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Abstract

We study nonlinear Neumann type boundary value problems related to ergodic phenomenas. The particularity of th
lems is that the ergodic constant appears in the (possibly nonlinear) Neumann boundary conditions. We provide, for
domains, several results on the existence, uniqueness and properties of this ergodic constant.

Résumé

Nous étudions des problèmes elliptiques non linéaires, associés à des conditions de Neumann, qui sont reliés
nomènes ergodiques. La particularité de ces problèmes vient du fait que la constante ergodique apparaît dans la
de Neumann qui peut être non linéaire. Nous présentons, dans le cas de domaines bornés, plusieurs résultats sur
l’unicité et les propriétés de cette constante ergodique.
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1. Introduction

In this article, we are interested in what can be called “boundary ergodic control problems” which l
to solve the following type of fully nonlinear elliptic equations associated with nonlinear Neumann bou
conditions

F(x,Du,D2u) = λ in O, (1)

L(x,Du) = µ on∂O, (2)

where, say,O ⊂ Rn is a smooth domain,F and L are, at least, continuous functions defined respectively
�O × Rn × Sn and �O × Rn with values inR, whereSn denotes the space of real,n × n, symmetric matrices. Mor
precise assumptions onF andL are given later on.

The solutionu of this nonlinear problem is scalar andDu, D2u denote respectively gradient and Hessian ma
of u. Finally, λ, µ are constants:µ, which is called below the “boundary ergodic cost”, is part of the unkno
while λ is mainly here considered as a given constant for reasons explained below.

In order to justify the study of such problems, we first concentrate only on Eq. (1), without boundary con
i.e. on the case whenO = Rn. In this framework, under suitable assumptions onF , the typical result that on
expects is the following: there exists a unique constantλ such that (1) has a bounded solution. Such results w
first proved for first-order equations by Lions, Papanicolaou and Varadhan [32] (see also Concordel [19
case of periodic equations and solutions. Recently, Ishii [28] generalizes these results in the almost perio
General results for second-order equations in the periodic setting are proved by Evans [22,23]. Resul
evolution case, when the equation is periodic both in space and time, were also obtained recently by So
and the first author [14]: the methods of [14], translated properly to the stationary case, are the one who wo
to the most general results in the case of second-order equations. All these results which hold for general e
without taking advantage of their particularities, are complemented by more particular results in the appl
we describe now.

The first application concerns the so-called ergodic control problems (either in the deterministic or sto
case). We refer to Bensoussan [15] for an introduction to such problems and to Bensoussan and Fre
Bagagiolo, Bardi and Capuzzo Dolcetta [7], Arisawa [3,4], Arisawa and Lions [6] for further developme
the Rn case and with different types of pde approaches. In this framework, (1) is the Bellman Equation
ergodic control problem,λ is the ergodic cost and the solutionu is the value function of the control problem.
this case, both the uniqueness ofλ and ofu – which can hold only up to an additive constant – is interesting for
applications. But it is rather easy to obtain the uniqueness ofλ in general, while the uniqueness ofu can be proved
only in the uniformly elliptic case and is generally false.

A second motivation to look at such problems is the asymptotic behavior ast → ∞ of solutions of the evolution
equation

ut + F(x,Du,D2u) = 0 in Rn × (0,+∞). (3)

A typical result here is the following: if there exists a uniqueλ such that (1) has a solution (typically in th
bounded solutions framework), then one should have

u(x, t)

t
→ λ locally uniformly ast → ∞.

Therefore the ergodic constant governs the asymptotic behavior of the associated evolution equation an
cases, one can even show that

u(x, t) − λt → u∞(x) ast → ∞,

whereu∞ solves (1).
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Such results were obtained recently, for first-order equations, by Fathi [25–27] and Namah and Roquejo
in the case whenF is convex inDu; these results were generalized and extended to a nonconvex framew
Barles and Souganidis [13]. To the best of our knowledge, there is not a lot of general results in the case of
order equations: the uniformly elliptic case seems the only one which is duable through the use of the
Maximum Principle and the methods of [14] which are used in the paper to prove the convergence to spa
periodic solutions but which can be used to show the convergence to solutions of the stationary equations

The third and last application (and maybe the most interesting one) concerns homogenization of ellip
parabolic pdes. This was the motivation of Lions, Papanicolaou and Varadhan [32] to study these types o
problems as it was also the one of Evans [22,23]. The ergodic problem is nothing but the so-called “cell prob
homogenization theory,λ being connected to the “effective equation”. We also refer the reader to Concorde
Evans and Gomes [24], Ishii [28] for results in this direction. The connections between ergodic proble
homogenization are studied in a systematic way in Alvarez and Bardi [1,2] and completely clarified.

Of course, the same questions have been studied in bounded (or unbounded) domains with suitable
conditions. For first-order equations, Lions [31] studies the ergodic problem in the case of homogeneous N
boundary conditions, while Capuzzo Dolcetta and Lions [18] study it in the case of state-constraints bound
ditions. For second-order equations, we refer the reader to Bensoussan and Frehse [17] in the case of hom
Neumann boundary conditions and to Lasry and Lions [30] for state-constraints boundary conditions. It i
pointing out that in all these works, the constantµ does not appear and the authors are interested in the consλ

instead.
The first and, to the best of our knowledge, only work where the problem of the constantµ appears, is the one o

Arisawa [5]. In this work, she studies two different cases: the case of bounded domains which we consider
the case of half-space type domains which contains different difficulties; we address this problem in a forth
work in collaboration with P.L. Lions and P.E. Souganidis. In the case of bounded domains, we improve he
in several directions: generality and regularity of the equation and boundary condition, possibility of ob
results in degenerate cases, uniqueness in more general frameworks, interpretation in terms of stochas
problems and connections of these types of ergodic problems with large time behavior of solutions of initia
problem with Neumann boundary conditions. We are able to do so since we use softer viscosity solutions’ m

It is worth pointing out that the role of the two constants are different: our main results say that, for anyλ, there
exists a unique constantµ := µ(λ) for which (1), (2) has a bounded solution. Therefore the role played previo
by λ is now played byµ. To prove such a result, we have to require some uniform ellipticity assumption oF ,
not only in order to obtain the key estimates which are needed to prove the existence of the solutionu but also
becauseµ can play its role only if the boundary condition is “seen in a right way by the equation”. Indee
counter-example of Arisawa [5], p. 312, shows that otherwiseµ cannot be unique. This vague statement is pa
justified in Section 6.

The proof of the existence of the solution relies on theC0,α estimates proved in [10]; in order to have an as s
contained paper as possible, we describe these results in the Appendix. Here also the uniform ellipticity ofF plays
a role, at least in the case when the Neumann boundary condition is indeed nonlinear. But if the boundary c
is linear, some less restrictive ellipticity assumptions onF can be made: this is the reason why we distinguish
two cases below.

An other question we address in this paper, are the connections with the large time behavior of the solu
the two different type of evolution problems

vt + F(x,Dv,D2v) = λ in O × (0,+∞), (4)

L(x,Dv) = µ on∂O × (0,+∞), (5)

and

wt + F(x,Dw,D2w) = 0 inO × (0,+∞), (6)

wt + L(x,Dw) = 0 on∂O × (0,+∞). (7)
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In the case of (4), (5), we show that the ergodic constantµ(λ) is characterized as the only constantµ for which
the solutionv remains bounded. In the case of (6), (7), the expected behavior is to havet−1w(x, t) converging
to a constant̃λ which has to be such that (1), (2) has a solution forλ̃ = λ = µ(λ). We prove that, under suitab
conditions, such a constantλ̃, i.e. a fixed point of the mapλ �→ µ(λ), does exist and that we have the expec
behavior at infinity forw.

