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Abstract

We study the large time asymptotic behavior, in L? (1 < p < 00), of higher derivatives DY u(r) of solutions of the nonlinear
equation

ur+Tu=a-V9@W@) onR" x (0,00), 0
u(0) = ug € LY RM),

where the integers n and 6 are bigger than or equal to 1, a is a constant vector in R? with p = (ejl'le) = % The function
is a nonlinearity such that ¢ € CY(R) and ¥ (0) =0, and T is a higher order elliptic operator with nonsmooth bounded measurable
coefficients on R”. We also establish faster decay when u € LI®R"Y) N L®®R").
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Résumé

Nous étudions le comportement asymptotique, dans LP (1 < p < 00), des dérivées d’ordre supérieur DY u(t) des solutions de
9;’1 Tl) La fonction ¥ est nonlinéaire
vérifiant ¢ € C?(R) et ¥ (0) =0, et T est un opérateur elliptique d’ordre supérieur a coefficients peu réguliers dans R”. Nous
étudions également le cas particulier ol ug € LY(R") N L®R").
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I’équation nonlinéaire (1), ot n € N*, € N* et a est un vecteur constant de R? avec p = (
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1. Introduction

Our aim is to study the asymptotic behavior of higher derivatives of solutions of the Cauchy problem for the
generalized convection—diffusion equation (1) using sufficiently smooth nonlinearities 1. A typical example of (1) is
given by

ur+ (A"AA Y u=a -V’ (@) onR" x (0, 00),
u(0) =ug € L' (R"),

where A is a bounded measurable positive function independent of time .

Let us start by mentioning some works which inspired ours. Escobedo and Zuazua studied in [3] the large time
behavior of solutions of the Cauchy problem for the convection—diffusion equation (1) with 7 = — A, ¥ (u) = |u|? 1y
and 6 = 1. They proved, for ¢ > 1, the existence and the uniqueness of a classical solution u € C([0, 00); L'(R™))
such that u € C((0, co); W>P(R™)) NC((0, 00); LP (R™)) for every p € (1, 00). The argument used relies essentially
on the classical Banach fixed point theorem. They also showed that, for ¢ large, this solution behaves like the heat
kernel K; which can be regarded as the fundamental solution of the heat equation with the Dirac mass as initial data.
More precisely, under the assumption g > 1 + 1/n, if M denotes the mass of ug (M = fRn uy(x) dx) then the solution
u satisfies for all p € [1, o],

lim 2070 u() - MK, | =o0.
t—+00 p

They also obtained a faster decay in the particular case when the initial data u( belongs to LY(R"; 1+ |x]) N L9 (R"™).
The techniques used rely on standard heat kernel estimates on the integral representation of the solution. Subsequently,
they finished their work by an extension to the more general equation u; — Au = a - V(i (1)) where ¥ is an arbitrary
sufficiently smooth nonlinearity.

In [2], Biller, Karch and Woyczynski studied the large time behavior of solutions of the Lévy conservation laws
u; + Lu + V- Y (u) = 0 with initial data uo, where v is a nonlinearity and (—£) is the generator of a positivity-
preserving symmetric Lévy semigroup on L!(R"). In particular, they showed that in the case where the symbol A of
the operator £ satisfies A(¢) ~ |¢|* for || <1 (0 <1 < 2) and A(¢) ~ |¢|? for |¢| > 1, and under the assumptions
¥ € C? with ¥’(0) =0 and ug € L' (R") N L>(R"), the following holds

nep_1
hm tl(l p) —tL

u(t) —e
t——+00 ()

M()Hp =0 forevery p €[l, 00]
as for the corresponding linear equation, and if F := fooo fR,, Y(u(y,s))dyds,

lim ¢i0-p+ uce) — e Lug+ F - (Ve_’ﬁ)

,dim ||p =0 forevery p € (1, 00]

resulting from the presence of the nonlinear term.
In [4], we considered the equation

us + Lyu=avVu onR" x (0, 00), 5
u(0) =up € L'(R"), 2

where £; = LjbLo (see below for the definition of Lo) and b is a positive bounded function such that b(x, ) =
b(x + at). We showed that the derivatives D” u of order less than or equal to 2m — 1 of the solution to (2) have an
asymptotic behavior similar to the one of the corresponding derivatives of the heat kernel with speed «,

1 lyl
lim (300
—>00

Dzu(x,t)—MDth(x+ar)||p=o, 3)
for all p € [1, oo]. The method used to derive this result was the simple change of variables v(x, t) := u(x — at,t)

which reduces the study to the heat equation

v+ Lov=0 onR"” x (0, 00),
v(O) = V) = Ug.
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We have shown (Proposition 5, [4]) that the solution v satisfies

n 1 Iyl
lim 1% 1=+ | DYy — MDY K|, =0, @)
t—00 P
for all p € [1, 00] and all y € N" such that |y| <2m — 1.

