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Abstract

In this paper, motivated by the Galilean invariance of the solutions, we use the concept of orbital stability for the Vlasov–Poisson
system. We prove that a family of stationary solutions, called polytropic gas spheres, are orbitally L1 stable in the gravitational
case by considering direct variational arguments.
©

Résumé

Dans cet article, motivés pour la propriété d’invariance Galiléenne des solutions, nous étudions la notion de stabilité orbitale
pour le système de Vlasov–Poisson. Nous obtenons pour le cas gravitationnel que la famille des solutions stationnaires, connue
comme gaz de sphères polytropiques, sont orbitalement stables dans L1 en considérant des arguments variationnels directs.
©
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1. Introduction and main result

This paper relies on the analysis of stability properties of stationary solutions, called polytropic spheres, to the VP
system in the gravitational case

∂tf + v∇xf − ∇xφ∇vf = 0, (1.1)

f (t = 0, x, v) = f 0(x, v), (1.2)
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�xφ = 4πρ, lim|x|→∞φ(t, x) = 0. (1.3)

This topic is of particular interest in stellar dynamics for the understanding of galaxies and clusters.
The existence of families of stationary solutions to the gravitational VP system has been previously analyzed in

several works, e.g. [5,16]. Here, we focus our attention on a particular family, the so called polytropic spherical
systems [16], which are defined by

νμ = ν(x, v) = c
(
E0 − |v|2/2 − φ

(|x|))μ

+, (1.4)

where (f )+ denotes the positive part of f , α < E0 < 0, −1 < μ and c > 0. φ is coupled with ν by the Poisson
equation (1.3) and satisfies lim|x|→0φ(|x|) = E0 − α. The family (1.4) involves four different parameters. However,
the Coulombian constraint implies the existence of a unique polytrope for any admissible values of μ, c and α.
Typically, these solutions are indexed by the exponent μ. The functions represented by (1.4) can be seen as a particular
case of the family of generalized polytropic solutions [5,16]. The existence of these and other families of solutions
were proved in [5] by means of the associated characteristic system.

A wide literature could be mentioned from the 60’s about the stability properties of these solutions. In [1,2] Antonov
studied the linear stability of polytropic solutions with 0 < μ < 7/2. Later, in [3,16] the stability for other values
of μ was analyzed from a numerical point of view. Several works develop nonlinear dynamical stability criteria
[8,11–14,19,20,23] for some of these solutions via variational arguments based on the Energy–Casimir or the Energy
functionals. In this direction, in [11,13,20,23] the polytropes defined by 0 < μ < 3

2 , c = 1 and
∫

R3 νμ dx = M > 0
were deduced as the minimizers of the Energy–Casimir functionals

Qμ,k(f ) = μ

μ + 1

∫
R6

f 1+1/μL−k/μ dx dv + E(f ), (1.5)

in a mass constrained space, i.e. ‖f ‖L1(R6) = M > 0, where L = |x ×v|2, k = 0 and the Total Energy functional E(f )

is defined by

E(f ) = 1

2

∫
R6

|v|2f (t, x, v)dx dv − 1

8π

∫
R3

|∇φ|2 dx. (1.6)

Here, the first term in the right-hand side is the kinetic energy EKIN(f ) and (minus) the second term is the potential
energy EPOT(f ). This result was also proved for generalized polytropic solutions under the additional assumption that
f is also spherically symmetric. The total energy, as well as the norms ‖f ‖Lp(R6) with p ∈ [1,∞], remain constant
along the time evolution for regular solutions. In case of p = 1, we actually have mass conservation. Literature con-
cerning the stability of such solutions is based on these conserved properties. For instance, only spherical polytropes
with −1/2 � ν � 7/2 have finite mass, and if ν < 7/2 they also have compact support.

The restriction μ < 3/2, appearing in [11,13,20,23], was removed in [12,14] by minimizing the energy functional
in the mass–Casimir space

Λ
μ
M =

{
f : R6 → R

+
0 ; μ

μ + 1
‖f ‖1+1/μ

L1+1/μ(R6)
+

(
7

2
− μ

)
‖f ‖L1(R6) = M

}
.

Although these works cover the range 0 < μ � 7
2 , these results do not determine exactly neither the spherical polytrope

minimizer nor the set of minimizers. In [8] the polytrope corresponding to μ = 0, c = 1,
∫

R3 ν0 dx = M was obtained
as the minimizer of

inf
{
E(f ); f ∈ L1+

(
R

6,M
) ∩ L∞+

(
R

6,1
)}

, (1.7)

where

Lp
+
(
R

n,F
) := {

g ∈ Lp
(
R

n
); g : Rn → R

+
0 , ‖g‖Lp(Rn) = F

}
.

The dynamical stability criteria developed in [8,11–14,19,20,23] are established in terms of the functionals

d(f,h) = O(f ) − O(h) + 1 ‖∇φf − ∇φh‖2
L2(R3)

, (1.8)

8π
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where O denotes the functional to minimize, i.e. the Energy–Casimir or Energy functionals, depending on the vari-
ational problem under consideration with respect to μ for functions in the space L1+(R6,M), Λ

μ
M or L1+(R6,M) ∩

L∞+ (R6,1), respectively. Also, φf denotes the solution to the Poisson equation �xφf = 4πρf . If νμ is a minimizer,
the dynamical stability criteria establish that for f 0 as initial condition in the above spaces and “close to” νμ, the
solution remains close to the set of minimizers in terms of d . Some of these results are valid for a general functional
framework and for other families of stationary solutions of the VP system, see [13,14] for more details.

Stability criteria should be determined by fixing three concrete features:

(1) the group of invariants associated with the structure of the system;
(2) the concept of distance to be used;
(3) the notion of admissible perturbation stemming from the functional neighbourhood set involved in the stability

criteria.

Let us specify some aspects of the stability criteria in accordance with the previous features.
The solutions of the VP system exhibit some invariance properties up to the noncompact group of symmetries

consisting of space translations, which give rise to the notion of orbit of a stationary solution as the more appropriate
set of functions which remains close to the time dependent solutions. Since the solutions to the VP system are invariant
by space translations, the orbit of the solution f is described by {f (t, x + k, v); k ∈ R

3}. The main idea of orbital
stability relies on the fact that a stationary solution fS is orbitally stable if small perturbations of fS remain close to
the orbit of fS along the evolution (in some sense to be precised in terms of the chosen distance and the admissible
perturbations, points (2) and (3)). Furthermore, the orbit set is optimal as shown by the Galilean invariance property:
if f is a solution to the VP system, then for all u ∈ R

3 we have that f u(x, v) = f (x − tu, v −u) is also a solution with
initial condition f (x, v − u). In the case of polytropes νμ, by choosing u small enough (in norm) we obtain initial
conditions close to νμ, meanwhile the corresponding solution only travels close to {νμ(t, x + k, v); k ∈ R

3}. We will
use the expression “orbital stability” to invoke any criterium for which the orbit of a stationary solution is the set of
functions which remains close to a perturbed VP solution. This concept has been widely employed in other contexts
such as bound states and traveling wave solutions to nonlinear PDE’s, for instance Klein–Gordon and Schrödinger
equations where similar invariances hold (see [6,7,9]).

The deduction of orbital stability of a stationary state by variational arguments implies a detailed analysis of the
set of minimizers. In [8,11] some orbital stability criteria in terms of the functional d were achieved for the polytropes
with 0 � μ < 3

2 by considering the Casimir functional. The general result obtained in [14] might be interpreted in our
context as follows. Firstly, it is proved [14, Theorem 3] that “up to a shift in x-space there are at most two minimizers”
in the set of minimizers of the energy with mass–Casimir constraints Λ

μ
M . Then, under the extra assumption of having

an isolated minimizer, it is proved [14, Theorem 4(b)] that this is dynamically stable in terms of (1.8) in the mass–
Casimir space Λ

μ
M . In the case that one of these two possible minimizers is a spherical polytrope, there are not

provided in [14] the value of the constants c and E0 determining (1.4).
After this paper was written, in a personal communication Y. Guo and G. Rein called our attention on the work [21],

where the assumption that the minimizer must be isolated in order to obtain stability is removed. In [21] it is proved
that for any minimizer obtained in [14] and for any initial condition f (0) ∈ C1

0(R6) ∩ Λ
μ
M such that

d
(
f (0), νμ

) + 1

8π
‖∇φf (0) − ∇φνμ‖2

L2(R3)
< δ,

there exists a shift vector, a ∈ R
3, such that

d
(
f (t), T aνμ

) + 1

8π
‖∇φf (t) − ∇φT aνμ‖2

L2(R3)
< ε,

where T aνμ(x, v) = νμ(x + a, v).
Concerning the concept of distance it has been shown that the functional d(f, νμ) is nonnegative for f ∈ Λ

μ
M .

