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Abstract

We study nonlinear Neumann type boundary value problems related to ergodic phenomenas. The particularity of these prob-
lems is that the ergodic constant appears in the (possibly nonlinear) Neumann boundary conditions. We provide, for bounded
domains, several results on the existence, uniqueness and properties of this ergodic constant.
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Résumé
Nous étudions des problemes elliptiques non linéaires, associés a des conditions de Neumann, qui sont reliés a des phé-
nomenes ergodiques. La particularité de ces probléemes vient du fait que la constante ergodique apparait dans la condition

de Neumann qui peut étre non linéaire. Nous présentons, dans le cas de domaines bornés, plusieurs résultats sur I'existence
I'unicité et les propriétés de cette constante ergodique.
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1. Introduction

In this article, we are interested in what can be called “boundary ergodic control problems” which lead us
to solve the following type of fully nonlinear elliptic equations associated with nonlinear Neumann boundary
conditions

F(x, Du, D>u) =X inO, 1)
L(x,Du)=pu 0naO, (2)

where, say® c R” is a smooth domainF and L are, at least, continuous functions defined respectively on
O xR" x 8" andO x R" with values inR, whereS” denotes the space of realx n, symmetric matrices. More
precise assumptions dnandL are given later on.

The solutioru of this nonlinear problem is scalar aft:, D%u denote respectively gradient and Hessian matrix
of u. Finally, A, u are constantsi, which is called below the “boundary ergodic cost”, is part of the unknowns
while 2 is mainly here considered as a given constant for reasons explained below.

In order to justify the study of such problems, we first concentrate only on Eq. (1), without boundary condition,
i.e. on the case whe® = R". In this framework, under suitable assumptionsfonthe typical result that one
expects is the following: there exists a unique constasiich that (1) has a bounded solution. Such results were
first proved for first-order equations by Lions, Papanicolaou and Varadhan [32] (see also Concordel [19]) in the
case of periodic equations and solutions. Recently, Ishii [28] generalizes these results in the almost periodic case
General results for second-order equations in the periodic setting are proved by Evans [22,23]. Results in the
evolution case, when the equation is periodic both in space and time, were also obtained recently by Souganidis
and the first author [14]: the methods of [14], translated properly to the stationary case, are the one who would lead
to the most general results in the case of second-order equations. All these results which hold for general equation:
without taking advantage of their particularities, are complemented by more particular results in the applications
we describe now.

The first application concerns the so-called ergodic control problems (either in the deterministic or stochastic
case). We refer to Bensoussan [15] for an introduction to such problems and to Bensoussan and Frehse [16]
Bagagiolo, Bardi and Capuzzo Dolcetta [7], Arisawa [3,4], Arisawa and Lions [6] for further developments in
the R" case and with different types of pde approaches. In this framework, (1) is the Bellman Equation of the
ergodic control problem, is the ergodic cost and the solutianis the value function of the control problem. In
this case, both the uniqueness.dnd ofu — which can hold only up to an additive constant — is interesting for the
applications. But it is rather easy to obtain the uniqueneasimfeneral, while the uniquenessiotan be proved
only in the uniformly elliptic case and is generally false.

A second motivation to look at such problems is the asymptotic behavioraso of solutions of the evolution
equation

u; + F(x, Du, D>u) =0 inR" x (0, +00). (3)

A typical result here is the following: if there exists a uniquauch that (1) has a solution (typically in the
bounded solutions framework), then one should have

u(x,t)

— XA locally uniformly ast — oo.

Therefore the ergodic constant governs the asymptotic behavior of the associated evolution equation and in gooc
cases, one can even show that

u(x,t) — At = Ugo(x) ast— oo,

whereu, solves (1).
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Such results were obtained recently, for first-order equations, by Fathi [25-27] and Namah and Roquejoffre [34]
in the case wher¥ is convex inDu; these results were generalized and extended to a nonconvex framework in
Barles and Souganidis [13]. To the best of our knowledge, there is not a lot of general results in the case of second-
order equations: the uniformly elliptic case seems the only one which is duable through the use of the Strong
Maximum Principle and the methods of [14] which are used in the paper to prove the convergence to space-time
periodic solutions but which can be used to show the convergence to solutions of the stationary equations.

The third and last application (and maybe the most interesting one) concerns homogenization of elliptic and
parabolic pdes. This was the motivation of Lions, Papanicolaou and Varadhan [32] to study these types of ergodic
problems as it was also the one of Evans [22,23]. The ergodic problem is nothing but the so-called “cell problem” in
homogenization theory, being connected to the “effective equation”. We also refer the reader to Concordel [20],
Evans and Gomes [24], Ishii [28] for results in this direction. The connections between ergodic problems and
homogenization are studied in a systematic way in Alvarez and Bardi [1,2] and completely clarified.

