α′). For technical

reasons, we will assume that the real numberα′ is less than 1. Then, via Proposition 1(ii)∥∥Φ(u)
∥∥

B∗
2

� C‖θ‖∞
∥∥F(u + λeikx.d)

∥∥
L2(U)

. (13)

From the assumptions made onF , the boundedness ofU , and the continuous imbedding

H 2(U) → C0(�U),

(C0(�U) is the set of continuous functions on�U ) there existsC > 0 (that does not depend onλ andd sinceα′ < 1)
such that∥∥F(u + λeikx.d)

∥∥
L2(U)

� C
(‖u‖p+1

B∗
2

+ λp+1).
From (13) we thus obtain∥∥Φ(u)

∥∥
B∗

2
� C0‖θ‖∞

(‖u‖p+1
B∗

2
+ λp+1). (14)

We now check that the right-hand side member of (14) is smaller thanα′ if α′ = ( 1
2C0M

)1/p.

For Eq. (7), the proof is similar (use the continuous imbeddingH 1(U) ⊂ L6(U) for ∇u and note thatr � 2). In
particular it yields∥∥Ψ (w)

∥∥
B∗

2
� C0

(‖ϕ‖∞ + ‖ψ‖∞
)(‖w‖r+s+1

B∗
2

+ λr+s+1). � (15)

Lemma 2 (contraction).There is a constantα′′ > 0 such thatΦ andΨ are 1
2-contractions onBB∗

2
(0, α′′) provided

thatλ � α′′.

Proof. Let u,v ∈ BB∗
2
(0, α′′) andλ � α′′, whereα′′ is supposed to be less thanα′, and will be fixed later. We se

ũ(x) = u(x) + eikx.d , ṽ(x) = v(x) + eikx.d and we have∥∥Φ(u) − Φ(v)
∥∥

B∗
2

� C‖θ‖∞
∥∥F(ũ) − F(ṽ)

∥∥
L2(U)

, (16)

and ∥∥Ψ (u) − Ψ (v)
∥∥

B∗
2

� C‖ϕ‖∞
∥∥ũ|ũ|s |∇ũ|r − ṽ|ṽ|s |∇ṽ|r∥∥

L2(U)

+ C‖ψ‖∞
∥∥∇ũ|ũ|s |∇ũ|r − ∇ṽ|ṽ|s |∇ṽ|r∥∥

L2(U)
. (17)

(a) Eq. (6). From the assumptions made onF andε, we can viewF as a differentiable map fromR2 ∼ C into
itself, and lim|z|→0 DF(z) = 0, whereDF is theR2-differential ofF . Assumeη > 0. Provided thatα′′ is small
enough, we have from the hypothesis “|ε′(t)| = o(1/tp+1)”,

sup
|z|�(A+1)α′′

∥∥DF(z)
∥∥ � η

where

– ‖DF(z)‖ is the Euclidean norm ofDF(z), viewed as a linear operator fromR2 into itself.
– A is the norm of the continuous map

B∗
2 → C0(�U),

ω �→ ω|U .
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as,
Hence, forx ∈ �U , we have|ũ(x)|, |ṽ(x)| � (A + 1)α′′, so∣∣F (
ũ(x)

) − F
(
ṽ(x)

)∣∣ � η
∣∣u(x) − v(x)

∣∣;
hence∥∥F

(
ũ(x)

) − F
(
ṽ(x)

)∥∥
L2(U)

� Cη‖u − v‖B∗
2
,

andC only depends onR0.
From (16), we can deduce∥∥Φ(u) − Φ(v)

∥∥
B∗

2
� CMη‖u − v‖B∗

2 (U).

Chooseη = 1
2CM

, chooseα′′ according toη, and the lemma is proven.
(b) Eq. (7). Here we have to use another method since∇u is not necessarily a bounded function.

We have the following inequalities

∀x, y ∈ C, ∀t � 1,∣∣|x|t − |y|t ∣∣ � C|x − y|(|x|t−1 + |y|t−1), ∣∣x|x|t − y|y|t ∣∣ � C|x − y|(|x|t + |y|t)
and similar inequalities hold forx, y ∈ C

3. We deduce, forr, s �= 0 (if r = 0 or s = 0, the proof still holds with
obvious modifications) the two following points.

