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Multi solitary waves for nonlinear Schrödinger equations
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Abstract

We consider the nonlinear Schrödinger equation in R
d for any d � 1, with a nonlinearity such that solitary waves exist and are

stable. Let Rk(t, x) be K arbitrarily given solitary waves of the equation with different speeds v1, v2, . . . , vK . In this paper, we
prove that there exists a solution u(t) of the equation such that

lim
t→+∞

∥∥∥∥∥u(t) −
K∑

k=1

Rk(t)

∥∥∥∥∥
H 1

= 0.

©

Résumé

On considère l’équation de Schrödinger nonlinéaire dans R
d pour tout d � 1, avec une nonlinéarité telle que des ondes soli-

taires existent et sont stables. Soit Rk(t, x), K ondes solitaires de l’équation données arbitrairement, avec des vitesses différentes
v1, v2, . . . , vK . Dans ce papier, on démontre qu’il existe une solution u(t) de l’équation telle que

lim
t→+∞

∥∥∥∥∥u(t) −
K∑

k=1

Rk(t)

∥∥∥∥∥
H 1

= 0.

©
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1. Introduction

We consider the nonlinear Schrödinger equations in R
d , for any d � 1:{

i∂tu = −�u − |u|p−1u, (t, x) ∈ R × R
d,

u(0) = u0.
(1)

Recall first that Ginibre and Velo [5] proved that Eq. (1) is locally well-posed in H 1(Rd) for 1 < p < (d +2)/(d −2):
for any u0 ∈ H 1(Rd), there exist T > 0 and a unique maximal solution u ∈ C([0, T ),H 1(Rd)) of (1) on [0, T ).
Moreover, either T = +∞ or T < +∞ and then limt→T ‖∇u(t)‖L2 = +∞. It is also well known that H 1 solutions
of (1) satisfy the following three conservation laws: for all t ∈ [0, T ),

• L2-norm:∫ ∣∣u(t, x)
∣∣2

dx =
∫ ∣∣u0(x)

∣∣2
dx; (2)

• Energy:

E
(
u(t)

) = 1

2

∫ ∣∣∇u(t, x)
∣∣2 dx − 1

p + 1

∫ ∣∣u(t, x)
∣∣p+1 dx = E(u0); (3)

• Momentum:

Im
∫

∇u(t, x)ū(t, x)dx = Im
∫

∇u0(x)ū0(x)dx. (4)

In particular, from the energy and mass conservations and the following Gagliardo–Nirenberg inequality in R
d :

∀v ∈ H 1(
R

d
)
,

∫
|v|p+1 � C

( ∫
|∇v|2

)d(p−1)/4( ∫
|v|2

)1+(2−d)(p−1)/4

, (5)

it follows that for 1 < p < 1 + 4/d , any H 1 solution of (1) is global and uniformly bounded in H 1.
Recall that Eq. (1) admits the following symmetries:

• Space–time translation invariance: if u(t, x) satisfies (1), then for any t0, x0 ∈ R, w(t, x) = u(t − t0, x − x0) also
satisfies (1).

• Phase invariance: if u(t, x) satisfies (1), then for any γ0 ∈ R, w(t, x) = u(t, x) eiγ0 also satisfies (1).
• Galilean invariance: if u(t, x) satisfies (1), then for any v0 ∈ R,

w(t, x) = u(t, x − v0t) ei
v0
2 (x− v0

2 t) (6)

also satisfies (1).

We now consider solitary waves of (1)

u(t, x) = eiω0tQω0(x), (7)

for ω0 > 0, where Qω0 ∈ H 1(Rd) is solution of

�Qω0 + Qp
ω0

= ω0Qω0, Qω0 > 0. (8)

Recall that such positive solution of (8) exists and is unique up to translations (see [1,4] and [6]), moreover, it is the
solution of a variational problem. We call Qω0 the solution of (8) which is radially symmetric. By the symmetries of
Eq. (1), for any v0 ∈ R

d , x0 ∈ R
d and γ0 ∈ R,

u(t, x) = Qω0(x − x0 − v0t) ei( 1
2 v0·x− 1

4 |v0|2t+ω0t+γ0)

is also a solitary wave of (1), moving on the line x = x0 + v0t .
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Using the concentration-compactness method, Cazenave and Lions [2] proved that these solitary waves are stable
when 1 < p < 1 + 4/d , i.e. when the nonlinearity has a subcritical growth. Weinstein [16] proved the same result by
a different approach based on the expansion of conservation laws.

In this paper, we assume that 1 < p < 1 + 4/d , so that the solitary waves are stable, and we prove the following
result.

Theorem 1 (Existence of multi solitary waves for the subcritical NLSE). Let

1 < p < 1 + 4/d. (9)

Let K ∈ N
∗. For any k ∈ {1, . . . ,K}, let ω0

k > 0, vk ∈ R
d , x0

k ∈ R
d and γ 0

k ∈ R. Assume that

for any k 	= k′, vk 	= vk′ . (10)

Let

Rk(t, x) = Qω0
k

(
x − x0

k − vkt
)

ei( 1
2 vk ·x− 1

4 |vk |2t+ω0
k t+γ 0

k ). (11)

Then, there exists an H 1 solution U(t) of (1) such that,

for all t � 0,

∥∥∥∥∥U(t) −
K∑

k=1

Rk(t)

∥∥∥∥∥
H 1

� C e−θ0t , (12)

for some θ0 > 0 and C > 0.

Such solutions for the nonlinear Schrödinger equations correspond to an exceptional behavior. Indeed, U(t) as
constructed in Theorem 1 is a nondispersive solution in the sense that by strong H 1 convergence:∫

U2(t) =
K∑

k=1

∫
R2

k (t) and E(U(t)) =
K∑

k=1

E(Rk(t)).

This means that all the mass and energy available in the solution is used for the solitary waves (in general, part of the
L2 norm is spread out by the dispersive effect of the equation as time goes on).

Note also that the nonlinear Schrödinger equation being time reversible (if u(t, x) is solution then ū(−t, x) is also
solution), the result of Theorem 1 could be stated in a similar way for t → −∞.

Comments on Theorem 1.