Finally we consider the case when the equation is the Hamilton–Jacobi–Bellman Equation of a stochasti
problem with reflection: this gives us the opportunity to revisit the results on the uniqueness ofµ in a degenerate
context and to provide a formula of representation forµ.

The paper is organized as follows. In Section 2, we prove the existence ofu andµ in the case of nonlinea
boundary conditions while in Section 3 we treat the linear case. In Section 4, we examine the uniqueness p
for µ together with its dependence inλ, F andL; among the results of this part, there is the existence ofλ̃. Section 5
is devoted to present the results connecting the ergodic problem with the asymptotic behavior of solution
nonlinear problem. Finally we study the connections with stochastic control problem with reflection in Sec

2. The case of nonlinear boundary conditions

To state our result, we use the following assumptions

(O1) O is a bounded domain with aW 3,∞ boundary.

We point out that such assumption on the regularity of the boundary is needed both in order to use the
ison results of [9] (here theW3,∞ regularity is needed) and the localC0,α-estimates of [10] (here aC2 regularity
would be enough).

We denote byd the sign-distance function to∂O which is positive inO and negative inRn \ �O. If x ∈ ∂O, we
recall thatDd(x) = −n(x) wheren(x) is the outward unit normal vector to∂O at x. The main consequence
(O1) is thatd is W3,∞ in a neighborhood of∂O.

Next we present the assumptions onF andL.

(F1) (Regularity) The functionF is locally Lipschitz continuous on�O×Rn ×Sn and there exists a constantK > 0
such that, for anyx, y ∈ �O, p,q ∈ Rn, M,N ∈ Sn∣∣F(x,p,M) − F(y, q,N)

∣∣ � K
{|x − y|(1+ |p| + |q| + ‖M‖ + ‖N‖) + |p − q| + ‖M − N‖}.

(F2) (Uniform ellipticity) There existsκ > 0 such that, for anyx ∈ �O, p ∈ Rn, M,N ∈ Sn with N � 0

F(x,p,M + N) − F(x,p,M) � −κ Tr(N).

(F3) There exists a continuous functionF∞ such that

t−1F(x, tp, tM) → F∞(x,p,M) locally uniformly, ast → +∞.

For the boundary conditionL, we use the following assumptions.

(L1) There existsν > 0 such that, for all(x,p) ∈ ∂O × Rn andt > 0, we have

L
(
x,p + tn(x)

) − L(x,p) � νt. (8)

(L2) There is a constant�K > 0 such that, for allx, y ∈ ∂O, p,q ∈ Rn, we have∣∣L(x,p) − L(y, q)
∣∣ � �K[(

1+ |p| + |q|)|x − y| + |p − q|]. (9)
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(L3) There exists a continuous functionL∞ such that

t−1L(x, tp) → L∞(x,p) locally uniformly, ast → +∞.

Before stating and proving the main result of this section, we want to emphasize the fact that the ab
sumptions are very well adapted for applications to stochastic control and differential games: indeed (F1)-
clearly satisfied as soon as the dynamic has bounded and Lipschitz continuous drift, diffusion matrix and d
of reflection and when the running and boundary cost satisfies analogous properties (maybe these assum
not optimal but they are rather natural) while (F3)-(L3) are almost obviously satisfied because of the stru
the Bellman or Isaac Equations (“sup” or “inf sup” of affine functions inp andM).

Our result is the

Theorem 2.1. Assume(O1), (F1)–(F3)and(L1)–(L3) then, for anyλ ∈ R, there existsµ ∈ R such that(1), (2) has
a continuous viscosity solution.

Proof. The proof follows the strategy of Arisawa [5]. For 0< ε 	 α 	 1, we introduce the approximate proble

F(x,Dũ,D2ũ) + εũ = λ in O, (10)

L(x,Dũ) + αũ = 0 on∂O. (11)

1. It is more or less standard to prove that this problem has a unique continuous viscosity solution us
Perron’s method of Ishii [29] and the comparison arguments of Barles [9]; the only slight difficulty comes fro
x-dependence ofF which is a priori not sufficient to obtain a suitable comparison. In the Appendix, we ex
why the usual approach does not work and we show how to overcome this difficulty by borrowing ideas of
and Ramaswamy [12].
2. The next step consists in obtaining basic estimates onũ. We drop the dependence ofũ in ε andα for the sake of
simplicity of notations. To do so, we use the fact thatO is bounded and therefore we can assume without los
generality thatO ⊂ {x1 > 0}.

We introduce the smooth functions

ū(x) = C
(
2− exp(−γ x1)

)
, u(x) = −C

(
2− exp(−γ x1)

)
.

Notice thatu < 0< ū on �O.
By using (F1) and (F2), one sees that, forγ andC large enough, one has

F(x,Dū,D2ū) � F(x,0,0)− KCγ exp(−γ x1) + kCγ 2 exp(−γ x1) > 0,

and

F(x,Du,D2u ) � F(x,0,0)+ KCγ exp(−γ x1) − kCγ 2 exp(−γ x1) < 0.

Next we consider max�O(ũ − ū) and min�O(ũ − u ) which are achieved respectively atx1, x2 ∈ �O. Because of
the above properties and sinceũ is a viscosity solution of (10), (11), these max and min cannot be achievedO
and, in any case, the “F ” inequalities cannot hold. The “L” inequalities lead to the estimates

αũ(x) � α
(
ū(x) − ū(x1)

) + sup
�O

∣∣L(
x,Dū(x)

)∣∣,
and

αũ(x) � α
(
u(x) − u(x2)

) − sup
�O

∣∣L(
x,Du(x)

)∣∣
for everyx ∈ �O. Thus for some positive constant�C(F,L) (depending onF andL) we have

‖αũ‖∞ � �C(F,L). (12)
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3. Let x0 be any point of�O and setv(x) = ũ(x) − ũ(x0) for x ∈ �O. We claim thatv remains uniformly bounded a
α tends to 0 ifε 	 α.

To prove the claim, we argue by contradiction assuming thatM := ‖v‖∞ → ∞ asα → 0 and we setw(x) :=
M−1v(x). The functionw solves

M−1F(x,MDw,MD2w) + εw = M−1λ − M−1εũ(x0) in O, (13)

M−1L(x,Dw) + αw = −M−1αũ(x0) on∂O. (14)

Moreover‖w‖∞ = 1 andw(x0) = 0.
Sincew is uniformly bounded, theC0,β regularity results and estimates of Barles and Da Lio [10] apply

thereforew is uniformly bounded inC0,β , for any 0< β < 1 (see also the Appendix, for a description of th
results).

Using Ascoli’s Theorem, one may assume without loss of generality thatw converges uniformly to som
C0,β -function�w and taking (F3)-(L3) in account, the stability results for viscosity solutions implies that�w solves

F∞(x,D�w,D2�w ) = 0 inO, (15)

L∞(x,D�w ) = 0 on∂O. (16)

Moreover‖�w‖∞ = 1 and�w(x0) = 0.
We are going to show now that all these properties lead to a contradiction by Strong Maximum Princip

arguments. Since�w is continuous there existsx ∈ �O such that|�w(x)| = 1.
We first remark thatF∞ satisfies (F1), (F2) as well and is homogeneous of degree 1; therefore the

Maximum Principle of Bardi and Da Lio [8] implies that necessarilyx ∈ ∂O. In fact−1 < �w < 1 in O.
We assume for example that�w(x) = 1, the other case being treated similarly. To conclude, we are going t

the following lemma.