(1) On the one hand,∥∥ũ|ũ|s |∇ũ|r − ṽ|ṽ|s |∇ṽ|r∥∥
L2(U)

� C‖u − v‖∞,U

(‖ũ‖s∞,U + ‖ṽ‖s∞,U

)‖∇ũ‖r
L2r (U)

+ C‖ṽ‖s+1
∞,U‖∇u − ∇v‖L6(U)

(∥∥|∇ũ|r−1
∥∥

L3(U)
+ ∥∥|∇ṽ|r−1

∥∥
L3(U)

)
.

Note that∥∥|∇ũ|r−1
∥∥

L3(U)
� ‖∇ũ‖r−1

L6(U)
(Vol U)

3−r
6

and the above equality turns into∥∥ũ|ũ|s |∇ũ|r − ṽ|ṽ|s |∇ṽ|r∥∥
L2(U)

� C‖u − v‖∞,U

(‖ũ‖s∞,U + ‖ṽ‖s∞,U

)‖∇ũ‖r
L2r (U)

+ C‖ṽ‖s+1
∞,U‖∇u − ∇v‖L6(U)

(‖∇ũ‖r−1
L6(U)

+ ‖∇ṽ‖r−1
L6(U)

)
.

(2) On the other hand, we have∥∥∇ũ|ũ|s |∇ũ|r − ∇ṽ|ṽ|s |∇ṽ|r∥∥
L2(U)

� C‖ũ‖s
∞,U‖∇u − ∇v‖L6(U)

(‖∇ũ‖r
L3r (U)

+ ‖∇ṽ‖r
L3r (U)

)
+ C‖∇ṽ‖r+1

L6(U)
‖u − v‖∞,U

(‖ũ‖s−1
∞,U + ‖ṽ‖s−1

∞,U

)
.

We conclude from (17) and the following Sobolev imbeddings (note thatr � 2)

H 1 ⊂ Lt , t � 6,

H 2 ⊂ L∞

that ∥∥Ψ (u) − Ψ (v)
∥∥

B∗
2

� C
(‖ϕ‖∞ + ‖ψ‖∞

)‖u − v‖B∗
2

(‖ũ‖r+s
B∗

2
+ ‖ṽ‖r+s

B∗
2

)
� 4CM(α′′)r+s‖u − v‖B∗

2
. (18)

We conclude from (18) thatΨ is a 1
2-contraction as soon asα′′ is chosen small enough.�

Going back to the proof of Proposition 2, we see that part(i) is a direct consequence of the two above lemm
and the Banach contraction theorem. We only prove (11) (the proof is similar for (12), using (15)).
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We write (14) foru ∈ BB∗
2
(0, α′′) and note that from the choice ofα′ we have‖u‖p+1

B∗
2

� 1
2C0M

‖u‖B∗
2
. We

conclude that‖Φ(u)‖B∗
2

� 1
2‖u‖B∗

2
+ C0λ

p+1‖θ‖∞. Since the solution provided in (i) is a fixed point ofΦ, we
obtain (11) which completes the proof.�

2. Behaviour ofu(x, d,λ) for λ → 0

Along the next sections,θ , ϕ andψ are supposed to satisfy an a priori estimate‖θ‖∞,‖ϕ‖∞,‖ψ‖∞ � M.
Hence, thanks to Proposition 2,u(. , d, λ) andw(. , d,λ) can be defined without ambiguity as solutions of (6) a
(7) for small values ofλ.

Here, we show thatu(x, d,λ) = λp+1(v(x, d) + ε0(x, d,λ)) andw(x,d,λ) = λr+s+1(w(x, d) + ε0(x, d,λ)),
whereε0(x, d,λ) converges to 0 uniformly ford ∈ S2 and boundedx, if λ → 0 andv can easily be deduced fro
θ , (respectivelyϕ andψ).

Lemma 3.The following convergences hold inB∗
2 :

lim
λ→0

u(. , d, λ)

λp+1 = R+(k2)(θeikx.d)

and

lim
λ→0

w(. , d,λ)

λr+s+1
= R+(k2)

[
kr (ϕ − kd.ψ)eikx.d

]
.

Proof. (1) Eq. (6). From (9), we have

u(x, d,λ, θ)

λp+1 = R+(k2)

[
θ

(
u

λ
+ eikx.d

)∣∣∣∣uλ + eikx.d

∣∣∣∣p(
1+ ε

(|u + λeikx.d |))] (19)

and we use (11) to prove that the term between square brackets[ ] in (19) converges toθ(x)eikx.d if λ → 0,
uniformly in (x, d) ∈ U × S2. Hence, by Proposition 1(ii), the lemma holds.