1. Integrable case. Solutions such as in Theorem 1 were known to exist for the integrable case: d = 1 and p = 3:

i∂tu + ∂2
xu + |u|2u = 0,

see Zakharov and Shabat [17] for a derivation of their explicit expression. Moreover, these solutions have very
special properties: they describe the perfect interaction between several solitary waves. In the nonintegrable cases,
the only known property of the solution U(t) constructed in Theorem 1 concerns t → +∞, and we do not know
what happens to the K solitary waves backwards in time.

2. Assumptions. The only assumption in Theorem 1 is the subcriticality of p which implies that the solitary waves
are nonlinearly stable. For the critical case p = 1 + 4

d
, the result of Theorem 1 was proved by Merle [13] in 1990.

It was obtained as a consequence of a blow up result and the conformal invariance. Note that the compactness
argument used in the present paper for the proof of Theorem 1 is similar to the main argument of the proof of the
existence result in [13].
We conjecture that Theorem 1 is also true for p ∈ (1+ 4

d
, d+2

d−2 ), for which the solitary waves are actually unstable.
3. Generalized KdV equations. An existence result similar to Theorem 1 was proved by Martel [8] for the subcritical

and critical generalized KdV equations, using tools from Martel and Merle (see [9] and references therein) and
Martel, Merle and Tsai [10]. Note that for the generalized KdV equations, it is also proved in [8] that being given
the parameters of K solitons, the solution converging to the sum of these K solitons in H 1 is unique in a large
class. Note finally in the case of the gKdV equations that the stability and asymptotic stability of multi-soliton
solutions follow from [10].
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4. Stability of K solitary waves. We point out that Martel, Merle and Tsai [11] have proved stability results for the
sum of several solitary waves of nonlinear Schrödinger equations, which imply stability of the family of the multi
solitary waves in the energy space H 1. However, the results in [11] are restricted to d = 1, 2 or 3, under a flatness
condition of f near 0 which does not allow the pure power case. It is also required that the relative speeds vk −vk′
are large enough. The general stability result (i.e. under the assumptions of Theorem 1) is an open problem.

5. Uniqueness. For the nonlinear Schrödinger equations, the general uniqueness problem in Theorem 1 (i.e. in the
class of H 1 solutions such that the quantity in (12) goes to zero) is open, unlike for the gKdV equations.

The proof of Theorem 1 depends on some calculations developed in [11]. To keep the present paper self-contained,
we have reproduced these calculations in Appendix A. However, we point out that even if initially we use the same
calculations, a large part of the proof of Theorem 1 is different and in fact more elementary than the proof in [11].

1.1. Case of a general nonlinearity

We extend Theorem 1 to the nonlinear Schrödinger equation in R
d with a general nonlinearity:{

i∂tu = −�u − f
(|u|2)u, (t, x) ∈ R × R

d,

u(0) = u0,
(13)

with f of class C1 satisfying f (0) = 0 and

∀s � 1,
∣∣f ′(s2)

∣∣ < Csp−2, for some p <
d + 2

d − 2
. (14)

It is well known that Eq. (13) has properties similar to (1): local H 1 well-posedness [5], conservation laws and
symmetries (except that the scaling invariance is no longer true). Moreover if for ω0 > 0, Qω0 is solution of the
following elliptic problem:

�Qω0 + f
(
Q2

ω0

)
Qω0 = ω0Qω0, Qω0 > 0, (15)

then

u(t, x) = Qω0(x − x0 − v0t) ei( 1
2 v0·x− 1

4 |v0|2t+ω0t+γ0)

is solution of (13) where v0 ∈ R
d , x0 ∈ R

d and γ0 ∈ R.
The stability problem for one solitary wave solution is solved in a similar way (see [2,16]). From [16], a natural

assumption for nonlinear stability is the existence of λ > 0 such that for any real-valued function η ∈ H 1:

(η,Qω) = (η,∇Qω) = 0 ⇒
∫ {|∇η|2 + ω|η|2 − (

f
(
Q2

ω

) + 2Q2
ωf ′(Q2

ω

))|η|2} � λ‖η‖2
H 1 . (16)

The result for Eq. (13) is the following.

Theorem 2. Assume f (0) = 0 and (14). Let K ∈ N
∗. For any k ∈ {1, . . . ,K}, let ω0

k > 0, vk ∈ R
d , x0

k ∈ R
d and

γ 0
k ∈ R. Assume that

for any k 	= k′, vk 	= vk′ . (17)

Assume that for all k ∈ {1, . . . ,K}, ω0
k is such that an H 1 positive solution Qω0

k
of (15) exists and satisfies (16) for

some λk > 0. Let

Rk(t, x) = Qω0
k

(
x − x0

k − vkt
)

ei( 1
2 vk ·x− 1

4 |vk |2t+ω0
k t+γ 0

k ). (18)

Then, there exists an H 1 solution U(t) of (13) such that,

for all t � 0,

∥∥∥∥∥U(t) −
K∑

k=1

Rk(t)

∥∥∥∥∥
H 1

� C e−θ0t , (19)

for some θ0 > 0 and C > 0.
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Remark. For the pure power case, Theorem 2 is equivalent to Theorem 1, since by Maris [7] and McLeod [12], (16) is
satisfied for f (s2) = sp−1 if and only if 1 < p < 1 + 4/d (see below Lemma 6(ii)).

The proof of Theorem 2 is similar to the one of Theorem 1, up to slight modifications that we will give through the
paper when necessary.

2. Construction of the solution assuming uniform estimates

In this section, we prove Theorem 1 assuming the main uniform estimates to be proved in the next section. The
proof of Theorem 2 is the same, up to a slight modification.

Let Rk(t) be K solitary waves of Eq. (1) as defined in Theorem 1:

Rk(t, x) = Qω0
k

(
x − x0

k − vkt
)

ei( 1
2 vk ·x− 1

4 |vk |2t+ω0
k t+γ 0

k ), (20)

and let

R(t) =
K∑

k=1

Rk(t). (21)

The construction of a solution U(t) satisfying the conclusion of Theorem 1 is based on an asymptotic argument. Let
(Tn)n�1 be an increasing sequence of R

+ with limn→+∞ Tn = +∞. For all n � 1, we consider un the unique global
H 1 solution of{

i ∂tun = −�un − |un|p−1un, (t, x) ∈ R × R
d,

un(Tn) = R(Tn).
(22)

We claim the following result, which is the key point of the proof of Theorem 1.