Lemma 2.1. There existsr > 0 and a smooth functionϕ on �B(x, r) such thatϕ(x) = 0, ϕ(y) > 0 on ∂O ∩
�B(x, r) \ {x}

F∞
(
y,Dϕ(y),D2ϕ(y)

)
> 0 on �B(x, r), (17)

and

Dϕ(x) = kn(x),

with k > 0.

The proof of this lemma is given in the Appendix; we show how to use it in order to conclude.
SinceDϕ(x) = kn(x), we haveL∞(x,Dϕ(x)) > 0. But ϕ is smooth and therefore, by choosingθ < r small

enough, we have also

L∞
(
y,Dϕ(y)

)
> 0 on �B(x, θ) ∩ ∂O. (18)

On an other hand, by choosingτ > 0 small enough, we can have�w(y) − τϕ(y) < 1 = �w(x) − τϕ(x) for y ∈
∂B(x, θ) ∩ �O. Indeed, fory close to∂O, ϕ(y) > 0 while inO we have�w(y) < 1.

We deduce from this property that, if we consider max�B(x,θ)∩ �O(�w − τϕ), this maximum is necessarily achiev

in B(x, θ) ∩ �O and therefore it is a local maximum point of�w − τϕ but, taking in account the fact thatF∞ and
L∞ are homogeneous of degree 1, this is a contradiction with the inequalities (17), (18).
4. From step 3, the functionsv are uniformly bounded and solve

F(x,Dv,D2v) + εv = λ − εũ(x0) in O, (19)

L(x,Dv) + αv = −αũ(x0) on∂O. (20)
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Using again the regularity results of Barles and Da Lio [10] (see also the Appendix), we deduce that th
tionsv are also uniformly bounded inC0,β for any 0< β < 1 and by Ascoli’s Theorem, extracting if necessar
subsequence, we may assume that they converge uniformly to a functionu ∈ C0,β(�O). Moreover, sinceαũ is also
uniformly bounded, we can also extract a subsequence such that−αũ(x0) converges to someµ ∈ R.

In order to conclude, we just pass to the limit in (19), (20) with a choice ofε such thatεα−1 → 0. �

3. The case of linear boundary conditions

We consider in this section the case whenL is given by〈
Du,γ (x)

〉 + g(x) = µ on∂O, (21)

where the functionsγ andg satisfies

(L1′) g ∈ C0,β(∂O) for some 0< β � 1 andγ is a Lipschitz continuous function, taking values inRn and such
that〈γ (x), n(x)〉 � ν > 0 for anyx ∈ ∂O, where we recall thatn(x) denotes the unit exterior normal vect
to ∂O atx.

In this linear case, we are able to weaken the ellipticity assumption onF . In the following, forq ∈ Rn, the
notationq̂ stands forq/|q|.

(F2′) (Partial uniform ellipticity) There exists a Lipschitz continuous functionx �→ A(x), defined on�O and taking
value in the space of symmetric, definite positive matrix andκ > 0 such that
(i) for anyx ∈ ∂O, A(x)γ (x) = n(x),

(ii) for any x ∈ �O, p ∈ Rn \ {0}, M,N ∈ Sn with N � 0

F(x,p,M + N) − F(x,p,M) � −κ〈Nq,q〉 + o(1)‖N‖,
with q = ̂A−1(x)p and whereo(1) denotes a function of|p| which converges to 0 as|p| tends to+∞.

If γ ≡ n, this assumption is satisfied in particular if (formally)

FM(x,p,M) � −κp̂ ⊗ p̂ + o(1) a.e. in�O × Rn × Sn,

where, as above,o(1) denotes a function of|p| which converges to 0 as|p| tends to+∞; this means a non
degeneracy property in the gradient direction, at least for large|p|. This corresponds to the choiceA(x) ≡ Id. We
recall that for allp ∈ Rn, p ⊗ p denotes the symmetric matrix defined by(p ⊗ p)ij = pipj .

In this case, unlike the uniform elliptic case, (F2′) is not enough to ensure a comparison property forF , thus we
add

(F4′) For anyK̃ > 0, there exists a functionmK̃ :R+ → Rn such thatmK̃(t) → 0 whent → 0 and such that, fo
all η > 0

F(y, q,Y ) − F(x,p,X) � mK̃

(
η + |x − y|(1+ |p| ∨ |q|) + |x − y|2

ε2

)
for all x, y ∈ �O, p,q ∈ Rn and for all matricesX,Y ∈ Sn satisfying the following properties

− K̃

ε2
Id �

(
X 0
0 −Y

)
� K̃

ε2

(
Id − Id

− Id Id

)
+ K̃η Id, (22)

|p − q| � K̃ηε
(
1+ |p| ∧ |q|), (23)

|x − y| � K̃ηε. (24)
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Theorem 3.1. Assume(F1)-(F2′)-(F3)-(F4′) and(L1′) then, for anyλ ∈ R, there existsµ ∈ R such that(1), (2)has
a continuous viscosity solution.

We skip the proof since it follows readily the one of Theorem 2.1; we just point out that the keyC0,β -estimates
follow from the linear case in [10] (see also the Appendix) while the Strong Maximum Principle still holds
(F2′) as we pointed it out in the Appendix.

4. Uniqueness results for the boundary ergodic cost

In standard problems, the uniqueness of the ergodic cost is rather easy to obtain, while the uniquene
solutionu is a more difficult question. Here, even the uniqueness ofµ is a nonobvious fact becauseµ appears only
in the boundary condition and clearly this boundary condition has to be sufficiently “seen” in order to have
uniqueness property. The counter-example of Arisawa [5] for first-order equations shows that, in the case
losses of boundary conditions can occur,µ is not unique in general.

To state the uniqueness result, we introduce the following abstract assumption

(U1) If w is an upper semicontinuous viscosity subsolution of (1), (2), there exists a sequence(wε)ε of upper
semicontinuous functions such that lim sup∗ wε = w on �O,1 satisfying in the viscosity sense

F(x,Dwε,D
2wε) � λε < λ in O, (25)

L(x,Dwε) � µ + oε(1) on∂O. (26)

Our result is the

Theorem 4.1. Under the assumptions of either Theorem2.1or 3.1and if (U1) holds, ifu1 is a subsolution of(1),
(2) associated toλ1,µ1 and if u2 is a supersolution of(1), (2)associated toλ2,µ2 with λ1 � λ2 then necessarily
µ1 � µ2. In particular, for anyλ, the boundary ergodic costµ is unique.

Proof. We argue by contradiction assuming thatµ1 < µ2.
Let uε

1 be a continuous function associated tou1 through assumption (U1) withε chosen in such a way that

L(x,Duε
1) � µ on∂O,

whereµ := 1
2(µ1 + µ2).

We consider max�O× �O (uε
1(x)−u2(y)−ψα(x, y)) where for allα > 0 ψα is the test-function built in [9] for the

boundary conditionL − µ (we recall that this test-function depends only on the boundary condition).
Following readily the arguments of [9], one is led to the inequalities

F(x,p,X) � λ1,ε < λ1, (27)

F(y, q,Y ) � λ2, (28)

where(p,X) ∈ D2,+uε
1(x̄) and(q,Y ) ∈ D2,−u2(ȳ). Then either the standard comparison arguments or the

ments of [12] shows that

F(x,p,X) − F(y, q,Y ) � oα(1),

1 We recall that the half-relaxed limit limsup∗ wε is defined by: limsup∗ wε(x) = limsupy→x wε(y) for anyx ∈ �O.

ε→0
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and hence, by subtracting the inequalities (27) and (28), we haveoα(1)� λ1,ε − λ2 < 0. We get the contradictio
by lettingα tends to 0. And the proof of the first part is complete.