(2) Eq. (7). We divide both sides of (10) byλr+s+1, and the term 1
λr+s+1 [ ] converges inL2(U) to

kr (ϕ − kd.ψ)eikx.d (use (12)). Hence the proof follows as in the case of Eq. (6).�

3. The inverse problem

This last section is devoted to the inverse problem announced in the Introduction. We state the unique
point out the case for whichθ,ϕ andψ are spherical functions, and show that the hypothesis on the scatterin
we need for Theorem 1 are optimal for the general case. For largek, we give an explicite way of reconstruction f
θ . Questions of stability are also raised.

3.1. Main result

First, note that forλ sufficiently small,u(x, d,λ, θ) andw(x,d,λ, (ϕ,ψ)), solutions to (6) and (7), exist and a
k-outgoing solutions to the homogeneous Helmholtz equation outsideU . Hence these functions admit a scatter
amplitude, denotedu∞(x, d,λ, θ) andw∞(x, d,λ, (ϕ,ψ)) (see Section 1.1.1).
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3.1.1. Zero-order perturbation
Here we are concerned with the Eq. (6).

Theorem 1.Supposeθ1, θ2 ∈ L∞, with suppθj ⊂ U and‖θj‖∞ � M for j = 1,2. For small values ofλ, we denote
u(x, d,λ, θ) the solution of(6) andu∞(x, d,λ, θ) its scattering amplitude.

(i) LetZ ⊂ S2 a non-finite countable subset, such that

∀d ∈ Z, ∀x̂ ∈ S2, lim
λ→0

u∞(x̂, d, λ, θ1)

λp+1 = lim
λ→0

u∞(x̂, d, λ, θ2)

λp+1 .

Thenθ1 = θ2.
(ii) Moreover, assume thatθ1, θ2 are radial functions(i.e.,θj (x) = θ∗

j (|x|) for x ∈ R3, j = 1,2), and letd0 ∈ S2

andγ : [0,1] → S2 a continuous path such that the functiont �→ γ (t).d0 does not remain constant. If the followin
relation holds

∀t ∈ [0,1], lim
λ→0

u∞(γ (t), d0, λ, θ1)

λp+1 = lim
λ→0

u∞(γ (t), d0, λ, θ2)

λp+1 ,

thenθ1 = θ2.

Proof.
(i) Let d ∈ S2, andλ ∈ (0,+∞) small enough. Forθ = θ1, θ2, note that from(19) and Proposition 1(iv)

u∞(x̂, d, λ, θ)/λp+1 is given by the Fourier transform of

θ

(
u(x, d,λ, θ)

λ
+ eikx.d

)∣∣∣∣u(x, d,λ, θ)

λ
+ eikx.d

∣∣∣∣p(
1+ ε

(|u(x, d,λ, θ) + λeikx.d |))
calculated atkx̂. Moreover the following family of functions

x �→ θ(x)

(
u(x, d,λ, θ)

λ
+ eikx.d

)∣∣∣∣u(x, d,λ, θ)

λ
+ eikx.d

∣∣∣∣p(
1+ ε

(|u(x, d,λ, θ) + λeikx.d |))
converges inL2(R3), uniformly ind ∈ S2 asλ → 0 and, as its support remains included in�U , its Fourier transform
and all its derivatives converge uniformly on any bounded subset ofR3. Thus, by Proposition 1(iv) and Lemma 3,
we conclude that

lim
λ→0

u∞(x̂, d, λ, θ)

λp+1
= 1

4π
F(θeikx.d)(kx̂) = 1

4π
F(θ)

(
k(x̂ − d)

)
. (20)

Going back to the proof of (i), we see that, with the above remarks, the Fourier transform ofθ = θ1 − θ2 is an
analytic function,g, onR3 that cancels on{k(x̂ − d); x̂ ∈ S2, d ∈ Z} = ⋃

d∈Z S(−kd, k). We now prove thatg is
zero.

Consider a sequence(dn) ⊂ Z such thatdn → d∞ and ∀n ∈ N, dn �= d∞. We can suppose thatδ =
limn→∞ dn−d∞|dn−d∞| exists inS2.

Let us choosêx ∈ S2 such thatδ.x̂ �= 0 and define

f :R → C,

t �→ g(kx̂ − kd∞ + tδ).