Proposition 1 (Uniform estimates). There exist T0 > 0, C0 > 0, θ0 > 0 such that, for all n � 1,

∀t ∈ [T0, Tn],
∥∥un(t) − R(t)

∥∥
H 1 � C0 e−θ0t . (23)

Let us prove Theorem 1 assuming Proposition 1. Proposition 1 is proved in Section 3. To simplify the notation,
assume

T0 = 0.

We first claim a global bound on the sequence (un).

Lemma 1. There exists C � 0 such that for any n � 1, for any t ∈ [0, Tn],∥∥un(t)
∥∥

H 1 � C.

Proof. It is a consequence of (23) and the fact that the H 1 norm of R(t) is uniformly bounded. �
Next, we claim a strong compactness result in L2(Rd).

Lemma 2. There exist U0 ∈ H 1(Rd) and a subsequence (uφ(n)) of (un) such that

uφ(n)(0) → U0 in L2
(
R

d
)

as n → +∞. (24)

Proof of Lemma 2. First, we claim the following:

∀ε0 > 0, ∃K0 = K0(ε0) > 0, such that ∀n � 1,

∫ ∣∣un(0, x)
∣∣2 dx < ε0. (25)
|x|>K0
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To prove (25), fix ε0 > 0, and let t0 � 0 be such that C2
0 e−2θ0t0 < ε0, where θ0 and C0 appear in the statement of

Proposition 1. By Proposition 1, we have, for n large enough∫ ∣∣un(t0) − R(t0)
∣∣2 � C2

0 e−2θ0t0 < ε0.

Fix also K1 > 0 such that∫
|x|>K1

∣∣R(t0)
∣∣2

< ε0.

It follows that∫
|x|>K1

∣∣un(t0)
∣∣2

< 4ε0.

Consider now a C1 cut-off function g : R → [0,1] such that

g ≡ 0 on (−∞,1]; 0 < g′ < 2 on (1,2); g = 1 on [2,+∞).

For γ0 > 0 to be fixed later, we have by direct calculations:

d

dt

∫ ∣∣un(t)
∣∣2

g

( |x|−K1

γ0

)
= − 1

γ0
Im

∫
u

(
∇ū · x

|x|
)

g′
( |x|−K1

γ0

)
,

and so∣∣∣∣ d

dt

∫ ∣∣un(t)
∣∣2

g

( |x|−K1

γ0

)∣∣∣∣ � 2

γ0
sup
t�0

∥∥un(t)
∥∥2

H 1 .

By Lemma 1, un(t) is bounded in H 1 independently of n and t . Thus, we can choose γ0 > 0 independent of n such
that γ0 � 2

ε0
t0 supt�0 ‖un(t)‖2

H 1 . Then, we find∣∣∣∣ d

dt

∫ ∣∣un(t)
∣∣2

g

( |x|−K1

γ0

)∣∣∣∣ � ε0

t0
.

By integration between 0 and t0,∫ ∣∣un(0)
∣∣2

g

( |x|−K1

γ0

)
−

∫ ∣∣un(t0)
∣∣2

g

( |x|−K1

γ0

)
�

t0∫
0

∣∣∣∣ d

dt

∫ ∣∣un(t)
∣∣2

g

( |x|−K1

γ0

)∣∣∣∣ � ε0.

By the properties of g we conclude:∫
|x|>2γ0+K1

∣∣un(0)
∣∣2 �

∫ ∣∣un(0)
∣∣2

g

( |x|−K1

γ0

)
�

∫ ∣∣un(t0)
∣∣2

g

( |x|−K1

γ0

)
+ ε0 �

∫
|x|>K1

∣∣un(t0)
∣∣2 + ε0 � 5ε0.

Thus, (25) is proved.
Since ‖un(0)‖H 1 < C, there exists a subsequence of (un), which we denote by (uφ(n)), and U0 ∈ H 1(Rd) such that

uφ(n)(0) → U0 in L2
loc as n → +∞,

and by (25), we conclude that uφ(n)(0) → U0 in L2(Rd) as n → +∞. Thus Lemma 2 is proved. �
Let us continue the proof of Theorem 1. We consider the global H 1 solution U(t) of{

i ∂tU = −�U − |U |p−1U, (t, x) ∈ R × R
d,

U(0) = U0.
(26)

Fix t � 0. For n large enough, we have Tn > t and by continuous dependence of the solution of (1) upon the initial
data in L2(Rd), we have

uφ(n)(t) → U(t) in L2
(
R

d
)

as n → +∞ (27)
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(see global well-posedness results and continuity results for the subcritical Schrödinger equation in L2(Rd) by Tsut-
sumi [14]).

Since (uφ(n)(t) − R(t)) converges strongly to U(t) − R(t) in L2(Rd) and uφ(n)(t) − R(t) is uniformly bounded in
H 1(Rd), it follows that

uφ(n)(t) − R(t) ⇀ U(t) − R(t) in H 1(R).

By (23), and property of the weak convergence, we obtain

∀t � 0,
∥∥U(t) − R(t)

∥∥
H 1 � C0 e−θ0t . (28)

Therefore, Theorem 1 is proved.
The previous argument has to be slightly adapted for the proof of Theorem 2. Indeed, well-posedness in L2 for the

Schrödinger equation is proved only for the subcritical pure power case in [14], i.e. f (s2) = sp−1, for 1 < p < 1+4/d .
For Eq. (13), under assumption (14), local well-posedness in Hs0 for some 0 � s0 < 1 (depending on the power p

in (14)) was proved by Cazenave and Weissler in [3] (see Theorems 1.1 and 1.2 and property (4.1) page 823 in [3]). We
use the space Hs0 with 0 � s0 < 1 instead of L2 in the previous argument. Note that by interpolation un(0) converges
to U(0) in Hs0 strong as n → +∞, and blow up for t � 0 is not possible by Lemma 1.

3. Proof of the uniform estimates

Proposition 1 is a consequence of the following result.