Of course, the uniqueness of the boundary ergodic cost follows since, ifu andv are two solutions of (1), (2
with the sameλ and roles withµ, µ̃ respectively, we can apply the above result withu1 = u, µ1 = µ, λ1 = λ and
u2 = v, µ2 = µ̃, λ2 = λ: this yieldsµ1 � µ2. But using that the two solutions play symmetric roles, we ded
immediatelyµ = µ̃, i.e. the uniqueness of the ergodic cost.�
Remark 4.1. As the proof shows it, the result “µ1 � µ2 ⇒ λ1 � λ2” is easy to obtainwithout assuming(U1), just
as a straightforward consequence of the comparison arguments. It is therefore true as soon asF andL satisfy the
conditions of the comparison result, i.e. under far weaker assumptions than the result of Theorem 4.1.
point in Theorem 4.1 is really the result “µ1 < µ2 ⇒ λ1 > λ2”.

Now we turn to the checking of (U1) which can be formulated in the following way.

Theorem 4.2. The boundary ergodic costµ is unique in the two following cases

(i) under the assumption of Theorem2.1,
(ii) under the assumption of Theorem3.1 on F and of Theorem2.1 on L, if F(x,p,M) is convex in(p,M) and

L(x,p) is convex inp.

It is worth mentioning that, in the case of the result (ii), we have the uniqueness ofµ for problems for which we
do not have a priori an existence result.

Proof of Theorem 4.2. In order to apply Theorem 4.1, it is enough to check that (U1) holds.
In the case when (F1), (F2) holds, recalling that we may assumeO ⊂ {x1 > 0}, we set

wε = w − εϕ(x) for x ∈ �O,

whereϕ(x) := 2−exp(−σx1) for someσ > 0 chosen later. Ife1 := (1,0, . . . ,0), denoting by�(x) := exp(−σx1),
we have

F(x,Dwε,D
2wε) = F

(
x,Dw − εσ�(x)e1,D

2w + εσ 2�(x)e1 ⊗ e1
)

� F(x,Dw,D2w) − κεσ 2�(x) + Kεσ�(x).

By choosingσ > Kκ−1, the quantity−κεσ 2�(x) + Kεσ�(x) becomes strictly negative on�O and we have
F(x,Dwε,D

2wε) � λε < λ. The checking for the boundary condition is straightforward using (L2).
In the case when (F2′) holds, we cannot argue in the same way. We set

wε = (1− ε)w − εcϕ(x),

whereϕ(x) is defined as above andc > 0 will be chosen later. By the convexity ofF , we have

F(x,Dwε,D
2wε) � (1− ε)F (x,Dw,D2w) + εF

(
x,−cDϕ(x),−cD2ϕ(x)

)
.

To conclude, it is enough to show that we can chooseσ andc in order that

F
(
x,−cDϕ(x),−cD2ϕ(x)

)
< λ on �O.

We have

F
(
x,−cDϕ(x),−cD2ϕ(x)

) = F
(
x,−cσ�(x)e1, cσ

2�(x)e1 ⊗ e1
)
,

and by (F2′)
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F
(
x,−cσ�(x)e1, cσ

2�(x)e1 ⊗ e1
)

� F
(
x,−cσ�(x)e1,0

) − κcσ 2�(x)
(〈

̂A−1(x)e1, e1
〉)2 + cσ 2�(x)o(1).

Finally by using (F1) and the fact thatA is positive definite we get

F
(
x,−cDϕ(x),−cD2ϕ(x)

)
� F(x,0,0)+ Kcσ�(x) − Cκcσ 2�(x) + cσ 2�(x)o(1),

for some (small) constantC > 0 ando(1) → 0 asc, σ → ∞. We conclude by first choosingσ large enough and
thenc large enough. The checking forL is done in an analogous way and even simpler because we do not n
sign. �

Now we turn to an almost immediate corollary of the uniqueness

Corollary 4.1. Under the assumptions of either Theorem2.1 or Theorem3.1 and Theorem4.2(iii), the mapλ �→
µ(λ) is continuous and decreasing.

Proof. The solutionsu := u(λ) of (1), (2) we build in the proofs of Theorems 2.1 and 3.1 with the prop
u(x0) = 0 are bounded inC0,β(�O) for λ bounded. By Ascoli’s Theorem, this means that theu(λ) are in a compac
subset ofC(�O) if λ remains bounded. Using this property together with the stability result for viscosity solu
and the fact thatµ is also bounded ifλ is bounded by the basic estimates onαu of the existence proof, yields easi
the continuity ofµ w.r.t. λ. Here, of course, the uniqueness property forµ plays a central role.

The monotonicity is a direct consequence of Theorem 4.1 since it shows that ifλ1 � λ2, then necessarily
µ(λ1) � µ(λ2). Thus the result follows. �
Corollary 4.2. Under the assumptions of Corollary4.1, there exists a uniqueλ := λ̃ such thatµ(λ̃) = λ̃.

Proof. The mapχ(λ) := λ − µ(λ) is continuous, strictly increasing onR and satisfiesχ(−∞) = −∞ and
χ(+∞) = +∞. Hence the result is a direct consequence of the Intermediate Values Theorem.�

We conclude this section by a result describing a little bit more precisely the dependence ofµ in F andL. Of
course, sinceλ can be incorporated inF , this result gives also informations on the behavior ofµ with respect toλ
but we argue here with a fixedλ. We use the natural notationµ(F,L) to emphasize the dependence ofµ in these
two variables.

Theorem 4.3. If F1,F2 andL1,L2 satisfies the assumptions of Corollary4.1and ifF1 −F2, L1 −L2 are bounded,
there exists a constant̃C > 0 such that∣∣µ(F1,L1) − µ(F2,L2)

∣∣ � C̃
(‖F1 − F2‖∞ + ‖L1 − L2‖∞

)
.

Proof. We start by theuniformly elliptic case.
We denote byu1 the solution associated toF1,L1 andµ(F1,L1). Applying readily the computations of th

proof of Theorem 4.2, it is easy to show thatw := u1 − k‖F1 − F2‖∞ϕ (ϕ being the function defined in the pro
of Theorem 4.1) is a subsolution for the equationF2. Moreover

L2(x,Dw) � µ(F1,L1) + ‖L1 − L2‖∞ + C‖F1 − F2‖∞,

for some constantC. Applying Theorem 4.1, we deduce that

µ(F2,L2) � µ(F1,L1) + ‖L1 − L2‖∞ + C‖F1 − F2‖∞,

and the result follows by exchanging the roles of(F1,L1) and(F2,L2).
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For theconvex, nonuniformly elliptic case, we argue similarly but by taking this timew := θu1 − (1 − θ)kϕ

with k > 0 large to be chosen later and for some suitable 0< θ < 1. Because of the convexity ofF2, w satisfies for
someλ > 0, C > 0

F2(x,Dw,D2w) � ‖F1 − F2‖∞ + θλ − (1− θ)Ck.

We choosek > 0 large enough and thenθ in order to have

‖F1 − F2‖∞ + θλ − (1− θ)Ck = λ.

Next we examine the boundary condition: using again the convexity ofL1, we obtain

L2(x,Dw) � θµ(F1,L1) + (1− θ)�Ck + ‖L1 − L2‖∞.

As above we deduce

µ(F2,L2) � θµ(F1,L1) + (1− θ)�Ck + ‖L1 − L2‖∞.