We havef (t) = 0 for everyt ∈ R that satisfies

∃n ∈ N,
∣∣tδ + kx̂ + k(dn − d∞)

∣∣ = k,

sincekx̂ − kd∞ + tδ ∈ S(−kdn, k).
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We would like to show that the subset{t ∈ R ∃n ∈ N, |tδ +kx̂ +k(dn −d∞)| = k} is non-finite. Hence, conside
the following smooth application

F :R × S2 → R,

(t, e) �→ ∣∣tδ + kx̂ + k(e − d∞)
∣∣2 − k2.

SinceF(0, d∞) = 0 and ∂F (t,d∞)
∂t

|t=0 = 2kδ.x̂ �= 0, the Implicit Functions Theorem ensures that, for sufficie
large values ofn ∈ N, there is a sequence(tn) → 0 such thatF(tn, dn) = 0. A straightforward calculation show
that

F(0, dn) = k2|dn − d∞|(2x̂.δ + o(1)
)

asn → ∞.

We deduce thatF(0, dn) �= 0 for sufficiently large values ofn, hencetn �= 0. Since we have,∀n ∈ N, f (tn) = 0,
we conclude thatf cancels on a bounded non-finite subset ofR. f is analytic, we deduce thatf is zero. Hence
g vanishes on the non-empty open subsetk(S2\{δ}⊥ − d∞) + Rδ, sincex̂ is arbitrary in the two open half-sphe
S2\{δ}⊥. Theng is identically zero, andθ = 0.

(ii) As in (i), we obtain thatg, the Fourier transform ofθ = θ1 − θ2, vanishes on{k(γ (t) − d0), t ∈ [0,1]}. We
denotemγ = mint∈[0,1] |d0 − γ (t)| andMγ = maxt∈[0,1] |d0 − γ (t)| and we havemγ < Mγ from the hypothesis
of the theorem. Sinceg is a radial function, andγ is a continuous path, it is easily seen thatg cancels on
C(0, kmγ , kMγ ). The functiong is analytic onR3, henceg is identically zero, thusθ1 = θ2. �
Remark. An alternative proof of Theorem 1(i) that uses a geometrical approach has been suggested to us
a sketch of this proof.

Let us start from (20). Note that tangential derivatives of all orders ofg vanish onS(−kd∞, k). All spheres
S(−kdn, k) pass through 0 and are not tangential there toS(−kd∞, k) and to each other, because thedn are not
colinear. Choose a sequence(em) ⊂ S(−kd∞, k), em �= 0, such that(em) → 0. LetLm be the line{em + td, t ∈ R}.
Then everyLm intersects all spheresS(−kdn, k) for largen, andg is 0 at the points of intersection. So, from Ro
Theorem, for every orderp ∈ N, the directional derivative ofg of orderp alongLm vanishes at a pointYm,p ∈ Lm.
The direction ofLm is d∞, that is transversal toS(−kd∞, k) at 0, andYm,p → 0 whenm → ∞.

Hence, sinced∞ is transversal toS(−kd∞, k) at 0, all derivatives ofg of all orders vanish at 0. By analyticity
g = 0.

3.1.2. First-order perturbation
We extend Theorem 1 to Eq. (7) with stronger hypothesis.

Theorem 2. Supposeϕ1, ϕ2 ∈ L∞(R3,R), ψ1,ψ2 ∈ L∞(R3,R
3) with suppϕj , suppψj ⊂ U and ‖ϕj‖∞,

‖ψj‖∞ � M for j = 1,2.
For small values ofλ, we denotew(x,d,λ, θ) the solution of(7) andu∞(x, d,λ, θ) its scattering amplitude.
(i) Assume that

∀x̂, d ∈ S2, lim
λ→0

w∞(x̂, d, λ, (ϕ1,ψ1))

λr+s+1 = lim
λ→0

w∞(x̂, d, λ, (ϕ2,ψ2))

λr+s+1 ,

then(ϕ1,divψ1) = (ϕ2,divψ2), in the sense of distributions.
(ii) Moreover, assume that(ϕj ,ψj ) are radial functions(i.e.,ϕj (x) = ϕ∗

j (|x|) andψj (x) = ψ∗
j (|x|) x

|x| , x �= 0)

and letd0 ∈ S2 andγ : [0,1] → S2 a continuous path such that the functiont �→ γ (t).d0 does not remain constan
If the following relation holds