Proposition 2 (Reduction of the proof). There exist A0 > 0, θ0 > 0, T0 > 0, N0 > 0 such that for all n � N0, for all
t∗ ∈ [T0, Tn], if

∀t ∈ [t∗, Tn],
∥∥un(t) − R(t)

∥∥
H 1 � A0 e−θ0t , (29)

then

∀t ∈ [t∗, Tn],
∥∥un(t) − R(t)

∥∥
H 1 � A0

2
e−θ0t . (30)

Let us check by an usual continuity argument in H 1 that Proposition 2 implies Proposition 1. Recall that for all
n � 1, the map t �→ un(t) ∈ H 1(R) is continuous. Let A0, T0 and N0 be defined by Proposition 2. Let n � N0. Since
un(Tn) ≡ R(Tn), there exists τ1 > 0 small so that (29) is true on [Tn − τ1, Tn]. We define

t∗ = inf
{
t ∈ [T0, Tn] such that for all t ′ ∈ [t, Tn], (29) holds

}
.

We claim that t∗ = T0. Indeed, if t∗ > T0, then by Proposition 2, (30) holds on [t∗, Tn]. Thus, by continuity, there exists
τ2 > 0 small such that (30) holds on [t∗ − τ2, Tn] with 2A0/3 instead of A0/2. But this contradicts the definition of t∗.
Thus, t∗ = T0.

Therefore, for any n � N0, (23) holds on [T0, Tn] with C0 = A0. By possibly taking a larger value of C0 and T0,
the same estimate holds for any n � 1 and for any T0 � t � Tn. Thus Proposition 1 is proved, assuming Proposition 2.
The rest of this section is devoted to the proof of Proposition 2.

Proof of Proposition 2. Before starting the proof, note that since Tn → +∞ as n → +∞, and T0 is fixed, Proposi-
tion 2 is similar to a stability result in large time. However, it is simpler to prove Proposition 2 than a general stability
result for multi solitary waves solutions (not available at this point, see [11]), since the perturbation with respect to an
exact solution is only due to the interaction term between the various solitary waves which is of size C

t
e−θt , whereas

in the context of a stability result one has to control larger extra terms.

First, we claim the following result.

Claim 1. Let (vk) be K vectors of R
d such that for any k 	= k′, vk 	= vk′ . Then, there exists an orthonormal basis

(e1, . . . , ed) of R
d such that for any k 	= k′, (vk, e1) 	= (vk′ , e1).
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Proof of Claim 1. This is an elementary geometrical property of R
d . Let k, k′ = 1, . . . ,K , k 	= k′. The set of vectors

e1 ∈ R
d with |e1| = 1 satisfying (vk − vk′ , e1) = 0 is of Lebesgue measure 0 on the sphere. Therefore, we can pick up

a vector e1 ∈ R
d with |e1| = 1 and satisfying, for any k 	= k′, the condition (vk − vk′, e1) 	= 0. Then, we consider any

orthonormal basis of the form (e1, . . . , eK). �
Without any restriction, we can assume that the direction e1 given by Claim 1 is x1, since Eq. (1) is invariant by

rotation. Therefore, we may assume that for any k 	= k′, vk,1 	= vk′,1. We suppose in fact that

v1,1 < v2,1 < · · · < vK,1. (31)

From now on, we set θ0 > 0 such that√
θ0 = 1

16
min

(
v2,1 − v1,1, . . . , vK,1 − vk−1,1,

√
ω0

1, . . . ,

√
ω0

K

)
. (32)

Let A0 > 1 and T0 > 0 large enough to be defined later. Let N0 be such that TN0 > T0. We denote un simply by u.
We assume (29) on [t∗, Tn], for some t∗ ∈ [T0, Tn].

1. Decomposition of un. The first step is to modulate the scaling, phase and translation parameters in the decom-
position of the solution in a sum of solitary waves to obtain orthogonality conditions. The following lemma, based on
the implicit function theorem, is standard (see for example [11], Lemma 2.4 and Corollary 3).

Lemma 3. There exists C1 > 0 such that if T0 is large enough, then there exist unique C1 functions ωk : [t∗, Tn] →
(0,+∞), xk : [t∗, Tn] → R

d , γk : [t∗, Tn] → R, such that if we set

ε(t, x) = u(t, x) − R̃(t, x), (33)

where

R̃(t) =
K∑

k=1

R̃k(t), R̃k(t, x) = Qωk(t)

(· − x0
k − vkt − xk(t)

)
ei

( 1
2 vk ·x+δk(t)

)
,

and

δk(t) = −1

4
|vk|2t + ω0

k t + γk(t),

then ε(t) satisfies, for all k = 1, . . . ,K , and for all t ∈ [t∗, Tn],
Re

∫
R̃k(t)ε̄(t) = Im

∫
R̃k(t)ε̄(t) = Re

∫
∇R̃k(t)ε̄(t) = 0. (34)

Moreover, for all t ∈ [t∗, Tn],∥∥ε(t)
∥∥

H 1 +
K∑

k=1

∣∣ωk(t) − ω0
k

∣∣ � C1A0 e−θ0t , (35)

and for all k = 1, . . . ,K ,∣∣ω̇k(t)
∣∣2 + ∣∣ẋk(t)

∣∣2 + ∣∣γ̇k(t) − (
ωk(t) − ω0

k

)∣∣2 � C1
∥∥ε(t)

∥∥2
H 1 + C1 e−2θ0t . (36)

Note that by u(Tn) = R(Tn) and uniqueness of the decomposition at time t = Tn, we necessarily have

ε(Tn) ≡ 0, R̃(Tn) ≡ R(Tn), ωk(Tn) = ω0
k, xk(Tn) = 0, γk(Tn) = γ 0

k . (37)

2. Control of local quantities. We introduce cut-off functions adapted to the solution u(t). Let ψ(x) be a C3

function such that

0 � ψ � 1 on R, ψ(x) = 0 for x � −1, ψ(x) = 1 for x > 1, ψ ′ � 0 on R, (38)

and satisfying, for some constant C > 0,(
ψ ′(x)

)2 � Cψ(x),
(
ψ ′′(x)

)2 � Cψ ′(x) for all x ∈ R.
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For this, consider ψ(x) = 1
16 (1 + x)4 for x ∈ [−1,0] close to −1, and similarly at x = 1.

For all k = 2, . . . ,K , let

σk = 1

2
(vk−1,1 + vk,1).

