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Abstract

We study the Klein—Gordon equation coupled with an interaction term (O + m2)<p + A@P =0. In the linear case (A = 0) a kind
of generalized Noether’s theorem gives us a conserved quantity. The purpose of this paper is to find an analogue of this conserved
quantity in the interacting case. We will see that we can do this perturbatively, and we define explicitly a conserved quantity, using
a perturbative expansion based on Planar Trees and a kind of Feynman rule. Only the case p =2 is treated but our approach can be
generalized to any ¢P-theory.
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous étudions I’équation de Klein—Gordon couplée avec un terme d’interaction (00 + m2)tp + A@P = 0. Dans le cas ol I’équation
est linéaire (A = 0), une généralisation du théoréeme de Noether nous donne une quantité conservée. Le but de cet article est de
trouver un analogue de cette quantité dans le cas non-linéaire (A # 0). Nous verrons que pour A petit, on peut définir explicitement
une quantité conservée en utilisant un développement perturbatif basé sur les Arbres Plans et des régles de Feynman particulieres.
Seul le cas p = 2 est traité mais notre approche peut étre appliquée pour tout p > 2.
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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Introduction

In this paper, we study the Klein—-Gordon equation coupled with a second order interaction term
(O+m?)p+rp* =0 (E>)
n 92

i=1 3(xi)2 .
real number which is the mass and X is a real parameter, the “coupling constant”.

. 2 . .
where ¢ :R"*! — R is a scalar field and O denotes the operator 8()36—0)2 -> The constant m is a positive
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For any s € R we define the hypersurface Xy C R"*! by ¥ := {x = (1, ..., x") € R*"*!; x0 =}. The first
variable x? plays the role of time variable, and so we will denote it by 7. Hence we interpret X as a space-like surface
by fixing the time to be equal to some constant s.

When A equals zero, (E)) becomes the linear Klein—Gordon equation (O + m?)e = 0. Then it is well known (see
e.g. [14]) that for any function ¥ which satisfies (O + m?)y = 0 and for any solution ¢ of (E;) for A =0 then
assuming that ¢ decays sufficiently at infinity in space, we have for all (s, 5,) € R?

Iy d¢ _ oy d¢
/(E‘P_W§>da—/<¥¢—¢§)da- ()

51 2

This last identity can be seen as expressing the coincidence on the set of solutions of (Eq) of two functionals Zy s,
and Z,, 5, where for all function ¥ : R"*! — R and all s € R, the functional Z ; is defined by

oY 1%
O —> /(Ego—lpa) do.

R

So (x) says exactly that on the set of solutions of the linear Klein-Gordon equation, the functional Zy, ; does not
depend on the time s.

This could be interpreted as a consequence of a generalized version of Noether’s theorem, using the fact that up to
a boundary term, the functional

2 2 2
J) 555
2\ ot 2 2
K
is infinitesimally invariant under the symmetry ¢ — ¢ + ¢ x, where x is a solution of (Ey).

This property is no longer true when A # 0 i.e. when Eq. (E}) is not linear. The purpose of this article is to obtain a
result analogous to () in the nonlinear (interacting) case. Another way to formulate the problem could be: if we only
know the field ¢ and its time derivative on a surface X, then how can we evaluate Zy g, for s2 # 517

We will see that the computation of Zy, 5, can be done perturbatively when A is small and s, is close to s1. This
perturbative computation takes the form of a power series over Planar Binary Trees, this notion will be explained in
Section 2. Note that Planar Binary Trees appear in other works on analogous Partial Differential Equations studied by
perturbation (see [4,6,16,7,2,5]) although the point of view differs with ours.

Let us express our main result. Without loss of generality we can suppose that s1 = 0. We denote by 7' (2) the set
of Planar Binary Tree (see Section 2 for definition) and for each b € T'(2) we write ||b|| € N* the number of leaves
of b. Then for any functions ¥ € C>([0, T'], H~%) (where g is such that ¢ > n/2) which satisfies (0 +m?)y =0, we
explicitly construct a family of ||»|-multilinear functionals (¥ (b) <8_;®”” ”)beT(z) acting on C%([0, T1, H?) and indexed
by the set T (2) of Planar Binary Trees such that the following result holds;

Theorem 1. Let g € N be such that g > n/2, T > 0 be a fixed time and € C*([0, T1, H9%) be such that
O+m>y=0in H™1.
() Forall ¢ inC*([0,T), H?) and s € [0, T the power series in A

D I w ) 500 (g, ) (S)

beT (2)

has a nonzero radius of convergence R. More precisely we have

—1
)
here M and C, are some constants.
(ii) Let ¢ € C*([0, T, H?) be such that (3 + m?)¢ + Ap? = 0. If the condition

8|)\|CqM2T||(/’||cl([(),T],Hq)(l + |)»|CqT||<P||C2(|0,T],Hq)) <1

5
R> (4CqM2T[||<p(s) | o + H 10
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is satisfied then the power series (x) converges and we have for all s € [0, T]

0 d
S EnPle B3 1 (g, ... 0) = /(a—‘fw - wa—‘f)

beT (2) %

The quantity [|¢llc2 (o, 7, ) can be evaluated by using the initials conditions of ¢ and using a perturbative expan-
sion. More details will be available in a upcoming paper [10]. This result can be generalized for ¢”*!-theory, p > 3,
but instead of Planar Binary Trees we have to consider Planar p-Trees.

Beside the fact that the functional Zb Al |l1/(b)(8_>“b I provides us with a kind of generalized Noether’s theorem
charge, it can also help us to estimate the local values of the fields ¢ and . We just need to choose the test function
¥ such that w 0 on the surface Xy and 2 o | %, 1s an approx1mat10n of the Dirac mass at the point xg € Y. One gets

the value of 22 3 - atapoint xo € X by exchanging ¥ and V in the previous reasoning.

Another motivation comes from the multlsymplectlc geometry One of the purpose of this theory is to give a
Hamiltonian formulation of the (classical) field theory similar to the symplectic formulation of the one dimensional
Hamiltonian formalism (the Hamilton’s formulation of Mechanics). If the time variable is replaced by several space—
time variables, the multisymplectic formalism is based on an analogue to the canonical symplectic structure on the
cotangent bundle, a manifold equipped with a multisymplectic form. For an introduction to the multisymplectic geom-
etry one can refer to [11] and for more complete informations one can read the papers of F. Hélein and J. Kouneiher
[12,13]. Starting from a Lagrangian density which describes the dynamics of the field, one can construct a Hamiltonian
function through a Legendre transform and obtain a geometric formulation of the problem. Note that this formalism
differs from the standard Hamiltonian formulation of fields theory used by physicists (see e.g. [14]), in particular the
multisymplectic approach is covariant i.e. compatible with the principles of special and general Relativity.