∀t ∈ [0,1], lim
λ→0

w∞(γ (t), d0, λ, (ϕ1,ψ1))

λr+s+1
= lim

λ→0

w∞(γ (t), d0, λ, (ϕ2,ψ2))

λr+s+1
,

then(ϕ1,ψ1) = (ϕ2,ψ2).
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Remark. Concerning (i), the proof will show that divψ1 = divψ2 is the most one can obtain, unlessψ1 andψ2 are
supposed to be potential vector fields; more precisely, suppose thatΠ1,Π2 are distributions such thatψj = ∇Πj

on R3 for j = 1,2. Then, we can conclude in (i) thatψ1 = ψ2. Note that under the assumptions in point (ii) of t
theorem,ψ1 andψ2 are potential vector fields, therefore it is not surprising that one obtains uniqueness forψ , and
not only for divψ .

Proof of Theorem 2.
(i) Like for (20), we have

∀x̂, d ∈ S2, lim
λ→0

w∞(x̂, d, λ, (ϕ,ψ))

krλr+s+1
= 1

4π

(
F(ϕ)

(
k(x̂ − d)

) − kF(ψ)
(
k(x̂ − d)

)
.d

)
. (21)

Now, we would like to sety = k(x̂ − d) in the above equation. Consequently, we define, fory ∈ R3 such that
0 < |y| < 2k, the subsetCy = {d ∈ S2 | d.y = − 1

2k
|y|2}.

Note thatCy is the 1-dimensional sphere contained in a plane orthogonal toy, centered at− y
2k

and of radius√
1− |y|2/4k2.
From (21) applied forϕ = ϕ1 − ϕ2 andψ = ψ1 − ψ2, we obtain

∀d ∈ Cy, F(ϕ)(y) − kF(ψ)(y).d = 0 (22)

(note thatd ∈ Cy implies thaty = k(x̂ − d) for a convenient choice of̂x ∈ S2).
For y ∈ B(0,2k)\{0}, we deduce from (22) that the angle betweenF(ψ)(y) and d ∈ Cy is constant and

consequently,F(ψ)(y) = y.F(ψ)(y)
|y|

y
|y| for y ∈ B(0,2k)\{0}. This last equality remains valid fory ∈ R3\{0}

(analyticity).
From (22), the definition ofCy and the colinearity ofF(ψ)(y) andy we deduce

∀y ∈ B(0,2k)\{0}, F(ϕ)(y) + 1

2
y.F(ψ)(y) = 0.

Thanks to an argument of analyticity, we actually obtain

∀y ∈ R
3, F(ϕ)(y) + 1

2
y.F(ψ)(y) = 0. (23)

Note that the left-hand side of (23) is the Fourier transform ofϕ − i
2 divψ . We conclude by extracting the real a

imaginary parts of this last equation.
(ii) We have

∀t ∈ [0,1], F(ϕ)
(
k
(
γ (t) − d0

)) − kF(ψ)
(
k
(
γ (t) − d0

))
.d0 = 0. (24)

A straightforward calculation shows that∀ξ ∈ R
3\{0}, F(ψ)(ξ) = τ (ξ)

ξ
|ξ | whereτ (ξ) is a radial function

τ (ξ) = 4iπ

|ξ |2
+∞∫
0

(
ψ∗

1 (t) − ψ∗
2 (t)

)[
t|ξ |cos

(
t|ξ |) − sin

(
t|ξ |)]dt.

From (24), we have

∀t ∈ [0,1], F(ϕ)
(
k
(
γ (t) − d0

)) − kτ
(
k|γ (t) − d0|

) (γ (t) − d0).d0

|γ (t) − d0| = 0.

Sinceγ (t).d0 = 1− 1
2|γ (t) − d0|2 we finally obtain

∀t ∈ [0,1], F(ϕ)
(
k
(
γ (t) − d0

)) + k
τ
(
k
∣∣γ (t) − d0

∣∣)∣∣γ (t) − d0
∣∣ = 0.
2
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Now, use the same arguments as those used for Theorem 1(ii), withg replaced by the radial function

x �→ F(ϕ)(x) + |x|
2

τ
(|x|),

to conclude that

∀y ∈ R
3, F(ϕ)(y) + |y|

2
τ
(|y|) = 0.