In order to conclude, we have to play withk andθ . The above inequality can be rewritten as

µ(F2,L2) − µ(F1,L1) − ‖L1 − L2‖∞ � (1− θ)
[�Ck − µ(F1,L1)

]
,

and with the choice ofk andθ

(1− θ) = ‖F1 − F2‖∞
Ck + λ

.

Finally

µ(F2,L2) − µ(F1,L1) − ‖L1 − L2‖∞ � ‖F1 − F2‖∞
�Ck − µ(F1,L1)

Ck + λ
,

and the conclusion follows by lettingk to +∞. �
We conclude this section by showing that, under the hypotheses of Theorem 2.1, the solution of (1), (2) i

up to additive constants.

Theorem 4.4. Under the assumptions of Theorem2.1, the solution of the problem(1), (2) is unique up to additive
constants.

Proof. Suppose by contradiction thatu1 andu2 are two solutions of (1), (2) associated toλ andµ(λ), such that
the functionw := u1 − u2 is not constant.

We first show thatw is a subsolution of a suitable Neumann problem; this is the aim of the following le
in which, for x ∈ ∂O, we denote byDT w(x) the quantityDw(x) − (Dw(x) · n(x))n(x). DT w(x) represents the
projection ofDw(x) on the tangent hyperplane to∂O atx. ForX ∈ Sn, we use also the notation

M+(X) = sup
κId�A�K Id

Tr(AX),

for the Pucci’s extremal operator associated to the constantsK and κ appearing in assumptions (F1) and (F
respectively.

Lemma 4.1. Under the assumptions of Theorem2.1,w = u1 − u2 is a viscosity subsolution of

−M+(D2w) − K|Dw| = 0 in O, (29)
∂w

∂n
− C|DT w| = 0 on∂O (30)

whereC > max(K,
�K ), K, �K,ν being the constants appearing in(F1) and (L1), (L2) .

ν
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We postpone the (sketch of the) proof of this lemma to the Appendix and conclude the proof of Theor
Using this lemma, the functionw = u1 − u2 is a nonconstant viscosity subsolution of (29), (30). To obtain
contradiction, we use the same arguments as in the step 3 of the proof of Theorem 2.1: by the Strong M
Principle,w cannot achieve its maximum inO. But then Lemma 2.1 and the same arguments as in this step 3
to a contradiction. �

5. Asymptotic behavior as t → +∞ of solution of nonlinear equations

We describe in this section two properties related on the asymptotic behavior of solutions of parabolic eq
which are connected to the boundary ergodic cost.

We first consider the evolution problem

χt + F(x,Dχ,D2χ) = λ in O × (0,∞), (31)

L(x,Dχ) = µ on∂O × (0,∞), (32)

χ(x,0)= u0(x) in O. (33)

Theorem 5.1. Under the assumptions of Corollary4.1, there exists a unique viscosity solutionχ of (31)–(33)
which is defined for all time. Moreover,χ remains uniformly bounded in time if and only ifµ = µ(λ).

Proof. The existence and uniqueness ofχ is a standard result. Only the second part of the result is new. To p
it, we first assume thatµ = µ(λ). If u is the solution of (1), (2), it is also a solution of (31)–(33) with initial datau

and by standard comparison argument∥∥χ(·, t) − u(·)∥∥∞ � ‖u0 − u‖∞,

which implies the claim.
Conversely, ifχ is uniformly bounded, by considering the functions

χα(x, t) := χ(x,α−1t),

for α > 0 small, it is straightforward to show that

χ̄ := lim sup∗ χα and χ := lim inf∗ χα,

are respectively sub and supersolution of (1), (2). A simple application of Theorem 4.1 shows thatµ = µ(λ). And
the proof is complete. �

We next consider the problem

φt + F(x,Dφ,D2φ) = 0 inO × (0,∞), (34)

φt + L(x,Dφ) = 0 on∂O × (0,∞), (35)

φ(x,0)= φ0(x) in O, (36)

whereφ0 ∈ C(�O).
Our result is the

Theorem 5.2. Under the assumptions of Corollary4.1, there exists a unique viscosity solution of(34)–(36)which
is defined for all time. Moreover, ast → +∞, we have

φ(x, t)

t
→ −λ̃ uniformly on�O,

whereλ̃ is defined in Corollary4.2.
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Proof. We denote bỹu the solution of (1), (2) associated toλ = λ̃ andµ = λ̃.
The existence and uniqueness ofφ is a consequence of the results in [9]. Moreover, sinceũ − λ̃t is a solution of

(34), (35), the comparison result for this evolution equation yields∥∥φ(x, t) − ũ(x) + λ̃t
∥∥∞ � ‖φ0 − ũ‖∞.

Dividing by t and lettingt tends to infinity provides the result.�

6. On ergodic stochastic control problems

We are interested in this section in control problems of diffusion processes with reflection. The dyna
given by the solution of the following problem in which the unknown is a pair((Xt )t�0, (kt )t�0) where(Xt )t�0
is a continuous process inRn and(kt )t�0 is a process with bounded variations{

dXt = b(Xt ,αt )dt + σ(Xt ,αt )dWt − dkt , X0 = x ∈ �O,

kt = ∫ t

0 1∂O(Xs)γ (Xs)d|k|s , Xt ∈ �O, ∀t � 0,
(37)

where(Wt)t is ap-dimensional Brownian motion for somep ∈ N. The process(αt )t , thecontrol, is some progres
sively measurable process with respect to the filtration associated to the Brownian motion with values in a
metric spaceA. The drift b and the diffusion matrixσ are continuous functions defined onΩ × A taking values
respectively inRn and in the space ofN ×p matrices. We assume that bothb andσ are Lipschitz continuous inx,
uniformly in α ∈ A. Finally γ satisfies the assumptions given in Section 3.

Under these assumptions, there exists a unique pair((Xt )t�0, (kt )t�0) solution of this problem, the existenc
being proved in Lions and Sznitman [33] and the uniqueness in Barles and Lions [11].

Then we define the value-function of the finite horizon, stochastic control problem by

U(x, t) = inf
(αt )t

Ex

[ t∫
0

[
f (Xs,αs) + λ

]
dt +

t∫
0

[
g(Xs) + µ

]
d|k|s + u0(Xt )

]
, (38)

whereEx denotes the conditional expectation with respect to the event{X0 = x}, f is a continuous function define
on �O × A which is Lipschitz continuous inx uniformly w.r.t.α ∈ A, g ∈ C0,β(∂O) andu0 ∈ C(�O), λ andµ are
constants.

Under the above assumptions, by classical results,U is the unique viscosity solution of

Ut + F(x,DU,D2U) = λ in O × (0,∞),

∂U

∂γ
= g + µ on∂O × (0,∞),

U(x,0)= u0(x) in O,

with

F(x,p,M) = sup
α∈A

{
−1

2
Tr

[
a(x,α)M

] − 〈
b(x,α),p

〉 − f (x,α)

}
for anyx ∈ �O, p ∈ Rn andM ∈ Sn wherea(x,α) = σ(x,α)σT (x,α). We are going to use this Hamilton–Jacob
Bellman type evolution problem both to study the stationary ergodic problem (and, in particular, to revisit th
of Theorem 4.1 in adegeneratecontext) and to connect the constantµ(λ) with the behavior ofU ast → ∞ in the
spirit of Theorem 5.1. Our result is the following.

Theorem 6.1. Under the above assumptions onσ , b, f , g andu0, we have
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(i) For the stationary ergodic problem, the analogue of Theorem4.1 (i.e.“µ1 < µ2 ⇒ λ1 > λ2”) is equivalent to
the property

sup
x∈ �O

lim sup
t→+∞

(
inf
(αt )t

Ex

t∫
0

d|k|s
)

= +∞. (39)

In particular, under this condition, ifµ(λ) exists for someλ ∈ R, it is unique.
(ii) If (39)holds, for anyλ, there exists at most a constantµ(λ) for whichU is uniformly bounded.

