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Abstract

We study the large time asymptotic behavior, in Lp (1 � p � ∞), of higher derivatives Dγ u(t) of solutions of the nonlinear
equation{

ut + T u = a · ∇θ (ψ(u)) on R
n × (0,∞),

u(0) = u0 ∈ L1(Rn),
(1)

where the integers n and θ are bigger than or equal to 1, a is a constant vector in R
p with p = (θ+n−1

n−1
) = (θ+n−1)!

θ !(n−1)! . The function ψ

is a nonlinearity such that ψ ∈ Cθ (R) and ψ(0) = 0, and T is a higher order elliptic operator with nonsmooth bounded measurable
coefficients on R

n. We also establish faster decay when u0 ∈ L1(Rn) ∩ L∞(Rn).
©

Résumé

Nous étudions le comportement asymptotique, dans Lp (1 � p � ∞), des dérivées d’ordre supérieur Dγ u(t) des solutions de
l’équation nonlinéaire (1), où n ∈ N

∗, θ ∈ N
∗ et a est un vecteur constant de R

p avec p = (θ+n−1
n−1

)
. La fonction ψ est nonlinéaire

vérifiant ψ ∈ Cθ (R) et ψ(0) = 0, et T est un opérateur elliptique d’ordre supérieur à coefficients peu réguliers dans R
n. Nous

étudions également le cas particulier où u0 ∈ L1(Rn) ∩ L∞(Rn).
©
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1. Introduction

Our aim is to study the asymptotic behavior of higher derivatives of solutions of the Cauchy problem for the
generalized convection–diffusion equation (1) using sufficiently smooth nonlinearities ψ . A typical example of (1) is
given by{

ut + (
�mA�m

)
u = a · ∇θ

(
ψ(u)

)
on R

n × (0,∞),

u(0) = u0 ∈ L1
(
R

n
)
,

where A is a bounded measurable positive function independent of time t .
Let us start by mentioning some works which inspired ours. Escobedo and Zuazua studied in [3] the large time

behavior of solutions of the Cauchy problem for the convection–diffusion equation (1) with T = −�, ψ(u) = |u|q−1u

and θ = 1. They proved, for q > 1, the existence and the uniqueness of a classical solution u ∈ C([0,∞);L1(Rn))

such that u ∈ C((0,∞);W 2,p(Rn)) ∩ C1((0,∞);Lp(Rn)) for every p ∈ (1,∞). The argument used relies essentially
on the classical Banach fixed point theorem. They also showed that, for t large, this solution behaves like the heat
kernel Kt which can be regarded as the fundamental solution of the heat equation with the Dirac mass as initial data.
More precisely, under the assumption q > 1 + 1/n, if M denotes the mass of u0 (M = ∫

Rn u0(x)dx) then the solution
u satisfies for all p ∈ [1,∞],

lim
t→+∞ t

n
2 (1− 1

p
)
∥∥u(t) − MKt

∥∥
p

= 0.

They also obtained a faster decay in the particular case when the initial data u0 belongs to L1(Rn;1 + |x|) ∩ Lq(Rn).
The techniques used rely on standard heat kernel estimates on the integral representation of the solution. Subsequently,
they finished their work by an extension to the more general equation ut − �u = a · ∇(ψ(u)) where ψ is an arbitrary
sufficiently smooth nonlinearity.

In [2], Biller, Karch and Woyczyński studied the large time behavior of solutions of the Lévy conservation laws
ut + Lu + ∇ · ψ(u) = 0 with initial data u0, where ψ is a nonlinearity and (−L) is the generator of a positivity-
preserving symmetric Lévy semigroup on L1(Rn). In particular, they showed that in the case where the symbol A of
the operator L satisfies A(ζ ) ∼ |ζ |ι for |ζ | < 1 (0 < ι < 2) and A(ζ ) ∼ |ζ |2 for |ζ | > 1, and under the assumptions
ψ ∈ C2 with ψ ′(0) = 0 and u0 ∈ L1(Rn) ∩ L∞(Rn), the following holds

lim
t→+∞ t

n
ι
(1− 1

p
)
∥∥u(t) − e−tLu0

∥∥
p

= 0 for every p ∈ [1,∞]

as for the corresponding linear equation, and if F := ∫ ∞
0

∫
Rn ψ(u(y, s))dy ds,

lim
t→+∞ t

n
ι
(1− 1

p
)+ 1

ι
∥∥u(t) − e−tLu0 + F · (∇e−tL)∥∥

p
= 0 for every p ∈ (1,∞]

resulting from the presence of the nonlinear term.
In [4], we considered the equation{

ut +Lt u = a∇u on R
n × (0,∞),

u(0) = u0 ∈ L1
(
R

n
)
,

(2)

where Lt = L∗
0bL0 (see below for the definition of L0) and b is a positive bounded function such that b(x, t) =

b(x + at). We showed that the derivatives Dγ u of order less than or equal to 2m − 1 of the solution to (2) have an
asymptotic behavior similar to the one of the corresponding derivatives of the heat kernel with speed a,

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥D
γ
x u(x, t) − MD

γ
x Kt(x + at)

∥∥
p

= 0, (3)

for all p ∈ [1,∞]. The method used to derive this result was the simple change of variables v(x, t) := u(x − at, t)

which reduces the study to the heat equation{
vt +L0v = 0 on R

n × (0,∞),

v(0) = v = u .
0 0
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We have shown (Proposition 5, [4]) that the solution v satisfies

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥D
γ
x v − MD

γ
x Kt

∥∥
p

= 0, (4)

for all p ∈ [1,∞] and all γ ∈ N
n such that |γ | � 2m − 1.

Taking into account this linear transformation, the principal key to obtain (4) (and then (3)) was the following
estimates ([4], Theorem 7),

∥∥D
γ
x K(t) ∗ u0 − MD

γ
x K(t)

∥∥
p

�

⎧⎨⎩Ct
− n

4m
(1− 1

p
)− |γ |

4m
− 1

4m ‖u0‖L1(Rn;|x|) if |γ | < 2m − 1,

Ct
− n

4m
(1− 1

p
)− |γ |

4m
− ν

8m ‖u0‖L1(Rn;|x|ν/2) if |γ | = 2m − 1
(5)

valid for u0 ∈ L1(Rn;1 + |x|), ν ∈ (0,1), for all t > 0 and all p ∈ [1,∞]. The exact value of ν is given in [1,4]. The
result is then extended to the case u0 ∈ L1(Rn) by a simple density argument.

