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Abstract

In this paper we consider Besov algebras on R, that is Besov spaces Bs
p,q(R) for s > 1/p. For s > 1 + (1/p), p > 4/3, and

q � p we prove that the above algebras have a maximal symbolic calculus in the following sense: for any function f belonging
locally to Bs

p,q(R) and such that f (0) = 0, the associated superposition operator Tf (g) := f ◦ g takes Bs
p,q(R) to itself.

©

Résumé

On considère les algèbres de Besov sur la droite réelle, autrement dit les espaces de Besov Bs
p,q(R) pour s > 1/p. Sous les

hypothèses s > 1 + (1/p), p > 4/3 et q � p, on établit que ces algèbres possèdent un calcul symbolique maximal au sens suivant :
pour toute fonction f appartenant localement à Bs

p,q(R) et telle que f (0) = 0, on a f ◦ g ∈ Bs
p,q(R) pour tout g ∈ Bs

p,q(R).
©
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1. Introduction

Let us denote by Cb(R) the Banach algebra of bounded continuous functions in R. Assume that E is a subalgebra of
Cb(R). Assume further that E is endowed with a norm which renders the canonical injection E ↪→ Cb(R) continuous,
and such that E is a Banach algebra. In such an algebra, the symbolic calculus consists in associating to any function
g ∈ E the composed function f ◦ g, under some appropriate conditions on f . Thus we say that a function f , defined
on a subset Ω of C, operates in E if we have f ◦ g ∈ E for any g ∈ E whose range is contained in Ω . The above
notion makes sense in any function space E, even if it is not a Banach algebra. The operator Tf :g �→ f ◦ g is often
referred as a superposition operator.
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It is well known that any holomorphic function f , defined on an open subset of C — and satisfying f (0) = 0 in
case 1 /∈ E — operates in E. The same property holds for a real analytic function, under certain assumptions on E.
We refer to [11, Chapter VIII, 3.9 and 8.1] for more details.

In case D(R) ⊂ E it is easily seen that any function f : R → C which operates in E belongs necessarily to Eloc.
We shall speak of a maximal symbolic calculus if any function f ∈ Eloc — satisfying f (0) = 0 in case 1 /∈ E —

operates in E, and of a minimal symbolic calculus if the only operating functions are the analytic ones.
According to a celebrated theorem of Kahane and Katznelson (see [11, Chapter VIII, 8.6]), the algebra A(R) of

the Fourier transforms of integrable functions has a minimal symbolic calculus. On the contrary, the algebra Cb(R)

itself has a maximal symbolic calculus; the same holds for the classical Sobolev algebras Wm
p (R), m integer � 2,

1 � p � ∞, see [2].
Here we deal with Besov spaces. For the precise definition of these spaces we refer to [1,13,16]. Throughout the

paper we shall assume p,q ∈ [1,+∞], and s > 0, unless otherwise stated.
Let us recall that Bs

p,q(R) is a Banach algebra, embedded into Cb(R), if s > 1/p, and that the following conditions
are necessary for a function f to operate in Bs

p,q(R):

(A) f ∈ Bs
p,q(R)loc,

(B) f is locally Lipschitz continuous, cf. [3].

By a classical Sobolev embedding, we have (A) ⇒ (B) if s > 1 + (1/p). Based on this remark, and the known
results for the classical Sobolev spaces [2], we believe on the following conjecture.

Conjecture. In case s > 1 + (1/p) the Besov algebra Bs
p,q(R) has a maximal symbolic calculus. More precisely, if

f : R → R is any Borel function such that f (0) = 0, then f operates in Bs
p,q(R) if and only if f ∈ Bs

p,q(R)loc.

Let us add a few comments to the case 0 < s � 1 + (1/p). If 0 < s < 1, then the following result is well known [3]:
a Borel function f such that f (0) = 0 operates in Bs

p,q(R) if and only if either f is locally Lipschitz continuous (if
Bs

p,q(R) ⊂ L∞(R)) or f is uniformly Lipschitz continuous (if Bs
p,q(R) 
⊂ L∞(R)). In case 1 � s � 1 + (1/p) the

symbolic calculus turns out to be more mysterious. Indeed we expect that the conditions (A) and (B), together with
f (0) = 0, are not sufficient for f to act on the space Bs

p,q(R). A typical example is the Zygmund class B1∞,∞(R), for
which a full description of the symbolic calculus has been given in [6]. There a necessary and sufficient condition on
f was found which is stronger than these quoted conditions.