Taking into account this linear transformation, the principal key to obtain (4) (and then (3)) was the following
estimates ([4], Theorem 7),

Lyl .
Ct m p’ 4m  4m ”u()”Ll(]R”;‘xD if |y| <2m — 1’

|DYK (@) *uo—MDIK®)|, < ©)

_L(l_l)_M_L .
Ct p7 Am 8m ”MO”LI(]R";\XW/Z) 1f|)/|:2m—1

valid for ug € LY(R"; 1 + |x]), v € (0, 1), for all > 0 and all p € [1, oo]. The exact value of v is given in [1,4]. The
result is then extended to the case ug € L' (R") by a simple density argument.

It is worth mentioning that in the same paper, we pointed out that (3) also holds for equations of type (2) associated
to higher order operators of the form 3, _ 5/, D*dap D# with bounded uniformly continuous (BUC), vanish mean
oscillation (VMO) or bounded mean oscillation (BMO) coefficients aqg. For the last case, a small BMO-norm for the
coefficients is required.

In this paper, we deal with the general equation (1). In order to make our presentation clear, we divide our study
into two parts. The first one concerns the asymptotic behavior when uo belongs to L'(R"). More precisely, under
some assumptions on v (respectively ¥"), the solution of (1) verifies for all p € [1, oo] and all ¢ > 0,

lim (30— P+ 4 | DY u(x,t) = MDLK,(x)|| =0,

t—00 p
for all y € N" such that |y|+6 < 2m — 1 (respectively |y | + 6 = 2m). The techniques used are different of those used
in [4] and are in the same spirit as those appearing in, e.g., [3,2].

In the second part, we consider the case ug € L' (R”) N L>(R") and we establish a faster decay of order t~!/ am
under the condition [y (r)| < Ct!T@=9/ng (1) where & is a continuous and nondecreasing function which vanishes
when ¢ goes to 0 (see Proposition 2.2). We also deal with the asymptotics due to the nonlinearity ¥,

DYu(t) — DY e Tyy+ ([/ Y (u(y,s))dy ds)ave (DY e_tT)
D

1 lyl+6
(=L lge o

p

when t — 0o and where D = [0, co] x R". This is valid under assumptions p > 1, |[y|4+6 <2m — 1 and | (¢t)| < Ct4
forg > 1+ (4m)/n.

Now, after describing the problem and before stating our results, let us supply a few notations which will be used
throughout this paper. A part of them was used above.

For a multi-index A = (Aq,...,1,) € N”, we set [A\| =X + --- + A,,. For any x = (x1,...,x,) € R" and any
multi-index A € N”, we have D* = o1 o’

Z))clk1 axy"
confusion. By V"u we denote the vector (D)‘u)| Al=m-

We shall use the classical definition for the Sobolev space W7, m € Z and p € [1, oo]. In particular, the notation
H™ stands for W™2. Norms in L? -spaces will be denoted by || - || ,. We shall also use the weighted space L'(R": 1+
) = {f € L'®R"), g | f (@)1 + |x])dx < oo} equipped with the norm || £ |1 gy = fin Lf (Ol1] .

To complete our notation, C will denote a generic constant whose value may change from line to line.

In accordance with the notation above, we give some properties related to the class of higher order elliptic operators
studied here. More details can be found in [1] and [4]. For the reader’s convenience, we recall the construction of the
class of operators and the related properties useful for our study.

Let m € N* and aqg(x) be bounded measurable functions on R"” where «, 8 € N" are of length m. Set

and we will often write D* instead of D’ when there is no risk of

Ou,v) = Z dep (X) DPu(x) D%v(x) dx

R lel=1Bl=m

for all u, v € H™(R™). The form Q is continuous on H”(R") and then by a variation on the Lax—-Milgram lemma,
there exists a unique operator L : H"(R") — H~"(R") linear and continuous such that for all u, v € H™(R"), we
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have (Lu, v) = Q(u, v). We write L = (—=1)" }_ = 5j=m D* (dap DP). Here, (, ) stands for the usual scalar product
on L2

We suppose that the class of operators L is elliptic in the sense of the Garding inequality (i.e., there exists a constant
8 > 0 such that for all u € H™(R"), Q(u, u) > 8||V’”u||%). Then, as a consequence of this inequality, the operator L
restricted to the domain {u € H™ (R") | Lu € L?(R")} is maximal accretive and (—L) is the generator of a contraction
semigroup e L on L?(R").

Now, let us come to our class of operators 7 appearing in (1). They are defined by 7 = LjALo where A €
L°°(R",R) is such that A > o > 0, L is the adjoint of L¢ and

Lo=(—1)" Z agg D* TP
la|=[B|=m
is a particular case of operators L defined above and is associated to the positive constants coefficients agqg.

By K, (x,y) € D'(R" x R"), we denote the distributional kernel of the semigroup e’ 7 and we refer to it as to the
heat kernel of 7. We have shown in ([1], Proposition 51) the following useful estimates on the heat kernel.

