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Abstract

This paper is concerned with the qualitative property of the ground state solutions for the Hénon equation. By studying a limiting
equation on the upper half space Rﬁ , we investigate the asymptotic energy and the asymptotic profile of the ground states for the
Hénon equation. The limiting problem is related to a weighted Sobolev type inequality which we establish in this paper.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous nous intéresserons, dans cet article, aux propriétés qualitatives des fonctions minimisantes (ou « ground state solutions »)
de I’équation d’Hénon. L’étude d’une équation limite dans le demi-espace supérieur Rﬁ , nous renseignera sur I’énergie et les
caractéristiques limites des fonctions minimisantes de I’équation d’Hénon. Notons que le probleme limite est en relation avec une
inégalité de Sobolev pondérée que nous établirons également.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this paper we investigate the Hénon equation [9]

Au+|x|%u? =0, u>0 ing2, u=0 onds, (1

where 2 is a bounded domain in RY. For« >0, 2 < p+1<2*:= % (in the case N = 1,2, 2* = 400), it is easy

to show that
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‘ Vu|?dx
Q)= inf Jo IVul 3
ueHg (2N} ([, [ |u|PF1 dx) PH

is achieved by a positive function «, which by re-scaling gives a ground state solution of (1). I*»% () is called the
ground state energy, or the least energy. Numerical computations [6] suggest that when £2 is the unit ball B(0, 1), for
some parameter « the ground state solutions are nonradial. This was confirmed recently in an interesting paper [14],
in which it was proved that for each 2 < p +1 < 2* and N > 2, there exists a* such that for ¢ > «* the ground states
are nonradial. In fact, the authors there compared /2% (B(0, 1)) with another minimization problem

|Vu|?dx
"4 (B(0, 1)) = inf I -

MEHO1 (B0, 1))\{0}, u(x)=u(|x]) (fB(O D |x|0l|u|l7+1 dx) r+1

It was shown that, if p € (1, (N +2)/(N —2)) and N > 2, for sufficiently large o > O,
1 (B(0, 1)) < 1™4(B(0, 1)).

More precisely, for N > 2, they showed that

pt3

N\ T
ali)rrg()((x - N)' 199 (B(0, 1) € (0, 00),

and that for some ¢ > 0, as « — 00

1 (B(0, 1)) < ca® VT

Our main interest in this paper is about the asymptotic profiles of both the nonradial ground state solutions and the
radial ground states. This is a natural question along the line of the study and has not been addressed at all. In order
to study the asymptotic profile of the ground state solutions we need to develop finer estimates on the ground state
energy than those given above and to derive a limiting equation for the problem, which is essential to determining
the asymptotic shape of the ground states. It turns out that the following minimization problem serves as the limiting
problem for Eq. (1):

In,p(£2) Einf{/ |Vu|? dx ‘ '/exp(—ﬂt)u’”'l dtdy=1, ue H(.Q)},
Q Q

where 2 = (0, 00) x R¥N~!, H(£2) is the completion of C(°(£2) with respect to the norm ul?> = fQ |Vu|?dx, and

B >0 and N is the dimension. More precisely, we shall prove that forany N > 1 and p > 1

p+3

. NPT g, N—1{(p=D/(p+1)
Jim () (0 ) = [0V,
and that forany N > 1 and p € (1,2* — 1)
N+2—(N-2)p
lim " e, 1)) =g
a—oo\ o + N ’ N.N-

Furthermore, through a more delicate analysis, we find asymptotic profiles of the minimizers of /%% (B(0, 1)) and
17242 (B(0, 1)) as a — oo. Roughly speaking, under suitable transformations the minimizers of / alle(B(0, 1)) con-
verge to the minimizer of Jy x(§2) and the minimizers of / rad.o(B((, 1)) converge to the minimizer of J; y(§2). The
precise statements will be given in Sections 3 and 4. As a byproduct of our analysis, we show that symmetry breaking
occurs for all N > 1. On the other hand, in order to study the limiting equations, in Section 2 we first establish some
weighted Sobolev type inequalities in the half space Rﬁ . These inequalities should be of independent interest of their
own.

In recent years, extensive work have been done for analyzing limiting profiles of least energy solutions of singularly
perturbed elliptic problems including elliptic Dirichlet, Neumann boundary value problems and nonlinear Schrodinger
equations in RY. Symmetry breaking of ground state solutions has been observed for some of these problems where



J. Byeon, Z.-Q. Wang / Ann. I. H. Poincaré — AN 23 (2006) 803-828 805

the problems are radially invariant. Most of these problems have an associated limiting problem which are usually of
the following form [1]

—Au+u=f(u) inRV.

The existence and uniqueness of the ground state solutions for the limiting problems are used to get information for
the ground state solutions of the singularly perturbed problems. For Hénon equation (1) we see that the appropriate
limiting equation is more complicated. The analysis of the limiting equation will be done in Section 2. After getting
information for the limiting problem we shall study the asymptotic property of both the radial ground state solutions
and nonradial ground state solutions of the Hénon equation (1). These are done in Sections 3 and 4, respectively.

2. Limiting equations and a weighted Sobolev type inequality

As we mentioned, by a suitable transformation of the ground states, we obtain, in Section 3, the following limiting
problem for Eq. (1).

Au+exp(—pHu”? =0, u>0 in(0,00) x RN71,
u=0 ond((0,o00)xRV~),
where 8 > 0.
In this section, we shall first study this equation. In fact, we shall work on more general situations and consider more

general domain 2 than (0, co) x RN Let (¢, y) € (—00, 00) x RV=1. Let £2 be a domain in (—oo, c0) x RN 1.
Throughout this section, we assume that there exists L > 0 such that

2 C(~=L,00) x RV

(@)

It is well known that there exists no solution for
Au+u? =0, u>0 in(0,00) x RN 71, u=0 on{0} x RVN~L
Moreover, for p € [1, (N +2)/(N —2)),

(J 000y xRN-1 1917 T1 ds dy)?/ P FD
= OQ.

sup 5
9eC((0,00) xRN =1)\ (0} Jo.00yxrN-1 1V ds dy

On the other hand, we have the following weighted Sobolev inequality.

Proposition 2.1. Let p € [1, (N +2)/(N —2)] for N =3, p e [1,00) for N = 1,2 and B > 0. Then, there exists a
constant C > 0, depending only on B, p, N and L, such that for any ¢ € C3°(£2),

+1 p% 2
/eXp(—ﬂt)kpl” dsdy <C/|V<p| ds dy.
2 Q

Proof. Since exp(—pt) <exp(BL) in £2, the case p = (N + 2)/(N —2) for N > 3 comes from Sobolev inequality.
Let ¢ € C3°($2). We see from integration by parts and Cauchy’s inequality that

o0 2 oo
/eXp(—ﬁt)(w(y,t))zdtZB/eXp(—ﬁW(y,t)sot(y,t)dt
17 2 8 [ 2
<3 / exp(—B0)(p(y. 1)) dt+ﬁ / exp(—B1) (¢ (v, 1)) dr. 3)

Then, it follows that

e¢]

16 [
/ exp(—ﬂr)(so<y,r>)2dr<p f exp(—B1) (¢ (v, )" dr. 4)

—00
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Thus, by integrating both sides over RV ! in above inequality, we deduce that for any ¢ € C3o(£2),

16
/eXp(—ﬂt)(<p(y,t))2ds dy < p/eXP(—ﬂt)(wz(y,t))zds dy

2 2

16 2
< g xp(BL) / [Ve(y. 0| dsdy.
Q

This proves the case p = 1.
From now on, we assume that p € (1,2* — 1).

