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Abstract

The goal of this paper is to investigate the role of the gradient term and of the diffusion coefficient in the preventing of the
blow-up of the solution for semilinear and quasilinear parabolic problems.
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Résumé

Le but de cet article est de voir comment le terme de gradient et le coefficient de diffusion empéchent I'explosion des solutions
des problemes semilinéaires et quasilinéaires paraboliques.
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1. Introduction and main results

In the present paper we consider the following convective diffusion equations
us +at,x) - Vu = Au + rau? + f(t,x), (0.1)
ur +ai (t, ul = Au+ruP + f(t,X), (0.2)
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and equation

ur +a(t,x)|Vul? = Au + au? + f(z,X) (0.3)
in the domainQr = 2 x (0, T), $£2 c R" coupled with conditions
u(0,X) =uo(X), wu(t,X)|s, =0, Sy =082 x (0,T). (0.4)

Here\ andg are positive constantg; and p are positive intege; (z, X), a(¢, X) and f (¢, X) are given functions,
ar, x) = (a1(t, X), ..., an(t,x)), a(t,X) - Vu = a;u,, and

n
aiull = Zaiuz;.
i=1
Without loss of generality assume that domgidies in the strip|x1| < /1. Suppose that
uo(X)|pe =0 and makuoy, (X)| < K1, (0.5)
whereK is some positive constant.

Let us formulate the results concerning the preventive effect of the gradient terms.

Theorem 1.Assume that

a1(1,%) > (2P kDL Mer LX)

K,
or
1 ma £, X
a1(t,%) < —a@P kP ~L = s /()]
K;

If condition (0.5) is fulfilled then the solution of proble.1), (0.4) remains bounded for all > 0 and

n&ax|u(t, X)| < 2K1l1. (0.6)

T

Theorem 2.Suppose that0.5) is fulfilled.

(i) If g1 is odd and
ar(t.x) > M) KD+ —ma’@;{'q{ Gkl
1

or

maxg; | f(z,X)|
K—Zl
then the solution of probleri®.2), (0.4) remains bounded for all > 0 and (0.6) holds.

If in addition g1 > p, then estimat&0.6) holds withas(¢,X) > « or a1(t,X) < —a for any strictly positive
numbera.

(ii) If g1 and p are even and

_ ma
ar(t, %) > (2" KL + K#ff, £>0, uo>0,

1
then the solution of probleri®.2), (0.4) remains bounded for all > 0 and

0<u(t,xX) <2K1;. (0.7)

ar(t,X) < —A(2)P K] —

’

If in additiongy > p, then estimat€0.7)is valid for a1 (¢, X) > « for any positiveax.
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Theorem 3.Suppose thap is even and
maxo, f(t, X)
K]

If (0.5) is fulfilled, then the solution of proble®.3), (0.4) remains bounded for all > 0 and (0.7) holds.
For g > p this estimate holds with(z, X) > « for any positivex.

a(t,x) > 12" K7™ + . f=0,u0>0.

Let us give a simple physical interpretation of Theorem 1. k@t x) be temperature and = (ai, az, az)
velocity field. If the velocity is big enough at least in one direction (for exampler —x1), then the convective
transfer (from the left itz1 is positive or from the right if negative) in this direction brings sufficient cold substance
from the boundary, so as not to allow the teifhto blow-up the temperature.

Eq.(0.3) without gradient term (i.e. when= 0) was investigated by many authors and there is extensive
literature on this subject (see, for example, [12] and the references there). It is well known that the phenomenon of
blowing up of the solution may occur in this case, {6z, x*)| — +o00 whent — ¢* at least for one* € £2. In
[3] the authors introduce the gradient tef¥wu | in order to investigate the effect of this term on global existence
or non-existence of the solution of the Dirichlet problem. Later the influence of the gradient term in the blow up
phenomenon for Eq. (0.3) was studied in [4—8,14—16]. The main issue of these works was to determine fpr which
andg the blow-up in finite time occurs and for which the solution remains bounded. Roughly speaking it turns out
that blow-up in finite time may occur if and only if > ¢g. For more details see [15]. So we can conclude that the
gradient term controls the source term in the sense that there is no blow upgf From Theorem 3 of the present
paper it follows that if the coefficient is big enough, then the gradient term controls the source term even in the
case when the power of the gradient term is less then the power of the sourgexegmf p < ¢, then Theorem 3
guarantees the boundedness of the solution for any positivoreover, as it follows from Theorems 1, 2 the
presence of the derivative only in one directigp can “hold” the maximum of the solution if the coefficient
is big enough. The interpretation presented above gives some idea why this happens. Application of Eg. (0.3) wa:
givenin [13].