Of course, the same questions have been studied in bounded (or unbounded) domains with suitable boundary
conditions. For first-order equations, Lions [31] studies the ergodic problem in the case of homogeneous Neumann
boundary conditions, while Capuzzo Dolcetta and Lions [18] study it in the case of state-constraints boundary con-
ditions. For second-order equations, we refer the reader to Bensoussan and Frehse [17] in the case of homogeneou
Neumann boundary conditions and to Lasry and Lions [30] for state-constraints boundary conditions. It is worth
pointing out that in all these works, the constanioes not appear and the authors are interested in the cohstant
instead.

The first and, to the best of our knowledge, only work where the problem of the copst@piears, is the one of
Arisawa [5]. In this work, she studies two different cases: the case of bounded domains which we consider here and
the case of half-space type domains which contains different difficulties; we address this problem in a forthcoming
work in collaboration with P.L. Lions and P.E. Souganidis. In the case of bounded domains, we improve her results
in several directions: generality and regularity of the equation and boundary condition, possibility of obtaining
results in degenerate cases, uniqueness in more general frameworks, interpretation in terms of stochastic control
problems and connections of these types of ergodic problems with large time behavior of solutions of initial value
problem with Neumann boundary conditions. We are able to do so since we use softer viscosity solutions’ methods.

It is worth pointing out that the role of the two constants are different: our main results say that, fqrthage
exists a unique constapt:= © (1) for which (1), (2) has a bounded solution. Therefore the role played previously
by A is now played byu. To prove such a result, we have to require some uniform ellipticity assumptidn on
not only in order to obtain the key estimates which are needed to prove the existence of the sohuttaaiso
becausa. can play its role only if the boundary condition is “seen in a right way by the equation”. Indeed, the
counter-example of Arisawa [5], p. 312, shows that othenpismnnot be unique. This vague statement is partly
justified in Section 6.

The proof of the existence of the solution relies on@¥ estimates proved in [10]; in order to have an as self-
contained paper as possible, we describe these results in the Appendix. Here also the uniform elligtipityysf
arole, atleast in the case when the Neumann boundary condition is indeed nonlinear. But if the boundary condition
is linear, some less restrictive ellipticity assumptionsfonan be made: this is the reason why we distinguish the
two cases below.

An other question we address in this paper, are the connections with the large time behavior of the solutions of
the two different type of evolution problems

v + F(x, Dv, D*v) = in O x (0, +00), (4)

L(x,Dv)=pn onadO x (0,+400), (5)
and

w, + F(x, Dw, D’w)=0 inO x (0, +00), (6)

w; + L(x, Dw)=0 0ndO x (0, +00). (7
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In the case of (4), (5), we show that the ergodic constdn) is characterized as the only constanfior which
the solutionv remains bounded. In the case of (6), (7), the expected behavior is ta havex, 1) converging
to a constank which has to be such that (1), (2) has a solutionifes » = (). We prove that, under suitable
conditions, such a constaht i.e. a fixed point of the map — w(1), does exist and that we have the expected
behavior at infinity forw.

Finally we consider the case when the equation is the Hamilton—Jacobi—Bellman Equation of a stochastic control
problem with reflection: this gives us the opportunity to revisit the results on the uniqueness afdegenerate
context and to provide a formula of representationifor

The paper is organized as follows. In Section 2, we prove the existenceod . in the case of nonlinear
boundary conditions while in Section 3 we treat the linear case. In Section 4, we examine the uniqueness propertie:
for u together with its dependencejin F andL; among the results of this part, there is the existende S&ction 5
is devoted to present the results connecting the ergodic problem with the asymptotic behavior of solution of some
nonlinear problem. Finally we study the connections with stochastic control problem with reflection in Section 6.

2. Thecase of nonlinear boundary conditions
To state our result, we use the following assumptions
(O1) O is a bounded domain with &3> boundary.

We point out that such assumption on the regularity of the boundary is needed both in order to use the compar-
ison results of [9] (here th&#/3> regularity is needed) and the loaaf-*-estimates of [10] (here @2 regularity
would be enough).
We denote by the sign-distance function @ which is positive in® and negative iiR” \ O. If x € 90, we
recall thatDd(x) = —n(x) wheren(x) is the outward unit normal vector @O at x. The main consequence of
(01) is thatd is W in a neighborhood 0§ O.
Next we present the assumptions Brand L.

(F1) (Regularity) The functior is locally Lipschitz continuous 0@ x R” x S" and there exists a constakit> 0
such that, forany,y € O, p,q e R", M,N € S"

|F(x, p. M) — F(y,q, N)| < K{lx = y|(1+ pl +lg| + IM[ +INIl) + |p — gl + |M — N|}.
(F2) (Uniform ellipticity) There exists > 0 such that, for any € O, p e R”, M, N € S" with N >0
F(x,p,M+N)—F(x,p,M) < —«Tr(N).
(F3) There exists a continuous functiéh, such that

t_lF(x, tp,tM) — Foo(x, p, M) locally uniformly, ast — +oo.
For the boundary conditioh, we use the following assumptions.
(L1) There exist® > 0 such that, for al(x, p) € 90 x R" andr > 0, we have
L(x, p+tn(x)) — L(x, p) > vt. (8)
(L2) There is a constari > 0 such that, for alk, y € 30, p, g € R", we have

|L(x, p) = L(y. )| <K[(L+Ipl+1gl)lx —y|+1p—ql]. 9)
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(L3) There exists a continuous functi@n, such that

t7YL(x,1p) > Loo(x, p) locally uniformly, ast — +oo.