Let N > 3. Since p+ 1€ (2,2N/(N — 2)), there exists s € (0, 1) such that p +1 =25 + (1 — 5)2N/(N —

Then, from Holder’s inequality, we see that

K 1—s
f exp(—B0)(p(y, 0)" ' dsdy < ( f exp(—fBt)¢* ds dy) ( / exp(—p)p*N/ V=2 ds dy)
2 2

2
K 1—s
<exp(ﬁL>< f exp(—B)g*ds dy) ( / N/ IN=2) g5 dy) .
2 2

Then, by Sobolev inequalities, there exists a constant C > 0 that ¢ € C§°(£2),

" ) (p+1)/2
fexp(—ﬁt)(w(y,t))” dsdy < C</|V<p(y,t)| dsdy>
2 2

Thus, the case of N > 3 is finished.
For the case N =1, we see that

1
pt _ B Bs Bs )
eXp( 20p 1)><,0(t)—/—2(p_l)exp(—z(p_1))¢(S)+exp(—m)¢(s)ds.

Thus, it follows from Cauchy’s inequality and (7) that for some C = C(p, 8, L) > 0,

exp( (’3’ )><p(t)

sup
te(—00,00) N
r Bs r Bs ’ 2
+/exp< 20 —n)ds/ eXp<_2<p—1>>(‘" W) as
<c [@o)e

e ¢]

Then, for any p > 1, we deduce from (5) that for some C = C(g, p, L) > 0,
p+1
/ exp(—B(p®)" ' dr < sup

p—1 F
exp( pt )(p(t) / exp(—ﬁ>(¢(t))2dt
te(—00,00) ( ) 2

—00 —0o0

00 (p+1)/2
c( / (¢)? dt) )
—00

For the case N = 2, we see that

®)

2).

(6)

)

2 2 P T
B Bs Bs 2
“(5-3) /p(‘m>dfo oo o
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y
dp(y,
ol e ool 2

t
0p(y,
ew(—gt)}w(y,t)K /eXp<—§t>‘ (pgyt 2

dy,

B B

—exp| —=¢ , )| de.
+5exp( =51 | le(r. )]
Then, multiplying each sides and integrating over 2, we see that

2
/exp(—ﬂt)(w(y,t))zdtdy < (/exp(—§t>|V<p(y,t)|dsdy)
2 2

+ gfexp(—?t)}Vgo(y,t)‘dsdyfexp(—?t)!w(y,t)}dtdy.
Q Q

Replacing ¢ by ¢™ in above inequality, we deduce from Cauchy’s inequality that

2

/eXp(—ﬁt)soz’” < (/eXp<—§t>ml<pl’”1|V¢|> + g/exr)<—§t>mlsolmIIVsOI/eXp(—gt)Isolm
2 2 2 2

2 _B .\ 2m-1) B 2

<m /exp( 2t>g0 /exp( 2t>|V(p|
2 2
+m7'6(/exp(—§t><p2(’”1>/exp<—§t>|V¢)|2)2 /exp<—§t>|¢|’”.
2 2 2

Thus, there exists C = C(m, B, L) > 0 such that for any ¢ € CS"(.Q),

/ exp(—p)p”" < C f exp(—gr)wﬂ’”” / IVel?
2 2 2
1
2
+m—f</exp<—§t)<p2(m_l)/|Vg0|2) /exp<—§t>|q)|m.
2 Q Q

Then, if it holds that for some C = C(m, 8, L) > 0,

2/m
(fexp(—gt)w) < cf IVol?, (8)
2 2
B 1/(m—1)
( / exp(—gr)cﬂm—”) <C f IVol?, 9)
2 22

it follows that for some C = C(m, 8, L) > 0,

1/m
( / eXP(—ﬁt)¢2m> <C / IVol?. (10)
2 2

Note from (5) that (8) and (9) hold for m = 2. Therefore, we deduce by induction that (10) holds for any m > 1. This
completes the proof. 0O

and
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We define H (£2) to be the completion of Cgo(.Q) with respect to the following norm

1/2
ul| = (/qu|2dtdy) .
2

Remark 2.1. We note that, due to Sobolev embedding, H (§2) = D(l)‘z(.Q) is well defined for N > 3 and any domain
2 c RV Proposition 2.1 assures that the space H (£2) is also well defined as a space of functions for N = 1, 2 if there
exists L > 0 such that 2 C (—L, c0) x RV 1,

Now, we are interested in the existence of a ground state solution of (2). As we will see in the following, the
existence depends on the shape of d52. The following condition (referred as E-condition later) is a natural one, in a
technical reason, for the existence of a ground state solution. The existence will be given in Proposition 2.3. We do
not know whether this condition is optimal or not (see Proposition 2.7 and [3] for related results).

Definition 2.2. We say that §2 satisfies E-condition if there exists a fixed point y? = (y?, e yl(z,_l) e RV~ such that
for any (t, ¥1,..., yN—1) €E 2 and s{,...,sy—1 €[—1,1],

(£, 90+ sty =20y F vt |yv—1 =¥ ]) € 2,
orif foreach T > 0, 2 N ((—L, T) x RV~1) is bounded.

Proposition 2.3. Let p € (1,2* — 1) and B > 0. Suppose that a domain $2 satisfies E-condition. Then, there exists a
minimizer u € H(S2) of the following minimization problem

Inp(2) = inf{ llu|l?

/exp(—,Bt)up+1 didy=1,ue H(Q)}.

To prove Proposition 2.3, we need some preparation. We first consider an eigenvalue problem

2

d’¢ A (—Bt)p =0 (0, 00)
F—i— exp(—BH)ep = on (0, 0c0),

¢(0) =0, (11)
¢ € H((0, 00)).

Lets = 2‘# exp(—gt) and w(s) = ¢ (¢). Then, it follows that

dw 1
— t-ws+w=0. (12)
ds K

Note that for some C > 0,

t 00 1/2
6| = ‘/d)/(s)ds < JZ(/ |¢/|2dt) <CVi.
0 0

This implies that for some C > 0,
lw(s)| < C(1+logs])">.
There are two kinds of solutions, Bessel functions of the first kind Jy and the second kind Ny, for (12). Since Ny(s) =

log s near 0, it follows that w(s) = Jo(s). The Bessel function of the first kind Jy(s) is given by ZZO:O ((;‘l)); (%)2”. Let

J1 < jo < --- be the positive zeros of Jy. Then, it is well known that

o 52
Jo(s) = ]_[<1 — —2>
el (Jn)
Thus, we have the following lemma.
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Lemma 2.4. The eigenvalues {Ag ,}7> | of (11) are given by

+ \2 02
Aﬁ’n=(]"l’3, n=12, ...

The eigenfunction ¢g ,, corresponding to Ag , is given by

¢5,n(t)=fo<2 ;ﬂ’" eXp<—§t)>, t €0, 00).

Proof of Proposition 2.3. Let {v,}, be a minimizing sequence of Jy g(2). Since H (§2) is the completion of C3°(£2),
we can assume that {v,}, C C;°(§2). We take Tnl, Tn2 > ( such that for each positive integer n,

supp(v,) C {(t, yef| -L<t< Tnl, ly| < Tnz},
and that foreachi =1, 2, Tli < Tzi < ---and lim,_ o T,f = 00. Define
D,=(-L,T)) x {ye R |y| <17}

When 2 N ((—L, Tnl) x RY~1Y is bounded, we can take larger Tn2 so that 2 N ((—L, Tnl) X RN’]) C D,,. Then,
we consider a following minimization problem

I, Einf{||u||2

/ exp(—BnuPTdrdy =1,u € Hy, \ {0}},
£2nD,

where H, = Hé’z(.Q N D). Since D, is bounded, there exists a nonnegative minimizer u, of I, foreachn > 1. Itis
easy to see that I, — Jy g(§2) as n — oo.

When 2 N ((—L, Tnl) x RY=1) is not bounded, from a Steiner symmetrization (refer [10]), we can assume that
un(t, y° + 2) is even with respect to each of the components of z = (zy,...,zy — 1) and is monotone decreasing in
each of the components of z. Then, {u,}, is also a minimizing sequence of Jy g(£2), and lim, o I,, = Jn,(£2).