Proposition 1.1. There exist constants C and ¢ > 0 such that for all t € (0, 00) and all x € R", we have
_ il lx — ¥l
|D§Kz(X, y)| <Ct™ gm,c<W>’ (©))
for any multi-index A € N" such that |A| < 2m — 1, and where G, 5(y) = exp(—cSy“i%l)for 8> 0.

Note that details on the restriction |A| < 2m — 1 can be found in ([1], Proposition 51 and/or [4], Proposition 2).
Also, the reader interested in full informations on the properties of the semigroup e~'7 (and then of the heat kernel
K:(x,y)) can see [1] and [5]. In particular, let us mention the following useful result which will be used to obtain
estimates on the time derivatives of the heat kernel (see, for example, [1] Lemma 33).

Lemma 1.1. If the kernel of e 7 satisfies the estimates (G), then the same estimates hold for the kernel of t% e 7T,

Also, we have established in [1] that D* e~* T maps L? into L with estimates
A —tT —n
[D* ™ 5 0 < Crmmn i,
where || - || p,4 denotes the norm from L7 into L4. Since the same holds for the adjoint operator 7*, the duality then
entails the ultracontractivity property D* e~ 7. L' — L™ with estimates
A —tT A
”D € ||1,00<Ct R
We have also shown the Holder regularity D* e 7. 11— COV for Al =2m — 1 and v € (0, 1), where C%" is the
homogeneous Holder space.
In [5], a part of our study has concerned the extension to the derivatives taken simultaneously with respect to x and
y and we have obtained

” DA eftTDM “Loo < Ctinﬂ?h‘:w

with the corresponding estimates on the kernel

_ ntAlFlul |x — y|
|D§D§‘Kz(x,y)} < Ct™ " gm,c(W)

for all |A|, |u| <2m — 1, and
|0 T DM |1 gn < O
when M| =2m — 1, |u|<2m —1lor|A| <2m—1,|u|=2m —1.
From now on, K;(x) = K (¢, x) stands for K, (x, 0).
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2. Main results
2.1. Cauchy problem

Regarding the existence, uniqueness and regularity results, the classical Banach fixed point argument (see for
example [3,2,6]) yields

Proposition 2.1. There exists a unique solution u € C([0, c0); L' (R™)) to (1) such that u € C((0, 00); W*™P(R")) N
C'((0, 00); LP(R™)) for all p € (1, 00). This solution satisfies the conservation of mass property:

/u(x, t)dx = [ up(x)dx forallt >0,
R7 R7
and the L'-contraction property:

lu@ |, <lluolly  forallt>0.
To show the conservation integral property, we integrate (1) with respect to x and we obtain

d
E/u(x,t)dx—i—/']’u(x,t)dxzo
Rﬂ Rl‘l

since fR” a-v? (Y (u(x,t)))dx = 0. On the other hand,

/Tu(x, 1) dx = Liw(0, 1) = P0) (0, 1) =0,
Rn

where f denotes the Fourier transform of f in R”, P(¢) =[] i {Jq"ﬁg "and w = A Lou. Therefore, % Jgnu(x,1)dx =0.

The proof of the L!-contraction property is a simple adaptation of the classical argument used in ([3], Proposi-
tion 1).

2.2. Asymptotics with initial data ug € L'(R™)

Lemma 2.1. Let ug € L' (R™). Then, for all p € [1, 00] there exists C = C(p,n, m) > 0 such that the solution u of (1)
satisfies for all t > 0,

n 1
Ju)], < 735 gl

The proof of this result is a simple adaptation of the argument used in ([2], Theorems 3.2-3.3 and Corol-
lary 3.2) since ||e_’T||2,C>O < Ct™ 3n and ||e_’7—||1,oo < Ct™am. The later implies ||u(f)|l2 < ct™ 3 ||ug|[; and then
lu()lloo < c(t/2)_# lu(t/2)|2 < ct luoll1. Eventually, by interpolation and the L'-contraction property, we ob-

1 1 1

(

= 1-—-— _nq_1 1-- - _noq_1 . .
tain lu(®), < Nu@O7 Nu@lloo ” < ct™ D ugll, " uoll? =t~ 175 lug|l; (¢ is a generic constant).

Theorem 2.1 (Gradient LP-estimates). Suppose ug € L' (R™), m > 2 and
lw@)| <Clel™™ " forallte{seR||s|<1}. (6)

Then, for all p € [1, o] there exists C = C(p,n, m) > 0 such that the solution u of (1) satisfies for all t > 0 and all
y € N" such that |y| > 1,

[DYuw], < e 09 H ky @)
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provided |y| +6 < 2m — 1 and where Ko = max(||uo |1, lluoll"T*"~*/™). If in addition, 6 > 1 and

W' )| <Cll™" forallte{seR||s|<1), (8)
then (7) also holds when |y | + 6 = 2m with Ko = max([luo|)1, luoll """,
Proof. The solution u of (1) satisfies the integral equation
t
w0y = K@ o+ [ Kt =) a7 (9 (1) ds
0
and then
t
DYu(t) = DY K (t) * ug + / DYK(t—s)*xa- V(Y (u(s)))ds, )

0

where * is the convolution symbol with respect to the space variable x.
Assume that |y| + 0 < 2m — 1. It follows from (9) that

t

DYu(t) = DY K (¢) * ug ~|—/a -VO(DYK(t — 5)) % ¥ (u(s)) ds.