Before stating and proving the main result of this section, we want to emphasize the fact that the above as-
sumptions are very well adapted for applications to stochastic control and differential games: indeed (F1)-(L1) are
clearly satisfied as soon as the dynamic has bounded and Lipschitz continuous drift, diffusion matrix and direction
of reflection and when the running and boundary cost satisfies analogous properties (maybe these assumptions are
not optimal but they are rather natural) while (F3)-(L3) are almost obviously satisfied because of the structure of
the Bellman or Isaac Equations (“sup” or “inf sup” of affine functiongiand M).

Our result is the

Theorem 2.1. AssuméO1), (F1)—(F3)and(L1)—(L3) then, for anyA € R, there exists € R such that(1), (2) has
a continuous viscosity solution.

Proof. The proof follows the strategy of Arisawa [5]. Fo0s < o < 1, we introduce the approximate problem
F(x, Dii, D%i) + ¢ii=A inO, (10)
L(x,Di)+aii =0 ondO. (11)
1. It is more or less standard to prove that this problem has a unique continuous viscosity solution using the
Perron’s method of Ishii [29] and the comparison arguments of Barles [9]; the only slight difficulty comes from the
x-dependence of which is a priori not sufficient to obtain a suitable comparison. In the Appendix, we explain
why the usual approach does not work and we show how to overcome this difficulty by borrowing ideas of Barles
and Ramaswamy [12].
2. The next step consists in obtaining basic estimates. &ée drop the dependence®in ¢ andw for the sake of
simplicity of notations. To do so, we use the fact tiats bounded and therefore we can assume without loss of
generality thatD c {x1 > 0}.
We introduce the smooth functions
u(x)= C(Z — eX[X—yxl)), ulx)= —C(Z — eXp(—)/xl)).

Notice thatu <0< i on O.
By using (F1) and (F2), one sees that, foandC large enough, one has

F(x, Dii, D?) > F(x,0,0) — KCy exp(—yx1) + kCy?exp(—yx1) > 0,
and
F(x, Du, D*u) < F(x,0,0) + K Cy exp(—yx1) — kCy? exp(—yx1) < 0.

Next we consider max(uz — u) and mins(z — u) which are achieved respectively at, x2 € O. Because of
the above properties and singés a viscosity solution of (10), (11), these max and min cannot be achiew@d in
and, in any case, theF” inequalities cannot hold. Thel’” inequalities lead to the estimates

ai(x) <o(i(x) —i(x1)) +sufL(x, Di(x))
o

)

and

@ii(x) > a(u(x) - u(x)) - supL(x, Du(x))|
o

for everyx € O. Thus for some positive consta@t F, L) (depending or¥ andL) we have
levit||oo < C(F, L). (12)



526 G. Barles, F. Da Lio / Ann. |. H. Poincaré — AN 22 (2005) 521-541

3. Let xp be any point of? and set(x) = ii(x) — ii (xo) for x € O. We claim that remains uniformly bounded as
a tends to 0 ife € .

To prove the claim, we argue by contradiction assuming Miat ||v||cc — 00 asa — 0 and we setv(x) :=
M~Yu(x). The functionw solves

M~ YF(x, MDw, MD?*w) + ew =M1\ — M Leii(xg) inO, (13)
M7 IL(x, Dw) 4+ aw = —Maii(xg) 0ondo. (14)

Moreover||w|c = 1 andw(xg) = 0.

Sincew is uniformly bounded, th&€®# regularity results and estimates of Barles and Da Lio [10] apply and
thereforew is uniformly bounded inC%#, for any 0< 8 < 1 (see also the Appendix, for a description of these
results).

Using Ascoli's Theorem, one may assume without loss of generalitythabnverges uniformly to some
%A -functionw and taking (F3)-(L3) in account, the stability results for viscosity solutions impliesitsatives

Foo(x, Dw, D*w)=0 inO, (15)
Loo(x,Dw)=0 o0ndo. (16)

Moreover||w|» = 1 andw(xg) = 0.

We are going to show now that all these properties lead to a contradiction by Strong Maximum Principle type
arguments. Sinc@ is continuous there exisise O such thaiw(x)| = 1.

We first remark thatF,, satisfies (F1), (F2) as well and is homogeneous of degree 1; therefore the Strong
Maximum Principle of Bardi and Da Lio [8] implies that necessaxilg 00. Infact—1 <w < 1in O.

We assume for example that(x) = 1, the other case being treated similarly. To conclude, we are going to use
the following lemma.