The main motivation of the multisymplectic geometry is quantization, but it requires as preliminary to define
the observable quantities, and the Poisson Bracket between these observables. A notion of observable have been
introduced in the seventies by the Polish school, see e.g. J. Kijowski [15], Tulcjiew [19]. For more informations one
can read the papers of F. Hélein and J. Kouneiher [12] and [13]. In the problem which interests us in this paper these
observable quantities are essentially the functionals Z; ;. In order to be able to compute the Poisson bracket between
two such observables Zy, 5, and Zy, ;,, we must be able to transport Zy, s, into the surface Xg,. When A = 0, the
identity () gives us a way to do this manipulation, but when A # 0 this is no longer the case. So F. Hélein proposed
an approach based on perturbation; the reader will find more details on this subject in his paper [11].

In the first section, we begin the perturbative expansion by dealing with the linear case and the first order correction.
The second section introduces the Planar Binary Trees which allow us to define the corrections of higher order, and
the statement of the main result is given. Finally the last section contains the proof of the theorem.

1. Perturbative calculus: beginning expansion
1.1. A simple case: . =0

Let us consider the space S := {solutions of (£, )} we will be more precise about topology in Section 1.3.

Consider the linear Klein—-Gordon equationi.e. . =0.Let T > O and s € [0, T'] be a fixed positive time (the negative
case is similar) and ¥ : R"*! — R a regular function. If ¢ belongs to Sy then assuming that ¢ and its derivatives decay
sufficiently at infinity in space we have

9 9 92 RR)
[[are-vir oo [|Gre-vir o= [|Ge vt e
P X D

s 0

where D denotes the set D := [0, s] x R ¢ R"*!. Since ¢ € Sy we have

arz
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hence if one replaces % % in the right-hand side of (1.1) and perform two integrations by parts, assuming that boundary
terms vanish, one obtains

oY dg Y dg _ 2
/[Ew—wg} do —/[Ew—wg]do_fgo(mjtm . (1.2)
x D

s 2o

Hence if we assume that 1 satisfies the linear Klein-Gordon equation (00 4+ m?)y = 0 then it follows that for all ¢ in
So and for all s € [0, T'] the right-hand side of (1.2) vanishes.

We want to know how these computations are modified for ¢ € S when A # 0. For ¢ € S) we have az(’f =) ‘2)27‘_;’ -
m?@ — Ag?. Hence instead of (1.2) one obtains
Iy d¢ / oy % / 2
—¢—Y—|do — —¢—Y—|do=Ar 1.3
/[a;‘p Ilfat}o or ¢ wat o (47 (1.3)
s o D

where v is supposed to satisfy the equation (00 + m?)y = 0. The difference is no longer zero. However, one can
remark that the difference seems' to be of order A. This is the basic observation which leads to the perturbative
calculus.

1.2. First order correction: position of the problem

Let s be a nonnegative integer. In the previous section, it was shown that if one choose a function ¥ such that
(O + m?)y =0, then equality (1.3) occurs for all ¢ € ;. The purpose of this section is to search for a counter-term
of order A which annihilates the right-hand side of (1.3).

Let ¥ @ be a smooth function ¥ ® : R**1 x R"*! — R then for all ¢ € S) consider the quantity

— — — —
0 d 0 0
/20N IR | d d 1.4
/ <8t1 8t1><8t2 on, )‘p@”" o1®do2, (14
Yix X
We need to clarify the notation A and B for some given operator A and B. When the arrow is rlght to left (resp. left
to right) the operator is acting on the left (resp. right). For instance we have go 1// 1/f( 3

If we assume that ¥ ?) satisfies the boundary condition Vo € {0, 1)2, (8""'!1/(2) / 8t°‘)| Tox T, = O then for all ¢ in
S, we have

/lp(z)‘a_T I ®_/3q,<2>32 FEAVaR Bl o
it oty ot it por= it Bt] 81‘] 3t2 atz v
EJX s X 245
here D denotes the set D := [0, s] x R". Assume further that we have Vo = (a1, ap) € {0, 2} x {0, 1},
glaly )
o = 0
ot Dx Xy
then we can do the same operation for the second variable #; and ﬁnally we get
«— — — —> < 5
I e ey S R [ CRE
o, o )\on, 0 )PT0T a2 a2 J\o2 022 vee
g x X DxD
Now since ¢ belongs to S, we have %t‘zﬂ =Y, ‘ZZZ‘/’ m?@ — A2, hence one can replace the second derivatives with
respect to time of ¢ and then perform 1ntegrat10ns by parts in order to obtain
2
[ andn e +ree0)w® ) (15)
DXxD i=1

' Do not forget that the situation is actually more complicated because since ¢ satisfies Eq. (E} ), the field ¢ depends on X.
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where P; denotes the operator P := O + m? acting on the i-th variable. Here we have assumed that there are no
boundary terms in the integrations by parts.
Using (1.5) and (1.3) one obtains that for all ¢ in S, we have

y 3 f N AYE AT / y 3
/(ar‘” w8t>+ on on )\on 9 )% 0’ Vo
X 2

s ) 5 20

:,\[ / ¢®2P1P2q,<2>+/¢2¢}+;\2..._ (1.6)
D

DxD
Hence if we choose a function ¥ @ such that
PPy P (x1,x2) = —8(x) — x2) ¥ (x1) (1.7)

where § is the Dirac operator then the first order term in the right-hand side of (1.6) vanishes. But because of the
hyperbolicity of the operator P, it seems difficult to control the regularity of such a function ¥®. Hence we need to
allow ¥ @ be in a distribution space.

1.3. Function space background

Here we define the function spaces which will be used in the following. Let fix some time 7 > 0.
Let g € Z then we denote by H?(R") (or simply H?) the Sobolev space

HI(RY) = {f e L*(R") | (1 +1€P)** f &) e L2 (R)).