Moreover, we see that

Auy + Iy exp(—Bt)(uy,)? =0 in 2 N D,
u, >0 in2ND,, (13)
u, =0 onad(2ND,).

Note that

Auy + I exp(—BL)(uy)? >0 in 2N Dy,
u, =0 ond(2NDy,).

Then, since {||uy| 2v/wv-2}, is bounded for N > 3, from a uniform L°°-estimate [2, Proposition 3.5], we see that
{llun ||z} is bounded for N > 3. For N = 1, it follows that for some C > 0,

t

e 172
un(t)zfu,’l(s)dsgx/t—i—L(/|u;z(s)|2ds) < CW/t.
—L —L

For N = 2, we use the Green function on the upper half plane. Then there is a constant C > 0,

F T+ -y
u(t—L,x) < Co/_f log Ry I —— exp(—pBs)u’ (y)dyds.

Since {fooo f_oooo exp(—ﬁs)(un)f’”‘1 (y)dyds}, is bounded, from Holder’s inequality, it follows that for some C > 0,
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<R 2 N2 Pl
(un(t—L x) P+1 C/ f( gtz;ig_£2> exp(—Bs)dyds
0 —oo

rr (s +20)2 4 (x — »)2\ ™!
< Cexp(—p1) _f _ [ (102 TSN exp-poravs

—C r]o]ol |4 _HE+D " (e dyd
e ] [ (oe{1+ 220N cprr

p+1
— Cexp(— ﬁt)f/( ( 4t(s++y;))> exp(—Bs) dy ds.

Note that log(1 + a) < a for a > 0. Thus, for some constant C > 0 and 7 > 0,

p+1
T lo+ 5252 s

4t(s + )\ !
= / <log<1 + m)) exp(—pBs)dyds
(—t,00) x (—00,00)NB(0,1)
+ / log( 1+ 2E+D o (—Bs)dyd
(0] — exXp(—ps A
g S P y
(—t,00)x (—00,00)\B(0,1)
1 27 4¢(1 1 1 ']
t t
//( ( (2+)>) exp(—ﬁrsine)rdedr+(4t)1’+1/ / (s + )P exp(—Bs)dsdy
’
o T
1 s=—+/1+y?
+1 +1 +1 (S+t) s
+ (4P (s + )P exp(—Bs)ds dy + (41)? exp(—pBs)dsdy
s=—t [y|=1s=—t

[o.<lee]

<Ct(1+z)+Cr1’+‘/ / (s + )P exp(—Bs) ds

—1 s=—t1
C(t( +0)" exp(pn).
This implies that there exists a constant C > 0, independent of n > 1, such that
un(t,x) <CA+0€, 1>0. (14)

Having established some upper bounds we need an estimate from below for the L°° norm. From Proposition 2.2
and the fact that

/ |Vun| dxdr < Iy ||”n||Loc / GXP(—,BI)(Mn)ZdXdL

2nD, 20D,

we see that the set {||uy | L}, is bounded away from 0.
Next, we consider the convergence of u, and we consider several cases. First, for N = 1, it is easy to see that

Tlim /‘exp(—;ﬁt)(u,,)erl dt =0 uniformly with respectton =1,2,....
— 00
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Since {uy}, is bounded in H, u, converges weakly to some u in H. Then,

/exp(—ﬁt)up+] dr=1.
2

This implies that u is a minimizer of Jy g(2).
For the case N > 2, we claim that for sufficiently large 7 > 0,

liminfsup{u,(t,y) | =L <t <T, (t,y) € 2N D,} > 0.
n—oo

Suppose that it is not true. Then, for any 7 > 0,

liminf sup u,(t,y)=0.
=00 _I<t<T, (t,y)e2ND,

Taking a subsequence if necessary, we can assume that for sufficiently large 7 > 0,

lim sup u,(t,y)=0.
N=>00 _[ <t<T, (t,y)e2ND,

By Lemma 2.4 we let (¢4 |, Ap ) be a pair of the first eigenfunction and the first eigenvalue of
2 2

d%¢ B\,

57 +Aexp<—7)¢ =0 on (0, 00),
$(0)=0,

¢ € H((0, 00))

satisfying that for r > 0, ¢ 1(t) >0, and lim;_, o ¢ 1(t) = 1. From the estimate (14) for N = 2 and the boundedness
2 2

of {|lun ||z}, for N > 3, we see that lim;_, o exp(—gt)(un(t, y))p_l = 0 uniformly with respectto y € RY~!. Thus,
there exists sufficiently large T > 0 such that

_ ~1 Bt
Apg |+ Inexp(—BD )" 95 | =g | exp(=p1) (wﬁ —exp(;)k;l) <0, 1>T.
From a comparison principle (refer [12]), we see that foreachn=1,...,andt > T,

un(T,y)
Ut ) <¢p (1) max ¥
20 i yeend,) ¢4 (1)

This implies that

lim sup  uuy(t,y)=0;
=00t yye2ND,

this contradicts that {||u,, || =}, is bounded away from 0. This proves the claim.

Now, taking a subsequence if necessary, we can assume that u,, converges weakly to some u in H(§2) as n — oo.
From the boundedness of {||u,||.~},, we see that for some p € (0, 1), {llu,|lc20}s is bounded. Thus, we can assume
that u,, converges locally to u in C? as n — oo. Note that lim,,_ o I, = Jn,p(£2). Thus, this u satisfies the following
equation

Au+ Jn g(82)exp(—pr)u? =0 in £2,
u=0 onodf2.

From the preceding claim, we see that if 2 satisfies the first assertion of E-condition in Definition 2.2, for sufficiently
large T > 0,

liminf max u,(t,y) =liminf max u, (f, )’O) >0,
n—>00 te(—L,T),(t,y)e2ND, n—>00 te(~L,T)

and that if §2 satisfies the second assertion of E-condition in Definition 2.2, for sufficiently large 7' > 0,

liminf max U, (t,y) = liminf max u,(t,y) > 0.
n—o0 —L<t<T, (t,y)e n—o0 —L<t<T, (t,y)e2ND,
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Thus, it follows that u #£ 0. Let

y = /exp(—ﬂt)u”+1 drdy € (0, 1].
2
Suppose that y < 1. Then, taking w =~/ (P+Dy we see that
/exp(—,Bt)w”'H drdy =1,
2
and that

Aw + Iy g(2)y PV P exp(—gryw? =0 in 2,
w>0 1in £,

w=0 onods2.

By integration by parts, we get

/ [Vw|*drdy = Jy g(£2)y P~V 0D < gy 5(82).
2

This contradicts the definition of Jy g(§2). Thus, it follows that

/exp(—ﬂt)up'H drdy =1.
2

Since

/ |Vul?drdy < liminf/ |Vuy > drdy = Iy 5(2),
n—00
2 2

we conclude that u is a minimizer of Jy g(§2). This completes the proof. O

For our applications to the Hénon equation (1), we are particularly interested in the case 2 = (0, 00) x R¥=1. In
this case, we derive the following qualitative properties of the minimizers of Jy g((0, 00) x RV,

Proposition 2.5. Let u be a nonnegative minimizer of Jy g((0, 00) x RN~ Then,

(i) For N =1, u is a monotone increasing bounded function, and for any c € (0, B), there exists constants C > 0
such that

0 < lim u(s) —u(r) < Cexp(—ct);
S—> 00
(i) For N =2, for some xq € RN u(t, x) depends only on t and |x — x¢|, and is monotone decreasing with respect
10 [x — xol;
(iii) For N 2 2, limjy|— oo u(t, x) = 0;

(iv) For N =3, lim|( x)|—oco u(t, x) =0;
(v) For N >4, there exists C > 0 independent of t > 0 such that u(t, x) < \XI%

Proof. For simplicity of notations, let J = Jy g((0, 00) x RM~1). First of all, we note that

Au+ Jexp(—Bt)u”’ =0, u>0 1in (0, o0) x RV 71,
u=0 on{O}xRN_l.
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We prove (i) first. For N = 1, we see that

t t

1/2
u(t):/u’(s)ds <\/;(/(u/(s))2ds) < CW/1.
0 0
Denoting w(t) = u’(t), we see that
w” + pw’ + pJexp(—pHuP'w =0 in (0, 00).