0
Hence, using Young inequality yields

(10)

t
||DVu(t)||p 128 40) *u()”p —i—/”a VY(DYK (1 — ) % ¥ (u(s)) ||pds
0

t/2

<o K ol + [ a9 (D7 Kt = )]y o) o
0

+ [la- 907 K@= )] Iy )], o5

t/2
On the one hand, (G) implies that

[D2K O], < om0

for all p € [1,00] and all A € N such that |A| <

Lemma 2.1 we get

t/2

[la-9" (07 k@t =), 1v @) 05 <
0

(11)
2m — 1. On the other hand, by using successively (11), (6) and

t/2
_noq_ly_lrl+0 +4m—0
Clal / (0 =) "3 T (s EO ds
0

t/2
- _nq_Lly_lrl+6 0
Clallluo )"+~ / (t — 5)" T 1= P =50 (=) 4
0

Cqyl4e /2

4m L]
/s_(l_m)ds
0
lyl

—naq-Ly_1
t 4m P 4m +4m—0
C|a|(5) luo )"

— -1y
+4m—0 Ly dmop
Clallluol " t*" )/”(5)
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and
t

t
/Ha VDK —9) |, | ()], ds < Clal /(r — 5y

t/2 t/2

(n+4m—0)/n

u(s) ” p(n+4m—6)/n ds

t
— 40 _ 1 —0)—
< Clallfuo] "+ e)/n/(t_s)_a_ms g (Pn+4m—=0)=n) 4

1

1/2
1 Lyl

1
— 5 (p(n+4m—0)—n)
+4m—6 I3 4mp t 4m
< Clallluoll{"™™" ”"(—) (—)

2 2
—n-ly_
t 4m P 4m +4m—0
=C|a|<5> lueo )l ",

Eventually, combining the last estimates to (11) yields (7) in the case |y | +60 <2m — 1.
To deal with the case |y| + 0 = 2m, we rewrite (10) as

t
DY u(t) = DY K (t) * ug +/a VI DY K (1 = 5)) % Vi (u(s)) ds

0
t

=DV K(t) * ug —i—/a . VG_I(DVK(I — s)) * W(u(s))Vu(s) ds.
0
The same decomposition as in the first case yields

t/2

|D7u®], <[ D7 K®],luol + / Ja- V' DY K = )] [V () Vu(s)], ds
0

+/“a VUDYK (@ =), ¥ (u(s))Vus)] , ds.

t/2
Using (8), (7) (for the case |y| = 1), (11) (since |y|+6 — 1 =2m — 1) and Lemma 2.1 implies
t/2
[la- 9107 k@ =), 19/ () Tuts)] 8
0

)2
< [la- "1 07 K@ =) | 9 @) || 9ue) | o o
0

t/2

< [la-v" 107 K@ =) | Juts) =) )] s
0

12
— g Ly_lyl+6=1 o .
< Clal luo| " 9)/n/(t—s) B (1= 5) = = (=150 o~ i
0
— £ (-1l 1/2
- t m p m o—1
< Claluo ™" Wn(i) s—0=%D g

0

—raq-Ly_I
t 4m P 4m Am—0
<C|a|(§) [

917

12)



918 M. Qafsaoui / Ann. I. H. Poincaré — AN 23 (2006) 911-927

and

13
f”a VDY K (t - )|, Hlﬂ’(u(s))Vu(s)”pds

t/2

t
< [lla- = 0 k=) 9 (o), |90 | 0

t/2

t
< [lla- 907 k@ =) L) i, 4 | T s

p@Em—6)/n
t/2
n+l
< Clallluoll "~ 9””[0 DR Bl
t/2
(p(4m—6)—m)— "L 1- et
4 0 4mp I3 4m
< Clalflup )"~ -
2 2

n (1
t Im P 4m Am—6
=C|a|(§> o7

Therefore, (7) is verified in the case |y | + 6 =2m, 6 > 1 and this ends the proof of Theorem 2.1. O

Remarks 2.1. 1. It is worth mentioning that (7) is verified for m > 1 in the case |y |+6 < 2m — 1 (m = 1 is a particular
case of Lemma 2.1 since 6 > 1, |y| 4+ 6 < 1 and then |y | = 0). The choice m > 2 is adopted in order to guarantee the
estimates on the gradient || Vu(#)|| , used in the proof of the second case |y| + 6 = 2m.