Lemma 2.1. There exists- > 0 and a smooth functiog on B(x,r) such thatp(x) =0, ¢(y) >0 0on 3O N
B(x,r)\ {x}

Foo(y. De(y). D?p(y)) >0 onB(x,r), 17)
and

Do(x) = kn(x),
with k > 0.

The proof of this lemma is given in the Appendix; we show how to use it in order to conclude.
Since Dy (x) = kn(x), we haveL(x, Dg(x)) > 0. Butg is smooth and therefore, by choosifig< » small
enough, we have also

Loo(y. D(y)) >0 onB(x,0)NJO0. (18)

On an other hand, by choosing> 0 small enough, we can hawe(y) — t¢(y) < 1=w(x) — te(x) for y €
dB(x,0) N O. Indeed, fory close tod®, ¢(y) > 0 while in © we havew(y) < 1.

We deduce from this property that, if we consider max, 5 (w — T¢), this maximum is necessarily achieved
in B(x,0) N O and therefore it is a local maximum point @f— t¢ but, taking in account the fact that,, and
L~ are homogeneous of degree 1, this is a contradiction with the inequalities (17), (18).

4. From step 3, the functionsare uniformly bounded and solve

F(x,Dv,Dzv)+8v=)»—8ﬁ(xo) in O, (19)
L(x, Dv) +av=—au(xg) 0onaO. (20)
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Using again the regularity results of Barles and Da Lio [10] (see also the Appendix), we deduce that the func-
tionsv are also uniformly bounded i6%# for any 0< 8 < 1 and by Ascoli's Theorem, extracting if necessary a
subsequence, we may assume that they converge uniformly to a funatieif-# (O). Moreover, sincexii is also
uniformly bounded, we can also extract a subsequence suchdidko) converges to some € R.

In order to conclude, we just pass to the limit in (19), (20) with a choicesfch thaka=1 — 0. O

3. Thecase of linear boundary conditions

We consider in this section the case whiers given by
(Du,y(x))+ g(x)=pn 0ndo, (21)
where the functiong andg satisfies

(L1) g e C%F(30) for some O< B < 1 andy is a Lipschitz continuous function, taking valuesRf and such
that(y (x),n(x)) > v > 0 for anyx € 00, where we recall thai(x) denotes the unit exterior normal vector
t0 90O atx.

In this linear case, we are able to weaken the ellipticity assumptiof.dn the following, forq € R", the
notationg stands for;/|g|.

(F2) (Partial uniform ellipticity) There exists a Lipschitz continuous functior> A(x), defined or® and taking
value in the space of symmetric, definite positive matrix and0 such that
(i) foranyx € 00, A(x)y (x) =n(x),
(i) foranyx e O, peR"\ {0}, M, N € S" with N >0

F(X,P»M+N)_F(X»P’M)g_K<NQvQ>+0(1)”N”’

with ¢ = A*/lap and wherev(1) denotes a function dfp| which converges to 0 4| tends to+oco.

If v =n, this assumption is satisfied in particular if (formally)
Fy(x,p,M)< —kpQ p+o0(l) ae.in® xR" xS,

where, as abovas(1) denotes a function ofp| which converges to 0 alg| tends to+oo; this means a non-
degeneracy property in the gradient direction, at least for lgrgerhis corresponds to the choiggx) = Id. We
recall that for allp € R", p ® p denotes the symmetric matrix defined@Qy® p);; = pi p;.

In this case, unlike the uniform elliptic case, (J& not enough to ensure a comparison propertyfpthus we
add

(F4) For anyl? > 0, there exists a functiom g : R™ — R" such thatn g (r) — 0 whens — 0 and such that, for
alln>0

lx —yl
F(y,q,Y)— F(x, p, X) <m,?<n+|x—y|(l+|plv lql) + =2

forall x,y € O, p,q € R" and for all matricest, Y € S" satisfying the following properties

K X 0 K({1d —1d o
_8_2Id<(0 _Y)<8—2<_Id d )—i—KnId, (22)
1P —ql < Kne(1+1p| A lql), (23)
x — y| < Kne. (24)
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Our result is the

Theorem 3.1. AssumégF1)-(F2)-(F3)-(F4) and (L1') then, for anyi € R, there existg € R such that(1), (2) has
a continuous viscosity solution.

We skip the proof since it follows readily the one of Theorem 2.1; we just point out that theé%&yestimates
follow from the linear case in [10] (see also the Appendix) while the Strong Maximum Principle still holds under
(F2) as we pointed it out in the Appendix.

4. Uniquenessresultsfor the boundary ergodic cost

In standard problems, the uniqueness of the ergodic cost is rather easy to obtain, while the uniqueness of the
solutionu is a more difficult question. Here, even the uniquenegsigfa nonobvious fact becaugeappears only
in the boundary condition and clearly this boundary condition has to be sufficiently “seen” in order to have such a
uniqueness property. The counter-example of Arisawa [5] for first-order equations shows that, in the cases where
losses of boundary conditions can ocquiis not unique in general.