It is easy to see that w(0) > 0, and that u is monotone increasing and w is monotone decreasing. Since fooo w?(t)dr <
00, it follows that lim,_, o w(t) = 0. Since u(t) < C+/%, it follows that for ¢ (f) = exp(—ct) with c € (0, B),

¢" + B¢’ + pJexp(—=pyul ¢ <0 in (T, 00)
if T > 0 is sufficiently large. By a comparison principle (refer [12]), we see that for some C > 0,
w(t) < Cexp(—ct), te€(0,00).
This and the monotonicity of # imply that for some C > 0,
0< lim u(s) —u(t) < Cexp(—ct), te(0,00).
§—>00
The proof of (ii) follows from using a rearrangement technique [10]. We can show the monotonicity and the
symmetry properties of u for N > 2.
The decay property (iii) lim|y | o u(?, x) = 0 for N > 2 follows from an elliptic estimate. The decay property (iv)

lim| (¢ x)|— o0 u(#, x) = O follows from elliptic estimates and the fact that by the Sobolev inequalities for N > 3,
llue|l;2v/(v—2) < oo. Finally, for N > 3, we consider a function

_ ¢p1(D)
wﬁ(tsx) = |X|N_3 5

where ¢pg 1 is the first eigenfunction of (8) with the corresponding eigenvalue A4 1. Then, we see that for x # 0,
A+ exp(=Bu? g = (uP =" (1, x) — hp1) exp(—BD)Yp.
From above decay property of u, we see that for sufficiently large x € RV~!, uP=1(t,x) — Ag,1 < 0. Thus, by a
comparison principle (refer [12]), we see that for some constant C > 0,
C
ult,x)<C 1Lx) < ——.
(1,3 < CYp(,3) < s

This finishes the proof of (v). O

Finally, we close up this section with a symmetry property and a non-existence result of positive solutions for
Eq. (2) for more general £2.

Proposition 2.6. For N > 2, let u € H($2) be a solution of (2) with 2 replacing (0, 00) x RN~ satisfying

lim u(t,x)=0.
|(t,x)]—>00
Suppose that for any (t,x) € 2, (t,y) € 2 if |y| < |x|. Then, for some xo € RN u depends only on t and r =
|x — xo|, and % <O0forr #0andt > 0.

Proof. We sketch the proof here since it is standard by now to show the symmetry property of positive solution via
a moving plane method [7]. Let x¢ € RVN-! \ {0}. For A > 0, let T, = {(¢, x) | (xg,x) = A}, and E, = {(t,x) € 2 |
(x0, x) = A}. For (¢, x) € Ej, we denote (¢, x*) the reflection of (¢, x) with respect to T, and define u; (¢, x) = u(t, x*).
Define A = sup{A € R | E; # ¥} € (—o0, o0].

Suppose that for A sufficiently close to A,

wy (¢, x) = min{u, (1, x) —u(t, x),0} #0.
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Then, it is easy to deduce that

/|wa|2dtdx < Hpul’*‘||Lw(Ek)/exp(—ﬂz)(wk)Zdzdx. (15)
E) E;

Note that for A = 0o, limy_ oo ||pw"_l I,y =0, and that for x # 00, the first eigenvalue —A on E) goes to 0o as
A — A. Thus, the inequality (15) contradicts Proposition 2.1. This implies that for A sufficiently close to A, w; > 0
on E;. Define 1o =inf{A € R| wy > Oon E;} > —oco. Then, combining above arguments and the Hopf maximum
principle, we conclude that w;, = 0, that is, u is symmetric for the reflection with respect to Tj,. Since it holds for
any xo € RV=1\ {0}, the symmetry and monotonicity properties of u follow. O

As in the proof above, for xp € RY-! and A € R, we define
To={(t, )] (xo,x) =2} and E; ={(t,x) €2 (xo,x) >4},
For (¢, x) € E;, we denote (¢, x*) the reflection of (¢, x) with respect to Tj, and define E;\ ={(t,x") | (t,x) € E;}.
Therefore, we obtain the following non-existence result.
Proposition 2.7. Suppose that there exists xo € RN~ such that for any A € R with E; # 0,
E;UE, C £, but E;UE)+#$2.
Then, there exists no solution u € H(82) for Eq. (2) satisfying lim| )| -0 u(t,x)=0.
Proof. We sketch the proof here. Denote A = sup{\ € RE{ UE), C 2| E, #¥} and A=inf{A e R| E; C £2}. From
the fact that E] U E, # §2 for any A € R with E}, # (J, we see that A = —oo0.

Suppose that there exists a solution u € H(§2) of @) satisfying lim| )| o0 #(f, x) = 0. Then, as in the proof of
Proposition 2.6, we see that for A sufficiently close to A,

u(t,xk) >u(t,x), xe€k,.

Then, since E; U E; # 2 for any A € R with E; # ¢, by the same argument as in the proof of Proposition 2.6, it
follows that for A < A,

u(t,x)‘) >u(t,x), xek,.

This contradicts that lim( y)|—c0 #(2, x) = 0. This proves the claim. O
3. Asymptotic profile of least energy radial solutions on unit ball

In this section, we consider the limiting behaviour of the least energy radial solutions, i.e., the minimizers of
I"™@(B(0, 1)). We consider both the asymptotics of limiting energy and limiting profile.

Let 2 = B(0,1) = {x € RV | |x| < 1}, and Hyoq = {u € Hy >(2) | u(x) = u(|x])}. Then, we consider the following
minimization problem

Irad*“zinf{ / |Vu|? dx
2

/ Ix|%uPtdx=1, ue Hmd}. (16)
2

In [11], Ni proved that the above minimization problem has a positive minimizer u_; for 1 < p < (N +2 + 2a)/
(N — 2). Moreover, from the Pohozaev identity, we can show that there is no solution of Eq. (1) with £2 = B(0, 1) for
p=(N+2+2a)/(N —2). This u{j‘d satisfies the following equation

Pu N-19

e AT M rdayey P —0 in®2,  u=0 ondf.

or2 roor

In [14], it was shown that for N > 2, limaeoo(aiv}v

174 and our analysis applies to N = 1 too. This analysis in turn will be used to find a fine asymptotic behaviour
of the minimizers uffd for 1™ a5 @ — co. We have the following asymptotic result for 774¢ and uf;‘d. We denote
In.p=Jn p((0,00) x RV~

Y+ [ ¢ (0, 00). We will examine the exact value of the limit
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Theorem 3.1. Let N > 1 and p > 1. Then

p+3
N P _
lim < ) ! Irad,a — ’SN—I |(P 1)/(p+1)J1 .
a—soo\a+ N .
where |SN™1| is the volume of (N — 1)-dimensional sphere S"~. For any r & (0, 1], dug(r)/dr < 0. Furthermore,

under the following transformation
1

rad N—-1 - N it rad N

H=|S P —— - t

vd(n) = | ’ Y ugexp| ~ oy

vffd(t) converges uniformly on (0, 00) to a minimizer of Ji y as a — o0.
L . .
of 11, a scaled function @@ = (1734) 7=T "4 i a least energy solution (a moun-

For a nonnegative minimizer u

rad
o
tain pass solution) of (1) in the class of radial functions Hy,q. Proposition 2.3 implies that there exists a least energy
solution (a mountain pass solution) of wy, g in H((0, 00) X RV~ of the equation
(I7)

Au +exp(—Btu? =0 in (0,00) x RV,

u>0 in(0,00) x RV,
u=0 on{0} x RV~
For the minimizer uy g of Jy g = Jn ((0,00) x RN~1), the least energy solution wy g of (17) is given by
rad and its energy.