Convective diffusion equations with blow up terrfi were studied in [1,2,10]. Different cases of blow up of the
solution were inestigated there.

The prevent of blow-up of the solution can be also obtained by taking sufficiently big diffusion (heat
conductivity) coefficient at least in one direction. To demonstrate this we consider the following equation

Ur =Ky, + ANu+ 2 + f(1,X%), (0.8)
coupled with conditions (0.4), het®'u = "7 5 uy,y;.

Theorem 4.Suppose that
31
> 3P 2Kk )P+ =2 max £z, %)
K 1 T(2K1) 2K1 QT>4f( )|
Then the solution of problei®.8), (0.4) is bounded for alk > 0 and

maxu(z, X)| < 2K1l1.
or

The physical interpretation of Theorem 4 is that if the heat conductivity at least in one direction is sufficiently
big, then the heat flow through the boundary in that direction is big enough to prevent the unbounded growth of the
temperature. Let us mention here that for the equation

ur =k |ulPuyy + A'u+ruf + f(t,X) (0.9)
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the boundedness of the solution of problédr®), (0.4) for any positivex follows immediately from [19]. Here
combining the method proposed in [19] with the proof of Theorems 1-3 of the present paper we obtain similar
result for problem (0.8), (0.4).

We would like to emphasize that all results of the present paper mentioned above can be easily extended to th
case where the teri? is substituted by functio® (1). The restrictions o (1) are formulated in Section 4, in
particular besidesu? we can takeD (1) = e“.

The paper is organized as follows. In Section 2 we give the proofs of Theorems 1-3. Section 3 deals with
problem (0.8), (0.4). In Section 4 we substitaie” by Q(1). In the last section we discuss the existence theorems.
For problems (0.1), (0.4) and (0.8), (0.4) the existence of a classical solution follows fromdtestimate of
the solution under some assumptions on the smoothness of the coefficients. The same is valid for problems (0.2
(0.4) and (0.3), (0.4), if;; < 2 andg < 2 correspondingly (see [9,11]). Werfaulate conditions which guarantee
the existence in the speciehse of classical solution fef > 2 for problem (0.2), (0.4). Concerning the global
solvability of problem (0.3), (0.4) fog > 2 we refer to [8,14,16].

2. Proof of Theorem 1-3

Proof of Theorem 1. Suppose first that

_1 ma t,
ai(t,x) > r(2A1)" K] i W. (1.1)
1
Introduce the auxiliary equation:
ur—Au=—-at,x)-Vu+ fp(w)+ f(t,X) inQr, (1.2
where
AzP, for |z] < 2K1l4,

fp(Z) = 1 AM(2K1l1)P, for z > 2K1l4,
AM—=2K111)?P, forz < —2Kil1.

The goal is to obtain the estimalte(r, X)| < 2K1/1 for the solution of problem (1.2), (0.4). If such estimate takes
place, then Egs. (1.2) and (0.1) coincide and as a consequence the solution of problem (0.1), (0.4) will be boundec
Consider function (¢, X) = u(t, X) — h(x1), whereh(x1) = K1(I1 + x1). One can easily see that

vy — Av=—a(t,X) - Vu + fp(u) + f(t,X). (2.3)
If the functionuv(z, x) attains maximum at the poitd € Q7 \ I" (I" is the parabolic boundary of the domairy),
then at this point we hav@v =0, i.e.u,, =h' = K1, u,, =0, fori > 2 and hence
v — Avly = —a1(N)K1 + fp (u(N)) + f(N)
< —)»(211)‘”K{7 — rgaﬁf(t, X)| + A(2K1l)P + f(N) <O0.
T
This contradicts the assumption thataive have maximum of. Here we use the inequalitgy, (1) < A(2K1/1)7.