Then it is well known (see e.g. [3,17,1]) that H? endowed with the norm | f| gs := fRn(l + |§|2)q|f|2(§) dé is a
Hilbert Space. Moreover one can see in every classical text book (see e.g. [1]) the following result

Theorem 1.1. If g > n/2 then HY is a Banach Algebra i.e. there exists some constant C4 > 0 such that for all
(f.g) € (HY)?, fge HY and

I fellae < Cyll fllaallgll ma-
In the rest of the paper we fix some integer g € N such that g > n/2.
Definition 1.1. Let k € N* be a positive integer, then we denote by £¢* the space defined by

—k
gk = cl<[o, TT, ® H—q>

=k
where for all Banach space B and for all k € N*, we denote by Q) B* the space of k-linear continuous forms over B.

)

is a Banach Space, here (-, -) denotes the duality brackets. For all k € N*, we denote by (£'*)®F the space of finite
sum of decomposable elements where a decomposable element U of £ k* is such that there exists (Uj, ..., Uy) € E*
suchthat U =U; ® --- ® Uy i.e. forall (fi,..., fr) € (HD)* and forall r = (11, ..., 1) € [0, TIF

(U@, (fi..... fo)=({U@), fi)--- (U@, fi)

Then using the fact that the space of compactly supported smooth functions is dense in H?, one can easily prove the
following property

Then EF* together with the norm || - ||x« defined by

alely
IUllks := max sup K @, (frs---, fk)>

ote{O,l}" tE[O,T]k atl)(

Ifilla <1
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Property 1.1. For all k in N*, ()% is a dense subspace of E**.

We will denote by & the space defined by £ := C>([0, T'], H?). Then & is a Banach space and we can see naturally
Ek* asa subspace of ®k5* the space of k-linear continuous form over &; YU € Ek* and Yo=(p1,...,0r) € &k

T T
U, ¢) :=/dz1 -~-/drk<um,...,rk>, (@10, 1))
0 0

Now let us generalize the expression (1.4) for the elements of £¢*.

Definition 1.2. Let U belong to £ * and s € [0, T, then we denote by U 3: the continuous linear form over £ defined

by Vo € &£
PN oU
<U8s,<p):=<—

UGs), ¥ 18
» (S)yfﬂ(s)>—< (S),E(S)>- (1.8)

Then using the Property 1.1 one can easily prove the following property

Property 1.2. Let k € N* and s € [0, T then there exists an unique operator E¥* — @kc‘f*, U+ U(B_;@k such that
for any decomposable element U =U; ® - -- @ Ux of (£")®* and for all ¢ = (¢1, ..., g) € EF

k
(U3 o) = {U; 5 05)
j=1

1.4. Resolution of the first order correction

Let us introduce the perturbative calculus by dealing with the first order correction. In this section we will define a
functional ¥ @ such that

(W0 @)+ ¥ P2, (9. 0) — (¥ 5. ¢) = 0(3?) (1.9)
for all ¢ € £ solution of (E}).

Proposition-Definition 1.1. Ler T : £ — £%* be the operator® defined by Yy € Y, ¥t = (11, 1) € [0, T1? and
V(fi, f2) € (H)?
T
(Yv(1.n), (fi, f) = /df (¥ (0), (G * f)(t1 — 1)(G * f2) (12 — T))
0
where forall f € H1,t € [0, T], (G % f)(t) denotes the element of H? such that Vk € R"

sin(fwy) =

fk) (1.10)

(G * )O)K) :=0(1) ”

where 0 denote the Heavisidefuncti0n3 and where wy, = (m* + |k|2)1/2 forall k e R

=2
Remark 1.1. One can see 7'y as a distribution Ty € & D'((O, T) x R") and we have the following expression
for Ty

T (x1,x2) = / dy Gret(x1 — ¥)Gret(x2 = V)V (y) (1.11)

Py

2 Ty = (G ® G) * Agy where A is a generalized coproduct.
3 9(1)=0ift <0 and 1 otherwise.
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where Py = {x € R+l | x9 > 0} and where Gy((z) denotes the retarded Green function of the Klein—-Gordon operator

1 O . —
o) [k E 0 g

Wk

Gret(2) =

1
Q)"
Rn

here 7 denotes the spatial part of z € R"*! ie. z = (20, 7).
One can verify that 7 is well defined and we have the following result

Proposition 1.1. Let A be a real number and s € [0, T a fixed time. Let ¥ € C*([0, T1, H~972) c £ be such that
— Ay +m>y =0. If ¢ € £ is a solution of Eq. (Ey) then the following inequality holds

arz

ZCZ 3c3
(¥ 5. @) — MY 8 %2, (. 0)) — (v . ¢)|<x2< g 3 4)||w||1*. (1.12)

Proof of Proposition 1.1. Let y € C2([0, T1, H~9%?) be such that aa — AV +m*Yy=0in H 7 and ¢ € £ be a
solution of Eq. (E}). Then since v and ¢ are C> the function f :f > (w @) is derivable with respect to ¢ and

Zw 2
f’(t)=< (1), w(t)> <1ﬁ(t) (t)>

32y
But since ¢ and ¢ satisfy aaz — Ay +m?y =0 and 2 azz — Ap +m?p = —1p> we have

32
O = o, (A—m?)e@)— <1ﬂ(l), 3—;2!)(t)> =My @), 9> ().

Hence we finally get for all s € [0, T] in
(wds, o) — (v . 0)= f(s) = f(0) =A/(w(r>,w2<r>)dr (1.13)
0

and we recover the identity (1.3).
Now let us study the term of order one of the left-hand side of (1.12). Using Definition 1.1 of 7" one can show
easily that it is given by the expression

N

() 522, (0. ) = / dr / dk, f dky M (s, 7. k)M (s, 7. k) (. kit + ko) (1.14)

0 Rll Rn

where V(¢, ) € [0, T]2 and Vk € R", the quantity M (¢, 7, k) is given by

M(t, 7. k) = cos((t — Ty ) (1) (k) — Sin((t;kr)w") BZY) ). (1.15)

The identity (1.14) can be seen as ((T° lp)b_;@’z, (¢, ¢)) =u(s) where u: [0, T] — R is the continuous function given
by
t
u(t) :=/drfdk1 fdkzM(t, T, k))M(s, T, kz)l’ﬁ\(‘[,/q + ky).
0 R® R®
Then in view of definition (1.15) of M (¢, 7, k) one can see that u is derivable with respect to # and since u(0) =0 we
getu(s) = [y u'(t) dr which leads to
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s

(T¥) 522, (9, 9)) = / dr / dky dka @ (2) (k1) M (s, T, k)0 (1) (K1 + ko)

0 (R”)2
s t
sin((t — T)wy,) == —
—/dt/dr f dk; dky w—P(p(t)(kl)M(s,t,kg)l//(r)(kl +ky) (1.16)
k1

0 0 (Rn)Z

where P denotes the Klein—Gordon operator P =0+ m?.
Then one can see the identity (1.16) as ((Y¢) dg ®2 (¢, ) = v(s) + w(s) where the functions v, w: [0, T] — R
are defined by

t
v(t) = / dny / dky dky (1) (k)M (T, k) (1) (k1 + k).