It is worth mentioning that in the same paper, we pointed out that (3) also holds for equations of type (2) associated
to higher order operators of the form

∑
|α|=|β|=m DαaαβDβ with bounded uniformly continuous (BUC), vanish mean

oscillation (VMO) or bounded mean oscillation (BMO) coefficients aαβ . For the last case, a small BMO-norm for the
coefficients is required.

In this paper, we deal with the general equation (1). In order to make our presentation clear, we divide our study
into two parts. The first one concerns the asymptotic behavior when u0 belongs to L1(Rn). More precisely, under
some assumptions on ψ (respectively ψ ′), the solution of (1) verifies for all p ∈ [1,∞] and all t > 0,

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥D
γ
x u(x, t) − MD

γ
x Kt(x)

∥∥
p

= 0,

for all γ ∈ N
n such that |γ |+ θ � 2m−1 (respectively |γ |+ θ = 2m). The techniques used are different of those used

in [4] and are in the same spirit as those appearing in, e.g., [3,2].
In the second part, we consider the case u0 ∈ L1(Rn) ∩ L∞(Rn) and we establish a faster decay of order t−1/4m

under the condition |ψ(t)| � Ct1+(4m−θ)/nξ(t), where ξ is a continuous and nondecreasing function which vanishes
when t goes to 0 (see Proposition 2.2). We also deal with the asymptotics due to the nonlinearity ψ ,

t
n

4m
(1− 1

p
)+ |γ |+θ

4m

∥∥∥∥D
γ
x u(t) − D

γ
x e−tT u0 +

(∫ ∫
D

ψ
(
u(y, s)

)
dy ds

)
a∇θ

(
D

γ
x e−tT )∥∥∥∥

p

→ 0

when t → ∞ and where D = [0,∞]×R
n. This is valid under assumptions p > 1, |γ |+ θ � 2m−1 and |ψ(t)| � Ctq

for q > 1 + (4m)/n.
Now, after describing the problem and before stating our results, let us supply a few notations which will be used

throughout this paper. A part of them was used above.
For a multi-index λ = (λ1, . . . , λn) ∈ N

n, we set |λ| = λ1 + · · · + λn. For any x = (x1, . . . , xn) ∈ R
n and any

multi-index λ ∈ N
n, we have Dλ

x = ∂λ1

∂x
λ1
1

· · · ∂λn

∂x
λn
n

and we will often write Dλ instead of Dλ
x when there is no risk of

confusion. By ∇mu we denote the vector (Dλu)|λ|=m.
We shall use the classical definition for the Sobolev space Wm,p , m ∈ Z and p ∈ [1,∞]. In particular, the notation

Hm stands for Wm,2. Norms in Lp-spaces will be denoted by ‖ · ‖p . We shall also use the weighted space L1(Rn;1 +
|x|) = {f ∈ L1(Rn),

∫
Rn |f (x)|(1 + |x|)dx < ∞} equipped with the norm ‖f ‖L1(Rn;|x|) = ∫

Rn |f (x)||x|dx.
To complete our notation, C will denote a generic constant whose value may change from line to line.
In accordance with the notation above, we give some properties related to the class of higher order elliptic operators

studied here. More details can be found in [1] and [4]. For the reader’s convenience, we recall the construction of the
class of operators and the related properties useful for our study.

Let m ∈ N
∗ and aαβ(x) be bounded measurable functions on R

n where α,β ∈ N
n are of length m. Set

Q(u, v) =
∫
Rn

∑
|α|=|β|=m

aαβ(x)Dβu(x)Dαv(x)dx

for all u,v ∈ Hm(Rn). The form Q is continuous on Hm(Rn) and then by a variation on the Lax–Milgram lemma,
there exists a unique operator L :Hm(Rn) → H−m(Rn) linear and continuous such that for all u,v ∈ Hm(Rn), we
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have 〈Lu,v〉 = Q(u, v). We write L = (−1)m
∑

|α|=|β|=m Dα(aαβDβ). Here, 〈 , 〉 stands for the usual scalar product

on L2.
We suppose that the class of operators L is elliptic in the sense of the Gårding inequality (i.e., there exists a constant

δ > 0 such that for all u ∈ Hm(Rn), Q(u,u) � δ‖∇mu‖2
2). Then, as a consequence of this inequality, the operator L

restricted to the domain {u ∈ Hm(Rn) | Lu ∈ L2(Rn)} is maximal accretive and (−L) is the generator of a contraction
semigroup e−tL on L2(Rn).

Now, let us come to our class of operators T appearing in (1). They are defined by T = L∗
0AL0 where A ∈

L∞(Rn,R) is such that A � σ > 0, L∗
0 is the adjoint of L0 and

L0 = (−1)m
∑

|α|=|β|=m

aαβDα+β

is a particular case of operators L defined above and is associated to the positive constants coefficients aαβ .
By Kt(x, y) ∈ D′(Rn × R

n), we denote the distributional kernel of the semigroup e−tT and we refer to it as to the
heat kernel of T . We have shown in ([1], Proposition 51) the following useful estimates on the heat kernel.

Proposition 1.1. There exist constants C and c > 0 such that for all t ∈ (0,∞) and all x ∈ R
n, we have∣∣Dλ

xKt(x, y)
∣∣ � Ct−

n+|λ|
4m Gm,c

( |x − y|
t1/4m

)
, (G)

for any multi-index λ ∈ N
n such that |λ| � 2m − 1, and where Gm,δ(y) = exp(−δy

4m
4m−1 ) for δ > 0.

Note that details on the restriction |λ| � 2m − 1 can be found in ([1], Proposition 51 and/or [4], Proposition 2).
Also, the reader interested in full informations on the properties of the semigroup e−tT (and then of the heat kernel
Kt(x, y)) can see [1] and [5]. In particular, let us mention the following useful result which will be used to obtain
estimates on the time derivatives of the heat kernel (see, for example, [1] Lemma 33).

Lemma 1.1. If the kernel of e−tT satisfies the estimates (G), then the same estimates hold for the kernel of t d
dt

e−tT .

Also, we have established in [1] that Dλ e−tT maps L2 into L∞ with estimates∥∥Dλ e−tT ∥∥
2,∞ � Ct−

n
8m

− |λ|
4m ,

where ‖ · ‖p,q denotes the norm from Lp into Lq . Since the same holds for the adjoint operator T ∗, the duality then
entails the ultracontractivity property Dλ e−tT :L1 → L∞ with estimates∥∥Dλ e−tT ∥∥

1,∞ � Ct−
n+|λ|

4m .

We have also shown the Hölder regularity Dλ e−tT :L1 → Ċ0,ν for |λ| = 2m − 1 and ν ∈ (0,1), where Ċ0,ν is the
homogeneous Hölder space.

