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Abstract
In this paper we study the nonlinear Schrédinger equation:
—Au+V@)u= f(x,u),
ueH! (RN )
We give general conditions which assure the existence of ground state solutions. Under a Nehari type condition, we show that the

standard Ambrosetti-Rabinowitz super-linear condition can be replaced by a more natural super-quadratic condition.
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé
Dans cet article nous étudions 1’équation non-linéaire de Schrodinger :
—Au+V@)u= f(x,u),
ueH! (RN )
Nous donnons les conditions générales qui garantissent I’existence de solutions d’énergie minimale. Sous une condition de type
Nehari, nous démontrons que la condition super-linéaire d’ Ambrosetti-Rabinowitz peut étre remplacée par une condition super-

quadratique plus naturelle.
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

We study the nonlinear Schrodinger equation with potentials:
—Au+VxX)u= f(x,u)),
{ ue H'(RY).
We are concerned with the existence of ground state solutions, i.e., solutions corresponding to the least positive critical
value of the variational functional:

D(u) = ! /(|W|2 + V(x)u?) dx — / F(x,u)dx
=3 , ,
RN RV
where F(x,u) = 0” fx,t)de.
To establish the existence of ground states, usually besides the growth condition on the nonlinearity and a Nehari
type condition, the following superlinear condition due to Ambrosetti-Rabinowitz (e.g., [2,12]) is assumed:

(1.1)

(AR) There is i > 2 such that for u # 0 and x € RV,
O<uF(x,u) <uf(x,u),
where F(x,u) = [y f(x,0)dr.
This condition implies that for some C > 0, F(x, u) > Clul|*.

In this paper we show that a weaker and more natural version suffices to assure the existence of a ground state
solution. Instead of (AR) we assume the following super-quadratic condition

(SQ) limjy| o0 £ (;5“> = 00, uniformly in x.

We always assume V(x) € C (RN R), infpy V(x) > 0. We consider two cases of the potentials, one is periodic,
i.e., the x-dependence is periodic; the other is when V has a bounded potential well in the sense that limy|— 0 V (x)
exists and is equal to supg~ V. The results will be stated and proved in Sections 2 and 3.

We would like to mention earlier results on existence of entire solutions of Schrodinger type equations with or
without potentials which was studied in [3,4,9,10] (see references therein). In recent years there have been intensive
studies on semiclassical states for nonlinear Schrodinger equations for which in Eq. (1.1) there is a small parameter
corresponding to the Plank constant. We refer [1] for references in this direction. Our results do not require smallness
of such a parameter. A recent result in [5] is in similar spirit of our Theorem 3.1; but the conditions in [5] and ours are
mutually non-inclusive and the methods are different.

For (1.1) in bounded domains or if the potential function V (x) possesses certain compactness condition, one can
prove (1.1) have certain solutions. In [8] Liu and Wang first used (SQ) to get the bounds of minimizing sequences on
the Nehari manifold, and under coercive condition of V (x) they proved the existence of three solutions: one positive,
one negative, and one sign-changing. The results in this current paper are natural generalizations of that in [8] to
noncompact cases. In the two cases we do not have compact embedding, which is the main difficulty in this paper.
We shall make use of a combination of the techniques in [8,7] with applications of the concentration-compactness
principle of Lions [6,11,12].

2. The periodic case

We consider weak solutions of
—Au+Vx)u= f(x,u),
ue H! (RN).

We need the following assumptions:

(V1) V(x) e C(RV,R), infpy V(x) = Vo > 0. V(x) is 1-periodic in each of x1, x2, ..., xn.
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(f1) fx,t)e Clis 1-periodic in each of x1, x2, ..., xy, f; is a Caratheodory function and there exists C > 0, such
that

fo 0l

| fie, 0] < C(1+ 1117 72), 22 =0, uniformly in x € RV.
|t]— o0 |t|2 -1
(f2) f(x,t)=o(t]), as |t| — 0, uniformly in x.

(f3) im0 F(fz") = 00, uniformly in x.