0 (Rn)z
t min(z,t;) .
sin((ry — t —— —
w(t) = — / dn / dr / dkldkzWPWH)(M)M(LT,kz)w(f)(kl+k2)-
0 0 ®R")? ]

Then one can see that v and w are derivable with respect to ¢ and that

V() = / dky dka 90 (k1) () (k) (D) (ky + k)
(R")2
t

- / an / dky dky S0 = 1)) ZE5 4 B e T D e+ k2)

Wk,
0 (Rn)z
and
K min(ty,1)
sin((t; — T)wg, ) sin((t — T)wy,) —— — —
W' (1) = f dn / dr / dky dk ! 2) Po() (k1) Po) (k)Y (D) (ki + k2)
Wk, Wk,
0 0 (Rn)Z

s

sin((t) — wy,) 7—— — —

+ | dy dky dky w—pr(l‘l)(kl)fﬂ(l)(kz)lﬂ(tl)(kl +ka).
t (Rn)Z kl

Hence since v(0) = w(0) = 0 and using the fact that Py () = —1¢%(¢) and in view of (1.10) we finally get

s

(TR, (9, 0)) = / dr (¥ (0), ¢2(0)) + 22 / dr f dr (1), (G * (62 (1))t — 1)) (D))
0 0

0

s N N

+A2/dn /dt2/dr<1ﬂ(r), (G * (¢*t)) (11 — D)) (G * (9*(1)) (12 — D)))-

0 0 0
Hence (1.13) and the last identity leads to

(¥ 35, 0) = M) 35 %2, (0, ) — (¥ 0, )

= —2A2/dt/dr (¥ (@), (G (9*0))(t — 1))e(D))
0 0

N

- A3/dn fdtzfdr (¥ (), (G (9*(t)) (1 — D) (G * (¢*(12)) (12 — 1)) (1.17)
0 0

0
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Now to complete the proof it suffices to estimate the right-hand side of (1.17). Using the definition (1.10) of
G * f(t) one can easily prove the following lemma

Lemma 1.4.1. If f be in HY then for all (t,7) € [0, T1* we have (G % f)(t — t) € H? and |(G * £)(t — T) | ne <
1

0t — O fllna.

m

Hence using Lemma 1.4.1 and Property 1.1 one get
S2C2

/dr/dr(wr),(G*(¢2(r>)(r—r))¢(r)) < z—njnwn]*nwnz
0 0

and
[ [ r 2 2 SSCS 4
f dy / dt> / 4 (¥ @), (G () @1 = 0)(G * (P )2 D)) < 5 L1 elol.
0 0 0

Then inserting these two inequalities in (1.17) we finally get (1.12). O

Hence we found a counter-term which annihilates the term (1.3) of order one with respect to A. But some extra
new terms of high order have been introduced. Thus we need to find a functional A>¥ ) in order to delete the terms
of order A%, and then an other functional A>¥® for those of order three etc. In order to picture all these extra terms,
it will be suitable to introduce the following object: the Planar Binary Tree.

2. Planar Binary Tree

A Planar Binary Tree (PBT) is a connected oriented tree such that each vertex has either 0 or two sons. The vertices
without sons are called the /eaves and those with two sons are the internal vertices. For each Planar Binary Tree, There
are an unique vertex which is the son of no other vertex, this vertex will be called the root. Since a Planar Binary Tree
is oriented, one can define an order on the leaves. In the rest of the paper we choose to arrange the leaves from left to
right.

We will denote by T (2) the set of Planar Binary Tree. Let denote by |b| the number of internal vertices of a Planar
Binary Tree b and ||| the leave’s number of b. Then one can easily show that we have ||b|| = |b| + 1. Let denote by
o the unique Planar Binary Tree with no internal vertex.

If b; and by are two Planar Binary Trees, then we denote by B, (b1, by) the Planar Binary Tree obtained by
connecting a new root to by on the left and to b, on the right

[)1 ()2

By (b1, b)) =

Then one can easily show that | B4 (b1, b2)| = |b1| + |b2]| + 1 and || B4 (b1, b2)|| = ||b1]| + ||1b2]], and for all b € T (2),
b # o, there is an unique couple (b1, by) € T(2)2 such that b = B4 (b1, by). For further details on the Planar Binary
Trees, one can consult [9,18,8] or [20].

Proposition—Definition 2.1. There is a unique family (Y (b))per (2) of operators T (b) : Elx 5 gblx gych that
{ T (o) :=id
Vb1, b)) € T)% T (Bi(br,by)i= (Y1) ® T (b)) o T

where for U : EV — EF* and V: E1* — £, U ® V denotes the unique functional from £%* to E*FD* such that for all
U=U1®Ue (M URVU) =UU) V().

2.1)

We postpone the proof of Proposition 2.1 until the next section. Let i belong to £*, then we consider the family
(¥ (D))per (2) defined by

U (b) =T (b)) e NI,
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Then using Remark 1.1 we can see that formally the functionals ¥ (b), b € T(2), can be constructed using the
following rules:

1. attach to each leaf of b the space—time variable x1, x3, ..., x5 with respect to the order of the leaves.

2. for each internal vertex attach a space—time integration variable y; € R**! and integrate this variable over P...

3. for each line between the vertices v and w where the depth of v is lower than the w’s, put a factor Gret(ay, — ay)
where a, (resp. ay,) is the space—time variable associated with v (resp. w).

4. finally multiply by v (a,) where a, is the space—time variable attached to the root of the Planar Binary Tree b.

To fix the ideas, let us treat an example. Let b € T (2) be the Planar Binary Tree described by the following graph

@
b=y (W
D

Then using Definition 2.1 we have ¥ (b) = id®7 ') o Ty and for x = (x1, x2, x3) € ([0, T] x R™)3, W (b)(x) is given
by the following

Y (b)(x) = // dy1dy2 Gret(x1 — ¥2) Gret(y1 — ¥2) Gret(x2 — ¥1) Gret (X3 — y) ¥ (32).
Py

Theorem 2.1.