Notation. If s is a real number, then [s] denotes the integer part of s, i.e. the largest integer less than or equal to s. All
functions are assumed to be real-valued. With ‖f ‖p we denote the Lp-norm on R. As usual, constants c, c1, . . . are
strictly positive and depend only on the fixed parameters s,p, q , unless otherwise stated; their values may vary from
line to line.

2. The main theorem

The following result represents a partial, but substantial, proof of the conjecture.

Theorem 1. Let us assume that the following three conditions hold:

• s > 1 + (1/p),
• p > 4/3 or 1/p < s − [s],
• q � p.

If f : R → R is a Borel function such that f (0) = 0, then f operates in Bs
p,q(R) if and only if f ∈ Bs

p,q(R)loc.

Some comments are in order. Theorem 1 remains valid under more general assumptions, e.g. also for

1 < p � 4

3
and s − [s] /∈

[
1

p
− 1

2
−

√
1

p
− 3

4
,

1

p
− 1

2
+

√
1

p
− 3

4

]
. (1)
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In addition also the restriction concerning q can be weakened. We refer to [9] for details. The authors are convinced
that the critical value p = 4/3 and the above “forbidden” interval have nothing to do with the problem itself. To
overcome these technical problems one has, probably, to change the method.

Before we start to prove Theorem 1 we indicate how one can simplify the problem. Concerning these reductions
we omit details because there are standard in some sense. However, the details can be found in [9].

(1) It will be sufficient to investigate the problem under the following conditions:

1 + 1

p
< s � 2 + 1

p
, (2)

f ′ ∈ Bs−1
p,q (R). (3)

If Theorem 1 is proved under condition (2), then an inductive argument, using the algebra property of Bs
p,q(R) as

well as the continuous embedding Bs
p,q(R) ↪→ Bs−1

p,q (R), yields the general case.
(2) Now we assume that Theorem 1 is proved under the condition (3). Recall that Bs

p,q(R) is embedded into Cb(R).
If f ∈ Bs

p,q(R)loc and if g ∈ Bs
p,q(R), we consider ϕ ∈D(R) such that ϕ(x) = 1 on the range of g. Then we have

f ◦ g = (f ϕ) ◦ g. From this observation the general case follows.
(3) A third reduction consists in assuming that g is a regular function. More precisely, we shall establish the inequality

‖f ◦ g‖Bs
p,q (R) � c‖f ′‖

Bs−1
p,q (R)

(
1 + ‖g‖Bs

p,q (R)

)s−(1/p) (4)

for any g ∈ Bs
p,q(R) such that

g is real analytic. (5)

Then a standard approximation procedure together with the Fatou property of the Besov spaces, see e.g. [7,
paragraph 5.2 & Proposition 14], will imply inequality (4) for any g ∈ Bs

p,q(R).

3. Proof of Theorem 1

We shall prove Theorem 1 by using the assumption

0 <
1

p
< s − [s]. (6)

The proof in case s − [s] � 1/p uses the same basic ideas, but is more technical. We refer to [9] for the complete
proof, and to [6] for the case p = ∞.

We exploit ideas of [7, Theorem 7]. On the one hand we shall use convenient equivalent norms in Besov spaces
together with embeddings of Besov spaces into the Wiener space of functions of bounded p-variation. On the other
hand we shall use monotonicity properties of the regular function g.

3.1. Alternative norms in Besov spaces

To begin with we deal with integral means of differences. Let

�hf (x) := f (x + h) − f (x) ∀h,x ∈ R,

ωp(f,h) :=
(∫

R

∣∣�hf (x)
∣∣p dx

)1/p

, h ∈ R.