(iii) We set

m(x, t) := inf
(αt )t

Ex

( t∫
0

d|k|s
)

. (40)

Assume that(39)holds and that there exists a constantµ(λ) for whichU is uniformly bounded. Ifm(xn, tn) →
+∞ with xn ∈ �O, tn → +∞, then

µ(λ) := − lim
n→+∞

{
inf
(αt )t

[(
Exn

[ tn∫
0

d|k|s
])−1

J
(
xn, tn, (αt )t

)]}
(41)

where

J
(
xn, tn, (αt )t

) := Exn

( tn∫
0

[
f (Xs,αs) + λ

]
dt +

tn∫
0

g(Xs)d|k|s
)

.

This result gives a complete characterization ofµ(λ) when it exists and it points out the conditions under wh
this constant is unique. In particular, (39) is a justification of the idea that in order to have a uniqueµ(λ), the
boundary condition has to be “sufficiently seen”.

Of course, the weak part of this result is the existence ofµ(λ): unfortunately, in this case, we cannot hav
better result than the uniformly elliptic case since (F2′) leads to assume that the equation is uniformly ellip

Indeed, if one considers (F2′) with N = cq ⊗ q whereq = ̂A−1(x)p andc > 0 is very large, then by dividing byc
and lettingc tends to+∞, we are lead to

sup
α∈A

[
−1

2

〈
a(x,α)q, q

〉]
� −κ,

since|q| = 1. In other words, for anyx ∈ �O andα ∈ A, 〈a(x,α)q, q〉 � κ . Since this has to be true for anyp,
hence for anyq, this shows that the equation has to be uniformly elliptic.

This uniform elliptic case is the purpose of the following corollary.

Corollary 6.1. Under the above assumptions onσ , b, f , g andu0 and if there existsν > 0 such thata(x,α) � ν Id
for any x ∈ �O and α ∈ A, then (39) holds and for anyλ ∈ R, there exists a uniqueµ(λ) ∈ R for which U is
uniformly bounded. This constantµ(λ) is given by(41)and it is also the unique constant for which the associa
stationary Bellman boundary value problem has a solution.

We skip the proof of this result since it follows easily from either Theorem 2.1 or 3.1, Theorem 4.1 and 4
Theorem 6.1.

Before turning to the proof of Theorem 6.1, we want to point out that, in general, even if (39) holds,m is not
expected to converge to infinity uniformly on�O, nor even at any point of�O. Indeed it is very easy, in particular
the deterministic case, to build situations for which the drift is liken in a neighborhood of∂O (and therefore the
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trajectory are pushed to∂O leading to (39)) whileb can be identically 0 insideO and therefore for such poin
ks ≡ 0. As a consequence of this remark, the admittedly strange formulation of (iii) cannot be improved.

Proof. We first prove (i). We first assume that the analogue of Theorem 4.1 holds and we want to show th
holds. We argue by contradiction assuming that it does not; this implies that the functionm defined in (40) is
uniformly bounded. Indeed (39) is clearly equivalent to

sup
x∈ �O

lim sup
t→+∞

m(x, t) = +∞,

and the functionm is increasing int .
We choose abovef = g = u0 = 0. Arguing as in the proof of Theorem 5.1, we see that, ast → ∞, m :=

lim inf∗ m is a supersolution of the stationary equation withλ = 0 andµ = 1 while 0 is a solution of this problem
with λ = 0 andµ = 0. This is a contradiction with the assumption.

Conversely, if (39) holds, letu1 be an usc subsolution of the stationary problem associated toλ1,µ1 andu2
be a lsc supersolution of the stationary problem associated toλ2,µ2, with µ1 < µ2. The functionsu1 and u2
are respectively sub and supersolution of the evolution equation (with, say, initial datas‖u1‖∞ and −‖u2‖∞
respectively); therefore, for anyx ∈ �O andt > 0

u1(x) � inf
(αt )t

Ex

[ t∫
0

[
f (Xs,αs) + λ1

]
dt +

t∫
0

[
g(Xs) + µ1

]
d|k|s + ‖u1‖∞

]
,

u2(x) � inf
(αt )t

Ex

[ t∫
0

[
f (Xs,αs) + λ2

]
dt +

t∫
0

[
g(Xs) + µ2

]
d|k|s − ‖u2‖∞

]
.

Let us take a sequence(xn, tn) ∈ �O × (0,+∞) such thattn → +∞ andm(xn, tn) → +∞ asn → +∞. Let αn be
an ε-optimal control for the “inf” in theu2 inequality withε = 1. Using alsoαn for u1 and subtracting the tw
inequalities, we obtain

(u1 − u2)(xn) � Exn

tn∫
0

[λ1 − λ2]dt +
tn∫

0

[µ1 − µ2]d|k|s + O(1).

In this inequality, by the definition ofm, thek-term is going to−∞ sinceµ1 − µ2 < 0 but the left-hand side i
bounded; so necessarilyλ1 − λ2 > 0.

We next prove (ii). Suppose by contradiction that there areµ1 andµ2 such that the corresponding value functio
U1 andU2 defined by (38) are uniformly bounded in�O × [0,∞). We assume thatµ1 > µ2. We have

U1(x, t) − U2(x, t) � (µ1 − µ2) inf
(αt )t

(
Ex

t∫
0

d|k|s
)

. (42)

By letting t → +∞ we get a contradiction because of the condition (39).
We leave the proof of (iii) to the reader since it is an easy adaptation of the arguments we give above.�
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Appendix A

A.1. A comparison argument using only(F1), (F2)

The difficulty comes from (F1) and can be seen on a term like−Tr(A(x)D2u): in general, one assumes thatA

has the formA = σσT for some Lipschitz continuous matrixσ and the uniqueness proof usesσ in an essential way
both in the degenerate and nondegenerate case. Here we want just to assumeA to be nondegenerate and Lipsch
continuous and we do not want to useσ , even if, in this case, the existence of suchσ is well-known.

In the comparison argument of [9], the only difference is in the estimate of the differenceF(x,p,X) −
F(y, q,Y ).

The key lemma in [12] to solve this difficulty is the following: if the matricesX,Y satisfy (22) (withη = 0)
then

X − Y � − K̃ε2

6

(
tX + (1− t)Y

)2 for all t ∈ [0,1].
A slight modification of this argument allows to take in account theη term and yields

X − Y � − K̃ε2

6

(
tX + (1− t)Y

)2 + O(η) for all t ∈ [0,1].
Now we show how to estimateF(x,p,X)−F(y, q,Y ). By using (F1), (F2) together with the above inequality
t = 0, we get

F(x,p,X) − F(y, q,Y ) � F(x,p,X) − F
(
x,p,Y + O(η)

)
− K

(|p − q| + |x − y|(|p| + ‖Y‖)) + O(η)

� κ
K̃ε2

6
Tr(Y 2) − K

(|p − q| + |x − y|(|p| + ‖Y‖) + O(η).

In this inequality, the “bad” term isK|x − y|‖Y‖ since the estimates on the test-function does not ensure t
converges to 0. But this term is controlled by the “good term” Tr(Y2) in the following way: by Cauchy–Schwarz
inequality

K|x − y|‖Y‖ � −κ
K̃ε2

6
Tr(Y 2) − O

( |x − y|2
ε2

)
.

And this estimate is now sufficient since we know that|x − y|2/ε2 → 0 asε → 0.