1
(Jn,p) P Tun,g. Then, we have the following equivalent version of Theorem 3.1 for o,

Theorem 3.1-E. Let N > 1 and p > 1. Then
N = 1 1
=
( ) / S|Vl = el (0f) " dx
2 p+1

(o]
1
exp(—N1) (o n)P T dt,

1
— |gN-1 / v 2 _
| | 2| 1,N| P
where | SN~ is the volume of (N — 1)-dimensional sphere SN =1, Furthermore, the following transformed solution

2
N p=T N
Wrad £ = SNfl p rad _ ¢
o (1) | | a+ N P \ XP{ T +N

converges uniformly on (0, 00) to a least energy solution w1,y of (17) as & — o0.
rad i1 (0, 1). Suppose that there

o

Proof of Theorem 3.1. It is easy to see that there are no local minimum points of u
exists ro € (0, 1) satisfying u™4(0) < u™(r) for any r € (0, ro). Then, defining w?! = u™4(r) for r € (ro, 1) and

ufxad(ro) for r € [0, rg], we see that

/|w;ad|2dx > fww;ad|2dx
2 2

and
/ el ()" dx < / el (wgr)" " d.
2 2

This implies that
Jo Vw92 dx B Jo IVu2|? dx '
(fQ |x|oz(w(rxad)p+l dx)2/(p+]) (fQ |x|a(u‘rxad)p+1 dx)2/(p+l) ’
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this contradicts that umd is a minimizer of 1"™%¢_ Thus we see that u;, 4 is monotone decreasing on [0, 1].
We transform umd as follows: for ¢ € (0, 00),

I
IR N P+ N
v&ad(t) = |SN 1|P+1 <_a n N) u&ad(exp<—a n Nt)).

Then, direct calculations show

p+3 00
N\ NN =2 | dud|?
I B G F A
o+ N dr
0
and
o0
/|x|°‘(uf)f‘d)p—|r1 dx = /exp(—Nt)(vfj‘d)p+1 de.
Q
Thus, we see that for any p > 1,
p+3 [ee]
N N\ -1 N(N —2)t\|dvd|?
! Il"ad,()l_ |SN 1|:)+1 /exp _ ( ) UD( dt
o+ N o+ N dr
0
and
o0
/ exp(—N1) (v dr =1
0

Moreover, it follows that

_ rad
i (exp(— N(N 2)t) dUa ) + HD{ exp(_Nt)(v‘gad)p =0 on (0, OO),

det o+ N dr
rad
(t) rad

11— 00 (0)

where
pt3
Hy=|sV! (N )7 e
o+ N
Since limy—, oo €Xp(— N ;]\JIF_NZ)’ ) = 1 uniformly on each compact subset of [0, 00), it follows that
. N \FF d N—1|(p=D/(p+1)
i ()l &

This implies that limsup,,_, ., Hy < Ji,n-
For sufficiently large o > 0, we see that

2 r N(N =2
t
dt</exp< ( )>
o+ N
0
o0

— H, f exp(—N1) (v2) "+ dr < H, o] 23! / exp(—N1) (v29)* dr.
0

2
dt

l'dd

dr

rad

r d
/exp(—Nt) Ya
0

Then, from the inequality (4), we see that {[|v24|| .} is bounded away from 0.
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rad

From now, we will show that {|| v{;du L} is bounded. Defining W, = dv;ad /dt, we see from the equation for v}

that

d’W, N(a— N +4)dw, N(a+2) 1 N*a+2(N-2)
H _7t rad P _ =0'
dr2 ot N @ T (p "‘eXp( arn ) @+ N)2 "‘

Note that vfj‘d(O) =0, lim;_, oo Wy (#) = 0. Then, we see that

t t
rad _ _ N(N—Z) _N(N—Z)
v, (1) = / Wy(s)ds = / exp<72(a ) s) exp( 72(0[ ) s) W, ds.
0 0

Then for some constant C > 0, independent of «,

a+N N(N —2)
C ]\7]\7—2 exp —Nt —1 forN > 2,
i<y VIV “f

v < CVt for N =2,
@) < C for N = 1.

Note that for any y, ¢, t > 0,

exp(—ct)y(exp(i) - 1) < texp((l - c>t>.
4 14

Thus we see from (18) that

. N(x+2) ayp—1 N2 (@+2)(N-2)
1 H e 3 [ O — =0.
I(a,tl)nioo<p ¢ exp( oa+N >(va ) (a+ N)?2

It is standard to show that for each T > 0, {||Wy |l L (0,7)}« is bounded. For a € (0, N), we denote ¢ (t) = exp(—at),
Then, we see that for sufficiently large o > 0 and 7 > 0,

2 _ 2 _
d&’¢  N(@—-N+4)d N (pHae (_N(a+2)t>(v2ad),,_l _ NY(a+2(N 2)) <o.
a+ N (a + N)?

dr? a+N  dt

Then it follows from the comparison principle that for any given a € (0, N), there exists some C > 0, independent of
a > 0, satisfying

Wu () < Cexp(—at), t=0. (19)

Then, since vffd(t) = fot We (s)ds, it follows that {IIU(rxadllLoo}a is bounded, and that for any a € (0, N), there exists
some C > 0 satisfying

lim v™(s) — v™(1) < Cexp(—at), t>0. (20)
§—>00

Now, from the elliptic estimates [8], we deduce that for each T > 0 and y € (0, 1), {|v;ad|C2.V(O,T)}a is bounded. If

liminf,_ o || vg“d | oo (0. 7)) = O for sufficiently large 7' > 0, from the boundedness of {|| v&ad ||z }o, it follows that
o
liminf / exp(—N1) ()" dr = 0;
o—>00
0

this contradicts that for any a > 0, [ exp(—N1)(v)?T! dr = 1. Thus, we deduce that for some H € (0, J; y], the

rad converges in CIZOC(O, o0) to a solution v € H((0, 00)) of

solution v}

d2v

dr?
v(0) = 0.

+ Hexp(=Nt)v? =0, v>0 in (0, 00),
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Since [;° exp(—Nt)vP*H df = 1, it follows that H = [;°|92|2dt > J; . Therefore, it follows that

p+3

N P o=l
a“l‘éo<a+N> 170 SNy
Thus we get
N\ .
. = =t
aIL"So<a+N> 174 =[SV .

rad

Moreover, from (19), it follows that v

converges uniformly to a minimizer of J; y. This completes the proof. O
4. Asymptotic profile of least energy solutions on the unit ball
In this section, we turn to the least energy solutions of the Hénon equation (1). We will study both asymptotic

energy and asymptotic profile of the ground states.
Let us consider the following minimization problem

ke = inf{ lue?

/ x|%uP*ldx =1, u € Hy (B, 1))}. 1)
2

For p € [1, (N +2)/(N — 2)), there exists a positive minimizer uf}[“ of (21). This uf}[“ satisfies the following equation
Au+ I x|%uP? =0, u>0in £, u=0 onds.
When N > 2, for x € RV, we take polar coordinates x = (r, #) with r = |x| € [0, 00),6 = x/|x| € SV¥~!, and denote
u(x) = u(r, 0). For the sake of convenience, we denote Sév_l = %SN_I. Foreach y RVN-1=RN-1 x {0} C RV,
there exists a unique ¥, (y) € Sév_l \{(,...,0, #)} such thatz (y) Yo () +(1—2(y))(0,...,0, #) =y for some
t(y) > 0 depending upon «. Then, the map (V) S(iv’l \ {(0,...,0, %)} — RN~ is a stereographic projection.
Also when N > 2, by a rearrangement technique [10], we can assume that uf;“(x) = ugu (g-x)forge O(N-1Q®I C
O(N) (i.e., u is radially symmetric with respect to the first N — 1 variables), and that for fixed r € (0, 1), ugu (r,0)

decreases strictly as |6 — (0, ..., 0, —1)| increases. If N = 1, we can assume that duf}[H(O)/dx > 0.