However, for polytropes (among other solutions) one may think in d(f, νμ) as a weighted L2-difference between νμ

and f in the following sense: if 1 � μ � 7
2 it can be proved

d(f, νμ) � C‖νμ − f ‖2
2 6 , f ∈ Λ

μ with f � fmax, (1.9)
L (R ) M
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where fmax � ‖νμ‖∞ and C = 2
μ

inf0<f �fmax{f 1/μ−1}, see [14] for more details. An alternative stability criterium

that uses perturbative techniques was obtained in [22, pp. 264] in terms of the L2(R6) norm of the distribution,
although it only covers the case μ = 1.

In [14], the functional neighbourhood defining stability is the mass–Casimir space Λ
μ
M and the constant c and

E0 are not a priori determined for the possible polytropic spherical minimizer. In [22], the constraints ‖f ‖L∞ � M ,
supp(f ) � M and E(f ) � M determine the functional neighbourhood for the orbital stability.

In this work, we determine an orbital stability criterium in a functional neighbourhood of the spherical polytropes
with distance function L1(R6), which covers the whole range 0 � μ < 7/2. We use a different variational argument
that involves two constraints and implies the uniqueness of the minimizer. The Plummer case μ = 7/2 is analyzed
in [14].

We deal with the variational problem

I
μ
M,J := inf

{
E(f ); f ∈ Γ

μ
M,J

}
(1.10)

where Γ
μ
M,J = L1+(R6,M)∩L1+1/μ

+ (R6, J ). We will prove that the polytropic gas sphere solutions are orbitally stable
in the following sense:

Theorem 1.1 (Orbital Stability). Let μ ∈ [0,7/2) and ε > 0. Also, let νμ be a spherical polytropic solution given
by (1.4) with ‖νμ‖L1(R6) = M and ‖νμ‖L1+1/μ(R6) = J . Then, there exists δ = δ(ε) > 0 such that for every initial
condition f 0 satisfying

(1) E(f0) − E(νμ) � δ,
(2) f0 ∈ Γ

μ
M,J ∩ C1

0(R6),

the associated solution f to (1.1)–(1.3) verifies

inf
k∈R3

∥∥f (t, ·, ·) − νμ(· − k, ·)∥∥L1(R6)
� ε, ∀t ∈ (0,∞). (1.11)

If μ 
= 0 we also have

inf
k∈R3

∥∥f (t, ·, ·) − νμ(· − k, ·)∥∥L1+1/μ(R6)
� ε, ∀t ∈ (0,∞).

Theorem 1.1 establishes the concept of orbital stability for kinetic equations. One of the main improvements of
this result with respect to previous dynamical criteria for the solutions of the VP system is that the stability for the
solutions is established in terms of the L1(R6) norm, which could be the natural in the VP context. This approach
allows to cover the range of polytropes with μ ∈ [0,7/2). Also, the stability criteria are established for any polytrope
νμ in terms of its mass and L1+1/μ norm.

The minimization problems (1.10) present several difficulties. First, the energy is a nonconvex functional. Also,
it is invariant by space translations which implies a lack of relative compactness of any minimizing sequence. And,
finally, the space proposed for the minimization problem, Γ

μ
M,J = L1+(R6,M) ∩ L1+1/μ

+ (R6, J ), has two constraints.
Our minimizing argument is based on overcoming the above difficulties through a series of equivalent reduced

problems. Section 2 is devoted to the proof of Theorem 1.1 by using the ideas developed in [7]. It is then shown in the
next sections that the minimization problem enters in the framework of [7]. Section 3 explores the relation between
the variational problem (1.10) and an equivalent problem for the densities. This equivalence is obtained by finding
a series of variational problems whose analysis involves the exact solvability of the intermediate problems. In fact,
we prove that beyond this equivalence there is a deeper concept which implies that the minimizing sequences are
related in the sense of Theorem 3.1. The relation between the different minimization problems allows to give a new
minimizing argument for (1.10), which constitutes the key result of this paper. In Section 4 we minimize the reduced
problem obtained in the previous section. The argument developed at this point is related to those used in [19]. Finally,
in Appendix A the connection between the minimization problems associated with the Casimir energies, the Energy
with mass–Casimir constraint and (1.10) are analyzed.
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2. Orbital stability: proof of Theorem 1.1

Several approaches have been developed in other contexts to study orbital stability properties. We first mention that
the techniques used in [9,10] to deal with the orbital stability of stationary solutions to nonlinear wave equations are
strongly based on the analysis of the linearized operators. These arguments mainly consist in considering an abstract
Hamiltonian system which is invariant under a group of operators and then studying the effects of these invariances on
the stability of solitary waves. We also refer to [7], where variational techniques valid for Schrödinger-type equations
were considered. To prove Theorem 1.1, in this work we follow the argumental scheme of [7] sketched below:

(1) The system of equations is well-posed in a particular functional framework and the solutions satisfy some con-
servation laws.

(2) Stationary solutions minimize the variational problem

inf
{
O(u); u ∈ X, R(u) = M

}
, (2.1)

where the functional O as well as the constraints given by R are conserved quantities of the solutions. We remark
that if the functionals O and R are invariant by a noncompact group of symmetries, then the set of minimizers of
(2.1) is a noncompact set.

(3) All minimizing sequences for (2.1) are relatively compact up to symmetries. In our case, this means that for any
minimizing sequence fn, there exists yn ∈ R

3 such that the sequence fn(· − yn, ·) is relatively compact in L1.

Let us notice that the concept of solution considered in this work assumes that the sufficient conditions necessary
to claim the well-posedness (existence and uniqueness) of the problem hold, see for example [4,18] for a review.

Since assumption (1) is verified by νμ, μ ∈ [0,7/2), we shall focus our attention on proving that (2) and (3) are
also satisfied. In this direction we have the following result.

Theorem 2.1. For every 0 � μ < 7/2, M > 0 and J > 0 there exists a minimum of (1.10). Furthermore, this minimum
is reached in the orbit of the spheric polytrope νμ verifying ‖νμ‖L1(R6) = M and ‖νμ‖L1+1/μ(R6) = J . More precisely,
every minimizing sequence fn is relatively compact in L1(R6) up to spatial translations, i.e., there exists yn ∈ R

3 such
that fn(· − yn, ·) is relatively compact in L1(R6). In the case μ ∈ (0,7/2), fn(· − yn, ·) is also relatively compact in
L1+1/μ(R6).

Once we have proved that (1)–(3) holds, it is a simple matter to show that the solutions νμ are orbitally stable.

Proof of Theorem 1.1. If the thesis of Theorem 1.1 is not true, there would exist ε0, f 0
n and tn such that:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f 0
n ∈ Γ

μ
M,J ∩ C1

0

(
R

6),
E

(
f 0

n

) → E(νμ), n → ∞,

∀k ∈ R
3

⎧⎨
⎩

∥∥fn(tn, ·, ·) − νμ(· − k, ·)∥∥L1(R6)
> ε0

or∥∥fn(tn, ·, ·) − νμ(· − k, ·)∥∥L1+1/μ(R6)
> ε0,

(2.2)

for μ ∈ (0,7/2), and⎧⎪⎨
⎪⎩

f 0
n ∈ Γ 0

M,J ,

E
(
f 0

n

) → E(ν0), n → ∞,

∀k ∈ R
3

∥∥fn(tn, ·, ·) − ν0(· − k, ·)∥∥L1(R6)
> ε0,

(2.3)

for μ = 0. Now, we use the conservation of the mass and of the Lp norms to deduce that {fn(tn, · , ·)} is a minimizer
for (1.10), since

fn(tn, · , ·) ∈ Γ
μ
M,J , E

(
f 0

n (· , ·)) = E
(
fn(tn, · , ·)

) → E(νμ).