In [5], a part of our study has concerned the extension to the derivatives taken simultaneously with respect to x and
y and we have obtained∥∥Dλ e−tT Dμ

∥∥
1,∞ � Ct−

n+|λ|+|μ|
4m

with the corresponding estimates on the kernel∣∣Dλ
xDμ

y Kt (x, y)
∣∣ � Ct−

n+|λ|+|μ|
4m Gm,c

( |x − y|
t1/4m

)
for all |λ|, |μ| � 2m − 1, and∥∥Dλ e−tT Dμ

∥∥
L1→Ċ0,ν � Ct−

n+|λ|+|μ|+ν
4m

when |λ| = 2m − 1, |μ| � 2m − 1 or |λ| � 2m − 1, |μ| = 2m − 1.
From now on, Kt(x) = K(t, x) stands for Kt(x,0).
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2. Main results

2.1. Cauchy problem

Regarding the existence, uniqueness and regularity results, the classical Banach fixed point argument (see for
example [3,2,6]) yields

Proposition 2.1. There exists a unique solution u ∈ C([0,∞);L1(Rn)) to (1) such that u ∈ C((0,∞);W 4m,p(Rn)) ∩
C1((0,∞);Lp(Rn)) for all p ∈ (1,∞). This solution satisfies the conservation of mass property:∫

Rn

u(x, t)dx =
∫
Rn

u0(x)dx for all t � 0,

and the L1-contraction property:∥∥u(t)
∥∥

1 � ‖u0‖1 for all t � 0.

To show the conservation integral property, we integrate (1) with respect to x and we obtain

d

dt

∫
Rn

u(x, t)dx +
∫
Rn

T u(x, t)dx = 0

since
∫

Rn a · ∇θ (ψ(u(x, t)))dx = 0. On the other hand,∫
Rn

T u(x, t)dx = L̂∗
0w(0, t) =P(0)ŵ(0, t) = 0,

where f̂ denotes the Fourier transform of f in R
n, P(ζ ) = ∏

j ζ
αi+βi

j and w = AL0u. Therefore, d
dt

∫
Rn u(x, t)dx = 0.

The proof of the L1-contraction property is a simple adaptation of the classical argument used in ([3], Proposi-
tion 1).

2.2. Asymptotics with initial data u0 ∈ L1(Rn)

Lemma 2.1. Let u0 ∈ L1(Rn). Then, for all p ∈ [1,∞] there exists C = C(p,n,m) > 0 such that the solution u of (1)
satisfies for all t > 0,∥∥u(t)

∥∥
p

� Ct
− n

4m
(1− 1

p
)‖u0‖1.

The proof of this result is a simple adaptation of the argument used in ([2], Theorems 3.2–3.3 and Corol-
lary 3.2) since ‖e−tT ‖2,∞ � Ct− n

8m and ‖e−tT ‖1,∞ � Ct− n
4m . The later implies ‖u(t)‖2 � ct− n

8m ‖u0‖1 and then
‖u(t)‖∞ � c(t/2)− n

8m ‖u(t/2)‖2 � ct− n
4m ‖u0‖1. Eventually, by interpolation and the L1-contraction property, we ob-

tain ‖u(t)‖p � ‖u(t)‖
1
p

1 ‖u(t)‖1− 1
p∞ � ct

− n
4m

(1− 1
p

)‖u0‖1− 1
p

1 ‖u0‖
1
p

1 = ct
− n

4m
(1− 1

p
)‖u0‖1 (c is a generic constant).

Theorem 2.1 (Gradient Lp-estimates). Suppose u0 ∈ L1(Rn), m � 2 and∣∣ψ(t)
∣∣ � C|t |1+ 4m−θ

n for all t ∈ {s ∈ R | |s| � 1
}
. (6)

Then, for all p ∈ [1,∞] there exists C = C(p,n,m) > 0 such that the solution u of (1) satisfies for all t > 0 and all
γ ∈ N

n such that |γ | � 1,∥∥D
γ
x u(t)

∥∥
p

� Ct
− n

4m
(1− 1

p
)− |γ |

4m K0 (7)
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provided |γ | + θ � 2m − 1 and where K0 = max(‖u0‖1, ‖u0‖(n+4m−θ)/n

1 ). If in addition, θ > 1 and∣∣ψ ′(t)
∣∣ � C|t | 4m−θ

n for all t ∈ {
s ∈ R | |s| � 1

}
, (8)

then (7) also holds when |γ | + θ = 2m with K0 = max(‖u0‖1,‖u0‖(4m−θ)/n

1 ).

Proof. The solution u of (1) satisfies the integral equation

u(t) = K(t) ∗ u0 +
t∫

0

K(t − s) ∗ a · ∇θ
(
ψ

(
u(s)

))
ds

and then

Dγ u(t) = Dγ K(t) ∗ u0 +
t∫

0

Dγ K(t − s) ∗ a · ∇θ
(
ψ

(
u(s)

))
ds, (9)

where ∗ is the convolution symbol with respect to the space variable x.
Assume that |γ | + θ � 2m − 1. It follows from (9) that

Dγ u(t) = Dγ K(t) ∗ u0 +
t∫

0

a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)
ds. (10)

Hence, using Young inequality yields

∥∥Dγ u(t)
∥∥

p
�

∥∥Dγ K(t) ∗ u0
∥∥

p
+

t∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)∥∥
p

ds

�
∥∥Dγ K(t)

∥∥
p
‖u0‖1 +

t/2∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
p

∥∥ψ
(
u(s)

)∥∥
1 ds

+
t∫

t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ψ
(
u(s)

)∥∥
p

ds.

On the one hand, (G) implies that∥∥Dλ
xK(t)

∥∥
p

� Cp,mt
− n

4m
(1− 1

p
)− |λ|

4m (11)

for all p ∈ [1,∞] and all λ ∈ N
n such that |λ| � 2m − 1. On the other hand, by using successively (11), (6) and

Lemma 2.1 we get

t/2∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
p

∥∥ψ
(
u(s)

)∥∥
1 ds � C|a|

t/2∫
0

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ

4m
∥∥u(s)

∥∥(n+4m−θ)/n

(n+4m−θ)/n
ds

� C|a|‖u0‖(n+4m−θ)/n

1

t/2∫
0

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ

4m s−(1− θ
4m

) ds

� C|a|‖u0‖(n+4m−θ)/n

1

(
t

2

)− n
4m

(1− 1
p

)− |γ |+θ
4m

t/2∫
0

s−(1− θ
4m

) ds

� C|a|
(

t
)− n

4m
(1− 1

p
)− |γ |

4m ‖u0‖(n+4m−θ)/n

1
2
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and
t∫

t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ψ
(
u(s)

)∥∥
p

ds � C|a|
t∫

t/2

(t − s)−
|γ |+θ

4m

∥∥u(s)
∥∥(n+4m−θ)/n

p(n+4m−θ)/n
ds

� C|a|‖u0‖(n+4m−θ)/n

1

t∫
t/2

(t − s)−
|γ |+θ

4m s
− 1

4mp
(p(n+4m−θ)−n) ds

� C|a|‖u0‖(n+4m−θ)/n

1

(
t

2

)− 1
4mp

(p(n+4m−θ)−n)(
t

2

)1− |γ |+θ
4m

= C|a|
(

t

2

)− n
4m

(1− 1
p

)− |γ |
4m ‖u0‖(n+4m−θ)/n

1 .