2. The condition (6) (resp. (8)) implies that for all § > O there exists Cs > 0 such that

|w(t)| < CSltl(n+4m_9)/n

(resp. |¢'(t)| < Cs|t|#m=D/my forall t € {s e R | |s| < 8}.
3. It seems possible that under additional assumptions (like (6) and (8)) on the successive derivatives of i, we can
establish (7) for |y | < 2m — 1. This remark also applies to (14) in the forthcoming theorem.

The property (7) suggests to study the problem of the large time behavior of (1= )+4m DY u(t,x) in L?-norm.
Indeed, in the following result we show that, for ¢ large, the higher derivatives D)’C’ u(t) of the solution behave like the
corresponding derivatives DY K (t) of the heat kernel. More precisely,

Theorem 2.2. Assume that m > 2 and

t
lim % —0. (13)
N

Then, for all up € LY(R") such that fRn uog(x)dx = M, the solution u of (1) satisfies for all p € [1, 00],
n 1 Iyl
tim +3 =944 | DY u(x, 1) — MDY K, (x)| =0 (14)
t—00 P
for all multi-index y € N" such that |y |+ 0 < 2m — 1. If in addition
v/ (1)

T am—6

=0, (15)
|l|—>0 |t| n

then the property (14) remains valid when |y| 4+ 6 =2m and 6 > 1.
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Proof. Suppose that |y| 46 < 2m — 1 and write

DYu(t) —MDYK(t+1)=(D"u(t+1) — MD"K()) — M(DYK(t + 1) — DV K (1)).
It follows from (10) that

DYu(t+1)—MDYK(@ +1)=A1(t) — MA () + A3(2),
where

A1) :=D"K(t) xu(l) — MD" K (1),

A1) :=D"K(t+ 1) — DYK (1),

t
A3 (1) :=/a VY(DYK (1 —)) % ¥ (u(s + 1)) ds.
0

Since fRn u(x,l)ydx = fR,, uop(x)dx = M, it then follows by (4) that

o1y, Iyl
tlggoﬂm(l )+ i ||A1(t) Hp —=0. (16)
n 1 Iyl
On the other hand, Lemma 1.1 yields || A2 (1), < t_m(l_?)_#_l and then
n 1 Iyl
tlirgotmu—,—,wﬁ A0, =0. a7

Note that (16) and (17) are verified for all y € N" such that |[y| <2m — 1 and all p € [1, oo].
Taking into account these estimates, it remains to show that

tim ¢4 079 | 4y, =0 (18)

t—>00
for all p € [1, 00] and all y € N such that |y|+6 <2m — 1.
We have || A3(1)|, < By + By where

1/2

B ::/”a VUDYK (@ = 9)| ¥ (uls + D), ds
0

t
B, 2=/||a VUDYK (@ =), ¥ (uts + D), ds.

t)2
If we set £(s) 1= V¥ (s)/|s| " T4=0/7 then
[v (), < [60@®) | 1) | S tan (19)

Therefore, using successively (11), (19) and Lemma 2.1 involves estimates on B and B; as follows

t/2

_no 1y _lrl+é +4m—0
B < Clal [ = F 0D Jeo(uts + 1) | Juts + D i) s

0

/2
—n Ly ly+o —(1-2)

< C|a| (f—S) 4m P am ||§0(u(s+1))||oo(s+l) am’ ds
0

n 1)_ ly]+0 /2

-£a-1 =
s C'“'(%) o /”50(“(S+1))\}oo(s+1)‘“‘%>ds

0
nop_ L1y lyl+o

t\ P 4m .
= C|a|(—> X (1) ()
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and

(n+4m—0)/n

t
_lyl+6
&<cw/a—n &

‘E()(Lt(s + 1)) ”ooHu(s + 1)‘ p(n+4m—0)/n ds
t/2
t
_lylx0 — i (p(n+dm—0)—n)
<Clal [ @ =7 % Jéo(uls + 1) (s + D7 ds
t/2
<l s ot (5) ()T
< Cla| sup olu(s - z
s>t/241 N2 2
_nop—1ly_lrl ..
<Clal sup ||&o(u(s))] oo 7w) 7w, (ii)
s>1/2+1
o1y, vl
It follows from (ii) that lim;_, o TS AR B, = 0 since lim;_, o SUPs> /241 [[Eo(u(s))|locc = O and therefore, to

o1y Iyl
obtain (18), it is enough to prove that limy_ oo =97 X (1) = 0 since £ '~ ») "4 B < Clalt—# X(1) thanks to (i).
On the one hand, since

Jim [[60(u(0) ], =0

then for all ¢ > 0 there exists B > 0 such that [|§o(u(s + 1))||co < € for all s > B and it then follows that
/2 0
dme t\
¢ /”“EO(M(S +1) ||oos7(17%)ds < —’Z i <<§> - B£n> < 4me~ 12" g,

On the other hand
B
sim 1 [ eo(uts+ 1) s~ a5 =0
0

Therefore lim; oo 1~ i X (t) =0 and (14) follows.
For the case |y | + 0 = 2m, we derive from (12)