Then, (2.2) or (2.3) are clearly in contradiction with Theorem 2.1 as we can extract a subsequence from {fn(tn, · , ·)}
which is relatively compact up to translations. �
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The rest of the paper is devoted to prove Theorem 2.1.

3. On an equivalent reduced problem

As we pointed out in the introduction, we now propose a variational approach related to the problems stated in
(1.10) in order to prove the orbital stability of spherical polytropes with 0 � μ < 7/2. We actually show the relative
compactness in Lp of any minimizing sequence and that the minimum value is achieved in a particular polytropic
solution (up to translations in both cases). The method proposed in this work tries to minimize the difficulties by
considering a sequence of equivalent reduced problems. The equivalence relations rely on the fact that between the
functions f ∈ Γ

μ
M,J with the same density ρ(x) = ∫

R3 f (x, v)dv there are special functions f̃ whose energy is as

small as possible. Besides, f̃ can be expressed in terms of ρ and J by

f̃ (x, v) = J

(
1

2

(
3ρ(x)

4πJ

) 2
3 − |v|2

2

)0

+
≡

⎧⎪⎨
⎪⎩J if |v| �

(
3ρ(x)

4πJ

) 1
3

,

0 elsewhere,

(3.1)

when μ = 0, and

f̃ (x, v) =
((

2μ + 5

2(μ + 1)
Cρ

2
2μ+3 (x) − 3

2(μ + 1)
C

2μ+3
3

1

K1,1

|v|2
2

)
+

)μ

(3.2)

for μ > 0. Here,

C = J 1+1/μ∫
R3 ρ(x)

2μ+5
2μ+3 dx

and K1,1 is a positive constant (to be determined) depending only on μ. This definition leads to

EKIN(f̃ ) = 3
5
3

10(4πJ)
2
3

∫
R3

ρ(x)
5
3 dx, (3.3)

for μ = 0, and∫
R3

f̃ 1+1/μ(x, v)dv = Cρ(x)
2μ+5
2μ+3 ,

(3.4)

EKIN(f̃ ) = (
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

K1,1,

for μ ∈ (0,7/2). Let us observe that the integrals involved in (3.3) and (3.4) are well defined in virtue of the following
inequality

∫
R3

|ρ| 2μ+5
2μ+3 dx � C‖f ‖

2μ+2
2μ+3

L1+1/μ(R6)

(∫
R6

|v|2∣∣f (x, v)
∣∣dv dx

) 3
2μ+3

, (3.5)

which can be proved by well known arguments based on the nonnegativity of f . Thus, the total energy is given by

E(f̃ ) = E
μ
J (ρ) := K

(
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

− 1

2

∫
R6

ρ(x)ρ(y)

|x − y| dx dy,

where K = 35/3/(10(4π)2/3) for μ = 0 and K = K1,1 for μ > 0. We can now establish the equivalence between
(1.10) and a reduced problem for the densities. The idea of finding an equivalent problem was firstly introduced and
solved by G. Rein in [19] in the context of the Energy–Casimir minimization problem. Our argument is summarized
in the next theorem.
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Theorem 3.1. Let M > 0, J > 0 and μ ∈ [0, 7
2 ). Consider f ∈ Γ

μ
M,J such that E(f ) < ∞. Then, there exists a positive

function f̃ , defined by (3.1) or (3.2) in terms of ρ and J , verifying

(1) f and f̃ have the same mass density ρ,
(2) ‖f ‖L1+1/μ(R6) = ‖f̃ ‖L1+1/μ(R6) = J ,

(3) E(f̃ ) � E(f ).

In consequence the variational problems

R
μ
J,M := inf

{
E

μ
J (ρ); ρ ∈ L1+

(
R

3,M
) ∩ L

2μ+5
2μ+3

(
R

3)} (3.6)

and (1.10) are equivalent in the following sense:

(a) Their infima values coincide: R
μ
J,M = I

μ
J,M .

(b) Let {fn} be a minimizing sequence for any problem (1.10). Then, ρn(x) = ∫
R3 fn(x, v)dv is a minimizing sequence

for the corresponding problem (3.6). Moreover, if ρn is a minimizing sequence for any problem (3.6), then the
sequence of functions f̃n defined by (3.1) or (3.2) with associated densities ρn is a minimizing sequence for the
corresponding problem (1.10).

(c) (1.10) has a minimum if and only if (3.6) also has a minimum. In that case, the corresponding minimizers
verify (b).

Remark 3.2. Theorem 3.1 admits a reverse reading. Let us consider a function ρ ∈ L1+(R3,M) ∩ L
2μ+5
2μ+3 (R3). Then,

the function f̃ defined by (3.1) or (3.2), with associated density function ρ, satisfies:

(1) f̃ ∈ L1+(R6,M) ∩ L1+1/μ
+ (R6, J ),

(2) f̃ verifies (3.3), (3.4),
(3) E(f̃ ) � E(f ), ∀f ∈ L1+1/μ

+ (R6, J ) such that
∫

R3 f dv = ∫
R3 f̃ dv = ρ.

Theorem 3.1 requires the study of an auxiliary problem, defined in the following

Lemma 3.3. The minimization problem

KG,H = inf

{
1

2

∫
R3

|v|2z(v)dv; z ∈ L1+
(
R

3,G
) ∩ L1+1/μ

+
(
R

3,H
)}

(3.7)

has a minimum for 0 � μ < 7/2. KG,H verifies

KG,H = G
2μ+5

3

H
2μ+2

3

K1,1, for μ > 0

and

KG,H = (3G)
5
3

10(4πH)
2
3

, for μ = 0,

where K1,1 is defined by (3.7) with G = H = 1. This minimum is reached by a unique function zG,H . If μ > 0 and
G,H > 0, then zG,H is explicitly given by

zG,H (v) =
((

2μ + 5

2(μ + 1)

H
μ+1
μ

G
− 3

2(μ + 1)

H
μ+1
μ

2μ+3
3

G
2μ+5

3

1

K1,1

|v|2
2

)
+

)μ

. (3.8)

In the case μ = 0, zG,H is defined by

zG,H (v) =
⎧⎨
⎩H if |v| �

(
3G

4πH

)1/3

, (3.9)
0 elsewhere.
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If G = H = 0, (3.7) trivially implies K0,0 = 0 and z0,0 ≡ 0.

The rest of this section is devoted to prove the last two results.

Proof of Theorem 3.1. The main idea of the proof is to analyze a chain of equivalent variational problems starting
with (1.10)≡(P1) and finishing with (3.6)≡(P4):

(P1) inf
f

{
E(f ); f ∈ L1+

(
R

6,M
) ∩ L1+1/μ

+
(
R

6, J
)}

,

(P2) inf
ρ∈L1+(R3,M)

{
inf

h∈L1+(R3,J 1+1/μ)

Supp(h)=Supp(ρ)

{
inf∫

f 1+1/μ dv=h∫
f dv=ρ

{
EKIN(f )

}} + EPOT(ρ)
}
,

(P3) inf
ρ∈L1+(R3,M)

{
inf

h∈L1+(R3,J 1+1/μ)

Supp(h)=Supp(ρ)

{ ∫
K

ρ
2μ+3

3

h
2μ
3

dx

}
+ EPOT(ρ)

}
,

(P4) inf
ρ∈L1+(R3,M)

{
K

J
2μ+2

3

(∫
ρ

2μ+5
2μ+3 dx

) 2μ+3
3 + EPOT(ρ)

}
.

However, to control the densities of any minimizing sequence we have to deal with space pointwise versions of these
problems. It is also necessary a detailed analysis of the intermediate problems (P2) and (P3) which allows to describe
the intrinsic deep relation between the minimizing sequences given by properties (1), (2) and (3) in Theorem 3.1. For
the sake of simplicity we split the proof in several steps.

Step 1: Problem (P2). A function f̃ verifying (1), (2) and (3) in Theorem 3.1 minimizes the problem

inf
{
E(l); l ∈ Θ

}
,

where Θ = {l ∈ L1+1/μ
+ (R6, J ),

∫
R3 l(x, v)dv = ρ(x) a.e. x ∈ R

3}. This problem is equivalent to study

inf
{
EKIN(l); l ∈ Θ

}
(3.10)

because the potential energy only depends on the function ρ.
Let us first consider the case μ > 0. We define the sets

Θρ,h =
{
l : R6 → R

+
0 ;

∫
R3

l dv = ρ(x),

∫
R3

l1+1/μ dv = h(x), a.e. x ∈ R
3
}

and

Θρ = {
h ∈ L1+

(
R

3, J 1+1/μ
); Supp(ρ) = Supp(h)

}
.