For L > 0 large enough to be fixed later, for any k = 2, . . . ,K − 1, let

ϕk(t, x) = ψ

(
x1−σkt

L

)
− ψ

(
x1−σk+1t

L

)
,

ϕ1(t, x) = 1 − ψ

(
x1−σ2t

L

)
, ϕK(t, x) = ψ

(
x1−σKt

L

)
, (39)

and finally, set for all k = 1, . . . ,K :

Ik(t) =
∫ ∣∣u(t, x)

∣∣2
ϕk(t, x)dx, Mk(t) = Im

∫
∇u(t, x)ū(t, x)ϕk(t, x)dx. (40)

The quantities Ik(t) and Mk(t) are local versions of the L2 norm and momentum. Ordering the vj,1 as in (31) was
useful to split the various solitary waves using only the coordinate x1.

We claim the following result on Ik(t) and Mk(t).

Lemma 4. Let L > 0. There exists C2 > 0 such that if L and T0 are large enough, then for all k = 2, . . . ,K , for all
t ∈ [t∗, Tn],∣∣Ik(Tn) − Ik(t)

∣∣ + ∣∣Mk(Tn) −Mk(t)
∣∣ �

C2A
2
0

L
e−2θ0t .

Remark. The factor 1/L that appears in the above estimate is fundamental in the proof of the uniform estimates.
Indeed, by taking L large enough (and thus T0 large enough), everything happens as if the quantities Ik(t) and Mk(t)

were constant in time. We thus obtain 2K almost invariant quantities together with two invariant quantities (L2 norm
and momentum). Since Ik(t) and Mk(t) are local versions of the L2 mass and of the momentum around each solitary
wave, and since these two quantities are involved in the proof of the stability of one soliton, it is clear that Lemma 4
is fundamental to the uniform estimates.

Before proving Lemma 4, we recall standard Virial identities for Eq. (1) which follow from direct calculations
(similar results hold for (13)). For the reader’s convenience, these calculations are reproduced in Appendix A.

Claim 2. Let z(t) be an H 1 solution of (1). Let φ :x1 ∈ R �→ φ(x1) be a C3 real-valued function of one variable such
that φ, φ′ and φ′′′ are bounded. Then, for all t ∈ R,

1

2

d

dt

∫
Rd

|z|2φ(x1) = Im
∫
Rd

∂x1zzφ
′(x1),

1

2

d

dt
Im

∫
Rd

∂x1zzφ(x1) =
∫
Rd

|∂x1z|2φ′(x1) − 1

4

∫
Rd

|z|2φ′′′(x1) − p−1

2(p+1)

∫
Rd

|z|p+1φ′(x1),

and for j = 2, . . . , d ,

1

2

d

dt
Im

∫
Rd

∂xj
zzφ(x1) = Re

∫
Rd

∂xj
z∂x1zφ

′(x1).

Proof of Lemma 4. By Claim 2, we have

1 d
∫

|u|2ψ
(

x1−σkt
)

= 1
Im

∫
∂x1uūψ ′

(
x1−σkt

)
− σk

∫
|u|2ψ ′

(
x1−σkt

)
.

2 dt L L L 2L L
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Thus, by the properties of ψ ,∣∣∣∣ d

dt

∫
|u|2ψ

(
x1−σkt

L

)∣∣∣∣ � C

L

∫
Ω1

(|∂x1u|2 + |u|2), (41)

where we have set:

Ω1 = Ω1(t) = ]−L + σkt,L + σkt[ × R
d−1.

Similarly, by Claim 2, we have

1

2

d

dt
Im

∫
∂x1uūψ

(
x1−σkt

L

)
= 1

L

∫ (
|∂x1u|2 − p−1

2(p+1)
|u|p+1

)
ψ ′

(
x1−σkt

L

)
− 1

4L3

∫
|u|2ψ ′′′

(
x1−σkt

L

)
− σk

2L
Im

∫
∂x1uūψ ′

(
x1−σkt

L

)
.

Thus, we obtain∣∣∣∣ d

dt
Im

∫
∂x1uūψ

(
x1−σkt

L

)∣∣∣∣ � C

L

∫
Ω1

(|∇u|2 + |u|2 + |u|p+1).
Now by the Sobolev inequality applied to u(x)h(x1 − σkt) where h = h(x1) is a C1 function such that h(x1) = 1 for
|x1| < L and h(x1) = 0 for |x1| > L + 1, we have∫

Ω1

|u|p+1 � C

( ∫
Ω̃1

(|∇u|2 + |u|2))(p+1)/2

,

where

Ω̃1(t) = ]−(L + 1) + σkt, (L + 1) + σkt
[ × R

d−1.

Thus, we obtain∣∣∣∣ d

dt
Im

∫
∂x1uūψ

(
x1−σkt

L

)∣∣∣∣ � C

L

∫
Ω̃1

(|∇u|2 + |u|2) + C

L

( ∫
Ω̃1

(|∇u|2 + |u|2))(p+1)/2

. (42)

Finally, again by Claim 2, we find for j = 2, . . . , d ,

1

2

d

dt
Im

∫
∂xj

uūψ

(
x1−σkt

L

)
= 1

L
Re

∫
∂xj

u∂x1 ūψ ′
(

x1−σkt

L

)
+ σk

2L
Im

∫
∂xj

uūψ ′
(

x1−σkt

L

)
,

and so, for j = 2, . . . , d , we obtain∣∣∣∣ d

dt
Im

∫
∂xj

uūψ

(
x1−σkt

L

)∣∣∣∣ � C

L

∫
Ω1

(|∇u|2 + |u|2). (43)

Next, note that by u(t) = R(t) + (u(t) − R(t)), we have∫
Ω̃1

(∣∣∇u(t)
∣∣2 + ∣∣u(t)

∣∣2) � 2
∫
Ω̃1

(∣∣∇R(t)
∣∣2 + ∣∣R(t)

∣∣2) + 2
∥∥u(t) − R(t)

∥∥2
H 1 .