To state the uniqueness result, we introduce the following abstract assumption

(U1) If wis an upper semicontinuous viscosity subsolution of (1), (2), there exists a sequencef upper
semicontinuous functions such that lim $up. = w on O, satisfying in the viscosity sense

F(x, Dw,, D°w;) <As <A iNO, (25)
L(x, Dw,) < u+0.(1) onaO. (26)

Our result is the

Theorem 4.1. Under the assumptions of either Theor2rhor 3.1and if (U1) holds, ifu1 is a subsolution of1),
(2) associated to.1, u1 and if u is a supersolution of1), (2) associated td.o, u2 with A1 < A2 then necessarily
w1 > u2. In particular, for anya, the boundary ergodic cogt is unique.

Proof. We argue by contradiction assuming that< u».
Let u{ be a continuous function associated:fothrough assumption (U1) withchosen in such a way that

L(x,Duf) <p 0ndo,

whereu := 3(u1+ 112).
We consider max, 5 (uf(x) —u2(y) — ¥a(x, y)) where for alle > 0 v, is the test-function built in [9] for the
boundary conditior. — u (we recall that this test-function depends only on the boundary condition).
Following readily the arguments of [9], one is led to the inequalities

F(.X, p’X)g)\l,s <)\'lv (27)
F(y,q,Y) = X2, (28)

where(p, X) € D2v+u51()2) and(g,Y) € D>~ u»(y). Then either the standard comparison arguments or the argu-
ments of [12] shows that

F(-x’ va) - F(y7Q5 Y) 20()!(1)7

1 We recall that the half-relaxed limit lim stipu is defined by: lim supwg (x) = lim sup,H.S we (y) foranyx € O.
e—
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and hence, by subtracting the inequalities (27) and (28), we g9 < A1, — A2 < 0. We get the contradiction
by lettinga tends to 0. And the proof of the first part is complete.

Of course, the uniqueness of the boundary ergodic cost follows sinegriflv are two solutions of (1), (2)
with the same. and roles withu, & respectively, we can apply the above result with=u, u3 =, A1 = 1 and
up =v, u2 = i, A2 = A: this yieldsp1 > 2. But using that the two solutions play symmetric roles, we deduce
immediatelyu = 1, i.e. the uniqueness of the ergodic costy

Remark 4.1. As the proof shows it, the resuliy < u2 = A1 > 12" is easy to obtairwithout assumingU1), just

as a straightforward consequence of the comparison arguments. It is therefore true asfs@onl Assatisfy the
conditions of the comparison result, i.e. under far weaker assumptions than the result of Theorem 4.1. The key
pointin Theorem 4.1 is really the resultf < u2 = A1 > A2".

Now we turn to the checking of (U1) which can be formulated in the following way.
Theorem 4.2. The boundary ergodic cost is unique in the two following cases

(i) under the assumption of Theoremn,
(i) under the assumption of Theor&ri on F and of Theoren2.1on L, if F(x, p, M) is convex in(p, M) and
L(x, p) is convex inp.

It is worth mentioning that, in the case of the result (ii), we have the uniquenesfoofproblems for which we
do not have a priori an existence result.

Proof of Theorem 4.2. In order to apply Theorem 4.1, it is enough to check that (U1) holds.
In the case when (F1), (F2) holds, recalling that we may ass0mex; > 0}, we set
w, =w —ep(x) forxeO,

wheregp(x) := 2 — exp(—ox1) for somes > 0 chosen later. I8 := (1,0, ..., 0), denoting by?(x) := exp(—o x1),
we have

F(x, Dwe, D*w,) = F(x, Dw — eal(x)e1, D*w + 5%£(x)e1 ® e1)
< F(x, Dw, D2w) — icsozﬁ(x) + Keol(x).

By choosings > K« 1, the quantity—xeo?¢(x) + Keo£(x) becomes strictly negative aff and we have
F(x, Dw,, D?w,) < A, < A. The checking for the boundary condition is straightforward using (L2).
In the case when (Fgholds, we cannot argue in the same way. We set

we = (1—&)w — eco(x),
whereg(x) is defined as above anrd> 0 will be chosen later. By the convexity &f, we have
F(x, Dwe, D?w,) < (1— &) F (x, Dw, D*w) + ¢ F (x, —cDg(x), —cD%p(x)).
To conclude, it is enough to show that we can chaosadc in order that
F(x, —cDg(x), —cD2<p(x)) <A onO.
We have
F(x, —cDop(x), —cD2<p(x)) = F(x, —col(x)e1, cazﬁ(x)el ® el),
and by (F2)
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F(x, —col(x)eq, cozﬁ(x)el ® el)
< F(x, —col(x)e1, 0) — keo20(x) (A1), e))? + co2(x)o(l).
Finally by using (F1) and the fact thdtis positive definite we get
F(x, —cDg(x), —cD%p(x)) < F(x,0,0) + Kcol(x) — Ckco?t(x) + co®t(x)o(1),

for some (small) constartt > 0 ando(1) — 0 asc, o — oo. We conclude by first choosing large enough and
thenc large enough. The checking féris done in an analogous way and even simpler because we do not need a
sign. O

Now we turn to an almost immediate corollary of the uniqueness

Corollary 4.1. Under the assumptions of either Theor2rth or Theoren3.1and Theorend.2(iii), the mapx —
w(X) is continuous and decreasing.

