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Abstract

The goal of this paper is to investigate the role of the gradient term and of the diffusion coefficient in the preventin
blow-up of the solution for semilinear and quasilinear parabolic problems.

Résumé

Le but de cet article est de voir comment le terme de gradient et le coefficient de diffusion empêchent l’explosion des
des problèmes semilinéaires et quasilinéaires paraboliques.
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1. Introduction and main results

In the present paper we consider the following convective diffusion equations

ut + a(t,x) · ∇u = �u + λup + f (t,x), (0.1)

ut + ai(t,x)u
qi
xi

= �u + λup + f (t,x), (0.2)

E-mail address:tersenov@math.uoc.gr (A.S. Tersenov).

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2003.10.001

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



534 A.S. Tersenov / Ann. I. H. Poincaré – AN 21 (2004) 533–541

,

and equation

ut + a(t,x)|∇u|q = �u + λup + f (t,x) (0.3)

in the domainQT = Ω × (0, T ), Ω ⊂ Rn coupled with conditions

u(0,x) = u0(x), u(t,x)|ST = 0, ST = ∂Ω × (0, T ). (0.4)

Hereλ andq are positive constants,qi andp are positive integer,ai(t,x), a(t,x) andf (t,x) are given functions
a(t,x) = (a1(t,x), . . . , an(t,x)), a(t,x) · ∇u = aiuxi and

aiu
qi
xi

=
n∑

i=1

aiu
qi
xi

.

Without loss of generality assume that domainΩ lies in the strip|x1| � l1. Suppose that

u0(x)|∂Ω = 0 and max
∣∣u0x1(x)

∣∣ � K1, (0.5)

whereK1 is some positive constant.
Let us formulate the results concerning the preventive effect of the gradient terms.

Theorem 1.Assume that

a1(t,x) � λ(2l1)
pK

p−1
1 + maxQT |f (t,x)|

K1

or

a1(t,x) � −λ(2l1)
pK

p−1
1 − maxQT |f (t,x)|

K1
.

If condition(0.5) is fulfilled then the solution of problem(0.1), (0.4) remains bounded for allt > 0 and

max
QT

∣∣u(t,x)
∣∣ � 2K1l1. (0.6)

Theorem 2.Suppose that(0.5) is fulfilled.
(i) If q1 is odd and

a1(t,x) � λ(2l1)
pK

p−q1
1 + maxQT |f (t,x)|

K
q1
1

or

a1(t,x) � −λ(2l1)
pK

p−q1
1 − maxQT |f (t,x)|

K
q1
1

,

then the solution of problem(0.2), (0.4) remains bounded for allt > 0 and(0.6) holds.
If in addition q1 > p, then estimate(0.6) holds witha1(t,x) � α or a1(t,x) � −α for any strictly positive

numberα.
(ii) If q1 andp are even and

a1(t,x) � λ(2l1)
pK

p−q1
1 + maxQT f

K
q1
1

, f � 0, u0 � 0,

then the solution of problem(0.2), (0.4) remains bounded for allt > 0 and

0� u(t,x) � 2K1l1. (0.7)

If in additionq1 > p, then estimate(0.7) is valid fora1(t,x) > α for any positiveα.
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Theorem 3.Suppose thatp is even and

a(t,x) � λ(2l1)
pK

p−q

1 + maxQT f (t,x)

K
q

1

, f � 0, u0 � 0.

If (0.5) is fulfilled, then the solution of problem(0.3), (0.4) remains bounded for allt > 0 and(0.7) holds.
For q > p this estimate holds witha(t,x) > α for any positiveα.

Let us give a simple physical interpretation of Theorem 1. Letu(t,x) be temperature anda = (a1, a2, a3)

velocity field. If the velocity is big enough at least in one direction (for examplex1 or −x1), then the convective
transfer (from the left ifa1 is positive or from the right if negative) in this direction brings sufficient cold substa
from the boundary, so as not to allow the termup to blow-up the temperature.