D'u(t+1)—MD K@t +1)=F () — MF(t) + F3(@),

where

Fi(t) = A1),
Fa(t) :== Ax(2),
t
F3(t) := /a A vi (DVK(I — s)) * W(u(s + 1))Vu(s + 1) ds.
0

Then, as for the first case, we show that

1 lyl
lim ¢ 175 %
—>00

F5(t) Hp =0 (20)

for all p € [1, o0] and all y € N" such that |y| + 0 =2m.
The same decomposition used in the proof of Theorem 2.1 implies that || F3(t) ||, < M + M3 where
12

M= [fla- 5 (7 Kt =) 9 (wis + D) [9ucs + D] o,
0
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t
Mai= [ a9 (D7 K =) ||/ (uts + D)1, |9t + D o o5
1/2
and the same computations yield

lyl+6—1

AN 2
M < C|a|<§> Z(1)

and
t
Mz < Cla| /(t —s)f% Hél (uls + 1))Hoo(s 4 1)7ﬁ(p(4m79)7n)(s n 1),% ds
1/2
< Clal sup ||gl(u(s))||oo,—ﬁ<1—,l,)—%’
s21/2+41
where

12
0= f 1 (uts + D) [ o5 + D705 s,
0
R AC)
&1(s) = W
n Iyl

1 _
Eventually, as for B; and B, lim,_motm(l_FHmMi =0 (i = 1,2) since lim,ﬁoot_%Z(t) = 0 and
limy— o0 SUPg > /241 1€1((5)) lloo = 0. This implies (20) and ends the proof of Theorem 2.2. O

Remark 2.1. See Remarks 2.1.1 and 2.1.3 respectively for the case m = 1 and for the possible extension of (14) to
derivatives DY u of order |y | < 2m — 1.

2.3. Faster decay when initial data ug € L' (R") N L (R")

In this section, we intend to obtain faster decay rate for higher derivatives when uq € L'(R™) N L*°(R"). For this
purpose, let us first give a lemma which will be used to state our results.

Lemma 2.2. Let ug € L' (R") N L®(R"). Then, the solution u of (1) satisfies
n 1
Ju], <c+n7m077)

forallt >0 andall p €1, 00, and where C > 0 is a constant depending on |\ug|l1 and |luo|| p.
As for Lemma 2.1, the proof is a straightforward adaptation of the argument used in ([2], Corollary 3.2).

2.3.1. Asymptotics like for the linear equation
Theorem 2.3. Let  satisfying

lw@|<Cltl? forallte{seR||s| <1}, (21)

with g > 14+ *=% and ug € L' (R") N L>°(R") such that Jrn uo(x)dx =M.

n
Under these assumptions, there exists v € (0, 1) such that the solution u of (1) satisfies for all t > 0,

DY — MD!K <crai—ping 22
| DY u(x, 1) x z(x)||p\ t E (@), (22)
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where

- . 4m—6+1
£ ifg > 1+ m=ttl,
t — 2 (n(g—1)—(@dm—6)) ch€(1+4mn_9,l+4m_n€+l),
—dm . _ 4m—0+1
t 4m1n(t—|—2) ifg =1+ =—"H

S(t) = provided |y| +6 <2m — 1,
¢~ 2 (1@ =D —(4m—0)) che(l+4m 0 H_4m 9+(v/2))
t % In(t +2) Uc'q_1+4m 0+(/2)

provided |y|+ 60 =2m — 1.

Proof. Since L'(R"; 1+ |x|) is dense into L' (R"), we prove (22) for ug € LY(R"; 1+ |x|) N L®(R") and the density
argument used in ([4], Section 4, step 3) extends the result to the case ug € L' (R") N L®°(R").
Assume that ug € L' (R"; 1 + |x|) N L (R"). The solution of (1) verifies

t
DYu(t) = DYK(t) * ug +/a v (DVK(t — s)) * w(u(s)) ds
0
Since ug € L' (R"; 1 + |x|) then there exists v € (0, 1) such that (5) holds for all # > 0 and all p € [1, co]. Therefore,

it suffices to show that
!

/a-VG(D”K(t—s))*w(u(s))ds

0

_nq_1y_Iyl
<cr w1 am s,
P

Notice first that according to Remarks 2.1.2, the condition (21) implies that for all § > 0 there exists Cs > 0 such that
v (t)] < Cslt]? for all t € {s € R | |s| < 8}. Hence, as in the previous section, using successively Young’s inequality,
(21), (11) and Lemma 2.2 we obtain

f Ja- V(D7 Kt = 53) 0 (w0, / a9 (07 Kt = )| |9 (o) ds

/2 t/2

t
<C|a|f(z—s)—%”u(s)uzqu

t/2

ly|+6 o
<C|a|f(z—s)—y47(s+ 1 amp (P41 4g
t/2
—(pa— ly|+6
<C|a|t 4,,,,,([7(] l)tl—%
=C|a|t_&(l_711)_% [~ 2 (g =)= (4m—0))
_noq_1ly_Ivl
<cr w1 s
. _1 N -
since t— am (n(g—1)—(4m—0)) < CS(Z‘) for all q > 1+ W On the other hand,
t/2 2

f”a VIDYK (@ —9)x ¥ (u®)], /”a V(DY K (=), v ()], ds
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12
< cr b /(S+1) 2D gy

Iyl

<cr w98 s

since t~ n fot/z(s + 1) @@ Vs <CS@t) forallg > 1+ 4’"7_9.
Finally, (22) is proved for ug € LYR"; 1+ |x]) N L°°(R") and hence for ug € LY R N L2 R by density. O

Remark 2.2. Note that by adding a condition on v/, the techniques used in Section 2.2 allow to extend the result
above to the case |y | + 60 = 2m.