Then, Θ = ⋃
h∈Θρ

Θρ,h. This simple idea provides the equivalence between (3.10) and the problem

inf
{
inf

{
EKIN(l); l ∈ Θρ,h

}; h ∈ Θρ

}
. (3.11)

In order to solve (3.11) we first analyze

inf
{
EKIN(l); l ∈ Θρ,h

}
(3.12)

for any fixed but arbitrary h ∈ Θρ . The constraints defining Θρ,h are fixed for any x ∈ R
3. Then, we propose to study

(3.12) by considering the problem

Px = inf

{
1

2

∫
R3

|v|2l(x, v)dv; l � 0,

∫
R3

l(x, v)dv = ρ(x),

∫
R3

l(x, v)1+1/μ dv = h(x)

}
(3.13)

for almost everywhere x ∈ R
3 fixed but arbitrary (this is the spatial pointwise version of the inner problem considered

in (P2)). Our argument is founded on the following basic idea: If (3.13) has a minimum Px a.e. x ∈ R
3 and this
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minimum is achieved by a function lx(v), then (3.12) has also a minimum
∫

R3 Px dx and it is achieved by the function
l(x, v) = lx(v).

We can control the dependence with respect to x in (3.13) because this problem obeys the general profile of (3.7),
where we identify l(x, ·) = z(·), G = ρ(x) and H 1+1/μ = h(x). Let us observe that the dependence with respect to
x is entirely concentrated on the value of the constants G and H . Lemma 3.3 gives the existence of a minimizer for
(3.13), where zG,H depends on G and H . The detailed analysis of this dependence done in the proof of Lemma 3.3
is motivated by the fact that we have to define hx(·) = zG,H (·) for G = ρ(x) and H 1+1/μ = h(x). Therefore, we have
analogous results for the problem (3.13): If x ∈ Supp(ρ) = Supp(h), then (3.13) has a minimum

Px = ρ(x)
2μ+5

3

h(x)
2μ
3

K1,1. (3.14)

This minimum is achieved by

l(x, v) = lx(v) =
((

2μ + 5

2(μ + 1)

h(x)

ρ(x)
− 3

2(μ + 1)

h(x)
2μ+3

3

ρ(x)
2μ+5

3

1

K1,1

|v|2
2

)
+

)μ

.

This concludes the analysis of problem (P2).
Step 2: Problem (P3). If x ∈ R

3 − Supp(ρ), then Px = 0. Now, using (3.14), we can rewrite (3.11) as

inf

{∫
R3

ρ(x)
2μ+5

3

h(x)
2μ
3

K1,1 dx; h ∈ Θρ

}
(3.15)

which is directly solvable by using Hölder’s inequality in the following way

∫
R3

ρ(x)
2μ+5
2μ+3 dx �

( ∫
R3

ρ(x)
2μ+5

3

h(x)
2μ
3

dx

) 3
2μ+3

( ∫
R3

h(x)dx

) 2μ
2μ+3

,

or equivalently

(
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

(
∫

R3 h(x)dx)
2μ
3

�
∫
R3

ρ(x)
2μ+5

3

h(x)
2μ
3

dx.

Furthermore, the equality holds if and only if h is proportional to ρ
2μ+5
2μ+3 . As consequence, the mimimun of (3.15) is

(
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

K1,1

and it is reached when h = Cρ
2μ+5
2μ+3 , where

C = J 1+1/μ∫
R3 ρ(x)

2μ+5
2μ+3 dx

.

We conclude that the infimum of (3.10) is achieved by f̃ , defined as

f̃ (x, v) =
((

2μ + 5

2(μ + 1)
Cρ

2
2μ+3 − 3

2(μ + 1)
C

2μ+3
3

1

K1,1

|v|2
2

)
+

)μ

,

and the infimum value is

EKIN(f̃ ) = (
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

2(μ+1)
K1,1.
J 3
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In the case μ = 0 our argument becomes easier because both conditions defining Θ are local in space. By using the
previous arguments we deduce in this case

f̃ (x, v) = lx(v) = J

(
1

2

(
3ρ(x)

4πJ

) 2
3 − |v|2

2

)0

+
and

EKIN(f̃ ) = 3
5
3

10(4πJ)
2
3

∫
R3

ρ(x)
5
3 dx,

which concludes the proof of Theorem 3.1. �
We now prove Lemma 3.3.

Proof of Lemma 3.3. Set Sμ(z) = 1
2

∫
R3 |v|2z(v)dv and consider KG,H defined by (3.7).

The positivity of KG,H is deduced from the inequality

‖g‖
2μ+5

3
L1(R3)

� C‖g‖
2μ+2

3
L1+1/μ(R3)

∫
R3

|x|2g(x)dx,

which holds for any positive function g. By using the scaling z̆(x) = az(bx), where a = Hμ+1/Gμ and b =
(H/G)

μ+1
3 , we find

KG,H = G
2μ+5

3

H
2μ+2

3

K1,1.

Also, the minimizers for a pair G = 1, H = 1 are related to the minimizers for G′,H ′ by the same scaling. Thus, we
can rewrite (3.7) as

inf

{
1

2

∫
R3

|v|2z(v)dv; z ∈ L1+
(
R

3,G
)
, ‖z‖L1+1/μ(R3) � H

}
(3.16)

since both problems have the same minimum and minimizers (any minimizer zG,H for (3.16) verifies
‖zG,H ‖L1+1/μ(R3) = H ).

Let {zn} be a minimizing sequence for (3.16). We have that ‖zn‖L1+1/μ(R3) and
∫

R3 |v|2zn(v)dv are uniformly
bounded. Therefore, {zn} is under the hypotheses of the Dunford–Pettis theorem:

(1) is bounded in L1(R3), because ‖zn‖L1(R3) = G;
(2) there is no concentration in any measurable set A, since∫

A

zn(v)dv � ‖zn‖L1+1/μ(R3)|A|μ+1;

(3) and there is no vanishing, since
∫
|v|�R

zn(v)dv � 1
R2

∫
R3 |v|2zn(v)dv.

Thus, we can extract a subsequence verifying zn ⇀ zG,H weakly in L1(R3) and{
zn ⇀ zG,H weakly in L1+1/μ

(
R

3
)
, for μ ∈ (0,7/2),

zn ⇀ zG,H in the weak-* L∞(
R

3
)

topology, for μ = 0.

Also zG,H ∈ L1(R3)∩ L1+1/μ(R3) and is nonnegative because it is obtained as a weak limit of nonnegative functions.
Using the inequalities
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∫
R3

|v|2zG,H (v)dv = lim
R→∞

∫
|v|�R

|v|2zG,H (v)dv = lim
R→∞ lim

n→∞

∫
|v|�R

|v|2zn(v)dv

� lim
R→∞ lim

n→∞

∫
R3

|v|2zn(v)dv = lim
n→∞

∫
R3

|v|2zn(v)dv,

‖zG,H ‖L1+1/μ(R3) � lim inf
n→∞ ‖zn‖L1+1/μ(R3) � H

and

‖zG,H ‖L1(R3) � lim inf
n→∞ ‖zn‖L1(R3) = G, (3.17)

we have that zG,H verifies Sμ(zG,H ) � lim infn→∞ Sμ(zn) = KG,H . To conclude that zG,H is a minimizer for (3.16),
we have to check that ‖zG‖L1(R3) = G. Let ε be a positive constant. Then, there exist R (depending only on ε) and
B(R) a ball centered in 0 with radius R such that∫

B(R)

zG,H = lim
n→∞

∫
B(R)

zn = G- lim
n→∞

∫
R3−B(R)

zn

� G- lim
n→∞

1

R2

∫
R3

|v|2zn � G − ε. (3.18)

Thus, by using (3.17) and (3.18) we deduce that ‖zG,H ‖L1(R3) = G.
Once we know that a minimum of (3.16) (equivalent of (3.7)) exists, we study some of the properties of the

minimizers. Let us prove that zG,H is a nonincreasing function. For radial nonincreasing rearrangements z∗ of z

(see [17]) we have∫
R3

|v|2z∗(v)dv �
∫
R3

|v|2z(v)dv,

with strict inequality unless z ≡ z∗. Then, zG,H coincides with its rearranged function and consequently it is a sym-
metric nonincreasing function.