By (29), we have ‖u(t) − R(t)‖2
H 1 � A2

0 e−2θ0t .
Recall that by standard ODE arguments ([1], pp. 329–330), Qω has exponential decay properties:∣∣∇Qω(x)

∣∣ + ∣∣Qω(x)
∣∣ � C e−

√
ω

2 |x|. (44)
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Thus, by the definition of σk and θ0, we obtain∫
Ω̃1

(∣∣∇R(t)
∣∣2 + ∣∣R(t)

∣∣2) � C e−8
√

θ0(
√

θ0t−L) � C e−4θ0t ,

by taking T0 and L such that
√

θ0T0 � 2L. Therefore, from (41)–(43) and the definition of Ik(t) and Mk(t), and
taking A0 e−θ0T0 small enough, we obtain∣∣∣∣ d

dt
Ik(t)

∣∣∣∣ +
∣∣∣∣ d

dt
Mk(t)

∣∣∣∣ �
CA2

0

L
e−2θ0t . (45)

Note that for I1(t) and M1(t) we have also used the conservation of mass and momentum.
The result now follows by integrating (45) between t and Tn.

3. Control of the variation of ωk(t).

Claim 3. For any t ∈ [t∗, Tn],∣∣ωk(t) − ω0
k

∣∣ � C
∥∥ε(t)

∥∥2
L2 + C

(
A2

0

L
+ 1

)
e−2θ0t .

Claim 3 states that the variation of the scaling of the solitary waves from t to Tn is quadratic in ε(t). This
information is crucial for the rest of the proof. The result is due to the choice of the orthogonality conditions
Re

∫
R̃k(t)ε̄(t) = 0, and to the almost conservation of the local mass around each solitary waves in the sense of

Lemma 4 (in particular, we do not use estimate (36) on ω̇k(t)).

Proof of Claim 3. By expanding u(t) = R̃(t)+ ε(t), using the orthogonality
∫

ε(t)R̃k(t) = 0, the property of support
of ϕk and the exponential decay of each Qωk(t), we have

Ik(t) =
∫ ∣∣u(t)

∣∣2
ϕk(t) =

∫
Q2

ωk(t)
+

∫ ∣∣ε(t)∣∣2
ϕk(t) + O

(
e−2θ0t

)
(see similar calculations in Appendix A, proof of Lemma 6(i)). By Lemma 4, we have∣∣Ik(t) − Ik(Tn)

∣∣ �
CA2

0

L
e−2θ0t .

Thus, from ωk(Tn) = ω0
k ((37)) and ε(Tn) ≡ 0, it follows that∣∣∣∣ ∫

Q2
ωk(t)

−
∫

Q2
ω0

k

∣∣∣∣ � C
∥∥ε(t)

∥∥2
L2 + C

(
A2

0

L
+ 1

)
e−2θ0t .

Since by explicit calculations
∫

Q2
ω = ω

2
p−1 − d

2
∫

Q2 (for Theorem 1), we have∫
Q2

ωk(t)
−

∫
Q2

ω0
k

= (
ω

2
p−1 − d

2
k (t) − (

ω0
k

) 2
p−1 − d

2
)∫

Q2

=
(

2

p−1
− d

2

)(
ω0

k

) 2
p−1 − d

2 −1(
ωk(t) − ω0

k

)∫
Q2 + O

(
ωk(t) − ω0

k

)1+β0 ,

where β0 > 0 and 2
p−1 − d

2 > 0 by the subcriticality assumption on p.

For ωk(t) − ω0
k small enough (by (35)), we obtain Claim 3. �

The same argument applies to the proof of Theorem 2 since (16) implies that at ω = ω0
k :

d

dω

∫
Q2

w > 0

(see Weinstein [16]).
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4. Control of ‖ε(t)‖H 1 by energy method. After controlling the variation of the scaling (and thus the size) of the
solitary waves in the previous point, we only have to control the size of ε(t) in H 1 before completing the proof. This
is the object of the next lemma.

Lemma 5. For any t ∈ [t∗, Tn],∥∥ε(t)
∥∥2

H 1 + ∣∣ωk(t) − ω0
k

∣∣ + ∣∣xk(t)
∣∣2 + ∣∣γk(t) − γ 0

k

∣∣2 � C

(
A2

0

L
+ 1

)
e−2θ0t .

The proof of the control of ε(t) in Lemma 5 uses the previous estimates and almost conservation laws (Lemma 4)
as well as another functional related to local L2 norm, local momentum and energy.

Indeed, we define

J (t) =
K∑

k=1

{(
ωk(0) + |vk|2

4

)
Ik(t) − vk ·Mk(t)

}
, (46)

and we set

G(t) = E
(
u(t)

) +J (t). (47)

Let us recall from [11] why such a functional is a natural object to study the stability problem.
When proving the stability of one solitary wave

R0(t, x) = Qω(t)

(
x − x(t)

)
ei( 1

2 v0x+γ (t)),

one usually uses the Galilean transformation (6) to restrict to the case v0 = 0. Then the functional used to study the
stability problem is

E
(
u(t)

) + ω(0)

∫ ∣∣u(t)
∣∣2

.

If there are more than one solitary wave it is not possible to assume that the speeds are all 0. Thus, it is convenient to
know that in the case of one solitary wave, the complete functional (i.e. with v0 not necessarily zero) is:

E
(
u(t)

) +
(

ω(0) + |v0|2
4

)∫ ∣∣u(t)
∣∣2 − v0 · Im

∫
∂xu(t)ū(t)

(we refer to Section 2.3 in [11] for this observation). Since the coefficients in front of the L2 norm and in front of
the momentum depend on the parameters of the solitary wave, it is necessary in the case of several solitary waves to
localize these functionals. One can see by (40) that the expression of G(t) in (47) is natural since locally around the
k-th solitary wave, G(t) behaves as the functional for one solitary with the suitable parameters.

We now gather in the next lemma two technical results proved for d = 1 in [11] (Proposition 4.2 and Lemma 4.1
in [11]).

Lemma 6.

(i) Expansion of G with respect to parameters. For all t ∈ [t∗, Tn], we have

G(t) =
K∑

k=1

{
E(Qω0

k
) + ω0

k

∫
Q2

ω0
k

}
+ H

(
ε(t), ε(t)

)
+

K∑
k=1

O
(∣∣ωk(t) − ω0

k

∣∣2) + ∥∥ε(t)
∥∥2

H 1β
(∥∥ε(t)

∥∥
H 1

) + O
(
e−2θ0t

)
, (48)

with β(ε) → 0 as ε → 0, where
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H(ε, ε) =
∫

|∇ε|2 −
K∑

k=1

∫ (
f

(|Rk|2
)|ε|2 + 2f ′(|Rk|2

)[
Re

(�Rkε
)]2)

+
K∑

k=1

{(
ωk(t) + |vk|2

4

)∫
|ε|2ϕk(t) − vk ·

(
Im

∫
∇εε̄ϕk(t)

)}
.