Assume m < s < m + 1 for some m ∈ N. Then the following expression is well known to be an equivalent norm
in Bs

p,q(R):

‖f ‖Bs
p,q (R) := ‖f ‖p +

(∫ (
ωp(f (m), h)

|h|s−m

)q dh

|h|
)1/q

. (7)
R
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We obtain another equivalent norm by replacing, in (7), integration for h ∈ R by integration for |h| � R , for a fixed
positive number R. Indeed the part of the integral for which |h| > R can be easily estimated by the Lp-norm.

In some cases, an alternative equivalent norm can be obtained as follows. Let

Ωp(f, t) :=
(∫

R

sup
|h|�t

∣∣�hf (x)
∣∣p dx

)1/p

, t > 0.

Then we have the following result, see e.g. [17, Theorem 3.5.3, p. 194]:

Proposition 1. Let 1/p < s < 1. Then a function f belongs to Bs
p,q(R) if and only if

‖f ‖p +
( ∞∫

0

(
Ωp(f, t)

ts

)q dt

t

)1/q

< +∞. (8)

Moreover, the above expression generates an equivalent norm on Bs
p,q(R).

The condition s > 1/p cannot be avoided. Indeed, (8) implies that f is locally bounded, a property which is not
shared by all Besov functions for s < 1/p.

3.2. The p-variation of a Besov function

For a function g : R → R and any h ∈ ]0,∞] we denote by νp(g,h) the supremum of numbers(
N∑

k=1

∣∣g(bk) − g(ak)
∣∣p)1/p

,

taken over all finite sets {]ak, bk[; k = 1, . . . ,N} of pairwise disjoint open intervals of length less than h. A function
g is said to be of bounded p-variation if νp(g,∞) < +∞. The set of primitives of functions of bounded p-variation
will be denoted by BV1

p(R) and endowed with the semi-norm

‖f ‖BV1
p(R) := infνp(g,∞),

where the infimum is taken with respect to all functions g whose primitive is f . We refer to [7,8,18] for a discussion
of these classes.

Proposition 2. For 1 < p < ∞, 1/p < s < 1, there exists a constant c = c(s,p, q) > 0 such that( ∞∫
0

(
νp(g,h)

hs−(1/p)

)q dh

h

)1/q

� c‖g‖Bs
p,q (R), (9)

for all g ∈ Bs
p,q(R).

Proof. By Peetre’s embedding theorem, see [13, p. 112] or [7, Theorem 5], there exists c1 = c1(p) > 0 such that

νp(g,h) � c1‖g‖
B

1/p
p,1 (R)

, ∀h > 0, ∀g ∈ B
1/p

p,1 (R). (10)

Now we claim that

νp(g,h) � h1−(1/p)‖g‖W 1
p(R), ∀h > 0, ∀g ∈ W 1

p(R). (11)

Obviously, Hölder’s inequality yields

∣∣g(bk) − g(ak)
∣∣ � (bk − ak)

1−(1/p)

( bk∫ ∣∣g′(x)
∣∣p dx

)1/p

, ∀g ∈ W 1
p(R).
ak
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Inequality (11) follows now by taking the p-th power and summing up over k.
Next we use real interpolation of Banach spaces, cf. e.g. [1] or [15]. Let θ ∈ ]0,1[ be such that θ(1 − (1/p)) =

s − (1/p). As it is well known,

Bs
p,q(R) = (

B
1/p

p,1 (R),W 1
p(R)

)
θ,q

with equivalent norms, see [1, 6.4] or [15, 2.4]. For g ∈ Bs
p,q(R), we denote by t �→ K(t, g) the K-functional of g

relative to the couple (B
1/p

p,1 (R),W 1
p(R)) (see [1, paragraph 3.1]). By definition, there exist two families (ut )t>0 and

(vt )t>0 of functions such that

g = ut + vt and ‖ut‖B
1/p
p,1 (R)

+ t‖vt‖W 1
p(R) � 2K(t, g),

for all t > 0. By inequalities (10) and (11) we obtain

h(1/p)−sνp(g,h) � c2K(t, g)
(
h(1/p)−s + h1−s t−1), ∀h, t > 0.