Note that the left-hand side of the above equality is the Fourier transform ofϕ − i
2 divψ . One concludes, b

extracting the real and imaginary part of this last equation, thatϕ = 0 and divψ = 0.
It yields thatψ∗

1 (x) = ψ∗
2 (x) + C

|x|2 for some constantC andx �= 0. The functionsψ∗
1 andψ∗

2 are bounded

which implies thatC = 0, henceψ∗
1 = ψ∗

2 . �
3.2. Zero-order perturbation: some remarks

3.2.1. Scattering data
Concerning the point (i) of Theorem 1 the hypothesis “Z is a countable set” is optimal. More exactly,

d1, . . . , dN ∈ S2, there exists a functionθ �= 0 such that limλ→0 u∞(x̂, dj , λ, θ)/λp+1 = 0 for j = 1, . . . ,N . In
order to construct such a functionθ , consideru ∈ C∞

c (U) such that[∏N
n=1(� + 2ikdn.∇)]u �= 0 on U (choose an

ad hoc polynomial function and use a cut-off function) and setθ = [∏N
n=1(� + 2ikdn.∇)]u; its Fourier transform

vanishes on
⋃N

n=1 S(−kdn, k). It follows that

lim
λ→0

u∞(x̂, dj , λ, θ)

λp+1
= lim

λ→0

u∞(x̂, dj , λ,0)

λp+1

whereasθ �= 0.

3.2.2. Stability
In this section, we show that the inverse problem for which we have proven uniqueness in Theorem

stable with respect to the scattering data, for any order of regularity.
In fact, the knowledge of

(x̂, d) �→ lim
λ→0

u∞(x̂, d, λ, θ1)

λp+1 − lim
λ→0

u∞(x̂, d, λ, θ2)

λp+1

for x̂, d ∈ S2 is equivalent to the knowledge of the Fourier transform ofθ onB(0,2k). This will be detailed in the
Section 3.2.3. For eachn,p ∈ N, one cannot however find any constantCn,p such that

∀θ ∈ C∞
c (U), ‖θ‖H−p � Cn,p

∥∥F(θ)
∥∥

Hn(B(0,2k))
. (25)

If such a constant exists, then consider any distributionΦ ∈ H−p−1 such thatΦ /∈ H−p, with suppΦ ⊂ U .
Choose a sequence(Φl)l ⊂ C∞

c (Ũ) that converges inH−p−1 to Φ, whereŨ is a bounded open set containingU .
We deduce that the sequence(F(Φl))l converges inHn(B(0,2k)) sinceŨ is bounded (note thatHr,s(R3) and
Hs,r(R3) are isomorphic by the Fourier transform), hence from (25), we could conclude that(Φl)l converges in
H−p , that isΦ ∈ H−p , which is a contradiction with the choice ofΦ.

3.2.3. Approximate reconstruction forθ

Here, we assume that limλ→0 u∞(x̂, d, λ, θ)/λp+1 is known for all values of(x̂, d) ∈ S2 × S2. Theorem 1
only yields uniqueness forθ , but does not provide a reconstruction. Note that to reconstructθ , one needs to
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know its Fourier transform onB(0,2k). However, Section 3.2.2 shows that there is no hope for stability in
reconstruction. More precisely, we have

lim
λ→0

u∞(x̂, d, λ, θ)

λp+1 =F(θ)
(
k(x̂ − d)

)
and the application(x̂, d) �→ k(x̂−d) mapsS2×S2 ontoB(0,2k). Thus, for largek the knowledge of the scatterin
data limλ→0 u∞(x̂, d, λ, θ)/λp+1 is nearly equivalent to the knowledge ofθ via the inverse Fourier transform
which will be shown by the next proposition.

In practice, one has to agree upon a quantityε > 0 that measures and control the lack of precision of
measurements; one can considerx ∼ y as soon as|x − y| � ε. The following proposition shows that, for largek
and smallε, θ can be reconstructed approximately from the scattering data.

Proposition 3. Let θ ∈ L∞(R3) with suppθ ⊂ B(0,R0) ⊂ R3 and ‖θ‖∞ � M. We define the functio
w :B(0,2k) → C by w(y) = limλ→0 u∞(x̂, d, λ, θ)/λp+1, and w is defined without ambiguity ify = k(x̂ −
d), x̂, d ∈ S2. Let ε > 0, q ∈]1, 3

2[ and suppose the a priori estimate‖θ‖W1,1 � M ′ holds. Let bevε ∈
L∞(B(0,2k)) such that|vε(y) − w(y, θ)| � ε ∀y ∈ B(0,2k).