The expression of these functions is obtained from the Euler–Lagrange equation, which for μ > 0 reads

1

2
|v|2 + λz

1/μ
G,H + βχ = γ, (3.19)

where λ, β , γ are the Lagrange multipliers and the function χ is defined by

χ(v) =
{

0 if zG,H (v) > 0,

� 0 if zG,H (v) = 0.

We first note that λ 
= 0 since otherwise Supp(zG,H ) ⊂ {v ∈ R
3; 1

2 |v|2 = γ }, which is a set of null measure. Then, we
have

zG,H (v) = 1

λμ

(
γ − 1

2
|v|2

)μ

, for v ∈ Supp(zG,H ).

This expression combined with the nonincreasing and nonnegative character of zG,H implies that λ > 0 and
Supp(zG,H ) ⊂ {v ∈ R

3; 1
2 |v|2 � γ }. On the other hand, we have

γ − 1

2
|v|2 = βχ(v), for v ∈ R

3 − Supp(zG,H ).

Then, β < 0 (since zG,H is nonincreasing) and

zG,H (v) = 1

λμ

(
γ − 1

2
|v|2

)μ

. (3.20)

+
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By using (3.20) we can compute λ and γ . Multiplying (3.19) by zG,H and integrating over R
3 we find

KG,H + λH 1+1/μ = γG.

The use of radial coordinates leads to the following equality

KG,H = 1

2

∫
R3

|v|2zG,H (v)dv = 1

2

4π

λμ

√
2γ∫

0

r4
(

β − 1

2
r2

)μ

dr

= 1

2

4π

λμ

3

μ + 1

√
2γ∫

0

r2
(

β − 1

2
r2

)μ+1

dr = 1

2

3λ

μ + 1

∫
R3

z
1+1/μ
G,H dv

= 3λ

2(μ + 1)
H 1+1/μ.

From these equations and Lemma 3.3 we have

λ = 2(μ + 1)

3
G

2μ+5
3 H

−(μ+1)( 1
μ

+ 2
3 )

K1,1 and γ = 2μ + 5

3
G

2μ+2
3 H− (2μ+2)

3 K1,1,

which proves (3.8).
In the case μ = 0 the corresponding Euler–Lagrange equation reads

1

2
|v|2 + λϕ + βχ = γ, (3.21)

where λ, β , γ are the Lagrange multipliers and the functions ϕ and χ are defined by

ϕ(v) =
{

0 if zG,H (v) < H,

� 0 if zG,H (v) = H,
χ(v) =

{
0 if zG,H (v) > 0,

� 0 if zG,H (v) = 0.

Then, (3.21) implies that {v ∈ R
3; 0 < zG,H (v) < H } has null measure in R

3, therefore zG,H = H a.e. Supp(zG,H ).
We finally need to determine Supp(zG) in order to give an explicit expression for this function. The symmetric nonin-
creasing character of zG,H determines that Supp(zG,H ) must coincide with the ball in R

3 with radius (3G/(4πH))1/3,
concluding (3.9). �
4. Analysis of the reduced problem

In this section we study the minimization problem (3.6). We adapt the techniques employed in [19] to deal
with reduced equivalent problems to those concerning the Energy–Casimir functional. These ideas are based on
concentration–compactness arguments, where scaling techniques are relevant for proving that loss of mass at in-
finity does not occur. In our case we are able to prove an equivalent minimization and compactness result, although
the scaling arguments with respect to the parameter M are not appropriate at first sight in (3.6). We have

Theorem 4.1. Let us consider M > 0, J > 0 and μ ∈ [0,7/2). Let {ρn} be a minimizing sequence for the problem
(3.6) determined by μ, M and J . Then, there exists a sequence of shift vectors {an} ∈ R

3 and a subsequence of {ρn},
again denoted by {ρn}, such that for any ε > 0 there exists R > 0 such that∫

an+BR

ρn(x)dx � M − ε, n ∈ N, (4.1)

ρn(· + an) → ρ0 strongly in L1+ 2
2μ+3

(
R

3), n → ∞, (4.2)

and ∫
ρ0 � M − ε. (4.3)
BR
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Finally,

∇φTρn → ∇φρ0 strongly in L2(
R

3), n → ∞, (4.4)

and ρ0 is a minimizer for (3.6). The set of minimizers is determined by {ρ0(· − y); y ∈ R
3}, where ρ0 is the unique

spherically symmetric minimizer. Any minimizer verifies

ρ0(x)
2

2μ+3 = 3

2μ + 5

J
2(μ+1)
2μ+3

K
3

2μ+3

(−R
μ
M,J

) −2μ
2μ+3

(
7 − 2μ

3

R
μ
M,J

M
− φρ0(x)

)
+

(4.5)

and

∫
R3

ρ0(x)
2μ+5
2μ+3 dx = (−R

μ
M,J )

3
2μ+3 J

2μ+2
2μ+3

K
3

2μ+3

. (4.6)

The proof of Theorem 4.1 is a consequence of several intermediate results. The following lemma provides some
properties of R

μ
M,J . Let us remark that using Theorem 3.1 these properties are also satisfied by I

μ
M,J .

Lemma 4.2. Let μ ∈ [0,7/2) and M , J be positive constants. Then, the infimum values of (1.10) and (3.6) verify

(1) I
μ
M,J = R

μ
M,J = M

7
3 − 2μ

3 J
2(μ+1)

3 I
μ
1,1,

(2) −∞ < I
μ
M,J = R

μ
M,J < 0.

Furthermore, if fμ is a minimizer for I
μ
1,1 then I

μ
M,J is achieved by f̆μ(x, v) := afμ(bx, cv), where a = Jμ+1/Mμ,

b = J
2(μ+1)

3 /M
2μ−1

3 and c = M
μ−2

3 /J
μ+1

3 . The relation between the minimizers is also satisfied for R
μ
M,J .

Proof. The proof of (1) is based on the scaling f̆ (x, v) := af (bx, cv). If a, b and c are defined as in Lemma 4.2, then

E(f̆ ) = M
7
3 − 2μ

3 J
2(μ+1)

3 E(f ), ‖f̆ ‖L1(R6) = M‖f ‖L1(R6) and ‖f̆ ‖L1+1/μ(R6) = J‖f ‖L1+1/μ(R6). (1) is deduced from
simple arguments.

To prove (2), let ρ ∈ L1(R3) ∩ L
2μ+5
2μ+3 (R3). By the Hölder and Hardy–Littlewood–Sobolev inequalities we have

‖ρ‖
L

6
5 (R3)

� ‖ρ‖
7−2μ

12
L1(R3)

‖ρ‖
2μ+5

12

L
2μ+5
2μ+3 (R3)

and

1

2

∫
R6

ρ(x)ρ(y)

|x − y| dx dy � C‖ρ‖2

L
6
5 (R3)

. (4.7)

Combining both estimates we find

K

J
2(μ+1)

3 M
7−2μ

3

‖ρ‖4

L
6
5 (R3)

− 1

2C
‖ρ‖2

L
6
5 (R3)

� E
μ
M,J (ρ) (4.8)

for any function ρ ∈ L1+(R3,M) ∩ L
2μ+5
2μ+3 (R3) defined in problem (3.6). Thus, we obtain R

μ
M,J > −∞ because the

left-hand side of (4.8) can be seen as a second degree polynomial in the variable ‖ρ‖2

L
6
5 (R3)

. To conclude, we have

to prove R
μ
M,J < 0. Consider the scaled function ρ̆(x) = b3ρ(bx), where b is a positive constant. Clearly, ρ̆ verifies

‖ρ̆‖L1(R3) = ‖ρ‖L1(R3) = M and

E
μ
J (ρ̆) = b2K

(
∫

R3 ρ(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

− 1

2
b

∫
6

ρ(x)ρ(y)

|x − y| dx dy.
R
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By choosing b small enough we find a scaled function such that E
μ
J (ρ̆) < 0, which implies R

μ
M,J < 0. This ends the

proof. �
The boundedness of any minimizing sequence will be relevant for the minimization argument. This is what we

state in the following result.