() Let ¥ € £ and ¢ be in £ and s € [0, T, then the power series in A
Y P )51 (g, ... ) ()
beT(2)

has a nonzero radius of convergence R. More precisely we have

J)

here M is defined by M := max(%, 1) and C, is the constant of Theorem 1.1.
(ii) Let ¢ € & be such that (O + m?)¢ + r¢* =0 and ¥ € C2([0, T1, H~912) C £ be such that (O + m?)y =0
in H=1. If the condition

BIMC M T llplle(1+MC, Tlglle) <1 (2.2)

9
R> (4CqM2T|:||(p(s) [ H 8—f(s)

is satisfied then the power series (x) converges and we have for all s € [0, T ]

S 0P @)1 (... )= (v . ¢).

beT (2)

Remark. Note that it is possible to control the norm | ¢| ¢ with the norm of initial datas using some perturbative
expansion. More precisely for any (¢°, ') € (H?)?, » e R and T € R such that T|A|||(¢°, ¢!)| is small enough, it
is possible to construct a solution ¢ € C%([0, T1, HY) of (E;) such that 00, = <p0 and %—f(o, D)= (pl. Then one can
control ||¢|| ¢ using || @, oH|l. A proof of this result, based on a remark of Christian Brouder [5] will be expounded
in a forthcoming paper.

Let us comment this last proposition. First of all, using Definition 1.2 of <8_s), one can remark that the power series
() depends only on ¢(s, -) and %—‘f (s, -). Hence the theorem answers the original question.

We have written the solution for s nonnegative, but the study can be done in the same way for negative s. Finally
the result exposed in Proposition 2.1 can be generalized to ¢”-theory i.e. for the equation (00 + m?)¢ + Ap? =0,
p > 2. But the set of Planar Binary Trees must be replaced by T(p), the set of Planar p-Trees i.e. oriented rooted trees
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which vertices have O or p sons. Then the definition of (¥ (b))per(p) Temains the same i.e. ¥ (b) := ‘2 (b)yr where
TP)(b) is an adaptation of Definition 2.1 for p-trees and an analogue of Theorem 2.1 holds but the condition (2.2)
must be adapted.

3. Proof of the main proposition
3.1. Radius of convergence

First of all we have to prove Proposition 2.1, then we will focus on the radius of convergence of the power series ().
Two special Planar Binary Trees play an important role: the Planar Binary Tree o with one leaf, and v the one with
two leaves

o=o0 and Y:O\({O.

Let us introduce for b € T(2), b # o, a € {0, 1}IP1, r € [0, T11PI and f e (H?)IPI the functions G*(b)(z, f) €
C,?l ([0, T], H?) defined in the following way. Let b € T'(2), b # o, then there exists b and b, such that b = By (b1, by).
Let us denote & = (P, «@) € {0, 1}111 x {0, 1}1221 ¢ = ¢ D, 1 @) e [0, T1IE11 % [0, 711220 and £ = (f O, FP) e
(HNID1 s (H2)IP21l Then if by # o and by # o we set

T

Go(b)(t, f)(r) == / dni [G % (6*" b, FDym))]om — 1)

0
T
x f dna [G # (G%7 ) (1P, FP) )] 2 — D). 3.1)
0

For all b # o and for all a € {0, 1}I*I, 7 € [0, 711} and f e (H)PI, @ € {0,1}, 7 € [0, T], g € H? we define
G@O(By (0, D))((T, 1), (f, (1) =G> D (By(b,0)((t,1), (f, /))(T) by

T
(G& * f)(F — T)/dn [G = (G*D) (@, H()] (1 — 1) (3.2)
0
where GO f := G « f and where for all f € H?,t € [0, T1, (G' % f)(¢) denotes the element of H such that Vk € R”"
(GT% () K) = 6(t) cos(tep) f (k). (33)
Finally for all @ = (a1, a2) € {0, 1}%, f = (f1, f>) € (H?)? and 1 = (11, 12) € [0, T1* we set
G, (@) := (G x fi) (11 — T)(G**  f2) (12 — 7). (3.4)

Then we have the following lemma

Lemma 3.1.1. For all b € T(2), b # o, a € {0, 1101 ¢ € [0, TV and f e (HD)IPI, the function G*(b)(t, f) €
C,?,([O, T1, H?) is well defined by (3.1), (3.2) and (3.4). Moreover we have ¥Vt € [0, T']

bl

1
G* D). @) || o < ;(c,,M2T) (3.5)

Proof of Lemma 3.1.1. We will show Lemma 3.1.1 inductively with respect to |b| the number of internal vertices of b.
If b = v then G*(Y)(z, f) is given by (3.4), hence using definition (1.10) and (3.3) of GO % f and G' % f one gets that
GY(¥)(t, f) belongs to CO ([0, T1, HY). Let @ = (a1, a2) € {0, 1}%, f = (f1, f2) € (H?)? and t = (11, 12) € [0, T,
T € [0, T'] then using Proposition 1.1 we have

16 H@ [ go <Cq (G5 1)1 = O o [ (G 5 f2) 2 = D) | 4

but from the definition of G? % f and G! % f we have ||(G%/ i)t — O llme < MO(t; — )| fjllga where M =
max(1, n%) for all j € {1, 2}, hence the lemma is true for b = v.
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Now suppose that the lemma is true for all b € T'(2) such that 1 < |b] < N for some N € N*. Let b € T(2)
be such that |b| = N 4+ 1 > 2. Then there is (b1, b) € T(2)? such that b = Bi(b1,br). Let o = (@D, a@) €
{0, I}Hbl I« {0, 1}Hb2|\ t = (t(l), t(2)) € [0, T]”bl I« [0, T]thl\ and f = (f(l)’ f(Z)) e (HIJ)Hh] I« (Hq)\lbz\l. We have
b=Bi(b;,by)and |b| =N + 1so |b;| <N and |b1| < N.

If by # o and by # o then G*(b) (¢, f)(7) is defined by (3.1) and Lemma 3.1.1 is valid for b; and b;. So

T

SNEN / dn[G# (6*” B, Fm) -

0

is well defined and belongs to C,%([O, T, H?) for j € {1, 2}. Hence using Proposition 1.1, we get that G*(b)(¢, f) is
well defined and belongs to C,?l([O, T1, H?) and we have

T
162 B, @) || o < cq/dm 1[G * (6" (™, DY) = D] e
0
T
x f dna||[G # (6°7 b2 (12, F@)02) ]2 = D) || -
0

Then using the definition (1.10) of G * f and since (3.5) is satisfied by by and by we get |G(b)(¢, f)(T) e <
CyM*(CyM>T)P11+1021 which leads to (3.5) for b = B (b1, b).