Eq.(0.3) without gradient term (i.e. whena ≡ 0) was investigated by many authors and there is exten
literature on this subject (see, for example, [12] and the references there). It is well known that the phenom
blowing up of the solution may occur in this case, i.e.|u(t,x∗)| → +∞ whent → t∗ at least for onex∗ ∈ Ω. In
[3] the authors introduce the gradient term|∇u|q in order to investigate the effect of this term on global existe
or non-existence of the solution of the Dirichlet problem. Later the influence of the gradient term in the b
phenomenon for Eq. (0.3) was studied in [4–8,14–16]. The main issue of these works was to determine forp

andq the blow-up in finite time occurs and for which the solution remains bounded. Roughly speaking it tu
that blow-up in finite time may occur if and only ifp > q . For more details see [15]. So we can conclude that
gradient term controls the source term in the sense that there is no blow up ifp < q . From Theorem 3 of the prese
paper it follows that if the coefficienta is big enough, then the gradient term controls the source term even
case when the power of the gradient term is less then the power of the source termp � q . If p < q , then Theorem 3
guarantees the boundedness of the solution for any positivea. Moreover, as it follows from Theorems 1, 2 th
presence of the derivative only in one directionxi0 can “hold” the maximum of the solution if the coefficientai0

is big enough. The interpretation presented above gives some idea why this happens. Application of Eq. (
given in [13].

Convective diffusion equations with blow up termup were studied in [1,2,10]. Different cases of blow up of
solution were investigated there.

The prevent of blow-up of the solution can be also obtained by taking sufficiently big diffusion
conductivity) coefficient at least in one direction. To demonstrate this we consider the following equation

ut = κux1x1 + �′u + λup + f (t,x), (0.8)

coupled with conditions (0.4), here�′u ≡ ∑n
i=2 uxixi .

Theorem 4.Suppose that

κ � 3λl
p+1
1 (2K1)

p−1 + 3l1

2K1
max
QT

∣∣f (t,x)
∣∣.

Then the solution of problem(0.8), (0.4) is bounded for allt > 0 and

max
QT

∣∣u(t,x)
∣∣ � 2K1l1.

The physical interpretation of Theorem 4 is that if the heat conductivity at least in one direction is suffi
big, then the heat flow through the boundary in that direction is big enough to prevent the unbounded grow
temperature. Let us mention here that for the equation

ut = κ |u|pux1x1 + �′u + λup + f (t,x) (0.9)
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the boundedness of the solution of problem(0.9), (0.4) for any positiveκ follows immediately from [19]. Here
combining the method proposed in [19] with the proof of Theorems 1–3 of the present paper we obtain
result for problem (0.8), (0.4).

We would like to emphasize that all results of the present paper mentioned above can be easily extend
case where the termλup is substituted by functionQ(u). The restrictions onQ(u) are formulated in Section 4, i
particular besidesλup we can takeQ(u) = eu.

The paper is organized as follows. In Section 2 we give the proofs of Theorems 1–3. Section 3 de
problem (0.8), (0.4). In Section 4 we substituteλup by Q(u). In the last section we discuss the existence theore
For problems (0.1), (0.4) and (0.8), (0.4) the existence of a classical solution follows from theL∞ estimate of
the solution under some assumptions on the smoothness of the coefficients. The same is valid for proble
(0.4) and (0.3), (0.4), ifqi � 2 andq � 2 correspondingly (see [9,11]). We formulate conditions which guarante
the existence in the specialcase of classical solution forqi > 2 for problem (0.2), (0.4). Concerning the glob
solvability of problem (0.3), (0.4) forq > 2 we refer to [8,14,16].

2. Proof of Theorem 1–3

Proof of Theorem 1. Suppose first that

a1(t,x) > λ(2l1)
pK

p−1
1 + maxQT |f (t,x)|

K1
. (1.1)

Introduce the auxiliary equation:

ut − �u = −a(t,x) · ∇u + fp(u) + f (t,x) in QT , (1.2)

where

fp(z) =



λzp, for |z| � 2K1l1,

λ(2K1l1)
p, for z > 2K1l1,

λ(−2K1l1)
p, for z < −2K1l1.

The goal is to obtain the estimate|u(t,x)| � 2K1l1 for the solution of problem (1.2), (0.4). If such estimate ta
place, then Eqs. (1.2) and (0.1) coincide and as a consequence the solution of problem (0.1), (0.4) will be b

Consider functionv(t,x) ≡ u(t,x) − h(x1), whereh(x1) = K1(l1 + x1). One can easily see that

vt − �v = −a(t,x) · ∇u + fp(u) + f (t,x). (1.3)

If the functionv(t,x) attains maximum at the pointN ∈ Q̄T \ Γ (Γ is the parabolic boundary of the domainQT ),
then at this point we have∇v = 0, i.e.ux1 = h′ = K1, uxi = 0, for i � 2 and hence

vt − �v|N = −a1(N)K1 + fp

(
u(N)

) + f (N)

< −λ(2l1)
pK

p

1 − max
QT

∣∣f (t,x)
∣∣ + λ(2K1l1)

p + f (N) � 0.