(fa) A (lfl’t) is strictly increasing in .
Here 2* = % for N > 3. For N = 1, 2 we assume there is ¢ > 2 in the place of 2* in (f1). We work in Hilbert space
X={ueH'®RY); [pnV@u>dx < oo}, with norm [|u[? = [pv (Vu|*> + V(x)u?)dx. The functional associated
with Eq. (1.1) is

1 2 2\ g
q§(u)_2 (|Vu| + V(x)u )dx F(x,u)dx, uelX.
RN RN
Define

y(u):/(|Vu|2+V(x)u2)dx—/f(x,u)udx.

RN RN

Theorem 2.1. Under assumptions (V1), (f1)—(fa) Eq. (1.1) has a weak solution u € X, such that ®(u) =c >0, c is
defined as

c =inf @ (u),
inf (u)
where N ={u € X: u#0, y(u)=0}.
First we need a few lemmas.
Lemma 2.2. Let (u,) be a minimizing sequence for c. Then

(1) There is B > 0 such that liminf,_  ||u,| = B.
(i1) (uy) is bounded in X.
(iii) For a subsequence, up to translations, u, converges weakly to u # 0.

Proof. (i) The proof is similar to the case with (AR) satisfied. We omit its proofs (see [12]).

(i1) Let (1) be a minimizing sequence of c. If (u,) is not bounded, we define v, = u,, /||u, ||, so ||v,|| = 1. Passing
to a subsequence, we may assume, v, — v in X, v, > vin L), (RV),2< p <2*, v, > vae. on R,

If v # 0, we have

1 F(x, 1

__/ (xuiz)vrzldxzc+0()>0

2 u? llun |1
RN

By Fadou’s lemma and (f3) we have a contradiction as follows,

1 F(x, .. F(x,
3 >liminf/ Mv%dx} /hmmev,zldx:oo.
n

n— 00 u%

RN RN
If v=0, we take y, = (y,i , y,%, ey y,llv) e NV with all y,’; (1 <i < N) being integers. Define translations of v, by
Wy (X) = v, (x + yp). Since V(x) and f(x, u) are periodic, we have ||w,|l = [lvy]l = 1, [walp = |vnlp, and @ (w,) =

@ (v,). Passing to a subsequence, we have w, — w in H'(RM), w, - w in Lf;c(RN), 2< p <2 w, > wae.
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on RV If there exist y,, such that w,, — w # 0, we will get a contradiction as the case of v # 0. If for any y,, w, — 0,
we will get a contradiction by proving v,, — 0 in L?(R"). In this case, we claim for all p € (2,2%),

lim sup / |vy|? dx = 0.
n—oo yeRM
By (y)

If this is not true, there exists p € (2,2%), 5 > 0,

lim sup / v, [P dx >8>0,

n—oo yeRV
By (y)

then there exists z, € RY such that, lim,_ o fBZ(Zn) |vp|P dx > 8/2 > 0. We can choose y,, € NV € B»(z,) such that
B (yn) C Ba(zy) and
. 8
lim v, |Pdx > = >0,
n—00 2
Bi(yn)
we have lim,,_, 5o fBl(O) |lw, P dx > 8/2 > 0, that is w,, — w # 0, a contradiction.

By Lions Lemma (cf. [12, Lemma 1.21]), we get v, — O in LP(RN), pe€2,2%).Fix p e (2,2%). By (f1) and (f2),
for any ¢ > 0 there is C; > O such that | f(x, u)| < e(lu] + lul* =1 + Celu|P~L. Then |F(x,u)| < e(lu]* + |u*) +
C¢|u|?P. Then fixing an R > +/2c, using Lebesgue Dominated Convergence theorem, we have

lim F(x,Rv,,)dx:/ lim F(x, Rv,)dx =0.
n—00 n—00
RN RN
Since by (f1), @ (tu,) < @ (up,) for t > 0 we thus have
1
e o(l) = @(u,) > O (Ro) = 3 K [ Flx. Ruyar,
RN
which is a contradiction. Thus (u,,) is bounded.