(ii) Coercivity of H . There exists λ > 0 such that, for all t ∈ [t∗, Tn],
H

(
ε(t), ε(t)

)
� λ

∥∥ε(t)
∥∥2

H 1 .

Property (i) corresponds to the expansion u(t) = R̃(t) + ε(t) in the definition of G(t). The crucial property of this
expansion is the lack of first order terms. Indeed, the first term in ε(t) is quadratic (H(ε, ε)) and |ωk(t) − ω0

k | also
appears with power two. For the reader’s convenience, we give the proof of (i) in R

d in Appendix A for the case of a
general nonlinearity f .

Remark. Property (ii) is a standard property. Recall that Lemma 6(ii) is proved in [11] provided that (16) holds for
any solitary wave Qω0

k
, k = 1, . . . ,K . The fact that (16) is true for any ground state of (8) in the subcritical pure power

case is due to Weinstein [15] for d = 1 and d = 3. Later, it was extended to any dimension by Mariş (see Section 2
of [7]) under some condition on the nonlinearity. From a result of MacLeod (see page 504 of [12]), the pure power
case f (s2) = sp−1 satisfies the desired condition for 1 < p < 1 + 4/d . Then, we conclude by a localization argument.

Let us now sketch the proof of Lemma 5. Since the functional G(t) contains conserved quantities (E(t)) and almost
conserved quantities (Lemma 4), it is almost conserved. Thus property (i) together with the control of the variation of
ωk(t) in Claim 3 and property (ii) implies easily a control on ε(t).

Proof of Lemma 5. Note that by Lemma 4 and the definition of J , we have, for all t ∈ [t∗, Tn],∣∣J (Tn) −J (t)
∣∣ �

CA2
0

L
e−2θ0t . (49)

From the conservation of E(u(t)) and (49), we obtain, for any t ∈ [t∗, Tn],

G(t) � G(Tn) + CA2
0

L
e−2θ0t .

Thus, by Lemma 6(i), wk(Tn) = w0
k and ε(Tn) ≡ 0 (see (37)), it follows that

H
(
ε(t), ε(t)

)
� C

∣∣ωk(t) − ω0
k

∣∣2 + C
∥∥ε(t)

∥∥2
H 1β

(∥∥ε(t)
∥∥

H 1

) + C

(
A2

0

L
+ 1

)
e−2θ0t ,

where β(ε) → 0 as ε → 0. By Lemma 6(ii) and Claim 3, we obtain

λ
∥∥ε(t)

∥∥2
H 1 � C

∥∥ε(t)
∥∥2

H 1β
(∥∥ε(t)

∥∥
H 1

) + C

(
A2

0

L
+ 1

)
e−2θ0t ,

and thus for ‖ε(t)‖H 1 small enough,

∥∥ε(t)
∥∥2

H 1 � C

(
A2

0

L
+ 1

)
e−2θ0t ,

where C is independent of A0. Note that ‖ε(t)‖H 1 small is implied by (35) and taking A0 e−θ0T0 small enough.
The control of |ωk(t) − ω0

k | follows from Claim 3. Next, we use (36):

∣∣ẋk(t)
∣∣ + ∣∣γ̇k(t)

∣∣ � C
∥∥ε(t)

∥∥
L2 + C e−θ0t + ∣∣ωk(t) − ω0

k

∣∣ � C

√
A2

0 + 1 e−θ0t .

L
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By integration between Tn and t ∈ [t∗, Tn], and (37), we obtain:∣∣xk(t)
∣∣2 + ∣∣γk(t) − γ 0

k

∣∣2 � C

(
A2

0

L
+ 1

)
e−2θ0t ,

and thus Lemma 5 is proved. �
5. Conclusion of the proof. By Lemma 5, for all t ∈ [t∗, Tn],∥∥R(t) − R̃(t)

∥∥2
H 1 � C

K∑
k=1

(∣∣xk(t)
∣∣2 + ∣∣ωk(t) − ω0

k

∣∣2 + ∣∣γk(t) − γ 0
k

∣∣2) � C

(
A2

0

L
+ 1

)
e−2θ0t ,

and thus∥∥u(t) − R(t)
∥∥2

H 1 � 2
∥∥ε(t)

∥∥2
H 1 + 2

∥∥R̃(t) − R(t)
∥∥2

H 1 � C

(
A2

0

L
+ 1

)
e−2θ0t ,

where C > 0 does not depend on A0. Choose now

A2
0 > 32C and L = A2

0,

and T0 large enough. It follows that:∥∥u(t) − R(t)
∥∥2

H 1 � 2C e−2θ0t �
A2

0

16
e−2θ0t .

Therefore, the conclusion is that for any t ∈ [t∗, Tn], ‖un(t) − R(t)‖H 1 � A0
4 e−θ0t , which completes the proof of

Proposition 2.

Appendix A

Proof of Claim 2. Let z(t) be an H 1 solution of (13) that we can approach by more regular solutions to justify the
calculations.

The first identity concerns
∫ |z(t, x)|2φ(x1)dx. We have

d

dt

∫
|z|2φ(x1) = 2 Re

∫
∂t zzφ(x1) = −2 Im

∫ (
�z + f

(|z|2)z)zφ(x1) = 2 Im
∫

∂x1zzφ
′(x1),

by integration by parts, all the others terms being real-valued.
For the second identity, we have

d

dt
Im

∫
∂x1zzφ(x1) = 2 Im

∫
∂x1z∂t zφ(x1) + Im

∫
∂t zzφ′(x1) = Im

∫
∂t z

(
2∂x1zφ(x1) + zφ′(x1)

)
,

and so

d

dt
Im

∫
∂x1zzφ(x1) = Im

[
−i

∫ (
�z + f

(|z|2)z)(2∂x1zφ(x1) + zφ′(x1)
)]

.