This contradicts the assumption that atN we have maximum ofv. Here we use the inequalityfp(u) � λ(2K1l1)
p.

On Γ the functionv(t,x) is non-positive. In fact, due to (0.5),v(0,x) = u0(x) − K1(l1 + x1) � 0 and from (0.4)
v|ST = −h|ST � 0. Hencev � 0 in Q̄T and

u(t,x) � K1(l1 + x1) � 2K1l1.

Now let us consider functioñv(t,x) ≡ u(t,x) + h(x1). We have

ṽt − �ṽ = −a(t,x) · ∇u + fp(u) + f (t,x).
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If the function ṽ(t,x) attains minimum at the pointN1 ∈ Q̄T \ Γ then at this point we have∇ṽ = 0, i.e.
ux1 = −h′ = −K1, uxi = 0 for i � 2 and hence

ṽt − �ṽ|N1 = a(N1)K1 + fp

(
u(N1)

) + f (N1)

> λ(2l1)
pK

p
1 + max

QT

∣∣f (t,x)
∣∣ − λ(2K1l1)

p + f (N1) � 0.

This contradicts the assumption thatṽ attains minimum atN1. Here we use the inequalityfp(u) � −λ(2K1l1)
p . It

is clear that onΓ the functionṽ is non-negative. In fact, due to (0.5)ṽ(0,x) = u0(x) + K1(l1 + x1) � 0 and from
(0.4) ṽ|ST = h|ST � 0, hencẽv � 0 in Q̄T and

u(t, x) � −K(l1 + x1) � −2K1l1.

Fora1 > λ(2l1)
pK

p−1
1 + K−1

1 maxQT |f | Theorem 1 is proved.

Suppose now thata1 � λ(2l1)
pK

p−1
1 + K−1

1 maxQT |f |. Substitute functionv in (1.3) byv1 = ve−t . Forv1 we
have

v1t + v1 − �v1 = e−t
(−a(t,x) · ∇u + fp(u) + f (t,x)

)
.

Function v1 cannot attain positive maximum at the pointN ∈ Q̄T \ Γ because in this point the left side
strictly positive and the right side non-positive. OnΓ the functionv1 is non-positive, hencev1 � 0 in Q̄T and
u � K1(l1 + x1) � 2K1l1.

Similarly considering̃v1 = ṽe−t instead ofṽ we obtain the needed estimate from below.
The casea1(t,x) � −λ(2l1)

pK
p−1
1 − K−1

1 maxQT |f | can be treated in the same way with the only differe
in the choice of the barrier. Here instead ofh(x1) ≡ K1(l1 + x1) we must takẽh(x1) ≡ K1(l1 − x1).

Theorem 1 is proved. �
Proof of Theorem 2. If q1 is odd, then the proof of this theorem is similar to the previous one. In fact, con
auxiliary equation

ut − �u = −ai(t,x)u
qi
xi

+ fp(u) + f (t,x) in QT , (1.4)

wherefp is the same as in the proof of Theorem 1. For the functionv(t,x) ≡ u(t,x) − h(x1), whereh(x1) =
K1(l1 + x1) we have

vt − �v = −ai(t,x)u
qi
xi

+ fp(u) + f (t,x).

If the function v(t,x) attains maximum at the pointN ∈ Q̄T \ Γ , then at this point we have∇v = 0, i.e.
ux1 = h′ = K1, uxi = 0, for i � 2 and hence

vt − �v|N = −a1(N)K
q1
1 + fp

(
u(N)

) + f (N)

< −λ(2l1)
pK

p

1 − max
QT

∣∣f (t,x)
∣∣ + λ(2K1l1)

p + f (N) � 0.

This contradicts the assumption that atN we have maximum ofv. Taking into account that onΓ the function
v(t,x) is non-positive we conclude thatv(t,x) � 0 in Q̄T and hence

u(t,x) � K1(l1 + x1) � 2K1l1.

Functionṽ(t,x) ≡ u(t,x) + h(x1) satisfies the equation

ṽt − �ṽ = −ai(t,x)u
qi
xi

+ fp(u) + f (t,x).

If ṽ(t,x) attains minimum at the pointN1 ∈ Q̄T \ Γ , then at this point we have∇ṽ = 0, i.e.ux1 = −h′ = −K1,

uxi = 0 for i � 2 and hence
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ṽt − �ṽ|N1 = a1(N1)K
q1
1 + fp

(
u(N1)

) + f (N1)

> λ(2l1)
pK

p

1 + max
QT

∣∣f (t,x)
∣∣ − λ(2K1l1)

p + f (N1) � 0.