(iii) We can assume u,, weakly converges to u. To show u # 0, again we define translations of u, as above, assume
o=}, v2, ..., yN) e NV, with all yi (1 <i < N) being integers. u;" = u,(x + y,) are all possible translation
of u,. If for some y, C NV, u,yl” — u # 0 we are done. If for any y, C NV, u,y,” — 0, by similar argument as above
we can prove u, — 0 in LP(RN), p € (2,2%). Then as n — oo, fRN U, f(x,uy)dx — 0. Thus by (i) we have a con-
tradiction:

0<B< ||un||2=/unf(x,un)dx—>0, asn—oo. 0O

RN
Lemma 2.3. For each u € X \ {0}, there exists unique t =t (u) > 0, such that tu € N.
This is similar to the case of assuming (AR), we omit it.

Lemma 2.4. Let (u,) C X be a sequence such that y (u,) — 0 and fRN f(x,up)u, - a > 0asn— oo. Then exist
tp > 0 such that tyu, e N, t, — 1, as n — oo.

Proof. Since u, # 0, by Lemma 2.3, there exists only one #, > 0, such that t,u,, € N, i.e.

t,%/(|w,,|2+v<x)|u,,|2)dx— / £ (X, tattn) tptty dx = 0.
RN RN
By (f1) and (f2), |f(x, wu| < e(|ul> + Iulz*) + C¢|u|?, we see t, cannot go zero, that is t, > to > 0. By (f1),
fx,uw)u 2 2F (x,u). If t, - oo, we get

2
u, dx.

X, thuy)thu F(x, t,u
a+0(1)=/(Ivun|2+V(x)|un|2)dx= Wd’@z/%
n n—-n

RV RN RV
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By the condition, up to translations, u, — u # 0 a.e. in RY. We have

F(x,t,u
/ %u%dxe 400, asn— o0
t}’l un
RN
a contradiction. Thus 0 < #g < t, < C. Assume t, — T, now we claim T = 1. Since t,u, € N, by y(u,) — 0 we
have

/(lwn|2 + V@) |un?) dx = / [ up)un dx + o(1).
RN RN
Since 1, — T, by (f1) and (f3)

TZ/(|WH|2+ V(0 |un|?) dx — / F(x, Tup)Tu, dx = o(1),
RN RN
that is

0(1)2/ f(x]:;“n)ui_ f(xa”n)u}%dXZ/(f(xa Tuy) _ f(xa”n)>u}%dx'
RN " RN

Up Tu, Uy

For a subsequence u,, — u in LﬁC(RN) 2 < p < 2*. Up to translations, we may assume u # 0. Then by (f3) and
Fatou’s lemma

f(f(-vau) B f(x?u)>uzdx20’

Tu u
RN

by (fa) wehave T=1. O

Next we construct a special minimizing sequence along which fRN F(x,u) is weakly continuous. Consider
Eq. (1.1) on Bg(0),
—Au+V(x)u= f(x,u), in Bg(0),
u=0, on d Br(0).

We can similarly define Az, cg. By the result of [8], cg is achieved by a positive solution of (2.1) called ug. It is easy
to check that cg > ¢ and cg — ¢ as R — oo. This implies (ug) as R — oo minimizes c. Let R, — 00, u, :=ug,.
Fix p € (2,2%).

@2.1)

Lemma 2.5.

@) fRN luy|P — A > 0.
(ii) There exist x, € R such thatVe >0, IR > 0, liminffBR(xn) lups|l? > A —e.

Proof. (i) follows from y (u,) = 0 and the fact that for any & > 0 there is C, > 0, | f(x,u)| < e(Ju| + [u|* 1) +
Ce|u|p_l-

For (ii) we apply the concentration compactness principle to IRN |un|P. Then there exist « € (0, 1], (x,) C RV,
Ve >0,3R >0,Vr > R, r' > R, have

liminf / lun|? > aA — ¢, liminf / lunP > (1 —a)A —e.
By (xn) B:/ (xn)
Next we claim o = 1. Choose ¢, — 0, r, — 00, ”;/1 =4r,. Let & be a cut-off function such that £(s) =0, for s < 1 or

s>4,8(s)=1,for2 <s <3,and |&'(s)| < 2. Take ¢ (x) = £(|x — x,|/r4)uy,. Using equation

/ (Vun Ve + V(X und — f(x,up)¢) dx =0,

Bg

n
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we have,
(VP + vl P)ar+ [ e dr=o(),
B3rn (xn)\BZm (xn) B3rn (Xn)\B2rn (xXn)

Take another cut-off function n such that n(s) =1, for s <2, n(s) =0, for s > 3, and |n'(s)| < 2, for 2 < s < 3. Set

|x — xp| [x — Xp|
wn(x):n< - )uns Un(x):(l_n( , ))un(x)

Using equation as above we have

D (uy) =P (wy) + D (vy) +0(1),

and

/|wn|p>aA_8na /|vn|p>(1_a)A_8n~
R” R”

Finally using w, to test the equation for (u,) we get
y (W) = (@' (un), wp) +0(1) = o(1).