We have

Re
∫

∂2
x1

z
(
2∂x1zφ(x1) + zφ′(x1)

) = −2
∫

|∂x1z|2φ′(x1) − Re
∫

∂x1zzφ
′′(x1)

= −2
∫

|∂x1z|2φ′(x1) + 1

2

∫
|z|2φ′′′(x1)

and for j = 2, . . . , d , by integration by parts, since φ(x1) does not depend on xj ,

Re
∫

∂2
xj

z
(
2∂x1zφ(x1) + zφ′(x1)

) = −
∫

∂x1

(|∂xj
z|2)φ(x1) −

∫
|∂xj

z|2φ′(x1) = 0.

Let F(s) = ∫ s
f (s′)ds′. Then, finally, by integrating by parts,
0
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Im

[
i
∫

f
(|z|2)z(2∂x1zφ(x1) + zφ′(x1)

)] =
∫ {

f
(|z|2)z2 − F

(|z|2)}φ′(x1).

The third identity is similar and easier. �
Proof of Lemma 6(i). A first remark is that for ω > 0 close to ω0 > 0, we have∣∣∣∣E(Qω0) + ω0

∫
Q2

ω0
− E(Qω) − ω0

∫
Q2

ω

∣∣∣∣ � C|ω0 − ω|2. (50)

We refer to Weinstein [16], Section 2, Eq. (2.5) for this property.
Note now that by the definition of ϕk in (39), we have 1 = ∑K

k=1 ϕk . Thus,

G(t) =
K∑

k=1

∫ {
|∇u|2 − F

(|u|2) −
(

ωk(0) + |vk|2
4

)
|u|2 − vk · Im(∇uū)

}
ϕk(t).

Expanding u(t) = R(t) + ε(t) in the expression of E(u(t)), we obtain

E
(
u(t)

) = E
(
R(t)

) − 2 Re
∫ (

��R + f
(|R|2)�R )

ε +
∫

|∇ε|2 −
∫ {

f
(|R|2)|ε|2 + 2f ′(|R|2)[Re

(�Rε
)]2}

+ ∥∥ε(t)
∥∥2

H 1β
(∥∥ε(t)

∥∥
H 1

)
.

Note that the centers of Rk(t) and Rk−1(t) are located at a distance larger than 4θ0t , and since the Rk are exponentially
decaying (see (44)), we have for k 	= k′,∫

|RkRk′ | +
∫

|∇RkRk′ | +
∫

|∇Rk∇Rk′ | < C e−2θ0t . (51)

Note also that since f (0) = 0, we have |F(s)| < Cs2 and |f (s)| < Cs in a neighborhood of zero. Thus:

E
(
u(t)

) =
K∑

k=1

{
E

(
Rk(t)

) − 2 Re
∫ (

��Rk + f
(|Rk|2

)�Rk

)
ε

}
+ O

(
e−2θ0t

) +
∫

|∇ε|2

−
K∑

k=1

{ ∫ {
f

(|Rk|2
)|ε|2 + 2f ′(|Rk|2

)[
Re

(�Rkε
)]2}} + ∥∥ε(t)

∥∥2
H 1β

(∥∥ε(t)
∥∥

H 1

)
.

We turn now to J (t). Recall that

J (t) =
K∑

k=1

{(
ωk(0) + |vk|2

4

)∫ ∣∣u(t)
∣∣2

ϕk(t) − vk · Im
∫

∇u(t)ū(t)ϕk(t)

}
. (52)

For the first term, we have:∫ ∣∣u(t)
∣∣2

ϕk(t) =
∫ ∣∣R(t)

∣∣2
ϕk(t) +

∫ ∣∣ε(t)∣∣2
ϕk(t) + 2 Re

∫
R(t)ε(t)ϕk(t).

By the properties of ϕk and R,∫ ∣∣R(t)
∣∣2

ϕk(t) =
∫ ∣∣Rk(t)

∣∣2 + O
(
e−2θ0t

)
,

and

Re
∫

R(t)ε(t)ϕk(t) = Re
∫

Rk(t)ε(t) + O
(
e−2θ0t

) = O
(
e−2θ0t

)
,

by the orthogonality conditions on ε(t).
For the second term in (52), we have, by similar arguments and integration by parts:

Im
∫

∇uūϕk(t) = Im
∫

∇Rk
�Rk − Im

∫
�Rkεϕ

′
k(t) − 2 Im

∫
∇ �Rkε + Im

∫
∇εε̄ϕk(t) + O

(
e−2θ0t

)
.
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By the properties of Rk and ϕ′
k , we have | ∫ �Rkεϕ

′
k(t)| � C e−2θ0t , and so

Im
∫

∇uūϕk(t) = Im
∫

∇Rk
�Rk − 2 Im

∫
∇ �Rkε + Im

∫
∇εε̄ϕk(t) + O

(
e−2θ0t

)
.

Gathering these calculations, we obtain finally for J (t):

J (t) =
K∑

k=1

(
ωk(0) + |vk|2

4

){ ∫ ∣∣Rk(t)
∣∣2 + 2 Re

∫
Rk(t)ε(t) +

∫ ∣∣ε(t)∣∣2
ϕk(t)

}
− vk ·

{
Im

∫
∇Rk

�Rk − 2 Im
∫

∇ �Rkε + Im
∫

∇εε̄ϕk(t)

}
+ O

(
e−2θ0t

)
.

By the equation of Rk , and the orthogonality conditions on ε(t), we have

−2 Re
∫ (

��Rk + f
(|Rk|2

)�Rk

)
ε + 2

(
ωk(0) + |vk|2

4

)
Re

∫
�Rkε + 2vk · Im

∫
∇ �Rkε = 0,

which means that the terms of order 1 in ε all disappear when we sum E(u(t)) and J (t).
Therefore, with the definition of H(ε, ε) we obtain

G(t) =
K∑

k=1

{
E(Qωk(t)) + ω0

k

∫
Q2

ωk(t)

}
+ H

(
ε(t), ε(t)

) + ∥∥ε(t)
∥∥2

H 1β
(∥∥ε(t)

∥∥
H 1

) + O
(
e−2θ0t

)
.

The proof of Lemma 6(i) is complete using (50). �
References

[1] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313–345.
[2] T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982) 549–561.
[3] T. Cazenave, F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal. 14 (1990) 807–836.
[4] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209–243.
[5] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979) 1–32.
[6] M.K. Kwong, Uniqueness of positive solutions of �u + up = 0 in Rn, Arch. Rational Mech. Anal. 105 (1989) 243–266.
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