On I" the functionu(z, x) is non-positive. In fact, due to (0.5)(0, X) = uo(xX) — K1(/1 + x1) < 0 and from (0.4)
v|s, = —hls; <0.Hencev <0in Qr and

u(t,x) < K1(l1 + x1) < 2Kala.
Now let us consider functiofi(z, X) = u(z, X) + h(x1). We have

U — Av=—at,X) - Vu+ f,(u) + f(t,X).
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If the function 9(z, x) attains minimum at the poin¥y € Q7 \ I" then at this point we hav&? = 0, i.e.
uy, =—h"=—Ki, uy, =0fori > 2 and hence
U — Ablyy = a(ND K1+ fp(u(N) + f(N1)
> AM21)P K] + n&a)qf(t, X)| — A(2K111)? + f(N1) = 0.
T
This contradicts the assumption thedttains minimum atv1. Here we use the inequalitfy, (1) > —A(2K1/1)?. It

is clear that on’” the functionv is non-negative. In fact, due to (0.6)0, X) = uo(X) + K1(/1 + x1) > 0 and from
(0.4)v|s, = hl|s, =0, hences > 0in Q7 and

u(t,x) > —K(1+x1) > —2K1l1.

Forai > k(211)PKf_1 + Kl_l maxp, | f| Theorem 1 is proved.

Suppose now that; > )»(211)1”1(]’_’_1 + K{l maxg, | f|. Substitute function in (1.3) byv1 = ve™’. Forvi we
have

vy v — Avp =€ (—a(t, X)-Vu+ fp(u) + f(t, X)).

Functionv; cannot attain positive maximum at the poiNte Q7 \ I" because in this point the left side is
strictly positive and the right side non-positive. @hthe functionv; is non-positive, hence; < 0 in Q7 and
u < K1(l1+x1) < 2K1l;.

Similarly consideringi; = ve~! instead ofo we obtain the needed estimate from below.

The caser1(t, X) < —A(le)PK{’_l - Kl‘l maxg, | f| can be treated in the same way with the only difference

in the choice of the barrier. Here insteadhof1) = K1(/1 + x1) we must také(x1) = K1(l1 — x1).
Theorem 1 is proved. O

Proof of Theorem 2. If g1 is odd, then the proof of this theorem is similar to the previous one. In fact, consider
auxiliary equation
up — Au=—a;(t,ull + f,w) + f(t,x) in Qr, (1.4)

where f, is the same as in the proof of Theorem 1. For the functionx) = u(z, X) — h(x1), whereh(x1) =
K1(l1 + x1) we have

v — Av = —a; (8, )ul; + f W) + f(1,X).

If the function v(z, x) attains maximum at the poin¥ € Qr \ I', then at this point we hav&v = 0, i.e.
uy, =h'=Ki, uy, =0, fori > 2 and hence

v — Avly = —ar(N)K* + f,(u(N)) + f(N)
< —M2)P K] - rgaxif(t, X)| 4+ A(2K111)? + f(N) <O0.
T

This contradicts the assumption thattwe have maximum ob. Taking into account that of" the function
v(t, X) is hon-positive we conclude thatt, x) < 0in Qr and hence

u(t,x) < K1(l1 + x1) < 2Kala.

Functionov(z, X) = u(t, X) + h(x1) satisfies the equation
U — AT = —a; (t, )ulds + fpu) + f(1,%).

If (¢, x) attains minimum at the point; € Qr \ I', then at this point we hav@s = 0, i.e.u,, = —h' = —Kx,
uy, =0fori > 2 and hence
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U — Ab|y, = a1(ND)K{* + fp(u(ND) + f(N1)
> AP KL + néaﬁf(t, X)| = 2(2K1l1)? + f(N1) > 0.