Corollary 4.3. Any minimizing sequence for (3.6) is uniformly bounded in L
2μ+5
2μ+3 (R3).

Proof. Let {ρn} be a minimizing sequence. (4.8) implies that any minimizing sequence is uniformly bounded in

L
6
5 (R3). Then, by using (4.7) we also deduce that

1

2

∫
R6

ρn(x)ρn(y)

|x − y| dx dy

is uniformly bounded. Finally, the definition of E
μ
J allows to conclude the proof. �

The proof of Theorem 4.1 is also based on the fact that the minimizing sequence cannot vanish, as well as on the
well-known compactness properties of the solution of the Poisson equation. Our next result shows an estimate which
will confirm that the minimizing sequence does not vanish. Also, Lemma 4.4 concerns the compactness properties of
the solution of the Poisson equation. Although, these results were already proved in [19], we write them here again
for self-consistency (see [19] for more details). From now on, B(a,R) denotes the ball centered in a with radius R.

Lemma 4.4 (Corollary 3.6 and Lemma 3.7, Ref. [19]). Let ρn be a minimizing sequence for (3.6). Then, there exist
δ0, R0, n0 ∈ N and a sequence of shift vectors an ∈ R

3 such that∫
B(an,R)

ρn(x)dx � δ0, n > n0, R > R0. (4.9)

Since {ρn} is a bounded sequence in L
2μ+5
2μ+3 (R3) for a subsequence such that

ρn ⇀ ρ weakly in L
2μ+5
2μ+3

(
R

3).
We have

(1) For any R > 0,

∇φχB(0,R)ρn → ∇φχB(0,R)ρ strongly in L
(
R

3).
Here, χB(0,R) denotes the characteristic function in the ball B(0,R).

(2) If in addition {ρn} is bounded in L1(R3), ρ ∈ L1(R3), and for any ε > 0 there exist R > 0 and n0 ∈ N such that∫
|x|>R

∣∣ρn(x)
∣∣dx � ε, ∀n � n0,

then

∇φρn → ∇φρ strongly in L2(
R

3).
Proof of Theorem 4.1. We first deal with the existence of a minimum. The main idea is to prove that any minimizing
sequence {ρn} for (3.6) has a subsequence (up to translations) which is under the hypotheses of (2) in Lemma 4.4.

The boundedness of ρn is deduced from Corollary 4.3. Now, we prove that for all ε there exist R and an ∈ R
3,

∀n ∈ N, such that∫
3

ρn(x)dx � ε. (4.10)
R −B(an,R)
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Let ρ ∈ L1+(R3,M) ∩ L
2μ+5
2μ+3 (R3). Define ρi , i = 1,2,3, as

ρ = χB(0,R1)ρ + χB(0,R2)−B(0,R1)ρ + χR3−B(0,R2)
ρ = ρ1 + ρ2 + ρ3,

where χΩ is the characteristic function of the set Ω . Setting

αi =
∫

R3 ρi(x)
2μ+5
2μ+3 dx∫

R3 ρ(x)
2μ+5
2μ+3 dx

, βi =
∫

R3 ρi(x)dx∫
R3 ρ(x)dx

and Fi,j =
∫
R6

ρi(x)ρj (y)

|x − y| dx dy

for i, j = 1,2,3, we observe that (4.10) is equivalent to proving that β3 is small enough for an appropriate R2. We
have

E
μ
J (ρ) =

3∑
i=1

K
(
∫

R3 ρi(x)
2μ+5
2μ+3 dx)

2μ+3
3

(α
μ

μ+1
i J )

2(μ+1)
3

+ 2Fi,i − F1,2 − F2,3 − F1,3

=
3∑

i=1

E
μ

α

μ
μ+1
i J

(ρi) − F1,2 − F2,3 − F1,3

�
3∑

i=1

R
μ

βiM,α

μ
μ+1
i J

− F1,2 − F2,3 − F1,3.

Now, from Lemma 4.2

E
μ
J (ρ) �

(
3∑

i=1

(βiM)
7
3 − 2μ

3
(
α

μ
μ+1
i J

) 2(μ+1)
3 I

μ
1,1

)
− F1,2 − F2,3 − F1,3

� M
7
3 − 2μ

3 J
2(μ+1)

3 I
μ
1,1

(
3∑

i=1

(
β

7
3
i

)1− 2μ
7 α

2μ
3

i

)
− F1,2 − F2,3 − F1,3.

By Jensen’s inequality we have

E
μ
J (ρ) � R

μ
M,J

(
3∑

i=1

αi

) 2μ
3

(
3∑

i=1

β
7
3
i

)1− 2μ
7

− F1,2 − F2,3 − F1,3

� R
μ
M,J

(
3∑

i=1

β
7
3
i

)1− 2μ
7

− F1,2 − F2,3 − F1,3

where we have only used that
∑3

i=1 αi = 1. By using the estimate

3∑
i=1

β
7
3
i � 1 − 7

3
(β1 + β2)β3

we get,

E
μ
J (ρ) � R

μ
M,J

(
1 − 7

3
(β1 + β2)β3

)1− 2μ
7 − F1,2 − F2,3 − F1,3. (4.11)

(4.11) and Lemma 4.2 now yield

R
μ

(M,J ) − E
μ
J (ρ) � R

μ
M,J

(
1 −

(
1 − 7

3
(β1 + β2)β3

)1− 2μ
7

)
+ F1,2 + F2,3 + F1,3.

The first term in the right-hand side of this expression is estimated by using the inequality

bα − aα � αbα−1(b − a),
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valid for any a, b > 0 and 0 < α < 1 (Theorem 41, Ref. [15]). In the same way, as proposed in [19], for R2 > 2R1 we
can estimate F1,3 as follows

F1,3 � C/R2.

We also have

F1,2 + F2,3 � C‖ρ‖
2μ+5

6

L
2μ+5
2μ+3 (R3)

‖∇φρ2‖L2(R3) � C‖∇φρ2‖L2(R3).

Thus, ρ verifies

R
μ
M,J − E

μ
J (ρ) � R

μ
M,J

(
7

3
− 2μ

3

)
(β1 + β2)β3 + C

R2
+ C‖∇φρ2‖L2(R3). (4.12)

(4.9) claims the existence of a sequence of shift vectors an ∈ R
3 such that∫

B(R)

ρn(x − an)dx � δ0, n > n0, R > R0,

for some δ0,R0, n0 ∈ N. The sequence ρ̄n(·) = ρn(·−an) also minimizes (3.6) due to the translation invariance of E
μ
J .

From the boundedness of that sequence in L
2μ+5
2μ+3 (R3), we get the existence of a weakly convergent subsequence

ρ̄n(·) = ρn(· − an) ⇀ ρ0 weakly in L
2μ+5
2μ+3

(
R

3). (4.13)

Let ε > 0. Now we apply (4.12) to any ρ̃n with R1 > R0 and find

−R
μ
M,J

7 − 2μ

3

δ0

M
β3 � C

R2
+ C‖∇φρ̄n,2‖L2(R3) + E

μ
J (ρ̄n) − R

μ
M,J , (4.14)

for all n > n0. (4.13) and Lemma 4.4(1) allow to choose R1 sufficiently large to obtain C‖∇φρ̄n,2‖L2(R3) � ε/4,
∀n > n1 > n0. Now, we fix R1 such that R2 > 2R1 and R2 > 4C/ε. Finally, from the minimizing character of ρ̄n,
there exists n2 ∈ N, n2 � n1, such that E

μ
J (ρ̄n) − R

μ

(M,J ) � ε/4, ∀n > n2. Hence, we conclude that

7 − 2μ

3

δ0

M
β3 � ε ∀n > n2,

which ends the proof of (4.10). The boundedness of ρ̄n in L1(R3) and Lemma 4.4 (2) lead to

∇φρ̄n → ∇φρ0 strongly in L2(
R

3).
This convergence property allows to conclude that ρ̄n converges strongly in L

2μ+5
2μ+3 (R3) to ρ0 and, at the same time,

that this function is a minimizer. The weakly lower semicontinuous character of the Lp-norms joint with (4.13) and
the previous convergence gives

E
μ
J (ρ0) � lim infEμ

J (ρ̄n).