Eventually, combining the last estimates to (11) yields (7) in the case |γ | + θ � 2m − 1.
To deal with the case |γ | + θ = 2m, we rewrite (10) as

Dγ u(t) = Dγ K(t) ∗ u0 +
t∫

0

a · ∇θ−1(Dγ K(t − s)
) ∗ ∇ψ

(
u(s)

)
ds

= Dγ K(t) ∗ u0 +
t∫

0

a · ∇θ−1(Dγ K(t − s)
) ∗ ψ ′(u(s)

)∇u(s)ds. (12)

The same decomposition as in the first case yields

∥∥Dγ u(t)
∥∥

p
�

∥∥Dγ K(t)
∥∥

p
‖u0‖1 +

t/2∫
0

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

p

∥∥ψ ′(u(s)
)∇u(s)

∥∥
1 ds

+
t∫

t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ψ ′(u(s)
)∇u(s)

∥∥
p

ds.

Using (8), (7) (for the case |γ | = 1), (11) (since |γ | + θ − 1 = 2m − 1) and Lemma 2.1 implies

t/2∫
0

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

p

∥∥ψ ′(u(s)
)∇u(s)

∥∥
1 ds

�
t/2∫
0

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

p

∥∥ψ ′(u(s)
)∥∥

1

∥∥∇u(s)
∥∥∞ ds

�
t/2∫
0

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

p

∥∥u(s)
∥∥(4m−θ)/n

(4m−θ)/n

∥∥∇u(s)
∥∥∞ ds

� C|a|‖u0‖(4m−θ)/n

1

t/2∫
0

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ−1

4m s−(1− n+θ
4m

)s− n+1
4m ds

� C|a|‖u0‖(4m−θ)/n

1

(
t

2

)− n
4m

(1− 1
p

)− |γ |+θ−1
4m

t/2∫
0

s−(1− θ−1
4m

) ds

� C|a|
(

t
)− n

4m
(1− 1

p
)− |γ |

4m ‖u0‖(4m−θ)/n

1
2
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and

t∫
t/2

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

1

∥∥ψ ′(u(s)
)∇u(s)

∥∥
p

ds

�
t∫

t/2

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

1

∥∥ψ ′(u(s)
)∥∥

p

∥∥∇u(s)
∥∥∞ ds

�
t∫

t/2

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

1

∥∥u(s)
∥∥(4m−θ)/n

p(4m−θ)/n

∥∥∇u(s)
∥∥∞ ds

� C|a|‖u0‖(4m−θ)/n

1

t∫
t/2

(t − s)−
|γ |+θ−1

4m s
− 1

4mp
(p(4m−θ)−n)

s− n+1
4m ds

� C|a|‖u0‖(4m−θ)/n

1

(
t

2

)− 1
4mp

(p(4m−θ)−n)− n+1
4m

(
t

2

)1− |γ |+θ−1
4m

= C|a|
(

t

2

)− n
4m

(1− 1
p

)− |γ |
4m ‖u0‖(4m−θ)/n

1 .

Therefore, (7) is verified in the case |γ | + θ = 2m, θ > 1 and this ends the proof of Theorem 2.1. �
Remarks 2.1. 1. It is worth mentioning that (7) is verified for m � 1 in the case |γ |+θ � 2m−1 (m = 1 is a particular
case of Lemma 2.1 since θ � 1, |γ | + θ � 1 and then |γ | = 0). The choice m � 2 is adopted in order to guarantee the
estimates on the gradient ‖∇u(t)‖p used in the proof of the second case |γ | + θ = 2m.

2. The condition (6) (resp. (8)) implies that for all δ > 0 there exists Cδ > 0 such that∣∣ψ(t)
∣∣ � Cδ|t |(n+4m−θ)/n

(resp. |ψ ′(t)| � Cδ|t |(4m−θ)/n) for all t ∈ {s ∈ R | |s| � δ}.
3. It seems possible that under additional assumptions (like (6) and (8)) on the successive derivatives of ψ , we can

establish (7) for |γ | � 2m − 1. This remark also applies to (14) in the forthcoming theorem.

The property (7) suggests to study the problem of the large time behavior of t
n

4m
(1− 1

p
)+ |γ |

4m D
γ
x u(t, x) in Lp-norm.

Indeed, in the following result we show that, for t large, the higher derivatives D
γ
x u(t) of the solution behave like the

corresponding derivatives D
γ
x K(t) of the heat kernel. More precisely,

Theorem 2.2. Assume that m � 2 and

lim|t |→0

ψ(t)

|t |1+ 4m−θ
n

= 0. (13)

Then, for all u0 ∈ L1(Rn) such that
∫

Rn u0(x)dx = M , the solution u of (1) satisfies for all p ∈ [1,∞],

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥D
γ
x u(x, t) − MD

γ
x Kt(x)

∥∥
p

= 0 (14)

for all multi-index γ ∈ N
n such that |γ | + θ � 2m − 1. If in addition

lim|t |→0

ψ ′(t)
|t | 4m−θ

n

= 0, (15)

then the property (14) remains valid when |γ | + θ = 2m and θ > 1.
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Proof. Suppose that |γ | + θ � 2m − 1 and write

Dγ u(t) − MDγ K(t + 1) = (
Dγ u(t + 1) − MDγ K(t)

) − M
(
Dγ K(t + 1) − Dγ K(t)

)
.

It follows from (10) that

Dγ u(t + 1) − MDγ K(t + 1) =A1(t) − MA2(t) +A3(t),

where

A1(t) := Dγ K(t) ∗ u(1) − MDγ K(t),

A2(t) := Dγ K(t + 1) − Dγ K(t),

A3(t) :=
t∫

0

a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s + 1)

)
ds.