Taking t := h1−(1/p) in the above estimation we deduce( ∞∫
0

(
νp(g,h)

hs−(1/p)

)q dh

h

)1/q

� c3

( ∞∫
0

(
K(h1−(1/p), g)

hs−(1/p)

)q dh

h

)1/q

= c4

( ∞∫
0

(
K(t, g)

tθ

)q dt

t

)1/q

,

which proves (9). �
3.3. The details of the proof

According to the three reductions mentioned in Section 2 we shall work with the following assumptions:

(i) 1 + (1/p) < s < 2,
(ii) f ′ ∈ Bs−1

p,q (R),
(iii) g is a real analytic function in Bs

p,q(R).

Step 1. Preparations. By definition of the Besov norm, it is enough to estimate

‖f ◦ g‖p +
( 1∫

−1

(
ωp((f ◦ g)′, h)

|h|s−1

)q dh

|h|

)1/q

.

Since ∥∥f ◦ g − f (0)
∥∥

p
� ‖f ′‖∞‖g‖p

and

ωp

(
(f ′ ◦ g)g′, h

)
� ‖f ′‖∞ωp(g′, h) + U(h),

where

U(h) :=
(∫

R

∣∣�h(f
′ ◦ g)(x)

∣∣p∣∣g′(x)
∣∣p dx

)1/p

,

we are reduced to prove that( 1∫ (
U(h)

|h|s−1

)q dh

|h|

)1/q
−1
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can be estimated by the right-hand side of (4).
Step 2. Without loss of generality we may assume h > 0. The set of zeros of g′ is discrete, and its complement in R

is the union of a family (Il)l of nonempty open disjoint intervals. For any h > 0 we denote by I ′
l the (possibly empty)

set of x ∈ Il whose distance to the right endpoint of Il is greater than h, and we set

I ′′
l := Il \ I ′

l , al := sup
Il

|g′|.

By gl we mean the restriction of g to Il , hence a strictly monotone smooth function. If I ′
l 
= ∅, then we have∣∣g(

g−1
l (y) + h

) − y
∣∣ � alh for y ∈ gl

(
I ′
l

)
, (12)

where g−1
l denotes the inverse function of gl .

Substep 2.1. By (12) and by a change of variable we find∫
I ′
l

∣∣�h(f
′ ◦ g)(x)

∣∣p∣∣g′(x)
∣∣p dx � a

p−1
l Ω

p
p

(
f ′, alh

)
. (13)

By the Minkowski inequality w.r.t. Lq/p , and by Proposition 1, we obtain

( ∞∫
0

(
1

h(s−1)p

∑
l

a
p−1
l Ω

p
p (f ′, alh)

)q/p dh

h

)1/q

�
(∑

l

( ∞∫
0

(
1

hp(s−1)
a

p−1
l Ω

p
p (f ′, alh)

)q/p dh

h

)p/q)1/p

=
(∑

l

a
p−1+p(s−1)
l

)1/p
( ∞∫

0

(
Ωp(f ′, t)

ts−1

)q dt

t

)1/q

� c‖f ′‖
Bs−1

p,q (R)

(∑
l

(
sup
Il

|g′|
)sp−1

)1/p

.

Now we follow [7, proof of Theorem 7]. By definition, the function g′ vanishes at the endpoints of Il . Let βl be one
of these endpoints. Furthermore, there is at least one point ξl ∈ Il such that∣∣g′(ξl)

∣∣ = sup
Il

|g′|.

Hence∑
l

sup
Il

|g′|sp−1 =
∑

l

∣∣g′(ξl) − g′(βl)
∣∣sp−1 � νsp−1(g

′,∞)sp−1.