Similarly y (v,) = o(1), by Lemma 2.4, 3t, — 1, s, — 1, such that t,w, € N/, s,v, € V. Then
c+o(l) =@ (uy) = P(wy) + P(vp) +0(1) = P(t,wn) + P (spvs) +0(1) = 2c + o(1),

which is a contradiction. Thuse =1. O

Proof of Theorem 2.1. Let (#,) C N be the minimizing sequence for ¢ given above. By Lemma 2.2 (u,,) is bounded
in X and weak convergent to u # 0. By Lemma 2.5, — || gy F(x,uy) is weakly continuous. Using the weakly lower
semi-continuity we have @ (u) < c. If u € N’ we have @ (u) =c. If u ¢ N/, by Lemma 2.5, there is ¢ > 0 such that
tu, € N. Then

¢ < @ (tu) <liminf @ (tu,) < liminf @ (u,) =c.
n—o0 n—>oo

Since NV is smooth, the minimizer is a critical point of @. O
3. The potential well case

We consider weak solutions of
{ —Au+V(x)u=fu),

ue H'(RY) G-

for the case where potential function V (x) has a bounded potential well. Since the nonlinearity is autonomous, the
conditions on f needs modified slightly. More precisely, we make the following assumptions.

(V2) 0 <infgy V(x) <limy— o V(x) =supgny V(x) < 00.
(f1) f(@t) eC'. f, is a Caratheodory function and there exists C > 0, s. t.

O _

lt|—>o0 |£]2* 1

|f] <c(i+11772), 0.

(f2) f()=o0(t]),as [t| > 0.

(fa) % is strictly increasing in 7.
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Theorem 3.1. Under assumptions (V2), (f1)—(fs) Eq. (3.1) has a weak solution u € X, such that ®(u) =c >0, c is
defined as

c=inf® (u),
N
where N ={ucX: u#0, yu)=0}.

In this section we denote Voo = limy|—00 V (x). There is an associated problem
—Au + Voou = f(u),
{ ue H'(RV).
We define the energy functional @4, by replacing V with Voo, coo = infar, @Poo(u), here Ny = {u € X/{0}:
(P, (u), u) = 0}. Since Vi is a constant, by Theorem 2.1, co > 0 is achieved at some uo, € Noo.

Lemma 3.2. 0 < ¢ < coo.

Proof. Itis easy to see ¢ > 0. Let us, be the minimizer of coo. Then y (us) < 0, and there is ¢ > 0 such that tuy, € N.
We have

c <P (tioo) < Poo(tUoo) € Poo(Uoo) = Coo- o
We note that with minor changes Lemma 2.3 and 2.4 still hold.
Lemma 3.3. Let (u;,) be a minimizing sequence for c. Then

(1) There is B > 0 such that liminf,_  ||u,|| = B.
(ii) (uy) is bounded in X.
(iii) For a subsequence, u,, converges weakly to u # 0.

Proof. (i) The same as Lemma 2.2.

(i) If not, define v, = u,/||u,l||. Passing to a subsequence, we may assume, v, — v in X. If v, — 0 in

L1(RN) for 2 < g < 2*, we use the Lebesgue Dominated Convergence theorem to get for any R > 0 fixed,
lim,— o fRN F(Rv,)dx = 0. Therefore a contradiction by choosing a large R > 0 in @ (u,) > ®(Rv,) = %Rz —
fRN F(Rv,) dx. Thus by the concentration compactness principle there are y, € R" such that w,, (x) = v, (y, +x) —
w # 0. Then the proof follows from the arguments in Lemma 2.2(ii). Thus (u,) is bounded.
(iii) We can assume u, — u in X, u, — u in L (RV). If u = 0, we have [ (V(x) — Voo)|un|*dx — 0, as
n — 00. Thus we have ¢ + o(1) = Do (uy,) + o(1). Similarly we have y (u,) =0, Yo (1) = 0(1). By Lemma 2.4
there exist #, — 1 such that t,,u,, € N. Then we have ¢ + 0(1) = Do (1) + 0(1) = Do (tyuy) +0(1) > coo + 0(1),
a contradiction with Lemma 3.2. O