Then, there existsC > 0 that only depends onM, M ′, U andq (and does not depend onθ, k, ε), such that the
following estimate holds∥∥∥∥θ(y) −

(
1

2π

)3 ∫
|x|<2k

eikx.yvε(x) dx

∥∥∥∥
L

q
y(U)

� C

(
1

k
3
q
−2

+ εk
3− 3

q

)
. (26)

Proof (sketch). Note that there existsC that only depends onM ′ such that|F(θ)(x)| � C
1+|x| . Thus, for

y ∈ B(0,2k), we have|vε(y)−F(θ)(y)| � ε and for|x| > 2k, we have|vε(y)−F(θ)(y)| � C
1+|x| if vε is extended

by 0 outsideB(0,2k).

Now, use the boundedness of the Inverse Fourier transform extended fromL
q

q−1 to Lq to complete the proo
with straightforward calculations.�

Note that the real numberk has been introduced to obtain the time-harmonic solutions to (3); we can c
arbitrary large values ofk that yields high-frequency solutions. In practice, it would be convenient to con
k ∼ 1

ε
, sincek = kmin = 3−2q

3
1
ε

minimizes the right-hand side of (26). Then Proposition 3 implies that∥∥∥∥θ(y) −
(

1

2π

)3 ∫
|x|<2k

eikx.yvε(x) dx

∥∥∥∥
L

q
y(U)

� Cε
3
q −2

for k ∼ 1/ε.
In practice, one has to use an incident wave with a wavelenght of the same order asε, that measures out th

uncertainty of the measurement.
Note that forε = 0 (i.e,vε is exactly the scattering datum, that is there is no uncertainty), formula (26) s

thatθ can be exactly reconstructed by lettingk → +∞.

3.2.4. Generalisation
In this paragraph, a nonlinear Helmholtz equation with a more general form than (1) is studied. We c

a sequence(an)n ⊂ L∞(R3), with suppan ⊂ U , such that the series
∑+∞

n=1 ‖an‖L∞ρn converges for someρ > 0.
Then, we define the following function:

S : (x, z) �→
+∞∑

an(x)|z|n (27)

n=1
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that is defined forx ∈ R3 and for each complex numberz such that|z| � ρ. We are interested in generalizing t
results proven in the last two sections for the equation

−�v − k2v = vS
(
x, |v|) (28)

with k > 0.
Ford ∈ S2 and small values ofλ � 0, we search for solutionsv to (28) of the form

v(x, d,λ) = λeikx.d + u(x, d,λ), λ � 0, d ∈ S2,

whereu satisfies the outgoing Sommerfeld condition. The inverse problem we propose is the identification
functionS from the knowledge of the behaviour of the scattering amplitudeu∞(x̂, d, λ) asλ → 0. We have to note
that Eq. (1) is a particular case of (28) ifε = 0 andp ∈ N. Using methods similar to those used for Eq. (1),
obtain

Theorem 3.(i) There is a constantα > 0 such that Eq.(28)admits a unique solutionu ∈ BB∗
2
(0, α) provided that

λ � α.
(ii) Moreover, there is a countable family(un(. , d))n�2 ⊂ B∗

2 such that, for anyn � 2, we have

lim
λ→0+

u(x, d,λ) − ∑n
j=2 uj (x, d)λj

λn
= 0 (29)

where the limit is taken in the spaceB∗
2 .

(iii) Let us consider two functionsS1 andS2 such that

S1 : (x, z) �→
+∞∑
n=1

an(x)|z|n (30)

and

S2 : (x, z) �→
+∞∑
n=1

bn(x)|z|n (31)

and the solutionsu and v of (28) with S respectively replaced byS1 and S2, defined for small values ofλ via
the part (i). We define the coefficients of the development inλ of the solutionsu and v, that is, respectively, th
families {uj }j�2 and {vj }j�2 that arek-outgoing solutions to the homogeneous Helmholtz equation outsidU .
Now, suppose that there is a non-finite countable subsetZ ⊂ S2 such that for eacĥx ∈ S2 andd ∈ Z, the equalities
of the scattering amplitudesuj,∞(x̂, d) = vj,∞(x̂, d) hold for every integerj � 2. ThenS1 = S2.

This theorem can be proven using methods similar to those used in the last sections.
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