Then, we have the following results on the asymptotic behaviour of the least energy 73! and the minimizer 2"

o

Theorem 4.1. Let p € (1,2* — 1). Then

N+2—(N-2)p

N p+1
1' ]all,a — .
ame<a + N JN’N

Moreover, the following transformed solution
N
N bt all N N
— t), —— N >3,
<ot+N> Y \ P\ "o N a+N¢a(y) for
val, y) = 2 \PT g 2 ; 2 N2
o at2 u, | exp a2 ,a—+2y for ,

1\, ¢
a+1 Uy | €Xp _a_—i—l f0rN=1

with t € [0, 00), y € RN~ converges to a minimizer of Jn v uniformly for N > 3 and locally uniformly for N =1, 2
as o — 0o, and, for N = 1, the following transformed solution (%_H)l/(l’“)u;”(— exp(—a;ﬂ)) converges locally
uniformly to 0 as o — 0.

For a nonnegative minimizer u®" of I, a scaled function o™ = (13" 7=Tudll is a least energy solution (a mountain

pass solution) of (1) in the whole class of functions in Hol’z(B(O, 1)). Then, we have the following equivalent version

of Theorem 4.1 as for a)fxad and its energy in Theorem 3.1-E.



J. Byeon, Z.-Q. Wang / Ann. I. H. Poincaré — AN 23 (2006) 803-828 819

Theorem 4.1-E. Let p € (1,2* — 1). Then

N+2—(N-2)p

. N P 1 2 1 +1

Jn (i) [ 3wt - oty o
p+
B@©,1)
o
1 ! p+l
= §|VCUN NIT— 16XP(—NI)(wN,N) dr
0

for some wy N being a least energy solution of (14-(N,N)). Moreover, the following transformed solution

NN M) vew) fornz3
w exp| —————t ), —— or =Z 3,
a+N « P a+N ) a+N aly

2
1l — 2 \r T 2 2
W= (o) @ (en(st) o) v =2

2

1 = t
a1 w, | €Xp —m fO}"NZI

with t € [0,00), y € RV1, converges to wn N uniformly for N > 3 and locally uniformly for N = 1,2 as a« — oo,

1
a+1

2
and, for N = 1, the following transformed solution ( ),,legll(_ exp(—a%H)) converges locally uniformly to 0 as

o — OQ.

Proof of Theorem 4.1. We take polar coordinates x = (r, #) with r € [0, 00),8 € SV —1, and denote u(x) = u(r, 6).
We first consider the following transformation

N
all a+ N\ »1 all N N
t’ E _—t 9 - b
v, (1, 9) ( N ) ul' ( exp TiN a+N¢

where ¢ € [0, 00) and ¢ € Sév —1_ For the sake of convenience, we denote dyo the volume element of S(iv ~1 Then,
from some direct calculations, we get for N > 2

FNN\ T NN =21 (| duth 2
14 —
e fratan(52) [ ) o
2 (0,00)x S& !
1= / |)c|"‘(uf)'lu)p+1 dx = f exp(—Nt)(vf);H)p+1 drdyo,

2 (0,00)x SN !

N+2—(N-2)p

where Vg, is the gradient on S ~!. Thus we see that K, y = A (DH_LN) pHI

9d N(N —2) gl
ar? a+N ot

N(o +2)t
+ Agv-1vy + Ko n exp(—w) (v =0 (22)

in (0, 00) x S, and vg“ =0on {0} x Sév ~1. A direct computation shows that (22) also holds for N = 1.
For each ¢ € C§°((0, 00) x RY—1), we define a function wy € C3o(B(0, 1))

N

N\ pt1 N N
(“; ) w(—“; logr,wfa)—l(“; 9)) for N > 2,
N

N\ p#1 N
ot ' 0] —OH_ logr for N =1.
N N

Then, since ¢ € C3°((0, 00) x RY—1), it is not difficult to deduce that

Wy (r,0) =
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Jo IVwal*dx
(f 161 [wq P+ dx)?/(P+D

N+2—(N-2)p
_<oc+N)7+ " fi0.00) xri-1 €Xp(— DN (1212 4 Vo) dr dy + O(L)

N (f(O,oo)xRN*I exp(—N1)|p|PH dt dy+O(§))2/(P+1)

as o — oo. Furthermore, since ¢ € Cgo((()’ 0) X RN—I), it follows that
L Jocome 1 EXP GO + Vypldrdy +0()
im
a—00 (f(O,oo)XRN*l exp(—=Nt)|p|PT1drdy + O(é))2/(p+1)

_ J10,.00) -1 V1> dr dy
(J0.00)xRN-1 EXP(=ND)|@|PT1 dr dy)/(P+D

This implies that

N+2—(N-2)p

Pl all,a
I < Iy N. (23)

lim <
a—oo\ o + N
Next, by a similar argument as in the proof of Theorem 3.1, we deduce using (5) that for N > 2, {||vg“|| Lo }g 1S

—1
bounded away from 0. For N = 1, since vgu(t) =(a+ 1)muf}}l(exp(ﬁ)), we see that

9 exp - dug’ + 1 (g 4 1) 5T exp(—n(v™)” =0 on (0, 00) (24)
dt at+1) dr T
and that

t d all t d all 0 1
vW0)=0,  lim exp Vg (1) dug (0) B
t—00 a+1 dr dx o+ 1)%

< 0 for |x| < 1, the unique maximum point of uau is located in

[0, 1). From Theorem 3.1 and (23), we see that ug“ is not symmetric, that is, ug“ (x) # ug“(—x) for some x € (0, 1).
Thus from the uniqueness of a solution for the initial value problem of ordinary differential equations, we deduce that

o0
f t
ex
P oa+1
0

a“ on both sides of (24) and integrating by parts, we get

t d all t
dt — lim exp( > all( H—2% - Ya ( )
a+1

dva“
o
dr

—>0o0

o
t d all |2 d allO 1 a]]O
oo )| a0 o
; o+ d X w4 ) @+ D
o0

=1+ 1)" /exp( D (i dr.
0
Then, it follows that

f exp(— t)
0

all 2

all
dvg

dr

o0 OO
/ dvall t
ar eXp a+1
0 0
o0

< ey B L [omion(a e .
0
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Then, from (4) and (23), we deduce that for N =1, {||v§[“||Loo}a is bounded away from 0. Prior to proceeding
further, we prepare some lemmas.
We consider the L® bound first.

Lemma 4.1. For each N # 2, {[|[v3"|| . }o is bounded.

Proof. We prove the claim for the cases N >3 and N = 1 separately.
Let N > 3. First of all, we note that for U, = (Ian"") P*' ugu,

AUy +U)? >0, Uy,>0 inB,
Uy=0 onadB.

Then, by an uniform estimate [2, Proposition 3.5], we see that for N > 3 and some C > 0, independent of «,

4/(N+2 N-2
1Uallze < ClUNY s

Thus, from the Sobolev inequality and (20), it follows that for some C > 0,

N
2] oo = (1) T Ul < C (120 T <C<a;N> P

Thus, for N > 3, {|[v3|| 1=} is bounded.
=(p+3)

l
Let N = 1. Defining W, = dt , we see that for K, 1 = [l (¢ + 1) pFT |

a+2 _
+ KO{ 1pexp<—?t>( all)P I)Wa =0

2w, «+3dw, o+2
dr? a+1 dt (a+1)2

and

t 1 dud0)
a+1/a+1 dx

As in Theorem 3.1, we deduce that for any a € (0, 1), there exists some C > 0, independent of o > 0, satisfying

Wy () < Cexp(—at), t=0.

Wy (0) > 0, lim Wy (t) = — lim exp(—
—00 11— 00

This implies that

va“(t)—/W (s)ds < E t>0.