This contradicts the assumption thatṽ(t,x) attains minimum atN1. Taking into account that onΓ the function
ṽ(t,x) is non-negative we conclude thatṽ � 0 in Q̄T and consequently

u(t, x) � −K1(l1 + x1) � −2K1l1.

For evenq1 the estimateu(t,x) � 2K1l1 can be obtained similarly. In order to obtain the estimate from the b
we need to assume thatp is even number too. For evenp one can easily see that the solution of problem (1
(0.4) cannot attain negative minimum in̄QT \ Γ , and due to the fact thatu0(x) � 0 we obtain the needed estima
from the below.

If q1 > p, then for anyα > 0 we can selectK1 sufficiently big (without changingu0(x)) so that

λ(2l1)
p

K
q1−p

1

+ maxQT |f (t,x)|
K

q1
1

� α.

Theorem 2 is proved. �
Proof of Theorem 3. It is similar to the proof of Theorem 2. In fact, consider auxiliary equation

ut − �u = −a(t,x)|∇u|q + fp(u) + f (t,x) in QT , (1.5)

wherefp is the same as in the proof of Theorem 1. For the functionv(t,x) ≡ u(t,x) − h(x1), whereh(x1) =
K1(l1 + x1) we have

vt − �v = −a(t,x)|∇u|q + fp(u) + f (t,x).

At the pointN ∈ Q̄T \ Γ of maximum ofv similarly to the previous cases we have

vt − �v|N = −a(N)K
q

1 + fp

(
u(N)

) + f (N) (1.6)

< −λ(2l1)
pK

p
1 − max

QT

∣∣f (t,x)
∣∣ + λ(2K1l1)

p + f (N) � 0. (1.7)

This contradicts the assumption that atN we have maximum ofv. Taking into account that onΓ the functionv is
non-positive we conclude thatv � 0 in Q̄T and henceu � 2K1l1.

For evenp one can easily see that the solution of problem (1.5), (0.4) cannot attain negative minimum inQ̄T \Γ

and due to the fact thatu0(x) � 0 we obtain the needed estimate from the below.
If q > p, then as in previous case for anyα > 0 we can selectK1 sufficiently big such thatλ(2l1)

pK
p−q

1 � α.

Theorem 3 is proved. �

3. The influence of the diffusion

Proof of Theorem 4. Suppose that

κ > 3λl
p+1
1 (2K1)

p−1 + 3l1

2K1
max
QT

|f |.
Construct the auxiliary problem using the cut functionfp introduced in Section 2. Consider equation

ut − κux1x1 − �′u = fp(u) + f (t,x), (3.1)

coupled with conditions (0.4). As in the proof of Theorem 1, here the goal is to establish the estimate|u| � 2K1l1
for the solution of problem (3.1), (0.4). Such estimate implies the coincidence of Eqs. (3.1) and (0.
consequently the estimate|u| � 2K1l1 is valid for the solution of problem (0.8), (0.6) as well.
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ame
Introduce the barrier functionh(x1):

h(x1) ≡ −K1

3l1
x2

1 + 5

3
K1x1 + 2K1l1.

Such choice is stipulated by the necessity the barrier function to satisfy the following properties:

h(−l1) = 0, h(0) = 2K1l1, h′(x1) � K1, −κh′′ > λ(2K1l1)
p + sup|f |.

Forv(t,x) ≡ u(t,x) − h(x1) we have

vt − κvx1x1 − �′v = fp(u) + f (t,x) + κh′′(x1) = fp(u) + f (t,x) − κ
2K1

3l1
(3.2)

< fp(u) + f (t,x) − λ(2K1l1)
p − max

∣∣f (t,x)
∣∣ � 0. (3.3)

Thus functionv cannot attain maximum inQT \ Γ . OnΓ we havev � 0. Henceu(t,x) � h(x1).

Similarly we prove that̃v ≡ u − h(−x1) � 0, i.e.u(t,x) � h(−x1). Consequently

u(t,x) � h(0) = 2K1l1.

Taking functionsu(t,x) + h(x1) and u(t,x) + h(−x1) instead ofu(t,x) − h(x1) and u(t,x) − h(−x1)

respectively in the same manner we conclude that

u(t,x) � −h(0) = −2K1l1.

Similarly to the proof of Theorem 1, introducing functionv1 = ve−t , we can prove that Theorem 4 is valid wi
κ � 3l

p+1
1 (2K1)

p−1 + 3l1(2K1)
−1 maxQT |f |.