By (13), we conclude that( ∞∫
0

(
1

h(s−1)p

∑
l

∫
I ′
l

∣∣�h(f
′ ◦ g)(x)

∣∣p∣∣g′(x)
∣∣p dx

)q/p dh

h

)1/q

� c‖f ′‖
Bs−1

p,q (R)
‖g‖s−(1/p)

BV1
sp−1

. (14)

Substep 2.2. Since the nonempty intervals I ′′
l have length equal to h, we have

∑
l

∫
I ′′
l

∣∣�h(f
′ ◦ g)(x)

∣∣p∣∣g′(x)
∣∣p dx � h

(
2‖f ′‖∞

)p
∑

l

sup
I ′′
l

|g′|p. (15)

As above we observe that g′ vanishes in at least one endpoint of I ′′
l . Then arguing as in the preceding substep, we

have ∑
sup
I ′′

|g′|p � c1ν
p
p (g′, h).
l l
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By Proposition 2, and by (15), we deduce that( ∞∫
0

(
1

h(s−1)p

∑
l

∫
I ′′
l

∣∣�h(f
′ ◦ g)(x)

∣∣p∣∣g′(x)
∣∣p dx

)q/p dh

h

)1/q

� c2‖f ′‖∞‖g‖Bs
p,q (R). (16)

By (14), (16), and by the embeddings

Bs
p,q(R) ↪→ B

1+1/(sp−1)

sp−1,1 (R) ↪→ BV1
sp−1(R), (17)

where the first one follows by the condition s − (1/p) > 1, and the second by (10), we deduce inequality (4). This
ends up the partial proof of Theorem 1.

4. Concluding remarks

4.1. Symbolic calculus on Lizorkin–Triebel algebras

Lizorkin–Triebel spaces represent generalizations of Sobolev spaces to fractional order of smoothness. We refer to
[16,17] for the definition and basic properties. Theorem 1 has a counterpart for this scale as well.

Theorem 2. Let us assume that the following two conditions hold:

• s > 1 + (1/p),
• p > 4/3 or 1/p < s − [s].

If f : R → R is a Borel function such that f (0) = 0, then f operates in F s
p,q(R) if and only if f ∈ F s

p,q(R)loc.

The basic ideas to prove this counterpart are the same as in case of Besov spaces. However, it becomes more
technical. As in case of Theorem 1 the given conditions can be weakened. Also Theorem 2 remains valid under the
condition (1). In a sense the result is a little bit better for Lizorkin–Triebel spaces, since there is no longer dependence
on q . Details may be found in [9].

4.2. Local and periodic results

Theorems 1 and 2 have counterparts for local spaces, and spaces defined on the circle S1. They can be deduced
by using appropriate cut-off functions, and the so-called lifting property, see [10] and [4, Proposition 2.4]. To avoid
repetition we shall use the generic notation Es

p(R) instead of Bs
p,q(R) and F s

p,q(R), respectively. Similarly, Es
p(R)loc

replaces Bs
p,q(R)loc as well as F s

p,q(R)loc.

Theorem 3. Under the same restrictions as either in Theorem 1 (in case of the Besov spaces) or in Theorem 2 (in case
of the Lizorkin–Triebel spaces) we have the following:

(i) if f1 and f2 are functions in Es
p(R)loc, then the same is true for f1 ◦ f2;

(ii) if f1 and f2 are functions in Es
p(S1, S1), then the same is true for f1 ◦ f2.

By definition, a function f :S1 → C belongs to Es
p(S1) if the function x �→ f (eix) belongs to Es

p(R)loc. We denote

by Es
p(S1, S1) the set of functions f ∈ Es

p(S1) such that |f (z)| = 1 for all z ∈ S1.

4.3. Symbolic calculus in the multi-dimensional situation

The conjecture applies as well to the Banach algebras Es
p(Rn) ∩ L∞(Rn), see [14, 4.6.4, p. 222]. In 1970 J. Peetre

[12] studied the composition of smooth functions f with functions g ∈ Bs
p,q(Rn)∩L∞(Rn). The method he used con-

sisted in a combination of nonlinear interpolation, Gagliardo–Nirenberg inequality, and the multiplication properties
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of Besov spaces. Picking up the same principles, we can prove the following almost optimal superposition theorem
for Besov spaces defined on R

n, see [5] for more details.

Theorem 4. Let the numbers s, s′,p satisfy the conditions s′ > s > 1 and 1/p < s − [s]. For all function f such
that f (0) = 0, f ∈ Bs′

p,∞(R)loc, and all function g ∈ Bs
p,q(Rn) ∩ L∞(Rn), the composed function f ◦ g belongs to

Bs
p,q(Rn).
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