Cl
This completes the proof. O

Lemma 4.2. For N =2, there exists a constant C > 0, independent of a > 0, such that

t 2 2
P 1), (>0, —%n@{” 7

vill(r, ¢) < Cexp 2
o ’ ~X pz 2

4
Proof. Let N=2and Koo =1 alle(_2Z y35T Then, the vf}‘l“ satisfies the following equation

a2

82 all 32 all 2 2
Ya + —= + Ky pexp(—21) allp:O in (0, c0) x _ot 7T,a+ 7,

012 9y? 2 2

dval 2 2

UCC =0 on (0’ OO) X _iﬂ'7 iﬂ s

dy 2 2

2 2

v =0 on {0} x (—a;— T, %n).
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Let T > 2, and ¢ a smooth function such that

1 for /(t—T)24+y2<1,
0 for \/(t—T)2+y2>2

and 0 < ¢ <1 on RY. For the sake of convenience, we denote v = vgu in the followings. Then, for any o > 0,
multiplying v2**!¢? to above equation for v and integrating by parts, we deduce that

¢(t,y)={

/|Vv“+l¢|2dt dy < / vtV P drdy + Kya(a + 1) / exp(—20)v> 2P~ 192 dr dy. (26)
2
Denoting w = exp(—%)vqﬁ , we see from Holder’s inequality that for any K > 0,

2t 2
/exp(—Zt)v2°‘+2v1’lqﬁzdtdy:/wp1exp<——)v2°‘+2¢p drdy
p

p—1

1
<( / exp(—2t)vp¢2dtdy> ' (/exp(—2t)v”(2°‘+2)¢2dtdy)p
{@&.»w@,y) 2K}

2t 2
+ kP! /exp(——>v2“+2¢)P drdy. (27)
p
It is easy to see that

exp(—20)vP¢? dr dy

{t.»w(t.y) =K}

P
1 Dt 2(p+1) P+
<@y lwi.y) > K| </exp<—2m)v”+l¢ T dy> ’
)4

P
e P
P (/exp(—Zt)v”+l¢2 dr dy)p (28)

<H@. y) lw, y) =K}

and

1t 2(p£D)
{9 1wt v > K)| < K“’“)/exp<_2m>””“¢ 7 aray
p

< K_(’"H)/exp(—Zt)v”Hd)zdtdy.
Thus, it follows that

1
exp(—20)vP¢? drdy < e / exp(—20)vP T ¢? drdy. (29)
{@»w,y) =K}
Combining (26)—(29) and Proposition 2.1, we see that for some C > 0, independent of «, ¢ and v,

( / exp(—20)pP AtV p2p 4 dy)p

2t 2
<cfv2“+2|v¢|2dtdy++C(a+1)KP1/exp(——)u2“+2¢p dtdy
p

p=1 1
| =t '
+C(a+1)<E/exp(—2t)up+‘¢2dtdy> ' (/exp(—2t)vp(2a+2)¢>2dtdy>p.

We take K > 0 so that

p—1
p

Cla+ 1)(%/exp(—2t)u!’+1¢2dzdy> = %
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Then, since

(a+N)m
N

/ /exp(—2t)v”+ldtdy= 1,

_(e+N) O
N

it follows that

1
( / exp(—20) P+ g2p 4 dy>'
p-l 2t
<2C[u2“+2|v¢|2dtdy+ (2C(a + 1))1_p(/exp(—Zt)v”+l¢2dtdy> fexp<——)v2“+2¢§drdy
p

— 2t 2
< 2C/U2“+2|V¢|2dt dy + (2C(a + 1))l pfexp(——)v2“+2¢p dt dy.
p
We take a smooth function ¢; such that

1 for (T —1)24+y2< 1427,
0 for /(T —0)2+y2>14271+1

and 0 < ¢; < 1, |Ve;| <2/, Then, substituting ¢ and 2a +2 by ¢; and (p + 1) p'~! respectively in above inequality,
we see that

¢i(t,y)={

( / exp(—=20)0” P+ gt dy> '

B((T,0),142%)
<204 exp(2T + 4) / exp(—20)v” D drdy
B((T,0),14+2i=1)
_ —1 i
+(2C@+1)' pexp<p—(2T + 4)) / exp(—20)v” " P+D dr dy.
P
B((T,0),142i=1)

Then, we deduce that for some D > 0, independent of i and 7' > 0,

1
( / exp(—20)vP P+D g dy> e

B((T,0),1+2")

i 1 lerl
- - _ p+1
< Dexp<2T E T D) ( / exp(—2H)vP" dt dy)

j=1 B((T,0),2)

14
< Dexp| 2T .
p( p2—1>

Then, taking i — oo in above inequality, we see that for some D > 0,

(T, 0) < Dexp<2T2L), T>2.

p—1

This proves the claim. O

Lemma 4.3. Let N > 3, and let Ay, :=1lim,;_, vg”(t, @). Then limy—, 00 Ag =0.
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Proof. Denoting U, = (I‘"‘“’“)l/(p_l)ug”, we see that
AUy +1x|*(Ug)? =0 in B(0, 1),

and that
ptl
r=1,

/ el (Ue) P () dw = (1)

B(0,1)
Let G(x, y) be the Green function of —A on B(0, 1). Then, we see that

Ug(x) =— Gy, )yI*(Ua)? () dy.
B(0,1)
Note that G (x, 0) = C(1/|x|¥Y~2—1) for some C > 0. Applying Holder’s inequality, we deduce that for some constant

C=>0,

. 1/(p+1) p/(p+1)
Ua<0><c< / (G(x,0))" |x|°‘dx) ( / |x|“<Ua>P“dx)
B(0,1)

B(0,1)
< C(a+ C)~ /D (Iall,oz)P/([?—l)'

Thus, it follows that
N p[-\il—l N p]-}[—l + o
. all all all,«
= | — < ’ e
[ vy (7. ) (a+N> ug (0.0) < €1 <a+N)
1-p(N-2)

N N+27p(lN—2) _LJrll N Sk
p+ p+ p+
<(57) -<(57)

N

<Ofor p>1and N > 3, the claim follows. O

1—p(N=2)

Since FES|
Lemma 4.4. Let N > 3. Suppose that there exists Ty, > 0 satisfying limy_, oo Ty, = 00 and

lim sup vgll(Ta,qS):O.

o—> 00 _
pesy !

Then, it follows that
. 1 N—1
alingosup{vg t.¢)t>Ty ¢Sy} =0

Proof. Let (¢ N A N 1) be a pair of the first eigenfunction and the first eigenvalue of

d%¢ Nt
— +Aexp(—7)¢ =0 on (0, 00),

dr?

#$(0)=0,

¢ e H((O, oo))
satisfying that for ¢ > 0, ¢n |(¢) > 0, and lim; oy (r) = 1. Note that % >0 for t > 0. Let Koy =

2 2
N+2-(N-2)
1 all""(OHFLN) e . From the boundedness of {|| vgn L= }e for N > 3, we see that for sufficiently large 7' > 0,
N(a +2)t —1
e (UL

N(N —2)
— v @y D+ Agv-i¢n  + Koy exp| — et N

(‘Jj%,l)n - a+N
N(a +2)1 1 p—1 N(e+4—N)t
<¢)%’] exp(—w> <Ka’N(Ug ) — eXp 2(1—}——21\7 )\'%,1 SO, t> T.
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From a comparison principle (refer [12]), (22) and Lemma 4.3, we deduce as in Proposition 2.3 that
: 1l N-1
Jim sup{vp'(r.¢) |1 > Top € S} =0.