Theorem 2.3 can be generalized as follows

Proposition 2.2 (Generalization). Let uy be as in Theorem 2.3 and v be such that

[y ()| < i)™ g,

where & is a continuous and nondecreasing function such that lim;_, o &(t) = 0.
Then (22) holds with

t/2 _n
max<t—ﬁ,z—%/s((s+1)—ﬁ)(s+1)—“—4%>ds,s<(%+1) 4'"))

0
iflyl+6 <2m—1,

t/2 _n
max(tS:n,t‘gnff((S*‘l)‘c")(s"'l)(l&)ds’§<(%+l> 4m>>

0
iflyl+6 =2m— 1.

S@) =

Proof. Indeed, if we go over the proof of Theorem 2.3, then thanks to Lemma 2.2 and the properties of & we get

1
(n+4m—0)/n d

[la-9" 07k =9) + v (ue) / a9 (07 &6 = ) o) o) |, 0

1/2 1/2

/ (=)0 g (s 4+ 1)) (s 1) IR PO g

t/2
<c(! A N
and
“ t/2
/Ha V(DY K (t—5)) 9 (u(s)], /||a V(DY K~ )] &) Juts) | om0 ds
0
t —a-hy 6 1/2
<C<E) i /é (S+1)7W)(s+l) (1- 4”’)(1_5‘

Proposition 2.2 is completely proved. O
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2.3.2. Asymptotics related to nonlinear effects
Theorem 2.4. Suppose that ug € L' (R") N L (R") and the function  satisfies (21) for g > 1+ 47’”. Then the solution
u of (1) verifies for all p € (1, 0o] and all multi-index y € N" such that |y| +6 <2m — 1,

tim ¢35 55 | DY ut) - DY T g + Mav? (DY 7| =

—>0o0

where M = [ [y (u(y, s))dyds and D = [0, co] x R".

Proof. Since D”u(t) = D" e T ug — [y aV? (DY e~ =Ty (u(s)) ds, it suffices to estimate | W (¢)]|, where
t
W(r) = MaV? (D" e™'T) - /av"(DV e Ty (u(s)) ds := 110, 00) — 1 (0, 1),
0
with

d
Li(c,d)= <//1/f(u(y,s))dyds>aV9(DyetT),

c R»
d

L(c,d) =fav9(DV e Ty (u(s)) ds

c

Notice first that according to (G),
1y A
|D*e T, < Cpmt 7270 for [ <2m — 1, (23)

and in view of the hypothesis on 1, Remarks 2.1.2, Lemma 2.2 and the fact that ¢ > 1 + 4m/n, we obtain

Y(u(y,s))|dyds <C u(y,s)|?dyds < C (1+s) @4 Dds < o0. (24)
¥ (u(y. 5)] | }
D D 0

1. L?-estimates of 11(t/2, 00).
From (23) we easily derive the estimates

[1n@/2,00)], < crmante // ¥ (u(y, )| dyds
t/2R"

o Llyy lyl+0
and then limy_, o % =55 | 11(1/2, 00) ||, = 0 since limy_ 1o 5 Jan 19 (v, )| dy ds =0 thanks to (24).

2. LP-estimates of I (t/2,1).
The same computations used in the proof of Theorem 2.3 and (23) imply that

/2,01, < crm =D 22 t=eamm

n
. B —
Hence, lim;_, oo 1 47 (

1 ly|+6
P | L(t/2. 0], = 0 since g > 1+ 4m/n.
3. LP-estimates of (11(0,t/2) — 15(0,1/2)).
Writing
t/2 /2

12(0,z/2)=/av9(1)y e~ Ty (u(s)) ds //av9 (DY e “9T) (. — y)yr (u(y, s)) dy ds.

0 0 R
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Then
12
[110.4/2) = 0,1/, = / f aV?((D7 e IT)( = y) = (D7 e T) ()P (uly. s)) dyds
0 R~ p
Let us first estimate the term ||11(0,¢/2) — 12(0,t/2)||, for p = 1. We have
12
11:(0.t/2) — L0, 1/2)|, < C //v"((DV e T (= )Y (u(y, s)) dyds
0 Rn 1
o0
w7 e MO, [ [ 1rue.0)|avas
0 R"
_lyl+6
< t 4m
by using (23) and the same computations as in the proof of Theorem 2.3.
Now, suppose that p > 1 and write
12
[710.1/2) = 0.1/, = / / aV? (D7 e IT)( = y) = (DY e T) ()P (uly. ) dyds
0 R~ p

=X (1) + (1),
p

D1 =10, «t] x {yeR” | 1y <Kt1/4m},
D, = ([0,1/2] x R")\D;.