Since
∫
Rn u(x,1)dx = ∫

Rn u0(x)dx = M , it then follows by (4) that

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥A1(t)
∥∥

p
= 0. (16)

On the other hand, Lemma 1.1 yields ‖A2(t)‖p � t
− n

4m
(1− 1

p
)− |γ |

4m
−1 and then

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥A2(t)
∥∥

p
= 0. (17)

Note that (16) and (17) are verified for all γ ∈ N
n such that |γ | � 2m − 1 and all p ∈ [1,∞].

Taking into account these estimates, it remains to show that

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥A3(t)
∥∥

p
= 0 (18)

for all p ∈ [1,∞] and all γ ∈ N
n such that |γ | + θ � 2m − 1.

We have ‖A3(t)‖p � B1 +B2 where

B1 :=
t/2∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
p

∥∥ψ
(
u(s + 1)

)∥∥
1 ds

B2 :=
t∫

t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ψ
(
u(s + 1)

)∥∥
p

ds.

If we set ξ0(s) := ψ(s)/|s|(n+4m−θ)/n, then∥∥ψ
(
u(s)

)∥∥
p

�
∥∥ξ0

(
u(s)

)∥∥∞
∥∥u(s)

∥∥(n+4m−θ)/n

p(n+4m−θ)/n
. (19)

Therefore, using successively (11), (19) and Lemma 2.1 involves estimates on B1 and B2 as follows

B1 � C|a|
t/2∫
0

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ

4m
∥∥ξ0

(
u(s + 1)

)∥∥∞
∥∥u(s + 1)

∥∥(n+4m−θ)/n

(n+4m−θ)/n
ds

� C|a|
t/2∫
0

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ

4m
∥∥ξ0

(
u(s + 1)

)∥∥∞(s + 1)−(1− θ
4m

) ds

� C|a|
(

t

2

)− n
4m

(1− 1
p

)− |γ |+θ
4m

t/2∫
0

∥∥ξ0
(
u(s + 1)

)∥∥∞(s + 1)−(1− θ
4m

) ds

:= C|a|
(

t
)− n

4m
(1− 1

p
)− |γ |+θ

4m

X (t) (i)

2
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and

B2 � C|a|
t∫

t/2

(t − s)−
|γ |+θ

4m

∥∥ξ0
(
u(s + 1)

)∥∥∞
∥∥u(s + 1)

∥∥(n+4m−θ)/n

p(n+4m−θ)/n
ds

� C|a|
t∫

t/2

(t − s)−
|γ |+θ

4m

∥∥ξ0
(
u(s + 1)

)∥∥∞(s + 1)
− 1

4mp
(p(n+4m−θ)−n) ds

� C|a| sup
s�t/2+1

∥∥ξ0
(
u(s)

)∥∥∞

(
t

2

)− 1
4mp

(p(n+4m−θ)−n)(
t

2

)1− |γ |+θ
4m

� C|a| sup
s�t/2+1

∥∥ξ0
(
u(s)

)∥∥∞t
− n

4m
(1− 1

p
)− |γ |

4m . (ii)

It follows from (ii) that limt→∞ t
n

4m
(1− 1

p
)+ |γ |

4m B2 = 0 since limt→∞ sups�t/2+1 ‖ξ0(u(s))‖∞ = 0 and therefore, to

obtain (18), it is enough to prove that limt→∞ t− θ
4mX (t) = 0 since t

n
4m

(1− 1
p

)+ |γ |
4m B1 � C|a|t− θ

4mX (t) thanks to (i).
On the one hand, since

lim
t→∞

∥∥ξ0
(
u(t)

)∥∥∞ = 0

then for all ε > 0 there exists B > 0 such that ‖ξ0(u(s + 1))‖∞ � ε for all s � B and it then follows that

t−
θ

4m

t/2∫
B

∥∥ξ0
(
u(s + 1)

)∥∥∞s−(1− θ
4m

) ds � 4mε

θ
t−

θ
4m

((
t

2

) θ
4m − B

θ
4m

)
� 4mθ−12− θ

4m ε.

On the other hand

lim
t→∞ t−

θ
4m

B∫
0

∥∥ξ0
(
u(s + 1)

)∥∥∞s−(1− θ
4m

) ds = 0.

Therefore limt→∞ t− θ
4mX (t) = 0 and (14) follows.

For the case |γ | + θ = 2m, we derive from (12)

Dγ u(t + 1) − MDγ K(t + 1) =F1(t) − MF2(t) +F3(t),

where

F1(t) := A1(t),

F2(t) := A2(t),

F3(t) :=
t∫

0

a · ∇θ−1(Dγ K(t − s)
) ∗ ψ ′(u(s + 1)

)∇u(s + 1)ds.

Then, as for the first case, we show that

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |
4m

∥∥F3(t)
∥∥

p
= 0 (20)

for all p ∈ [1,∞] and all γ ∈ N
n such that |γ | + θ = 2m.

The same decomposition used in the proof of Theorem 2.1 implies that ‖F3(t)‖p �M1 +M2 where

M1 :=
t/2∫ ∥∥a · ∇θ−1(Dγ K(t − s)

)∥∥
p

∥∥ψ ′(u(s + 1)
)∥∥∥

1

∥∥∇u(s + 1)
∥∥∞ ds,
0
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M2 :=
t∫

t/2

∥∥a · ∇θ−1(Dγ K(t − s)
)∥∥

1

∥∥ψ ′(u(s + 1)
)∥∥

p

∥∥∇u(s + 1)
∥∥∞ ds,

and the same computations yield

M1 � C|a|
(

t

2

)− n
4m

(1− 1
p

)− |γ |+θ−1
4m

Z(t)

and

M2 � C|a|
t∫

t/2

(t − s)−
|γ |+θ−1

4m

∥∥ξ1
(
u(s + 1)

)∥∥∞(s + 1)
− 1

4mp
(p(4m−θ)−n)

(s + 1)−
n+1
4m ds

� C|a| sup
s�t/2+1

∥∥ξ1
(
u(s)

)∥∥∞t
− n

4m
(1− 1

p
)− |γ |

4m ,

where

Z(t) :=
t/2∫
0

∥∥ξ1
(
u(s + 1)

)∥∥∞(s + 1)−(1− θ−1
4m

) ds,

ξ1(s) := ψ ′(s)
|s|(4m−θ)/n

.

Eventually, as for B1 and B2, limt→∞ t
n

4m
(1− 1

p
)+ |γ |

4mMi = 0 (i = 1,2) since limt→∞ t− θ−1
4m Z(t) = 0 and

limt→∞ sups�t/2+1 ‖ξ1(u(s))‖∞ = 0. This implies (20) and ends the proof of Theorem 2.2. �
Remark 2.1. See Remarks 2.1.1 and 2.1.3 respectively for the case m = 1 and for the possible extension of (14) to
derivatives Dγ u of order |γ | � 2m − 1.