If b) # o and by = o then G¥(b)(¢, f)(7) is given by (3.2) and Lemma 3.1.1 is true for ;. Hence using definition
of G * f, G' % f and Proposition 1.1 one gets that G* (b)(z, f) € C%([O, T1, H?) is well defined and that

1% ). H@ | o < Cg[(G*7 5 FO) (@ =) |
T
x / dni||[G * (6" @0 (P, FOYaD) ] =) || g0
0

Then using the same argument as before we finally get

[by|+1

1G%®) @, @] 4o < (c M>T "’”nfn/dme(m ~ < L(cmPT)

~ |

Hence inequality (3.5) is true for b = B4 (b1, o). One can deal with the case b; = o and by # o by exchanging b; and
by in the previous reasoning. 0O

Now we can deal with the proof of Proposition 2.1. In fact we will prove a more precise result

Proposition 3.1. For all b € T (2) the operator Y (b) : EY* — EIPI* is well defined by (2.1) and ¥b € T (2), b # o, we
have Vi € Y, o € {0, 1}1P1 s € [0, TN and V f € (H)!]

T

(), f> /df ¥ (), G¥b) (1, (D). (3.6)

0

<a'“'(r<b)w)
o«

Proof of Proposition 3.1. We will show Proposition 3.1 inductively with respect to |b| the number of internal vertices
of b. If b = v then (2.1) gives 7' (b) = 7 hence in view of the Definition 1.1 of 7" we see that (3.6) is true.
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Suppose that Proposition 3.1 is true for all b € T'(2) such that |b| < N. Let b € T(2)y+1, then there is (b1, by) €
T(2)? such that b = B, (b1, by). Let o = (a1, ) € {0, 1}%, f = (f1, f2) € (H)? and 1 = (11, 1) € [0, T]? and let
U=Y,;U" ® U belong to (£')®? then by definition we have

o oD M «® @
<8| |(T(b1)®T(b2))U(t)’ f>= <8| \T(bl)Uj (t(l)) (1)><8 IT(bz)Uj (t(z)) f(2)>- 37
o1 ' 3ty ’ (1 )® ’
If by # o and b, # o then (3.6) is true for b1 and b,. Hence the right-hand side of (3.7) leads to
T T
/ dr; / drz<2 U, w6 o0 (D, rO)@), (67 o) (12, f<2>)(r2>))>. (3.8)
0 0 J

Then using this last expression and using the inequality (3.5) of Lemma 3.1.1 we finally get

[b11+1b2]

alel(r b T (by)U
K (Y1) ® T(b2)) ol

So since (£1*)®2 is a dense subspace of £2* 5 7' (), the last inequality implies that (Y (b1) @ T (b>)) is a well defined
operator from £2* to EIP1* so (T'(b1) ® T (h2)) o T is well defined. Finally let v € £* then T () € £2*, let U, be
sequence of elements of (€ L)®2 which converges to 7" (). Then for all n, (3.8) leads to

T T
(Y (b)) ® T (h2))U m @
< o (o), f> = / dy / doa (Un(z1, ), (6 ¢V, ) @), (°7 (12, £P) ())).
0 0
Hence taking the limit n — oo in this last identity and using the definitions (1.1) of 7" and (3.1) of G¥(B4 (b1, b2)) %
(t, f) we finally get (3.6). The cases b1 # o, by = o and b| = o, by # o are similar. O

One can remark that inserting the inequality (3.5) of Lemma 3.1.1 in identity (3.6), we get the following inequality
forallb e T(2) \ {o}

b1

[T®) || <(c,M°T) (3.9)

Now we can prove the first part of Theorem 2.1. Let ¢ belong to £ then Proposition 3.1 shows that for all s € [0, T']
and for all b € T'(2) we have
2]
)

then using the fact (see [18] for a proof) that the number py of Planar Binary Tree b such that || = N satisfies
pn <4 we finally get the first part of Theorem 2.1, i.e. the power series in A defined by

d
(B3 (... 0)| < (ch2T)"’||w||*1[||w(s> I 0 + H )

Y e B (0. ....0)

beT(2)

has a nonzero radius of convergence R and

e

E(S)

)

Remark. We have used here the fact that for all b € T'(2), ||b|| = |b| + 1. For Planar p-trees, this property is replaced
by Vb€ T(p), llpll=(p—DIb[+ 1.

R> <4CqM2T[”<p(s) | o + H




904 D. Harrivel / Ann. I. H. Poincaré — AN 23 (2006) 891-909

3.2. Algebraic calculations

Let us fix some time s in [0, 7], then we define the operator P:E'™ — F* where F C & denotes the space
F:=C%([0,T], H))nC°([0, T], H?2) by for all U € £ and for all ¢ € F

(PU, ) :=(Uai’,¢)—(U%,¢)+/dT(U(r), (O+m?)e(1)) (3.10)

0

here 00 + m? denotes the operator F — Co([0, T1, HY) defined by o= 38_,22 — A. Let k be an integer k € N2 then for

=k
all I C [1, k]l we denote by P}‘ the unique continuous operator Plk : £ — & F such that for any decomposable
element U =U; ® - -- @ Uy of (£')®% and for all ¢ = (¢, ..., ¢x) € F*
N
(P,"U,w)=H(PUi,wi)]_[/(Uj(rj),wj(rj)) dr;.
iel Jgly
Since (£1*)® is a dense subspace of £*, one can prove that Plk is well defined.