A.2. Proof of Lemma2.1

We use here argument which are borrowed from [8]. We prove the result under the weaker ass
(F1), (F2′).

SinceO is aC2 domain, fors > 0 small enough,d(x − sn(x)) = s whered is the distance to the boundary∂O.
We setx0 = x − sn(x) for such ans and we build a functionϕ of the following form

ϕ(y) = exp(−ρs2) − exp
(−ρ|y − x0|2

)
,

whereρ has to be chosen later. Finally we chooser = s/2. Sinces = |x − x0|, we haveϕ(x) = 0 and if y ∈
∂O ∩ �B(x, r) − {x}, |y − x0| � s/2 and thereforeϕ(y) > 0. Moreover

Dϕ(y) = 2ρ(y − x0)exp
(−ρ|y − x0|2

)
,
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and by the definition ofx0, Dϕ(x) = kn(x) with k = 2sρexp(−ρs2) > 0. Finally, we computeF∞(y,Dϕ(y),

D2ϕ(y)). Using the notations�(y) = 2ρexp(−ρ|y − x0|2) andp(y) = y − x0, we have

F∞
(
y,Dϕ(y),D2ϕ(y)

) = F∞
(
y, �(y)p(y), �(y) Id−2ρ�(y)p(y)⊗ p(y)

)
.

By homogeneity, it is enough to have

F∞
(
y,p(y), Id−2ρp(y)⊗ p(y)

)
> 0.

We notice that, inB(x, r), p(y) does not vanish and (F2′) yields

F∞
(
y,p(y), Id−2ρp(y)⊗ p(y)

)
� 2κρ

〈
̂A−1(y)p(y),p(y)

〉2 + F∞
(
y,p(y), Id

) + o(1)2ρ
∣∣p(y)

∣∣2.
In order to have the left-hand side positive, it is enough to chooseρ large enough. And the proof is complete.�
A.3. Sketch of the proof of Lemma4.1

We just sketch the proof since we follow very closely the strategy of proof of Lemma 2.6 in Arisawa [5
φ ∈ C2(�O) be such thatw − φ has a local maximum at̄x ∈ �O. We suppose that̄x ∈ ∂O, the casex ∈ O being
similar and even simpler.

For all ε > 0 andη > 0, we introduce the auxiliary function

Φε,η(x, y) = u1(x) − u2(x) − ψε,η(x, y) − φ

(
x + y

2

)
− |x − x̄|4 (43)

whereψε,η(x, y) is the test function built in Barles [9] relative to the boundary condition (2). Let(xε, yε) be the
maximum point ofΦε,η(x, y) in �O × �O. Sincex̄ is a strict local maximum point ofx �→ w(x) − φ(x) − |x − x̄|4,
standard arguments show that

(xε, yε) → (x̄, x̄) and
|xε − yε|2

ε2
→ 0 asε → 0.

On the other hand, by construction we have

L
(
xε,Dxψε,η(xε, yε)

)
> µ if xε ∈ ∂O,

L
(
yε,−Dyψε,η(xε, yε)

)
< µ if yε ∈ ∂O.

Moreover, if ζε,η(x, y) := ψε,η(x, y) + φ(
x+y

2 ) + |x − x̄|4, by standard arguments (cf. [21]), we know that,
everyα > 0, there existX,Y ∈ Sn such that(

Dxζε,η(xε, yε),X
) ∈ �J 2,+

�O u1(xε),(−Dyζε,η(xε, yε), Y
) ∈ �J 2,−

�O u2(yε),

and

−
(

1

α
+ ∥∥D2ζε,η(xε, yε)

∥∥)
Id �

(
X 0
0 −Y

)
�

(
Id+αD2ζε,η(xε, yε)

)
D2ζε,η(xε, yε).

Now suppose that

∂φ

∂n
(x̄) − C

∣∣DT φ(x̄)
∣∣ > 0.

If xε ∈ ∂O, then, forε small enough, we have

L
(
xε,Dxζε,η(xε, yε)

)
� L(xε,Dxψε,η) + 1

(
ν
∂φ(x̄) − K

∣∣DT φ(x̄)
∣∣) + oε(1) > µ,
2 ∂n
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while if yε ∈ ∂O

L
(
yε,−Dyζε,η(xε, yε)

)
� L(yε,−Dyψε,η) − 1

2

(
ν
∂φ(x̄)

∂n
− K

∣∣DT φ(x̄)
∣∣) + oε(1) < µ.

Therefore, ifε is small enough, whereverxε, yε lie we have

F
(
xε,Dxζε,η(xε, yε),X

)
� λ,

F
(
yε,−Dyζε,η(xε, yε), Y

)
� λ.

By subtracting the above inequalities, using the above estimates onX,Y together with the arguments of Subse
tion A.1, the assumption (F1) and (F2) and the definition of the Pucci’s extremal operatorM+, by lettingε tend
to 0, we are lead to

−M+(
D2φ(x̄)

) − K
∣∣Dφ(x̄)

∣∣ � 0,

and the conclusion follows.�
A.4. TheC0,α regularity results and estimates of[10]

As mentioned in the introduction, we describe in this section the results of [10] we are using in this pa
order to have an as self-contained article as possible. In fact, since we use here global estimates (and
ones), we can follow the remark at the end of the second section in [10] and have results with a little bit
assumptions. Of course, we reformulate the results of [10] in this global framework.

These results concern nonlinear Neumann boundary value problems of the form{
F(x,u,Du,D2u) = 0 in O,

G(x,u,Du) = 0 on∂O,
(44)

whereO ⊂ Rn is a smooth, bounded domain,F and G are, at least, real-valued continuous functions defi
respectively on�O × R × Rn × Sn and∂O × R × Rn.

The assumptions are the following: on the domain, we require

(H1) (Regularity of the boundary)O is a bounded domain with aC2-boundary. while the basic assumptions onF

andG are the
(H2) (Growth condition onF ) For anyR > 0, there exist positive constantsCR

1 , CR
2 , CR

3 and functionsωR
1 ,

ωR
2 :R+ → R such thatωR

1 (0+) = 0 andωR
2 (r) = O(r) asr → 0, and for anyx, y ∈ �O, −R � u,v � R,

p,q ∈ Rn, M ∈ Sn andK > 0

F(x,u,p,M) − F(y, v, q,M + K Id) � ωR
1

(|x − y|(1+ |p| + |q|) + |p − q|)‖M‖ + ωR
2 (K)

+ CR
1 + CR

2

(|p|2 + |q|2) + CR
3 |x − y|(|p|3 + |q|3),

and

(G1) For allR > 0, there existsµR > 0 such that, for every(x,u,p) ∈ ∂O × [−R,R] × Rn, andλ > 0, we have

G
(
x,u,p + λn(x)

) − G(x,u,p) � µRλ, (45)

wheren(x) denotes the unit outward normal vector to∂O atx ∈ ∂O.
(G2) For allR > 0 there is a constantKR > 0 such that, for allx, y ∈ ∂O, p,q ∈ Rn, u,v ∈ [−R,R], we have∣∣G(x,u,p) − G(y,v, q)

∣∣ � KR

[(
1+ |p| + |q|)|x − y| + |p − q| + |u − v|]. (46)
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Before formulating additional assumptions, we want to point out that (H2) is obviously satisfied when (F1)
These basic assumptions have to be complemented by a “strong ellipticity assumption” which are diff

the linear case, i.e. whenG is an affine function ofp, typically when it is of the form〈
Du,γ (x)

〉 + a(x)u(x) + g(x) = 0 on∂O (47)

and in thenonlinear case.
In the linear case, the “strong ellipticity assumption” is the following

(H3a) Oblique-derivative boundary condition and ellipticity: there exists a Lipschitz continuous functi
A : �O → Sn with A � c0 Id, for somec0 > 0 such thatA(x)γ (x) = n(x) for everyx ∈ ∂O, and for any
R > 0, there existLR,λR > 0 such that, for allx ∈ �O, |u| � R, |p| > LR andM,N ∈ Sn with N � 0, we
have

F(x,u,p,M + N) − F(x,u,p,M) � −λR

〈
N ̂A−1(x)p, ̂A−1(x)p

〉 + o(1)‖N‖, (48)

whereo(1) denotes a function of the real variable|p| which converges to 0 as|p| tends to infinity.
Finally, on the boundary condition (47), we require

(H4) (Regularity of the boundary condition) The functionsγ and a in (47) are Lipschitz continuous on∂O,
〈γ (x), n(x)〉 � β > 0 for anyx ∈ ∂O andg is in C0,β(∂O) for some 0< β � 1.