Since ρ̄n is also a minimizing sequence we can assure that ρ0 is a minimizer for (3.6). As consequence of the definition
of E

μ
J , ‖ρ̄n‖

L
2μ+5
2μ+3 (R3)

decreases to ‖ρ0‖
L

2μ+5
2μ+3 (R3)

as n → ∞, in particular limsup‖ρ̄n‖
L

2μ+5
2μ+3 (R3)

� ‖ρ0‖
L

2μ+5
2μ+3 (R3)

.

This implies along with (4.13) and the uniform convexity of L
2μ+5
2μ+3 (R3) the strong convergence of ρ̄n to ρ0 in

L
2μ+5
2μ+3 (R3).
Once we have the existence of a minimum we analyze the properties of the minimizers. By scaling arguments we

deduce

R
μ
M,J = E

μ
J (ρ0) = −K

(
∫

R3 ρ0(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

=
∫

6

ρ0(x)ρ0(y)

|x − y| dx dy, (4.15)
R
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which proves (4.6). Let ρ̆0(x) = b3ρ0(bx), where b is a positive constant. Then, ρ̆0 ∈ L1+(R3,M) and

E
μ
J (ρ̆0) = b2K

(
∫

R3 ρ0(x)
2μ+5
2μ+3 dx)

2μ+3
3

J
2(μ+1)

3

− b
1

2

∫
R6

ρ0(x)ρ0(y)

|x − y| dx dy.

Since ρ0 is a minimizer, (4.15) holds.
The Euler–Lagrange equation for any minimizer ρ0 is given by

2μ + 5

3

K

J
2μ+2

3

( ∫
R3

ρ0(x)
2μ+5
2μ+3 dx

) 2μ
3

ρ0(x)
2

2μ+3 + φρ0 + λχ = β, (4.16)

where λ and β are the Lagrange multipliers corresponding to the positivity and the mass constraints respectively, and
where

χ(x) =
{

0 if ρ0(x) > 0,

� 0 if ρ0(x) = 0.

By multiplying (4.16) by ρ0 and integrating we find( ∫
R3

ρn(x)
2μ+5
2μ+3 dx

) 2μ+3
3 +

∫
R6

ρ0(x)ρ0(y)

|x − y| dx dy = βM. (4.17)

Combining (4.17) and (4.15) we deduce that β = (
7−2μ

3 )
R

μ
M,J

M
< 0. (4.16) and the fact that lim|x|→∞ φρ∗

0
= 0 imply

that Supp(ρ0) = {x; β − φρ0 � 0}. As consequence, we deduce (4.5).
Now we will determine the set of minimizers of (3.6). Riesz’s Theorem (see Theorem 3.7 Ref. [17]) applies to

guarantee that the symmetric rearrangement ρ∗
0 of any minimizer ρ0 is also a minimizer. In addition, it ensures that

any minimizer is a space translation of ρ∗
0 . Now, we prove that there exists a unique spherically symmetric minimizer

for (3.6). By Lemma 4.2, we can equivalently write (4.5) as

ρ∗
0

(
r := |x|) = a

(
b − φρ∗

0
(r)

)μ+3/2
+ ,

where

a =
(

3

2μ + 5

) 2μ+3
2

J
(μ+1)(2μ+3)

3 M
2μ(7−2μ)
3(2μ+3) K−1(−I

μ
1,1

)μ

and

b =
(

7 − 2μ

3

)
J

2(μ+1)
3 M

4−2μ
3 I

μ
1,J .

Note that φρ∗
0

is radial since ρ∗
0 is radial. Then, φρ∗

0
is a solution to the Poisson equation (1.3) in radial coordinates

1

r2

(
r2φρ∗

0
(r)′

)′ = a
(
b − φρ∗

0
(r)

)μ+3/2
+ .

Equivalently, by setting y(r) = (b − φρ∗
0
(a

−1
2 r)) we obtain(

r2y(r)′
)′ = −r2(y(r)

)μ+3/2
+ .

Thus, y(r) is the positive part of the solution to the Emden–Folder equation. The existence and uniqueness of solutions
of the initial value problem associated with this equation are well known. Actually, it is clear that

y(r) = β
2

μ+1/2 ϕ(βr),

where β is defined by the initial condition limr→0 y(r) = α. In our case, β is determined by the mass constraint since

M = 4π

∫
ρ∗

0 (r)dr = 4π

∫ (
b − φρ∗

0
(r)

)μ+3/2
+ dr = 4πa−1/2

∫ (
y(r)

)μ+3/2
+ dr.
r r r
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In particular, uniqueness ensures that ρ∗
0 is unique. Therefore, the set of minimizers of (3.6) is the orbit of the unique

spherical symmetric minimizer because E
μ
J is invariant by translations. This concludes the proof of Theorem 4.1. �

5. Minimizing argument: relative compactness

In this section we propose a new minimizing argument for the problems set in (1.10) which allows to establish that
any minimizing sequence is relatively compact in L1(R6) up to spatial translations. This argument is based on the
sequence of equivalent problems introduced in Theorems 3.1 and 4.1.

Proof of Theorem 2.1. For simplicity, along the proof we shall denote all the subsequences with the same name of
the original sequence. Let us consider an arbitrary minimizing sequence fn for the problem (1.10). Then, Theorem 3.1
states that ρn(·) = ∫

R3 fn(·, v)dv is a minimizing sequence for (3.6). The application of Theorem 4.1 to ρn leads to
the existence of a subsequence of fn and an ∈ R

3 such that f̄n(· , ·) = f (· − an, ·) and ρ̄n(·) = ρ(· − an) verifying the
thesis of this result. Let us denote by ρM,J the limit of ρ̄n.

The sequence f̄n is also a minimizing sequence for (1.10) because the Lp norms and the total energy functional are
invariant under space translations. Then, by using (4.4) we easily deduce that EKIN(f̄n) is uniformly bounded in n.
Now, we are in a position to claim that f̄n satisfies the hypotheses of the Dunford–Pettis theorem:

(1) {f̄n}n∈N is bounded in L1(R6).
(2) Let A ∈ R

6 be a measurable set. Then, there is no concentration in A since∫
A

f̄n dx dv � ‖f̄n‖L1+1/μ(R6)|A|μ+1.

(3) As a consequence of (4.1) and of the fact that EKIN(f̄n) is uniformly bounded in n, there is no vanishing:∫
{|(x,v)|>R}

f̄n dx dv � ε(R).

Hence, we can assume that there exists a function fM such that

f̄n ⇀ fM,J weakly in L1(
R

6). (5.1)

We can check that
∫

R3 fM,J (·, v)dv = ρM,J by the weak convergence of f̄n to fM,J , (4.1), (4.2) and (4.3). These
estimates imply that

∫
R3 fM,J (·, v)dv = ρM,J in L1(R3).

It can be also obtained the existence of a subsequence such that

f̄n ⇀ fM,J weakly in L1+1/μ
(
R

6), for μ ∈ (0,7/2),
(5.2)

f̄n
∗
⇀ fM,J weak-* in L∞(

R
6), for μ = 0.

To deduce (5.2) we use the relative compactness arguments in Lp and the fact that f̄n is bounded in L1+1/μ. Then, we
can extract subsequences of {fn} converging to some function g such that g = fM,J .

Once we have proved (5.2), we may claim that fM,J is a minimum of (1.10). To this aim, we distinguish two
different cases depending on the value of μ:

1) μ ∈ (0,7/2): Combining (4.3), (5.1) and (5.2) we get

‖fM,J ‖L1(R6) = M, EKIN(fM,J ) � liminfEKIN(f̄n)

and

‖fM,J ‖L1+1/μ(R6) � liminf‖f̄n‖L1+1/μ(R6).

These estimates together with (4.4) allow to conclude that fM,J is a minimizer for the problem

inf
{
E(f ); f ∈ L1+

(
R

6,M
)
, ‖f ‖L1+1/μ(R6) � J

}
.
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The scaling property stated in Lemma 4.2(1) allows to ensure that the minimum of this problem coincides with the
minimum for (1.10), since any minimizer is in L1+1/μ

+ (R3, J ). In particular we have that

J = lim
n→∞‖f̄ ‖L1+1/μ(R6) = ‖fM,J ‖L1+1/μ(R6).