2.3. Faster decay when initial data u0 ∈ L1(Rn) ∩ L∞(Rn)

In this section, we intend to obtain faster decay rate for higher derivatives when u0 ∈ L1(Rn) ∩ L∞(Rn). For this
purpose, let us first give a lemma which will be used to state our results.

Lemma 2.2. Let u0 ∈ L1(Rn) ∩ L∞(Rn). Then, the solution u of (1) satisfies∥∥u(t)
∥∥

p
� C(1 + t)

− n
4m

(1− 1
p

)

for all t > 0 and all p ∈ [1,∞], and where C > 0 is a constant depending on ‖u0‖1 and ‖u0‖p .

As for Lemma 2.1, the proof is a straightforward adaptation of the argument used in ([2], Corollary 3.2).

2.3.1. Asymptotics like for the linear equation
Theorem 2.3. Let ψ satisfying∣∣ψ(t)

∣∣ � C|t |q for all t ∈ {
s ∈ R | |s| � 1

}
, (21)

with q > 1 + 4m−θ
n

and u0 ∈ L1(Rn) ∩ L∞(Rn) such that
∫

Rn u0(x)dx = M .
Under these assumptions, there exists ν ∈ (0,1) such that the solution u of (1) satisfies for all t > 0,∥∥D

γ
x u(x, t) − MD

γ
x Kt(x)

∥∥ � Ct
− n

4m
(1− 1

p
)− |γ |

4mS(t), (22)

p
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where

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
t−

1
4m if q > 1 + 4m−θ+1

n
,

t− 1
4m

(n(q−1)−(4m−θ)) if q ∈ (1 + 4m−θ
n

,1 + 4m−θ+1
n

),

t− 1
4m ln(t + 2) if q = 1 + 4m−θ+1

n

provided |γ | + θ < 2m − 1,⎧⎪⎪⎨⎪⎪⎩
t− ν

8m if q > 1 + 4m−θ+(ν/2)
n

,

t− 1
4m

(n(q−1)−(4m−θ)) if q ∈ (1 + 4m−θ
n

,1 + 4m−θ+(ν/2)
n

),

t− ν
8m ln(t + 2) if q = 1 + 4m−θ+(ν/2)

n

provided |γ | + θ = 2m − 1.

Proof. Since L1(Rn;1+|x|) is dense into L1(Rn), we prove (22) for u0 ∈ L1(Rn;1+|x|)∩L∞(Rn) and the density
argument used in ([4], Section 4, step 3) extends the result to the case u0 ∈ L1(Rn) ∩ L∞(Rn).

Assume that u0 ∈ L1(Rn;1 + |x|) ∩ L∞(Rn). The solution of (1) verifies

Dγ u(t) = Dγ K(t) ∗ u0 +
t∫

0

a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)
ds.

Since u0 ∈ L1(Rn;1 + |x|) then there exists ν ∈ (0,1) such that (5) holds for all t > 0 and all p ∈ [1,∞]. Therefore,
it suffices to show that∥∥∥∥∥

t∫
0

a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)
ds

∥∥∥∥∥
p

� Ct
− n

4m
(1− 1

p
)− |γ |

4mS(t).

Notice first that according to Remarks 2.1.2, the condition (21) implies that for all δ > 0 there exists Cδ > 0 such that
|ψ(t)| � Cδ|t |q for all t ∈ {s ∈ R | |s| � δ}. Hence, as in the previous section, using successively Young’s inequality,
(21), (11) and Lemma 2.2 we obtain

t∫
t/2

∥∥a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)∥∥
p

ds �
t∫

t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ψ
(
u(s)

)∥∥
p

ds

� C|a|
t∫

t/2

(t − s)−
|γ |+θ

4m

∥∥u(s)
∥∥q

pq
ds

� C|a|
t∫

t/2

(t − s)−
|γ |+θ

4m (s + 1)
− n

4mp
(pq−1) ds

� C|a|t− n
4mp

(pq−1)
t1− |γ |+θ

4m

= C|a|t− n
4m

(1− 1
p

)− |γ |
4m t−

1
4m

(n(q−1)−(4m−θ))

� Ct
− n

4m
(1− 1

p
)− |γ |

4m S(t)

since t− 1
4m

(n(q−1)−(4m−θ)) � CS(t) for all q > 1 + 4m−θ
n

. On the other hand,

t/2∫ ∥∥a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)∥∥
p

ds �
t/2∫ ∥∥a · ∇θ

(
Dγ K(t − s)

)∥∥
p

∥∥ψ
(
u(s)

)∥∥
1 ds
0 0
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� Ct
− n

4m
(1− 1

p
)− |γ |+θ

4m

t/2∫
0

(s + 1)−
n

4m
(q−1) ds

� Ct
− n

4m
(1− 1

p
)− |γ |

4m S(t)

since t− θ
4m

∫ t/2
0 (s + 1)− n

4m
(q−1) ds � CS(t) for all q > 1 + 4m−θ

n
.

Finally, (22) is proved for u0 ∈ L1(Rn;1 + |x|) ∩ L∞(Rn) and hence for u0 ∈ L1(Rn) ∩ L∞(Rn) by density. �
Remark 2.2. Note that by adding a condition on ψ ′, the techniques used in Section 2.2 allow to extend the result
above to the case |γ | + θ = 2m.

Theorem 2.3 can be generalized as follows

Proposition 2.2 (Generalization). Let u0 be as in Theorem 2.3 and ψ be such that∣∣ψ(t)
∣∣ � C|t |1+ 4m−θ

n ξ(t),

where ξ is a continuous and nondecreasing function such that limt→0 ξ(t) = 0.
Then (22) holds with

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(
t−

1
4m , t−

θ
4m

t/2∫
0

ξ
(
(s + 1)−

n
4m

)
(s + 1)−(1− θ

4m
) ds, ξ

((
t

2
+ 1

)− n
4m

))
if |γ | + θ < 2m − 1,

max

(
t−

ν
8m , t−

θ
4m

t/2∫
0

ξ
(
(s + 1)−

n
4m

)
(s + 1)−(1− θ

4m
) ds, ξ

((
t

2
+ 1

)− n
4m

))
if |γ | + θ = 2m − 1.