Proof. The solutionsu := u (1) of (1), (2) we build in the proofs of Theorems 2.1 and 3.1 with the property
u(xo) = 0 are bounded i€ %#(O) for » bounded. By Ascoli’s Theorem, this means thatilig) are in a compact
subset ofC (0) if A remains bounded. Using this property together with the stability result for viscosity solutions
and the fact that is also bounded if is bounded by the basic estimatesoanof the existence proof, yields easily
the continuity ofu w.r.t. .. Here, of course, the uniqueness propertyfglays a central role.

The monotonicity is a direct consequence of Theorem 4.1 since it shows thatlfis, then necessarily
(A1) = n(A2). Thus the result follows. O

Corollary 4.2. Under the assumptions of Corollafy1, there exists a unique:= A such thatu (k) = A.

Proof. The mapyx (1) := A — u(X) is continuous, strictly increasing oR and satisfiesy (—o0) = —oc0 and
x (+00) = +00. Hence the result is a direct consequence of the Intermediate Values Theanem.

We conclude this section by a result describing a little bit more precisely the dependendae sfand L. Of
course, since. can be incorporated if, this result gives also informations on the behaviop.afith respect to
but we argue here with a fixed We use the natural notatign(F, L) to emphasize the dependenceuoih these
two variables.

Theorem 4.3.If Fy, FggndLl, L, satisfies the assumptions of Corolla¥l and if F; — F», L1 — Lo are bounded,
there exists a constaidt > 0 such that

|1L(F1, L1) — 1(F2, L2)| < C(IF1 — Falloo + IIL1 — L2lloo)-

Proof. We start by thainifor mly eliptic case.

We denote by1 the solution associated t8;, L1 and w(Fy, L1). Applying readily the computations of the
proof of Theorem 4.2, it is easy to show that=u1 — k|| F1 — F2|ls0¢ (¢ being the function defined in the proof
of Theorem 4.1) is a subsolution for the equatien Moreover

La(x, Dw) < u(F1, L1) + [IL1 — L2lloo + Cl| F1 — F2l| oo,
for some constant'. Applying Theorem 4.1, we deduce that
w(F2, L2) 2 n(F1, L1) + L1 — Lalloc + C || F1 — F2lc0,
and the result follows by exchanging the roleg Bf, L1) and(F>, L>).
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For theconvex, nonuniformly elliptic case, we argue similarly but by taking this time := 6u1 — (1 — 0)k¢
with k > 0 large to be chosen later and for some suitabletO< 1. Because of the convexity &b, w satisfies for
somer >0,C >0

Fa(x, Dw, D*w) < || F1 — F2|loo + 61 — (1 — 6)Ck.

We choosé > 0 large enough and theéhin order to have
|F1— F2lloo + 01 — (1 —0)Ck = A.

Next we examine the boundary condition: using again the convexiky pfve obtain
La(x, Dw) < Ou(F1, L1) + (1 —0)Ck + |IL1 — L2|lso-

As above we deduce
W(F2, L) > 0p(F1, L1) + (1— 0)Ck + ||L1 — Lallco.

In order to conclude, we have to play wittandé. The above inequality can be rewritten as
1(F2, L) — u(F1, L1) — L1 — Lalleo = (1 = 0)[Ck — u(F1, L1)],

and with the choice of andé
a0 =1

Finally

W (Foy Loy — (Fy, L1) — L1 — Lol > [|Fy — Fylloo S0 LD
Ck+ A1

and the conclusion follows by lettingto +oco. O

We conclude this section by showing that, under the hypotheses of Theorem 2.1, the solution of (1), (2) is unique
up to additive constants.

Theorem 4.4. Under the assumptions of Theor@ni, the solution of the proble(), (2) is unique up to additive
constants.

Proof. Suppose by contradiction thag andu, are two solutions of (1), (2) associatedi@nd w (1), such that
the functionw := u1 — u2 is not constant.

We first show thatw is a subsolution of a suitable Neumann problem; this is the aim of the following lemma
in which, forx € 00, we denote byDrw(x) the quantityDw(x) — (Dw(x) - n(x))n(x). Drw(x) represents the
projection of Dw(x) on the tangent hyperplane 8@ at x. For X € §", we use also the notation

MY (X)= sup Tr(4X),
Kld<A<K Id
for the Pucci’'s extremal operator associated to the constarasd « appearing in assumptions (F1) and (F2)
respectively.