By the uniform convexity of L1+1/μ (note that μ ∈ (0,7/2)) the above identity and (5.2) imply the strong convergence
in L1+1/μ of f̄n to fM,J . Consequently, a subsequence of f̄n exists such that

f̄n(x, v) → fM,J (x, v) a.e. in R
6. (5.3)

The weak and a.e. convergence established in (5.1) and (5.3) respectively, allow to conclude the strong convergence
in L1 of a subsequence of f̄n to fM,J , via Egorov’s theorem. This justifies the notation fM,J and ends this part of the
proof.

2) μ = 0: Similarly, (4.3), (5.1) and (5.2) imply

‖fM,J ‖L1(R6) = M, ‖fM,J ‖L∞(R6) � 1 and EKIN(fM,J ) � EKIN(f̄n).

These estimates together with (4.4) imply that fM is a minimizer for (1.7). Thus, by Theorem 3.1 fM,J is defined by
(3.1) with associated density function ρM,J . Also, it is well known that fM,J has compact support (see [8]). Since
fM,J ≡ J on its support and ‖f̄n‖L∞(R6) � J , we have fM − f̄n � 0 on Supp(fM,J ) and consequently

‖fM,J − f̄n‖L1(R6) =
∫

Supp(fM,J )

fM,J − f̄n dx dv +
∫

R6−Supp(fM,J )

f̄n dx dv

= 2M − 2
∫

Supp(fM,J )

f̄n dx dv. (5.4)

This estimate clearly goes to 0 as n → ∞ by using (5.1). This concludes the proof of Theorem 2.1. �
Remark 5.1. In the case μ = 0 the relative compactness cannot be deduced in L∞(R3). Let us consider a particular
minimizing sequence for the problem (1.7) defined by fn(x, v) = fM,J ( n

n+1x, n+1
n

v), n ∈ N, where fM is a minimum

of (1.7) given by Theorem 2.1. It can be easily proved that fn → fM,J in L1(R6) as n → ∞, while∥∥fn(x − k, v) − fM,J (x, v)
∥∥

L∞(R6)
= 1, ∀n ∈ N, ∀k ∈ R

3.

Remark 5.2. Combining (3.1), (3.2), Theorems 3.1, 4.1 and Lemma 4.2 we get that the polytrope νμ in Γ
μ
M,J is given

by

ν0(x, v) =
{

J if
7

3
M

4
3 J

2
3 − φν0(x) � |v|2

2
,

0 elsewhere

for μ = 0 and

ν̃μ(x, v) =
(

3

2(μ + 1)

J
(μ+1)(3−2μ)

3μ

M
7−2μ

3 (−I
μ
1,1)

)μ(
7 − 2μ

3
M

4−2μ
3 J

2(μ+1)
3 I

μ
1,1 − φνμ(x) − |v|2

2

)μ

+

for μ ∈ (0,7/2). This clearly shows the relation between the parameters c and E0 appearing in the definition of the
polytrope with M and J .

Acknowledgements

The authors would like to thank very much Luis Vega, Gerhard Rein, Yan Guo and Gershon Wolansky for fruitful
discussions.



800 Ó. Sánchez, J. Soler / Ann. I. H. Poincaré – AN 23 (2006) 781–802
Appendix A. Polytropes and variational approaches

In this appendix we will show that the minimizing problem of the energy–Casimir functional under mass con-
straints:

C
μ
M := inf

{
Qμ,0(f ); f ∈ L1+

(
R

6,M
)}

, (A.1)

and the minimization problem of the energy functional under mass–Casimir constraints

E
μ
M := inf

{
E(f ); f ∈ Λ

μ
M

}
, (A.2)

can be equivalently reduced to certain problems defined by (1.10), where the parameters M and J are linked. To
this aim, we basically use scaling arguments. These simple techniques also help to clarify some other points such as:
(a) the technical constraint μ � 3/2 arising in the Casimir minimization problem; (b) the choice of the appropriate
functional space (defining the admissible perturbations) to show the stability of a polytropic solution; or (c) whether
the minimum of (A.2) can be reached by two functions with different orbits.

Our next result allows to read the Casimir minimization problem (A.1) in an equivalent form.

Lemma A.1. Let μ ∈ (0,3/2) and M > 0. Then,

C
μ
M =

(
μ

μ + 1

)
J

1+1/μ

(μ,M) + I
μ
M,J(μ,M)

, (A.3)

where

J(μ,M) =
( −3

2(μ + 1)M
7
3 − 2μ

3 I
μ
1,1

) 3μ
(2μ−3)(μ+1)

.

Furthermore, the minimizers of C
μ
M and I

μ
M,J(μ,M)

coincide.

Proof. The proof is based on the following identity

C
μ
M = inf

{
μ

μ + 1
J 1+1/μ + M

7
3 − 2μ

3 J
2(μ+1)

3 I
μ
1,1; J ∈ R

+
}
. (A.4)

By standard computations, we can prove that the minimum of (A.4) is reached when J = J(μ,M) and, as consequence,

C
μ
M = μ

μ + 1
J

1+1/μ

(μ,M)
+ I

μ
M,J(μ,M)

.

Then, we have reduced the problem (A.1) to a particular case of (1.10), so that we can ensure that the minimizers are
the same for both problems. �
Remark A.2. In the above sections we have proved that the minimizers for I

μ
M,J exist for 0 � μ < 7/2. However,

when we are dealing with the Casimir functional we are only able to find such minimizers for μ < 3/2, because
(A.4) shows that C

μ
M is bounded from below if and only if this condition holds. This explains the original restrictions

appearing in the literature [11,19].

In order to avoid the artificial restriction μ < 3/2, it was proposed in [12,14] to find the polytropic solutions as
minimizers for the energy functional under the mass–Casimir constraint (A.2). In our next result we prove that (A.2)
is also related to (1.10).

Lemma A.3. Let μ ∈ (0,7/2) and M > 0. Then

E
μ
M = I

μ
aM,bM

,

where aM = 2M/7 and bM = (2M(μ + 1)/7)
μ

μ+1 . Furthermore, the minimizers for both problems coincide.
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Proof. Trivially, E
μ
M � IaM,bM

, since ΓaM,bM
⊂ Λ

μ
M . In order to prove the reverse inequality we are going to show

that any minimizer for E
μ
M (whose existence was proved in [12]) is in Γ

μ
aM,bM

. Let fM be such a minimizer. The scaled

functions ˘fM(x, v) := afM(bx, cv) ∈ Λ
μ
M lead to

c = a1/3

M1/3b

(
a1/μ μ

μ + 1
‖fM‖1+1/μ

L1+1/μ(R6)
+

(
7

2
− μ

)
‖fM‖L1(R6)

)1/3

,

where a and b are positive constants. The total energy associated with the scaled function depends on the parameters
a and b. Indeed,

E
( ˘fM

) = M5/3b2

a2/3(a1/μ μ
μ+1‖fM‖1+1/μ

L1+1/μ(R6)
+ (7/2 − μ)‖fM‖L1(R6))

5/3
EKIN(fM)

− M2b

(a1/μ μ
μ+1‖fM‖1+1/μ

L1+1/μ(R6)
+ (7/2 − μ)‖fM‖L1(R6))

2
EPOT(fM).

Considering the function h : R+ × R
+ → R defined by h(a, b) := E( ˘fM) and the minimizing character of fM we

have that h admits a relative minimum in (a, b) = (1,1). Then, we find

∂h

∂a
(1,1) = 0,

∂h

∂b
(1,1) = 0.

By computing both equations we obtain

1

μ + 1
‖fM‖1+1/μ

L1+1/μ(R6)
= 2M

7
and EPOT(fM) = 2EKIN(fM),

which concludes the proof. �
Remark A.4. Notice that (A.2) has a unique minimizer (up to translations). This completes the results established
in [14].

Remark A.5. We also observe that Casimir minimization problems as well as energy minimization problems in mass–
Casimir restricted spaces allow to study a particular subset of polytropes for which c and E0 − α are connected.

The above results and the ideas developed in [8] to treat with the stability of the polytropic solution in the case
μ = 0 have motivated the analysis of (1.10). From previous results in [8,11,12], we can ensure the existence of
minimizers for (1.10). However, we developed in this paper a constructive argument to solve these type of problems
which is based on the equivalence between (1.10) and a problem for the corresponding densities.
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