Proof. Indeed, if we go over the proof of Theorem 2.3, then thanks to Lemma 2.2 and the properties of ξ we get

t∫
t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)
∗ ψ

(
u(s)

)∥∥
p

ds � C

t∫
t/2

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
1

∥∥ξ
(
u(s)

)∥∥∞
∥∥u(s)

∥∥(n+4m−θ)/n

p(n+4m−θ)/n
ds

� C

t∫
t/2

(t − s)−
|γ |+θ

4m ξ
(
(s + 1)−

n
4m

)
(s + 1)

− 1
4mp

(p(n+4m−θ)−n) ds

� C

(
t

2

)− n
4m

(1− 1
p
)− |γ |

4m

ξ

((
t

2
+ 1

)− n
4m

)
and

t/2∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

) ∗ ψ
(
u(s)

)∥∥
p

ds � C

t/2∫
0

∥∥a · ∇θ
(
Dγ K(t − s)

)∥∥
p

∥∥ξ
(
u(s)

)∥∥∞
∥∥u(s)

∥∥(n+4m−θ)/n

(n+4m−θ)/n
ds

� C

(
t

2

)− n
4m

(1− 1
p

)− |γ |
4m

− θ
4m

t/2∫
0

ξ
(
(s + 1)−

n
4m

)
(s + 1)−(1− θ

4m
) ds.

Proposition 2.2 is completely proved. �
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2.3.2. Asymptotics related to nonlinear effects
Theorem 2.4. Suppose that u0 ∈ L1(Rn)∩L∞(Rn) and the function ψ satisfies (21) for q > 1+ 4m

n
. Then the solution

u of (1) verifies for all p ∈ (1,∞] and all multi-index γ ∈ N
n such that |γ | + θ � 2m − 1,

lim
t→∞ t

n
4m

(1− 1
p

)+ |γ |+θ
4m

∥∥D
γ
x u(t) − D

γ
x e−tT u0 +Ma∇θ

(
D

γ
x e−tT )∥∥

p
= 0,

where M= ∫∫
D ψ(u(y, s))dy ds and D = [0,∞] × R

n.

Proof. Since Dγ u(t) = Dγ e−tT u0 − ∫ t

0 a∇θ (Dγ e−(t−s)T )ψ(u(s))ds, it suffices to estimate ‖W(t)‖p where

W(t) =Ma∇θ
(
Dγ e−tT ) −

t∫
0

a∇θ
(
Dγ e−(t−s)T )

ψ
(
u(s)

)
ds := I1(0,∞) − I2(0, t),

with

I1(c, d) =
( d∫

c

∫
Rn

ψ
(
u(y, s)

)
dy ds

)
a∇θ

(
Dγ e−tT )

,

I2(c, d) =
d∫

c

a∇θ
(
Dγ e−(t−s)T )

ψ
(
u(s)

)
ds.

Notice first that according to (G),∥∥Dλ e−tT ∥∥
1,p

� Cp,mt
− n

4m
(1− 1

p
)− |λ|

4m for |λ| � 2m − 1, (23)

and in view of the hypothesis on ψ , Remarks 2.1.2, Lemma 2.2 and the fact that q > 1 + 4m/n, we obtain∫ ∫
D

∣∣ψ(
u(y, s)

)∣∣dy ds � C

∫ ∫
D

∣∣u(y, s)
∣∣q dy ds � C

∞∫
0

(1 + s)−
n

4m
(q−1) ds < ∞. (24)

1. Lp-estimates of I1(t/2,∞).
From (23) we easily derive the estimates

∥∥I1(t/2,∞)
∥∥

p
� Ct

− n
4m

(1− 1
p

)− |γ |+θ
4m

∞∫
t/2

∫
Rn

∣∣ψ(
u(y, s)

)∣∣dy ds

and then limt→+∞ t
n

4m
(1− 1

p
)+ |γ |+θ

4m ‖I1(t/2,∞)‖p = 0 since limt→+∞
∫ ∞
t/2

∫
Rn |ψ(u(y, s))|dy ds = 0 thanks to (24).

2. Lp-estimates of I2(t/2, t).
The same computations used in the proof of Theorem 2.3 and (23) imply that∥∥I2(t/2, t)

∥∥
p

� Ct
− n

4m
(1− 1

p
)− |γ |+θ

4m t−
1

4m
(q−(1+4m/n)).

Hence, limt→+∞ t
n

4m
(1− 1

p
)+ |γ |+θ

4m ‖I2(t/2, t)‖p = 0 since q > 1 + 4m/n.

3. Lp-estimates of (I1(0, t/2) − I2(0, t/2)).
Writing

I2(0, t/2) =
t/2∫

a∇θ
(
Dγ e−(t−s)T )

ψ
(
u(s)

)
ds =

t/2∫ ∫
n

a∇θ
(
Dγ e−(t−s)T )

(· − y)ψ
(
u(y, s)

)
dy ds.
0 0 R



M. Qafsaoui / Ann. I. H. Poincaré – AN 23 (2006) 911–927 925
Then

∥∥I1(0, t/2) − I2(0, t/2)
∥∥

p
=

∥∥∥∥∥
t/2∫
0

∫
Rn

a∇θ
((

Dγ e−(t−s)T )
(· − y) − (

Dγ e−tT )
(·))ψ(

u(y, s)
)

dy ds

∥∥∥∥∥
p

.

Let us first estimate the term ‖I1(0, t/2) − I2(0, t/2)‖p for p = 1. We have

∥∥I1(0, t/2) − I2(0, t/2)
∥∥

1 � C

∥∥∥∥∥
t/2∫
0

∫
Rn

∇θ
((

Dγ e−(t−s)T ))
(· − y)ψ

(
u(y, s)

)
dy ds

∥∥∥∥∥
1

+ C
∥∥∇θ

(
Dγ e−tT )

(·)∥∥1

∞∫
0

∫
Rn

∣∣ψ(
u(y, s)

)∣∣dy ds

� Ct−
|γ |+θ

4m

by using (23) and the same computations as in the proof of Theorem 2.3.
Now, suppose that p > 1 and write

∥∥I1(0, t/2) − I2(0, t/2)
∥∥

p
=

∥∥∥∥∥
t/2∫
0

∫
Rn

a∇θ
((

Dγ e−(t−s)T )
(· − y) − (

Dγ e−tT )
(·))ψ(

u(y, s)
)

dy ds

∥∥∥∥∥
p

�
∥∥∥∥∫ ∫

D1

· · ·
∥∥∥∥

p

+
∥∥∥∥∫ ∫

D2

· · ·
∥∥∥∥

p

:= X1(t) +X2(t),

where, for a fixed κ ∈ (0,1/2),

D1 = [0, κt] × {
y ∈ R

n | |y| � κt1/4m
}
,

D2 = ([0, t/2] × R
n
)\D1.