Lemma 4.1. Under the assumptions of Theor@m, w = u1 — u2 is a viscosity subsolution of

—~M*T(D?w) — K|Dw|=0 in0O, (29)

3

a—w—C|DTw|:0 onao (30)
n

whereC > max(K, g), K, K, v being the constants appearing(@1) and (L1), (L2) .
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We postpone the (sketch of the) proof of this lemma to the Appendix and conclude the proof of Theorem 4.4.
Using this lemma, the functiom = u1 — u2 is a honconstant viscosity subsolution of (29), (30). To obtain the
contradiction, we use the same arguments as in the step 3 of the proof of Theorem 2.1: by the Strong Maximum
Principle,w cannot achieve its maximum @. But then Lemma 2.1 and the same arguments as in this step 3 leads
to a contradiction. O

5. Asymptotic behavior as¢ — +o0 of solution of nonlinear equations
We describe in this section two properties related on the asymptotic behavior of solutions of parabolic equations

which are connected to the boundary ergodic cost.
We first consider the evolution problem

x4+ F(x,Dx,D?¢)=x inO x (0,00), (31)
L(x,Dx)=u 0na0O x (0,00), (32)
x(x,0)=up(x) inO. (33)

Theorem 5.1. Under the assumptions of Corollad.1, there exists a unique viscosity solutigrof (31)—(33)
which is defined for all time. Moreovey, remains uniformly bounded in time if and onlyit= ©(%).

Proof. The existence and uniquenessyofs a standard result. Only the second part of the result is new. To prove
it, we first assume that = (). If u is the solution of (1), (2), itis also a solution of (31)—(33) with initial data
and by standard comparison argument

[xC.oy=u@| < lluo—ullo.

which implies the claim.
Conversely, ify is uniformly bounded, by considering the functions

Xo (6, 1) i= x (x, @),
for o > 0 small, it is straightforward to show that
X =limsup® x, and x :=Iliminf, x,,

are respectively sub and supersolution of (1), (2). A simple application of Theorem 4.1 showsthat.). And
the proof is complete. O

We next consider the problem

¢ + F(x,D$, D’p) =0 inO x (0, 0), (34)
¢+ L(x,Dp)=0 0naO x (0,00), (35)
d(x,0)=¢o(x) iInO, (36)

wheregg € C(O).
Our result is the

Theorem 5.2. Under the assumptions of Corolla#yl, there exists a unique viscosity solution(®4)—(36)which
is defined for all time. Moreover, as— +oo, we have

¢(x, 1)
t
where’. is defined in Corollary.2.

— —X uniformly onO,
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Proof. We denote byi the solution of (1), (2) associated to= A andu = . i
The existence and uniquenesspas a consequence of the results in [9]. Moreover, siheert is a solution of
(34), (35), the comparison result for this evolution equation yields

o) —ix) + it < llgpo — il
Dividing by r and lettings tends to infinity provides the result.o

6. On ergodic stochastic control problems

We are interested in this section in control problems of diffusion processes with reflection. The dynamic is
given by the solution of the following problem in which the unknown is a p&i;); >0, (k;):>0) where(X;);>o0
is a continuous process RI* and(k;);>o is a process with bounded variations

dX,=b(X,,(x,)dt+U(X,,ot,)dVVt—dkt, onﬁe 5,
ke = [3 Lo (Xs)y (Xs) Ikl X, €0, Vi >0,

where(W;), is a p-dimensional Brownian motion for somee N. The processx;);, thecontrol, is some progres-
sively measurable process with respect to the filtration associated to the Brownian motion with values in a compact
metric spaced. The drift 5> and the diffusion matrix- are continuous functions defined éhx A taking values
respectively inR" and in the space df x p matrices. We assume that bétlando are Lipschitz continuous in,
uniformly in « € A. Finally y satisfies the assumptions given in Section 3.

Under these assumptions, there exists a unique(p¥j),; >0, (k;);>0) solution of this problem, the existence
being proved in Lions and Sznitman [33] and the uniqueness in Barles and Lions [11].

Then we define the value-function of the finite horizon, stochastic control problem by

(37)

1 1

Ux,t)= iozn')f Ex|:/[f(xs, as) + X] dr + /[g(XA) + M] dlkls + uO(Xt):| ) (38)
1)t O 0
whereE, denotes the conditional expectation with respect to the évgnt x}, f is a continuous function defined
on O x A which is Lipschitz continuous im uniformly w.r.t.a € A, g € C%#(30) andug € C(O), » and . are
constants.
Under the above assumptions, by classical reslilts, the unique viscosity solution of

U, + F(x,DU,D?U) =1 inO x (0,0),
ﬂ =g+un ond0o x (0,00),
ay
Ux,0)=ug(x) inO,
with
F(x,p, M) = sup{—%Tr[a(x,a)M] —(b(x, @), p) — f(x,a)}
acA

foranyx € O, p e R* andM € S" wherea(x, a) = o (x, @)o ' (x, ). We are going to use this Hamilton—Jacobi—
Bellman type evolution problem both to study the stationary ergodic problem (and, in particular, to revisit the result
of Theorem 4.1 in @egenerateontext) and to connect the constari®) with the behavior o/ ast — oo in the

spirit of Theorem 5.1. Our result is the following.