Let ¢ € € be a solution of (E;) then in view Property 1.1 ¢ belongs to F. Let b be a Planar Binary Tree such
that b # o and let k denotes the number of leaves of b (k := ||b||). Then in view of Definition 2.1 one can easily see
that for b # o, Vj € [[1, k]I, Y € {0, 1}]‘, (8‘“‘W(b)/3t°‘)|,j=0 = 0, hence the definition (3.10) of P and the identity
(O 4+ m*)p = —rp? lead to

WD E* (g, ....p)= > MM Prw®), (671, %)) (3.11)

IC[[1,k]

where Ol]I- =2if j ¢ I and aJI. = 1 otherwise. Moreover the proof of Proposition 1.1 shows that if one choose i €
C2([0, T1, H~9%?) such that (O + m?)y¥ = 0in H~¢ then we have

N
<1/f‘87,w)—<1/f‘c%’,¢)=—A/(Wr),qﬂ(r))dr (3.12)
0
i.e. Py =0.For N € N* let denote by Ay the finite sum

Y 0P )3 (o, .. @) — (W 0. @).

beT (2)
[bI<N

Then (3.12) and (3.11) lead to
2N—1

Ay = Zxﬁ LSS S 0P PR @), (¢, L 0%). (3.13)

1<k<SN beT(2) IC(l, k]]
O<l<k Ibll=k 111=k—
k+l=p

Let 8 € N* be such that 8 < N then A’IS\, the term of order B8 with respect to A in (3.13) writes

af= Y PR e ®), (o, ... 0)
i

+ Y Y Y ChMPRw @), (¢ L o)), (3.14)

1SISESB aeT(2) IC[1,k]
k+l=p  lal=k |I=k-I

Let us focus on the first sum of this last identity. We need some extra structure on the set of Planar Binary Tree, the
growing operation. Let b be a Planar Binary Tree with k leaves and E = (E}, ..., E) be a k-uplet in {o, Y1k, We call
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the growing of E on b and denote by E o b the Planar Binary Tree obtained by replacing the i-th leaf of b by E;. For
instance we have

(Y3 =Y = (00)x Y p= Y

For E € {o, Y}¥ we denote by n, (E) the occurrence number of v in E i.e. ny(E) := Card{i | E; = v}. Then we have
the combinatorial lemma

Lemma 3.2.1.

(1) Let b be a Planar Binary Tree with B leaves, B > 2. Then we have

_ Z Z (_1)|a| :(_l)lbl.

ISISkSB a€T(2); llall=k
k+I=p EE{O,Y}k such that
nvy (E)=l and Exa=b

(2) Let p e N*, a € T(2) be such that |la|| = p and E € {o, Y}’ then we have |E x a| = p + ny(E) and
p+ny (E) _IpP ' '
(Pﬂl,plnY(E)]]lI/(E xa), (goa ceey (0)> = (PIEW(G)» (‘Pal yeses <Pa” ))
where I :={j € [[1, pll such that E; = o} and aJI.E =2ifj ¢ Ig and 1 otherwise.

We postpone the proof of Lemma 3.2.1 until Appendix A. The point (1) of Lemma 3.2.1 leads to
bl| pB
D DR B, (o, 0)

beT (2)
bll=8

=— > > (—1)'“‘(P[ﬁ,ﬁ]]¢/(Eoca),(¢,...,qo))- (.15
IKISkSB  aeT(2); |lal|l=k
k+tl=B  Ee{o,v}|ny (E)=I

But since E € {o, v}? is entirely determined by p and g, the point (2) of Lemma 3.2.1 and identity (3.15) lead to

I 1
Y EDPURL e B e e)=— > Y Y (—DMPfw @), (¢, .. %))
beT(2) 1<ISkLB aeT(2) IC[1,k]
lbll=p kti=p  lall=k |I|=k—I
then inserting this last identity in (3.14) we finally get that for all 8 < N, Ag] =0.
To complete the proof of Theorem 2.1 it suffices to show that Ay converges to 0 when N tends to infinity.

3.3. Analytic study

We have shown that all the terms of order 8 with 8 < N in identity (3.13) vanish, hence we have

2N—-1
Av= Y 3 S ST CDPUPFE ). (01 %)), (3.16)
B=N+1 I<ISKEN beT () IC[LA]

k+1=p Ibll=k |1l=k—I

We have to estimate the right-hand side of this last identity. Let us prove the following lemma

Lemma 3.3.1. Let k € N*, k > 2 and b € T (2) be such that ||b|| =k, then for all I C [[1, k], ¢ € & solution of (E))
and r € £ we have
2k—|1|

1 _
2+ 11C, Tlele) " M2 D (e, Tlelle) ™ v I (3.17)

N -

(PEw ). (p*1.....0%)) <
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Proof of Lemma 3.3.1. Let P denotes the operator P:E% — F' defined for all U € £'* and for all ¢ € F by

N

U, ) :=(U‘a_§,¢)+/dr(U(r), (O+m?)e(1)) (3.18)
0

~

(P

~ ~ =k
and for k € N* and I C [[1, k] we denote by P}‘ the unique continuous operator PIk gk & F such that for all
decomposable element U = U; ® - - - @ Ug of (£*)®% and for all ¢ = (g1, ..., ¢) € F*

s
(Pru, o) =] (PU. o) ] ] /(Uj(fj)s ¢j(t)))dr;.
iel JEly
One can prove that ﬁlk is well defined, in fact one can prove that for all U € (£'*)®* we have
(PFU o) <101 D" [ ] 2Nealle TT T1@+m))ep |l aoma [1 Tleylloo.na
Jclael pel\J yellkI\

Moreover since for b # o, ¥j € [1, k], Yo € {0, 1}¥, (3*1¥ (b)/01%)|;,—; = 0, we have Pf¥ (b) = PFw (b) for all

b#o.
Let ¢ € £ be a solution of (E;) then since (O + m?)¢ = —Ag?, ¢ belongs to F. Hence using Property 1.1 and

Definition (3.18) we get 9> € F and applying the last inequality to (gp"‘ll, ces (p"‘/{ ) we finally get
1 I 1 — —
(PFw ), (9%, ... %)) < 2+ IMC, Tlple) ! (T | w @) || .- (3.19)
Then using inequality (3.9) we finally get (3.17). O

Then using (3.16), Lemma 3.3.1 and the fact that the number p; of Planar Binary Tree b such that |b| = k satisfies
Pk < 4k we get that | Ay | is bounded by

2N—1

I i1 1k k=1 _

o > (MG TIele)” Y AT @+ 1C, Tlgle) ™ MPED, (3.20)
B=N+1 I<ISkEN

k+l=p
Let A denotes the quantity A := |A|C; T |l¢|l¢ then (3.20) leads to

_ k—1 —
|ANT < Cyllgllell Vil > = am?a) Al + Ak

I<ISKkEN
N+1<k+H<2N-1

But for all (k,l)e(N*)2 suchthat 1 <I<k<Nand N+ 1<k+1<2N —1wehave k > [N/2], so we get

N

k—1 _
AN < Cyllglelvlhe Y (4M*A)" @2+ 24",
k=[N/2]

But since (2.2) is satisfied we get 8M 2ZA(1+ A) < 1 hence the last inequality shows that Ay tends to O when N tends
to infinity which completes the proof of Theorem 2.1.
Appendix A. Planar Binary Trees

Here we will prove Lemma 3.2.1. Let begin with the first part of the lemma which is equivalent to

Lemma A.0.2. Let b belong to T (2), ||b]| = B (B = 2), then we have

> > (—Dhlal =o. (A1)

O<ISksB acT(2).llall=k
k+l=p  Eeclo,y}|ny(E)=I
such that Exa=b
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Proof. Let b € T(2) be such that ||b]| = B (B = 2). Then let us denote by L the integer defined by
L :=max{i € N such that 3a € T(2), |lall =B — i, IE € {o, v}’ such that n, (E) =i and E oca = b}.