This contradicts the assumption that, x) attains minimum aiVi. Taking into account that of' the function
v(t, X) is non-negative we conclude that: 0 in Q7 and consequently

u(t,x) > —Kai(l1 +x1) > —2Kal;.
For every; the estimate: (¢, X) < 2K1/1 can be obtained similarly. In order to obtain the estimate from the below
we need to assume thatis even number too. For evgnone can easily see that the solution of problem (1.4),
(0.4) cannot attain negative minimumy \ I", and due to the fact that(x) > 0 we obtain the needed estimate

from the below.
If g1 > p, then for anyx > 0 we can seleck; sufficiently big (without changingo(x)) so that

A(21)P  ma t, X
( 1_) n XQT|qJI( )|<a.
KZl 14 Kl

Theorem 2 is proved. O

Proof of Theorem 3. It is similar to the proof of Theorem 2. In fact, consider auxiliary equation
u; — Au=—a(t,X)|Vul? + fp(u) + f(,X) in Qr, (1.5)

where f), is the same as in the proof of Theorem 1. For the functionx) = u(¢, X) — h(x1), whereh(x1) =
K1(l1 + x1) we have

v — Av=—a(t,X)|Vul? + fpu) + £, X).
At the pointN € Q7 \ I of maximum ofv similarly to the previous cases we have
v — Avly = —a(N)K{ + f,(u(N)) + f(N) (1.6)
< —A(2)PKY — n&a)qf(t, X)| +A(2K111)? + f(N) <O0. (1.7)
T
This contradicts the assumption that\atve have maximum oé. Taking into account that of the functionv is
non-positive we conclude that< 0 in Q7 and hencer < 2K1l1. .
For evenp one can easily see that the solution of problem (1.5), (0.4) cannot attain negative minir@ui in
and due to the fact thai(x) > 0 we obtain the needed estimate from the below.

If ¢ > p, then as in previous case for amy- 0 we can seleck sufficiently big such that(2/1)? K™ < a.
Theorem 3 is proved. O

3. The influence of the diffusion

Proof of Theorem 4. Suppose that
3l
> 3P k)P + =X max| f].
1 (2K1) TR [f]
Construct the auxiliary problem using the cut functignintroduced in Section 2. Consider equation

U — Ky — Au= f(u) + f(t,X), (3.1)

coupled with conditions (0.4). As in the proof of @arem 1, here the goal is to establish the estimgte 2K1/1
for the solution of problem (3.1), (0.4). Such estimate implies the coincidence of Egs. (3.1) and (0.8) and
consequently the estimafe| < 2K1/; is valid for the solution of problem (0.8), (0.6) as well.
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Introduce the barrier functiol(x1):

K1 5
h(xy) = _3_th + §K1x1 + 2K1l1.

Such choice is stipulated by the necessity the barrier function to satisfy the following properties:
h(=11) =0, h(0)=2Kil1, K (x1)>K1, —«kh">Ar2K1l1)? +sup|fl.
Forv(z,X) = u(t, x) — h(x1) we have

’ ” 2K3
Vp — KUy, — Ao = f(u) + f(t,X) +ch"(x1) = fp(u) + f(t,X) — “Z, (3.2)

< fp) + f(t,x) — A(2K1l1)? —max f(t,x)| < 0. (3.3)

Thus functiorv cannot attain maximum i@7 \ I". OnI" we havev < 0. Henceu(z, X) < h(x1).
Similarly we prove thab =u — h(—x1) <0, i.e.u(t, X) < h(—x1). Consequently

u(t,X) < h(0) =2K1l;.

Taking functionsu(z, X) + h(x1) and u(t,x) + h(—x1) instead ofu(z,X) — h(x1) and u(t,X) — h(—x1)
respectively in the same manner we conclude that

u(t,x) > —h(0) = —2K1l1.