Next consider Eq. (3.1) on Bg(0),

{ —Au+V(x)u= f(@u), in Bg(0),

u=0, on dBg(0) (3.2)

we can similarly define Ngp = AN N HO1 (BR), cg. By the result of [8], cr is achieved by a positive solution called ug.
It is easy to check that cg > ¢ and cg — ¢ as R — oo.

Lemma 3.4. Let ug € Ny be a minimizer of cg. Assume for a subsequence R, — 00, fBR lu,|P — A € (0, 00),
n
where u, = ug,. Then there exists (y,) C RN s.1. forany ¢ > 0, exists re > 0, forallr >re,

liminf/ lu,|? > A —e.

n—oQ
By (yn)
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Proof. Note that u g satisfies (3.3) for all ¢ € H(} (Bgr),

/(VuRV(p—I—V(x)uR(p) dx — / fup)pdx =0. (3.3)
Bk, RN

Since (u,) is bounded in H'(R"), by using the concentration compactness principle, exists o € (0, 1] and (y,) C RY
s.t. for any & > 0, there exists r. > 0, forall ¥’ > r > r,,

lim inf / lu,|? > aA —e¢, (3.4)
n—>oo

By (yn)
liminf / lun)” = (1 — @) A — . (3.5)
n—>oo

RN\BH()’n)

Now suppose o < 1, then following exactly the same construction as in Lemma 2.5 we have two sequences w,, and
v, satisfying

liminf/ lw,|? > aA, liminf/ v, > (1 —a)A, D(up) = D (wy) + @ (vy) +o(1).
n—>00 n—>00
RN RN
Moreover, if we take ¢ = w,,, by (3.3)
Y (W) = (@' (un), wp) +0(1) = o(1).
Similarly, y (v,) = o(1). By Lemma 2.4, there exist t, — 1, s, — 1, s.t.
Wy =tyawy €N, Uy = Spvp €N
If (y,) is bounded, then liminf,_, o, @ (,) > ¢ and liminf,_, o @ (D) > ceo. If (¥,) is unbounded, then
liminf @ (W,) > ¢ and liminf®(7,) > c.
n—>00 n—00
Altogether, we have
P (un) = P(wy) + @ (vy) +0(1) = P (tywn) + P (spvn) +0(1),
and
liminf @ (uy,) > liminf @ (t, w,) + liminf @ (s,v,) > ¢ + Coo-

A contradiction, sowe have o =1. 0O

Proof of Theorem 3.1. Let (u,) C N be the minimizing sequence for ¢ given in Lemma 3.4. Let A =
limy, s oo fRN |t |P dx. By Lemma 3.3, (u,) is bounded in X and weakly converges to u # 0. By Lemma 3.4, there
exists (y,) C RN st.Ve>0,3r >0,

n—oQ
By (yn)

Then (y,) must be bounded. Otherwise, Yoo (1t;) = ¥ (1t;,) + o(1). We find 7, — 1, s.t. y (t,u,,) = 0. Then we have

liminf/ lup|? > A —e.

Coo < liminf @, (t,uy,) = liminf @, (1) = liminf @ (u,) = ¢

a contraction with ¢ < cx. Now, when (y,) is bounded, we have u;,, — u in L? (RM). This gives that along this
sequence @ (u,) is weakly lower semi-continuous, we have

c:iandﬁ(u)<¢(u)<liminf¢>(u,,)=c. O

Remark 3.5. Though we assume in this section f depends only on ¢, looking at the proofs we see the arguments
can be used with little changes to deal with the following case: f = b(x)f(¢) with b satisfying b € C' (R, R),
b1 < b(x) < by for some by, by > 0, and b(x) > infgwy b(x) =lim|y|— oo b(x). The precisely statement is the same.
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