We easily obtain estimates on X2(t) as follows.

3.1. Estimation of X2(t)

We have

X2(t) � C

∫ ∫
D2

(∥∥∇θ
(
Dγ e−(t−s)T )

(· − y)
∥∥

p
+ ∥∥∇θ

(
Dγ e−tT )

(·)∥∥
p

)∣∣ψ(
u(y, s)

)∣∣dy ds

� C

(∫ ∫
D2

(t − s)
− n

4m
(1− 1

p
)− |γ |+θ

4m
∣∣ψ(

u(y, s)
)∣∣dy ds + t

− n
4m

(1− 1
p

)− |γ |+θ
4m

∫ ∫
D2

∣∣ψ(
u(y, s)

)∣∣dy ds

)

� Ct
− n

4m
(1− 1

p
)− |γ |+θ

4m

∫ ∫
D2

∣∣ψ(
u(y, s)

)∣∣dy ds.

Therefore, limt→∞ t
n

4m
(1− 1

p
)+ |γ |+θ

4m X2(t) = 0 since limt→∞
∫∫

D2
|ψ(u(y, s))|dy ds = 0.

3.2. Estimation of X1(t)

We distinguish two cases. We estimate X1(t) for the case p ∈ [2,∞] and we derive the estimates for p ∈ (1,2) by
interpolation.

The argument relies on the following result which will be obtained by using the Hausdorff–Young inequality.



926 M. Qafsaoui / Ann. I. H. Poincaré – AN 23 (2006) 911–927
Proposition 3.3. For a fixed κ ∈ (0,1/2), the inequality

sup
|y|�κt1/4m, 0<s�κt

∥∥∇θ
((

Dγ e−(t−s)T )
(· − y) − (

Dγ e−tT )
(·))∥∥

p
� Cκt

− n
4m

(1− 1
p

)− |γ |+θ
4m

holds for all p ∈ [2,∞] and all t > 0.

Proof. Let

A(κ, t) := sup
|y|�κt1/4m, 0<s�κt

∥∥∇θ
((

Dγ e−(t−s)T )
(· − y) − (

Dγ e−tT )
(·))∥∥

p
.

We have

A(κ, t) � sup
0<s�κt

∥∥∇θ
(
Dγ e−(t−s)T )

(·) − ∇θ
(
Dγ e−tT )

(·)∥∥
p

+ sup
|y|�κt1/4m

∥∥∇θ
(
Dγ e−tT )

(· − y) − ∇θ
(
Dγ e−tT )

(·)∥∥
p

:= R1(κ, t) +R2(κ, t).

To estimate Ri (κ, t), i = 1,2, we will use the Hausdorff–Young inequality ‖f̂ ‖p � ‖f ‖q verified for all p,q such
that 1 � q � 2 � p � ∞ and 1/p + 1/q = 1.

By applying the Fourier transform we obtain

R1(κ, t) = sup
0<s�κt

∥∥∥∥(2π)−n

∫
Rn

(iζ )|γ |+θ
(
e−(t−s)F(ζ ) − e−tF(ζ )

)
eixζ dζ

∥∥∥∥
p

since ∇θ (Dγ e−tT )(x) = (2π)−n
∫

Rn(iζ )|γ |+θ e−tF(ζ )+ixζ dζ , and where T̂ v(ζ ) = F(ζ )v̂(ζ ). Note that, in view of
the properties of the function A, there exist constants c1, c2 > 0 such that

c1|ζ |4m �F(ζ ) � c2|ζ |4m. (25)

Now, using the Hausdorff–Young inequality implies that R1(κ, t) � C sup0<s�κt ‖Hs‖p where Hs(ζ ) = ζ |γ |+θ ×
(e−(t−s)F(ζ ) − e−tF(ζ )) and then(

R1(κ, t)
)q � C sup

0<s�κt

∫
Rn

|ζ |q(|γ |+θ)
∣∣sF(ζ )

∣∣q e−q(t−s)F(ζ ) dζ

thanks to the inequality |e−a − e−b| � |a − b| e−a verified for all 0 < a � b. On the other hand, in view of (25)(
R1(κ, t)

)q � C(κt)q
∫
Rn

|ζ |q(|γ |+θ)|ζ |4mq e−c1q(1−κ)t |ζ |4m

dζ � Cκqt−
n+q(|γ |+θ)

4m ,

i.e., R1(κ, t) � Cκt
− n

4m
(1− 1

p
)− |γ |+θ

4m .
In the same manner, we estimate R2(κ, t) by using the Hausdorff–Young inequality and (25) as follows(

R2(κ, t)
)q � C sup

|y|�κt1/4m

∫
Rn

|ζ |q(|γ |+θ)
∣∣eiyζ − 1

∣∣q e−qtF(ζ ) dζ

� C sup
|y|�κt1/4m

∫
Rn

|ζ |q(|γ |+θ)|yζ |q e−c1qt |ζ |4m

dζ (since
∣∣eiyζ − 1

∣∣ � |yζ |)

� C

∫
Rn

|ζ |q(|γ |+θ+1)
∣∣κt1/4m

∣∣q e−c1qt |ζ |4m

dζ

= Cκqtq/4m

∫
Rn

|ζ |q(|γ |+θ+1) e−c1qt |ζ |4m

dζ

� Cκqt−
n+q(|γ |+θ)

4m ,
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that is R2(κ, t) � Cκt
− n

4m
(1− 1

p
)− |γ |+θ

4m . Therefore A(κ, t) � Cκt
− n

4m
(1− 1

p
)− |γ |+θ

4m and Proposition 3.3 is proved. �
Now, let us come back to X1(t). We get from Proposition 3.3,

X1(t) � CA(κ, t)

∫ ∫
D1

∣∣ψ(
u(y, s)

)∣∣dy ds � Cκt
− n

4m
(1− 1

p
)− |γ |+θ

4m

∫ ∫
D1

∣∣ψ(
u(y, s)

)∣∣dy ds

and then limt→∞ t
n

4m
(1− 1

p
)+ |γ |+θ

4m X1(t) = 0 for all p ∈ [2,∞].
Eventually, we derive the estimates for the case p ∈ (1,2) by the classical interpolation inequality∥∥I1(0, t/2) − I2(0, t/2)

∥∥
p

�
∥∥I1(0, t/2) − I2(0, t/2)

∥∥1/p

1

∥∥I1(0, t/2) − I2(0, t/2)
∥∥1−1/p

∞ .

Theorem 2.4 is now completely proved. �
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