Similarly to the proof of Theorem 1, introducing function= ve™’, we can prove that Theorem 4 is valid with
K > 3Pk P 4 312K 1) T maxy, | 1.
Theorem 4 is proved. O

4. Arbitrary source
In this section we consider arbitrary functigh(u) instead ofAu?. Assume thatQ satisfies the following
inequality
—0(21K1) < 0(z) < Q(211K1) for|z| < 2/1K1. (4.1)

We restrict ourselves by the generalization of Theofier®ther results can be generalized exactly in the same
manner.
Consider equation

ur+a(t,x)-Vu=Au+ Q) + f(z,X), (4.2)
coupled with conditions (0.4).

Theorem 5.Assume tha®) satisfieg4.1) and

ar(t,%) > QLK) Kt + w
1
or
a1(t, ) < —QhKD)K;* - %{(“X)ﬁ

Then the solution of problei@.2), (0.4) remains bounded for all > 0 and
maxu(, X)| < 2K1l1.
or
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Proof. Without loss of generality assume that

ma t,X
a1(t,x) > Q21 K1) KL + W'
1
The only difference in comparison with Theorem 1 isconstructing of the cut function. Introduce the auxiliary
equation:

u; —Au=—-at,x)-Vu+ fou)+ f(t,x) inQr, (4.3)
where
0(2), for |z| < 2Kal1,
fo(@ =1 Q@2Kih), forz>2Kili,
Q(—2K1l1), forz < —2Kil1.
Exactly in the same manner as in the proof of Theorem 1 we show that for the solution of problem (4.3), (0.4)
the estimatéu(z, X)| < 2K1/; is valid. Consequently (4.3) and (4.2) coincide and as a consequence the solution of

problem (4.2), (0.4) is bounded.
The caseun (1, X) < —Qu)K; * — Ky *maxg, | f| can be treated in the same way

Consider now equation
Ur =Ky, + Nu+ Qu) + f(t,X) (4.4)
coupled with conditions (0.4). Analogdysve can prove the following theorem.

Theorem 6.Assume tha© satisfieg4.1) and
31 31

> —0(2K1l — ma t,X)|.

K 2K1Q( 11)-i-2Kl Qr)df( )|

Then the solution of problei@.4), (0.4) remains bounded for all > 0 and
maxu(t, X)| < 2K1l1.
or

5. Remarks on the existence of the solution

As it was already mentioned in the introduction, for problem (0.1), (0.4) as well as for (0.2), (@AXiR
and (0.3), (0.4) ify < 2 the existence of a classical solution follows from thg estimate of the solution under
some assumptions on the smoothness of the coefficients. Namely fungtions and f (¢, x) must be Holder
continuous functions (see [9,11]). The a priori estimate of the gradient which is the key step when proving the
existence theorem generally speaking fails whes 2 andg > 2. Recently there appeared several papers where
the condition on ho more than quadratic growth of the gradient term is generalized (see [17,18,20]). Unfortunately,
for the Dirichlet problem, Egs. (0.2) and (0.3) do not satisfy assumptions of these papers and we cannot use the
approach suggested there. Let us apply here the classical approach that goes back to S.N. Bernstein and involv
the preliminary boundary estimates, differentiation of the equation with respegtie=1, ..., n, followed by
multiplication byu,, and summation over The maximum principle is then applied to the resulting equation for
the functionw = |Vu/|2.

Consider problem (0.2), (0.4) in domaity = (0, T) x P, whereP = {x: |x;| <l;,i =1,...,n}. Suppose that
p andg; > 2 are even and

maxo, f

a; 2)»(21,')17[(;7_% +T, f=20,u02>0,
1
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where|ugy, (X)] < K;,i =1, ..., n. From Theorem 2 we conclude that#z the following estimates hold
O0<u,X) < Ki(li +xi), O<u(t,X) <Ki(li —xi). (5.3)
These inequalities imply the boundary gradient estimates:
i (40—, < Ki-

Having these boundary gradient estimates we can easily apply the Bernstein’s appepach;ift),i =1,...,nto
obtain the apriori estimate ¢V «| which in turn implies the existence of the classical solution under the smoothness
assumptions on; and f. For more details see [9,11].
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