Theorem 4 is proved. �

4. Arbitrary source

In this section we consider arbitrary functionQ(u) instead ofλup . Assume thatQ satisfies the following
inequality

−Q(2l1K1) � Q(z) � Q(2l1K1) for |z| � 2l1K1. (4.1)

We restrict ourselves by the generalization of Theorem1. Other results can be generalized exactly in the s
manner.

Consider equation

ut + a(t,x) · ∇u = �u + Q(u) + f (t,x), (4.2)

coupled with conditions (0.4).

Theorem 5.Assume thatQ satisfies(4.1) and

a1(t,x) � Q(2l1K1)K
−1
1 + maxQT |f (t,x)|

K1

or

a1(t,x) � −Q(2l1K1)K
−1
1 − maxQT |f (t,x)|

K1
.

Then the solution of problem(4.2), (0.4) remains bounded for allt > 0 and

max
QT

∣∣u(t,x)
∣∣ � 2K1l1.
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Proof. Without loss of generality assume that

a1(t,x) > Q(2l1K1)K
−1
1 + maxQT |f (t,x)|

K1
.

The only difference in comparison with Theorem 1 is inconstructing of the cut function. Introduce the auxilia
equation:

ut − �u = −a(t,x) · ∇u + fQ(u) + f (t,x) in QT , (4.3)

where

fQ(z) =



Q(z), for |z| � 2K1l1,

Q(2K1l1), for z > 2K1l1,

Q(−2K1l1), for z < −2K1l1.

Exactly in the same manner as in the proof of Theorem 1 we show that for the solution of problem (4.3
the estimate|u(t,x)| � 2K1l1 is valid. Consequently (4.3) and (4.2) coincide and as a consequence the solu
problem (4.2), (0.4) is bounded.

The casea1(t,x) � −Q(u)K−1
1 − K−1

1 maxQT |f | can be treated in the same way.�
Consider now equation

ut = κux1x1 + �′u + Q(u) + f (t,x) (4.4)

coupled with conditions (0.4). Analogously we can prove the following theorem.

Theorem 6.Assume thatQ satisfies(4.1) and

κ � 3l1

2K1
Q(2K1l1) + 3l1

2K1
max
QT

∣∣f (t,x)
∣∣.

Then the solution of problem(4.4), (0.4) remains bounded for allt > 0 and

max
QT

∣∣u(t,x)
∣∣ � 2K1l1.

5. Remarks on the existence of the solution

As it was already mentioned in the introduction, for problem (0.1), (0.4) as well as for (0.2), (0.4) ifqi � 2
and (0.3), (0.4) ifq � 2 the existence of a classical solution follows from theL∞ estimate of the solution unde
some assumptions on the smoothness of the coefficients. Namely functionsai(t,x) andf (t,x) must be Hölder
continuous functions (see [9,11]). The a priori estimate of the gradient which is the key step when prov
existence theorem generally speaking fails whenqi > 2 andq > 2. Recently there appeared several papers w
the condition on no more than quadratic growth of the gradient term is generalized (see [17,18,20]). Unfort
for the Dirichlet problem, Eqs. (0.2) and (0.3) do not satisfy assumptions of these papers and we canno
approach suggested there. Let us apply here the classical approach that goes back to S.N. Bernstein an
the preliminary boundary estimates, differentiation of the equation with respect toxi , i = 1, . . . , n, followed by
multiplication byuxi and summation overi. The maximum principle is then applied to the resulting equation
the functionw = |∇u|2.

Consider problem (0.2), (0.4) in domainPT = (0, T ) × P, whereP = {x: |xi | < li , i = 1, . . . , n}. Suppose tha
p andqi > 2 are even and

ai � λ(2li)
pK

p−qi

i + maxQT f
, f � 0, u0 � 0,
Ki
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where|u0xi (x)| � Ki , i = 1, . . . , n. From Theorem 2 we conclude that inPT the following estimates hold

0� u(t,x) � Ki(li + xi), 0 � u(t,x) � Ki(li − xi). (5.3)

These inequalities imply the boundary gradient estimates:
∣∣uxi (t,x)

∣∣∣∣
xi=±li

� Ki.

Having these boundary gradient estimates we can easily apply the Bernstein’s approach ifai = ai(t), i = 1, . . . , n to
obtain the apriori estimate of|∇u| which in turn implies the existence of the classical solution under the smoot
assumptions onai andf . For more details see [9,11].
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