Then since B > 2 we have L > 1. Define K by K ;=8 — L and let A € T(2), ||[A] = K and Ee {o, v}X such that
ExA=b (and then necessarily nY(E ) = L). Note that A is actually unique: it is obtained by removing all pairs of b
which are sons of the same vertex. Let denote by I the set of indices 1 <i < K such that E; = v. Then forall J C [
we will denote by E” the K-uplet E/ := (EY, ..., EIJ() where for all j in [[1, KT, E]J defined by

Bl {Y if jelJ,
J o ifje[l,K]\J
Vjield, E;:YandVie[[l,K]]\J E! =o.

Let k, [ be some integers such that 1 <! < k < 8 and k + [ = B. Then for all a € T} such that there exists
E, € {o, v}* which satisfies b = E  a, there is an unique subset J C I such that a = E’ & A and then we have
k > |J| =1 > 1. In the other hand for all J C I such that |J| > 1 there exists an unique Eec {o, v}K+II, nY(E) >1
such that E (E7 &« A) = b. Hence we have

_ Z Z (_l)lal —0— Z (_1)|E10<A|

OISk aeT(2),|lall=k Jcl
k+l=B  Eecfo,v}Iny(E)=l [JISL
such that Exa=b

but |[EY oc A = K + |J| — 1 so the previous equality leads to

L
- > Yo M=o = =nfa-nt=o0

OISk aeT(2),llal=k 1=0
k+l=p  Ecfo,v}|ny(E)=l
such that £ xca=b

which completes the proof. O
Let focus on the second part of Lemma 3.2.1.
Lemma A.0.3. Let p € N*, a € T (2) be such that ||a|| = p and E € {o, Y}? then we have |E xa| = p + nv(E) and
(Bl W (E @), o 0)) = (PLY @, (0 97 (A2)

where Ig :={j € [1, p]l such that E; = o} and osz.E =21ifj ¢ Ig and | otherwise.

Proof. Let k € N* and U belong to £, then for all K C [1,k]], for all t¥X e [0, T]*"/K| and for all fVK ¢
(HD K1 we consider the element UVK (YK, fVK) of EIKI defined by Vr e [0, T]'Kl and Vg e (H?)KI,
(UVE @K, fVEY (1), g) := (U(f), f) where 7 and f are defined by

~ ._ VK F.— fVK 5
ity EK g T e ek (A3)
=1 ifrek fri=gkrn Urek

here v(r) := card{k < r such that k ¢ k} and k(r) := card{k < r such that k € K}.

First we will treat the case ny(E) = 1 then we will see how to generalize the result. For j € [[1, k]] we define
EUGRD = (EVD EUPY e (o, vk by EVF =oif r # j and E;:”k) —v.Letr [0, TT* ' and (f1,..., fi1) €
(H?)* then we consider the element W(a)v{/}(t, f) of E™ In view of the definition of ¥ (b) = Y (b)y we have

W(EYR «a) = T[¥(a) 'V (¢, f)] € £2*. Then the calculations done in the proof of Proposition 1.1 shows that for
all ¢ € £ solution of (E;) we have

T
(PhLaY ¥ @YVt )] (p.0)= f (P @Y/ (., f)(1), 9*(1))dr. (A4)
0
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Hence using the definition (A.3) of (@)Y, f) we find that the lemma is true if £ = EUR je. when ny(E)=1.

Let M € N* and E € {o, Y}k be such that ny (E) = M. Then we define Jg C [1, k] as the set of indices j € [[1, k]|
such that E; = v, then since n (E) = M we have |Jg| = M. We denote Jg :={ji,..., ju} where jy < ju—1 <
-+- < j1. Then one can show easily that we have

b =E xa= EUMmKk+M=1) o (E(jM—l,k+M—2) o ( X (E(jl»k) O(a)) .. )

Hence if we denote by a; the Planar Binary Tree a; := EUM-1k+M=2) o (... & (EUID) o q))--) we have b =
E xa= EUM:k+M=1 o 4. Then for all

j k+M—2
¢Um) =ty oo bjy—ts iyt 1o -+ oo tipm—1) € [0, TTFFM 2,

FU = (oo Fimts Fiutto o fiem—1) € (HOFFM2
we can use (A.4) and the fact that

YW (a) V¥ (), UM ] = @ () VUm it (g Un) | i)
in order to obtain

<P[[21’2]]11/(b)\/{/’M»J.M+1}(Z«UM}’ f{./M})’ (0. (p))

T
=/<‘1’(a1)(t)»(fls-nsij—l»‘Pz(ij)’ij+1’---»fk+M—l))dtjM
0
where t denotes the (k + M — 1)-uplet# := (#1,...,%j,,—1,tjy» tjpy+1s - - - » tk-m—1). Then writing

ay = EUm-1keM=2) o

one can use the same arguments to show that

<P[f11’4]]lI/(b)\/{jM»jM+l»J.M—I+11].M—I+2} (t{stjM—l}’ f{stjM—]}), (@, 9,0, (p))

=/f dtjy, dtjy (Z @) @), (F1v s @2 Win)s gt oo os Figr=15 @ Wjar s ey framr—1))-

[0,T]
Hence Doing this operation successively for jy—z, ..., j1 we finally get
K ~ ~
(P kg @)K (5 £ (@, 0)) = /f dtjy, -+ dtj, ($ (@)@, (@1, - &) (A.5)

[0,71M

where K := Uyzl{jr +M —r, j, +M —r+ 1} and where 3, := ¢2(¢,) if r € Jg and 3, := fv(r otherwise. Hence,
considering the element (Pl[lﬂK”]lI/(b)VK(~, ), (@, ..., @) of EFEM=2M% and using (A.5), we finally get

(PP @), @, . 0) = (Pl s ¥ @, (1, )

where g, := ¢? if r € J and h, := ¢ otherwise i.e. we obtain exactly identity (A.2). O
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