This completes the proof of Lemma 4.4. O

Now we consider the limit of vgu. Note that for each 7' > 0,

f (P dyo df <exp(NT).
0,7)xSY!

a]ll No1
a IC2y((0,T)xSy ~

for any T < co. Thus, for some K € [0, Jy n], vo(t,y) = v("j‘l”(t, Y4 (y)) converges in ClzOC to some w satisfying

Then, from elliptic estimates [8], we deduce that there exists y € (0, 1) such that {|v )}a is bounded

Aw + K exp(—=Nt)w? =0 in (0, 00) x RN~

30
w=0 on{0} xRN 30)
Furthermore, it follows that
/ |Vw|*drdy < Jy.y and / exp(—NHwP T drdy < 1.
(0,00) xRN -1 (0,00)xRN—1
Then, we see the following result.
Lemma 4.5. For each N > 1, w > 0 in (0, 00) x RN-L
Proof. To the contrary, suppose that w = 0.
First, consider the cases N > 3. From Lemma 4.1, we see that
Nt
lim exp(——) vl =0.
=00 2 L((0,00) x Sy
Then, for sufficiently large « > 0 and N > 2, we see that
/ exp(—T)(‘ 8(; + | Vs, 03 )dtdao
(0,00)x SN !
N(N —2)t\ (| dvl|? 02
< exp| — + | Vg v? dtd,o
/ p( at N )(‘ oo | Vsl Jarde
(0,00)x SN-1
=Kun / exp(—Nt)(vi”)pH drdyo
(0,00)x S !
Nt _ N
<Ko N exp(——)(vgn)p ! / exp(——t) (vf)‘t“)2 dr dyo,
2 L®((0,00) X Sq) 2
(0,00)x S !
. N N+2—(N-2)p
where Ko v =1 “”’“(%) P+ On the other hand, integrating both sides of (4) on S, with respect to y, we see

that for some C > 0,

N AVAEDR
f exp(—3t> (vgn)zdt dyo <C / exp(—7> (‘ ;;‘

(0,00)x S~ (0,00)x S~

2
+|Vs, v;“|2) dr dyo.

Since limy— 00 Ko, N < JN, N, this is a contradiction.
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Secondly, consider the case N = 2. Note that a function ¢ = avg” /d¢ satisfies

n’

AY + Ko2exp(=20)(v3")" ¥ =0 in (0,00) x (— N ~

v =0 on a<(0, 00) x (—#n, ¢ _];Nrr)).

a+N o+N )
T,

It is obvious that

. a+N o+N
tgrggosup{w(t,y) ’ yE (—Tn, N n)} =0.
From Lemma 4.2, we see that
. mp—1 o+ N o+ N
Jim sup{exp(—2t)(vg )y ‘ ye (—Tn, N
) Cp+ Dt all a+N a+N
_tli)rgosup{exp<—ﬁ (2"~ Yoy |y e — Ty " =0.
that a set {||{ |2} is bounded. Then, by integration by parts, we see that
00 #” 00 #”
/ f V|2 drdy = Ka,zf f exp(—2t)(vgu)p_11ﬁ2dt dy < co.
0 —px 0

Thus, it follows that ¢ € H ((0, c0) x R). Moreover, since

Dt+N7T 00 N
2p + Dt
/ f exp(—20) (V)P "y dr dy < [lex p< %) (w2~ / (——>w drdy,
a-{]\—]N 0 _

it follows that

/oo atN
0_
Note that limy— o0 K¢,2 < J2,2 and

2 1)t _
exp(_( p+1 )(vﬁ”)p 1
p+1

IVy[*drdy < Ko

2 Dt _
e ~CLED)
p+1

t 2
exp| —— drdy.
p( p+1)w Y

a+N
oo
LOO/
0 _afVNﬂ

=0.
L>®

lim
o—> 00

This contradicts (5).
Finally, we consider the case N = 1. As in (25), we deduce that

oo o

4 LY an
/exp( ) dtg/exp<a+ l> exp(—i)va
0 0

Since w =0, limg o0 Ko.1 < J1.1 and {[v3] o} is bounded, it follows that

a4ty

This contradicts (4).
Therefore, we conclude that w > 0 in (0, c0) x RY-! The proof of Lemma 4.5 is finished. O

dvall
dr

dvall 2
o
dr

dr < Ka,l

[J—l < t 2
fexp(——)(vgu) de.
LOO 2
0

=0.
LOO

lim Koz,l
o— 00
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If K =0 in (30), the limit function w is harmonic. Then, it is easy to see that w = ar for some a > 0. This
contradicts that fooo Jry—1 [Vw|drdy < oo. Thus, we have K > 0. Now, let y = fOOOfRN_l exp(—NtHwPTldrdy €
(0,11 and W = y~YP+Dy_ Then, we see that fooo Jryv—1 exp(—Nt)WP*ldrdy =1, and that

AW + Ky P=D/PHD exp(—NH)WP =0 in (0, 00) x RN 1.
This implies that [~ [pv—1 I[VW|?dt dy = Ky P=1D/(*+D Thus, it follows that
Ky@=D/0+D 5 gy
Since Jy v > K by (20) and K > Ky P=D/(+D 't follows that K = Jy.n and y = 1. Therefore, the function w is

a minimizer of Jy y, and

N+2—(N-2)p

N p+1
. all, —
otll?go ! <O[ + N) NN

To complete the proof of Theorem 4.1, it suffices to show that VO’;‘H (defined in the statement of Theorem 4.1) con-
verges uniformly to w for N > 3. It is standard to see that for each 7 > 0, lim|y| ¢— 0 Va‘ju(t, y) = 0 uniformly for
t € (0, 7). Note that limy— o0 SUp,, V-1 va(T, ¢) < w(T,0). Then, since lim;_, o sup, cgnv-1 w(, y) =0 for N >3
(Proposition 2.5), by Lemma 4.4,

lim sup VA, y)=0.

t—00, d—00

yERN—I
Thus, V2(z, y) converges uniformly to w for N > 3. For the convergence of v~ = (a—}r])l/ (pH+Dyall exp(—z57),
we note that
00 00 1
1=/exp(—t)w”"’1 = lim /exp(—t)(vgu)pHdt: lim /|x|0‘(u3“)p+ldx
oa—>00 oa—>00
0 0 0
and
1 00 00
/|x|“(u3”)p+ldx =/lexp(—t)(v("j‘(u)erl dt+/exp(—t)(vgll’_)p+ldt.
-1 0 0
Thus,

o
: . all, -\ p+1 .
O(ll)rrgo/exp( D7) dr=0.
0

all,—

Then, the convergence of v},

rem4.1. O

comes from standard elliptic estimates [8]. This completes the proof of Theo-

5. Some final remarks

First, as a corollary of Theorems 3.1, 3.1-E, 4.1 and 4.1-E, we obtain symmetry breaking of least energy solutions
of the Hénon equation (1). For N > 2, this was proved in [14] by a different argument.

Corollary 5.1. For N > 1 and p € (1, 2* — 1) fixed, a minimizer ug“ of 1'% and a least energy solution a)g“ of (1) is
not radially symmetric if o > 0 is sufficiently large.

As it can be seen in Theorems 3.1 and 3.1-E, the behaviour of ufxad
understood. On the other hand, the behaviour of nonradial ground states u gu
understood. The following questions are worth further study.

and 0™ as o — oo is rather completely
and a)g“ as o — 00 is not quite completely
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1. What is the exact growth rate of ug“ (0) for N > 2 as @« — 00? Through the proof of Theorem 4.1, we showed
that if N > 3, there exists some constant C > 0 satisfying

-N 1-p(N=2)

N\ r+1 N +1
(oz—; >p ui“(O)<C<a—; ) ' -0 asa—0

and

-N
1 N\ rHT
— <lim ot ! max ugn(x) <C.
C N x€B(0,1)

From the Harnack inequality, we see that for any fixed x € B(0, 1), the growth rate of ugll(x) is the same with that
of ud(0).

2. Another question is whether a finer convergence of ug“ for N = 2 hold. The main difficulty for N =2 comes
from the fact that there is no appropriate inequality of Sobolev type which is independent of domains.

3. There is a unique maximum point x, of ug“ for N = 1. It would be interesting to know the asymptotic behaviour
of x4 as o — o0.

Note added in proof

After the submission of this paper, there have been several works in relation to the problems studied in this paper:
[15] for symmetry of ground states using polarization method, [5,4,13] for critical or near critical exponent problems,
and our work [3] in sequel to the current paper for limiting ground states in general bounded domains.
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