P+H/D/2

where, for a fixed « € (0, 1/2),

We easily obtain estimates on X5 (¢) as follows.
3.1. Estimation of X»(t)
We have

X1 <C f/(”v@(DV e =T (. —y) I+ vl (D7 e T) () | )| (u(y.)|dyds
Dy

< C(//(t—s)ﬁ"(l;’)W|¢(u(y,S))|dyds+t‘5"“fl’)ly“:’e //|¢f(u(y,s))|dde>
D,

)\V

T //!W(u(y,s))’dyds.
D,

n 1 ly|+6
Therefore, lim;_, oo £ 7 1_F)'Fy“_m)(z(t) =0 since lim;_, o0 ffpz [ (u(y,s))|dyds =0.

3.2. Estimation of X1 (t)

We distinguish two cases. We estimate X1 (¢) for the case p € [2, co] and we derive the estimates for p € (1, 2) by
interpolation.
The argument relies on the following result which will be obtained by using the Hausdorff—Young inequality.
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Proposition 3.3. For a fixed « € (0, 1/2), the inequality

sup [V (D7 e 9T) (. = y) = (D" e T)()) ”p < Crp— i (-H- e
Iy|<wetl/4m 0<s <t

holds for all p € [2, 00] and all t > 0.

Proof. Let
A= sip V(D7) =y = (D7 e T)O)
[y|<kt/Am 0<s<it
We have
A < sup [V9(D7e 0 T)() = V(D7 e )0,

O<s<kt
+ sup  [VO(DY e T)(—y)— V(DY e T (|
Iyt 4m g
=Rilk, 1) +Ralk, t).

To estimate R;(x,t), i = 1,2, we will use the Hausdorff—Young inequality || f lp < Il fllg verified for all p, g such
that 1 <g<2<p<ooandl/p+1/g=1.
By applying the Fourier transform we obtain

Ri(k,t)= sup (2n)_”/(i§)|3’|+9 (e_(’_s)]:(g) —e_t}—(g))ei“ dec
Rn

O<s<kt

p

since V/(D? e T)(x) = @n)™" Jpn GOIY1H0 e 1F O+ ¢ and where Tv(¢) = F(¢)9(¢). Note that, in view of
the properties of the function A, there exist constants ¢, ¢ > 0 such that

calg " < F@) <ealg ™ (25)
Now, using the Hausdorff—Young inequality implies that R (x, ) < Csupy_,<,; Hsllp where Hy(¢) = ¢ I+
(e~ =97 () _ =17 )y and then

(Ri(ke,0))? <C sup / 12190 | F ()T e~ 1t =9T©) g
O<s<kt
R~
thanks to the inequality [e™* — e ™| < |a — b| e verified for all 0 < a < b. On the other hand, in view of (25)

n+q(\v\+9>

('R](K t)) C(Kt)q/|§‘|q(|y|+0)|§‘|4mq e—c1g(1— —k)tlg | de < Ck9t™ am

(I_L)_M

ie., Ri(k, 1) < C/ct_4m .
In the same manner, we estimate R (k, ¢) by using the Hausdorff—Young inequality and (25) as follows

(Rate. ) <C  sup /|§|q<|y|+9>|eiy; [t FC) g
Iyt /i

_ 4m . iv
<C  sup /Iclq('y'+9)|y§|qe aatltl™dg - (since ™ — 1| < |y¢)
IyIer /4
Rn

gC/|§|q(\y|+e+1>|m1/4m|qefclqrm“"’ d¢

Rn
_ 4m
=Cth¢I/4m/|§|q(|V\+9+l)e c1qt¢| d¢
Rn
'1+11(\V|+9)

< Ckit™ ,
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y|+0

ly1+6

_nq_1y_ _noq_1y_ . A
that is Ro(«, t) < Ckt an (1=5)= "3 . Therefore A(x,t) < Ckt an (1=5) =5 and Proposition 3.3 is proved.

Now, let us come back to X (r). We get from Proposition 3.3,

X1(t) < CA(k, 1) //|¢(u(y,s))|dyds < C/ct_&(l_%)_% //|¢(u(y,s))|dyds
D, Dy

o1y lyl+0
and then lim,_, o 137278 X, (1) = 0 for all p € [2, o).

Eventually, we derive the estimates for the case p € (1, 2) by the classical interpolation inequality
1 1-1
[10,1/2) = B0, 1/2)], < [ 110, 1/2) = L.t/ /7 [ 110, 1/2) = LO,1/2)] .

Theorem 2.4 is now completely proved. O
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