The result in thelinear case is the

Theorem A.1. Assume(H1)-(H2)-(H3a)-(H4). Then every continuous viscosity solutionu of (44) with G given
by (47) is in C0,α( �O) for any0 < α < 1 if β = 1 and withα = β if β < 1. Moreover theC0,α-norm ofu depend
only onO, F , γ , a, g through the constants and functions appearing in(H2)-(H3a), theC0,1-norm ofγ anda,
theC0,β -norm ofg and theC2-norm of the distance function of the boundary including the modulus of conti
of D2d .

Now we turn to the nonlinear case where we assume uniform ellipticity, namely

(H3b) (Uniform ellipticity) For anyR > 0, there isλR > 0 such that, for allx ∈ �O, −R � u � R, p ∈ Rn and
M,N ∈ Sn such thatM � N , we have

F(x,u,p,M) − F(x,u,p,N) � λR Tr(N − M).

For the nonlinear boundary condition, we require
(G3) For allR > 0 andM > 0 there isKR,M > 0 such that∣∣∣∣〈∂G

∂p
(x,u,p),p

〉
− G(x,u,p)

∣∣∣∣ � KR,M, (49)

for all x ∈ ∂O and for allp ∈ Rn, |p| � M , |u| � R.
(G4) There is a functionG∞ : ∂O × R × Rn → R such that

1

λ
G(x,u,λp) → G∞(x,u,p) asλ → ∞ (50)

uniformly in (x,u,p).
The result in the nonlinear case is the

Theorem A.2. Assume(H1)-(H2)-(H3b)and (G1)–(G4). Then every bounded continuous solutionu of (44) is
in C0,α(�O) for any 0 < α < 1. Moreover theC0,α-norm ofu depend only onO, F , G, through the constant
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and functions appearing in(H2)-(H3b), and in(G1)–(G4), theC2-norm of the distance function of the bounda
including the modulus of continuity ofD2d .

References

[1] O. Alvarez, M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J.
Optim. 40 (4) (2001/02) 1159–1188.

[2] O. Alvarez, M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Ratio
Anal. 170 (1) (2003) 17–61.

[3] M. Arisawa, Ergodic problem for the Hamilton–Jacobi–Bellman equation. I. Existence of the ergodic attractor, Ann. Inst. H. P
Anal. Non Linéaire 14 (4) (1997) 415–438.

[4] M. Arisawa, Ergodic problem for the Hamilton–Jacobi–Bellman equation. II, Ann. Inst. Poincaré Anal. Non Linéaire 15 (1) (1998
[5] M. Arisawa, Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H.

Anal. Linéaire 20 (2) (2003) 293–332.
[6] M. Arisawa, P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations 23 (11–12) (1998) 2187–2217.
[7] F. Bagagiolo, M. Bardi, I. Capuzzo Dolcetta, A viscosity solutions approach to some asymptotic problems in optimal control, in

Differential Equation Methods in Control and Shape Analysis (Pisa), in: Lecture Notes in Pure and Appl. Math., vol. 188, Dekk
York, 1997, pp. 29–39.

[8] M. Bardi, F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel) 73 (4)
276–285.

[9] G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Eq
tions 154 (1999) 191–224.

[10] G. Barles, F. Da Lio, LocalC0,α estimates for viscosity solutions of Neumann-type boundary value problems, preprint.
[11] G. Barles, P.L. Lions, Remarques sur les problèmes de riflexion obliques, C. R. Acad. Sci. Paris, Ser. I 320 (1995) 69–74.
[12] G. Barles, M. Ramaswamy, Sufficient structure conditions for uniqueness of viscosity solutions of semilinear and quasilinear e

NoDEA, in press.
[13] G. Barles, P.E. Souganidis, On the large time behaviour of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal. 31 (4

925–939.
[14] G. Barles, P.E. Souganidis, Space–time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equatio

J. Math. Anal. 32 (6) (2001) 1311–1323.
[15] A. Bensoussan, Perturbation methods in optimal control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley

ester, Gauthier-Villars, Montrouge, 1988. Translated from the French by C. Tomson.
[16] A. Bensoussan, J. Frehse, On Bellman equations of ergodic control inRn, J. Reine Angew. Math. 429 (1992) 125–160.
[17] A. Bensoussan, J. Frehse, Ergodic control Bellman equation with Neumann boundary conditions, in: Stochastic Theory an

(Lawrence, KS, 2001), in: Lecture Notes in Control and Inform. Sci., vol. 280, Springer, Berlin, 2002, pp. 59–71.
[18] I. Capuzzo Dolcetta, P.L. Lions, Hamilton–Jacobi equations with state constraints, Trans. Amer. Math. Soc. 318 (2) (1990) 643–
[19] M.C. Concordel, Periodic homogenization of Hamilton–Jacobi equations: additive eigenvalues and variational formula, India

Math. J. 45 (4) (1996) 1095–1117.
[20] M.C. Concordel, Periodic homogenization of Hamilton–Jacobi equations: II: Eikonal equations, Proc. Roy. Soc. Edinburgh Sect.

(1997) 665–689.
[21] M.G. Crandal, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer.

(1992) 1–67.
[22] L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 1

(1989) 359–375.
[23] L.C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 1

(1992) 245–265.
[24] L.C. Evans, D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I., Arch. Rational Mech. Anal. 157 (1)

1–33.
[25] A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Sér. I Math. 324 (199

1046.
[26] A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris, Sér. I Math. 325 (6) (1997) 649–652.
[27] A. Fathi, Sur la convergence du semi-groupe de Lax–Oleinik, C. R. Acad. Sci. Paris, Sér. I Math. 327 (3) (1998) 267–270.
[28] H. Ishii, Almost periodic homogenization of Hamilton–Jacobi equations, in: International Conference on Differential Equations, v

(Berlin, 1999), World Sci., River Edge, NJ, 2000, pp. 600–605.
[29] H. Ishii, Perron’s method for Hamilton–Jacobi equations, Duke Math. J. 55 (1987) 369–384.



G. Barles, F. Da Lio / Ann. I. H. Poincaré – AN 22 (2005) 521–541 541

ts, Math.

(1984)

al Differ-
[30] J.M. Lasry, P.L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constrain
Ann. 283 (1989) 583–630.

[31] P.-L. Lions, Neumann type boundary conditions for Hamilton–Jacobi equations, Duke Math. J. 52 (4) (1985) 793–820.
[32] P.-L. Lions, G. Papanicolaou, S.R.S Varadhan, unpublished preprint.
[33] P.L. Lions, A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. XXXVII

511–537.
[34] G. Namah, J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations, Comm. Parti

ential Equations 24 (5–6) (1999) 883–893.