Theorem 6.1. Under the above assumptions @nb, f, g andug, we have
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(i) For the stationary ergodic problem, the analogue of Theofein(i.e.“ u1 < w2 = A1 > A2") is equivalent to
the property

t
suplim sup( inf Ex/d|k|s> = +00. (39)

xe® t—>+00 (ot):
0

In particular, under this condition, ifc (1) exists for someé € R, it is unique.
(i) If (39)holds, for anyi, there exists at most a constantr) for which U is uniformly bounded.
(i) We set

t
m(x,t):= (IO?;‘ E, ( /d|k|s). (40)
0

Assume that39) holds and that there exists a constar(®.) for whichU is uniformly bounded. i (x,, #,) —
+oo withx,, € O, t, — +0o0, then

In -1
w() == _n_li)Too{(inf |:<Ex,, |:f d|k|s:|) J(xnv In, (at)t):| } (41)
0

where

th In
J(xna In, (at)t) =Ey, ( /[f(Xw as) + )\] dr + / 8(Xy) d|k|v>

0 0

This result gives a complete characterizatiom@f) when it exists and it points out the conditions under which
this constant is unique. In particular, (39) is a justification of the idea that in order to have a wriguehe
boundary condition has to be “sufficiently seen”.

Of course, the weak part of this result is the existencga @f): unfortunately, in this case, we cannot have a
better result than the uniformly elliptic case since’jH2ads to assume that the equation is uniformly elliptic.

Indeed, if one considers (B2vith N = cq ® g whereq = A_/lap andc > 0 is very large, then by dividing by
and lettinge tends to+oo, we are lead to

1
Sup|:——(a(x, a)q, q>i| < —K,
acA 2
sincelg| = 1. In other words, for any € O anda € A, (a(x,®)q, q) > k. Since this has to be true for apy
hence for any, this shows that the equation has to be uniformly elliptic.

This uniform elliptic case is the purpose of the following corollary.

Corallary 6.1. Under the above assumptionsenb, f, g andug and if there exists > 0 such thatz(x, «) > vid

for anyx € O and« € A, then(39) holds and for any € R, there exists a uniqug (1) € R for which U is
uniformly bounded. This constan{}) is given by(41)and it is also the unique constant for which the associated
stationary Bellman boundary value problem has a solution.

We skip the proof of this result since it follows easily from either Theorem 2.1 or 3.1, Theorem 4.1 and 4.2 and
Theorem 6.1.

Before turning to the proof of Theorem 6.1, we want to point out that, in general, even if (39) hoisisot
expected to converge to infinity uniformly @, nor even at any point ab. Indeed it is very easy, in particular in
the deterministic case, to build situations for which the drift is like a neighborhood 08O (and therefore the
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trajectory are pushed @O leading to (39)) whileb can be identically O insid® and therefore for such points
ks = 0. As a consequence of this remark, the admittedly strange formulation of (iii) cannot be improved.

Proof. We first prove (i). We first assume that the analogue of Theorem 4.1 holds and we want to show that (39)
holds. We argue by contradiction assuming that it does not; this implies that the functi@fined in (40) is
uniformly bounded. Indeed (39) is clearly equivalent to

suplimsupm(x, t) = 400,

xe® t—>+00
and the functiomn is increasing irr.

We choose abovg = g = up = 0. Arguing as in the proof of Theorem 5.1, we see thatt as co, m :=
liminf, m is a supersolution of the stationary equation wita 0 andu = 1 while 0 is a solution of this problem
with A = 0 andu = 0. This is a contradiction with the assumption.

Conversely, if (39) holds, let; be an usc subsolution of the stationary problem associated, jo; andu;
be a Isc supersolution of the stationary problem associated,t@,, with w1 < u2. The functionsu; andus
are respectively sub and supersolution of the evolution equation (with, say, initial |daths and —||u2]|c
respectively); therefore, for anye O andr > 0

t t

u1(x) < inf Ex[ /[f(xs,ao + A1]dr+ f[gm) + w1 dikls + ||u1||oo},

o)
0 0

t t

uz(x) = Ian;‘ Ex|: /[f(Xs,cxs)+k2] dt+/[g(Xx)+uz]d|kls - ||“2||oo:|-
t)t O 0

Let us take a sequence,, 1,) € O x (0,4o00) such that,, — +oo andm (x,, 1,) — +o0o asn — +oo. Leta, be

an g-optimal control for the “inf” in theuy inequality withe = 1. Using alsoax, for u; and subtracting the two

inequalities, we obtain

th In

(u1 —u2)(xn) < Ey, /[M —Azldr + f[m — p2ldlkls + O(1).
0 0
In this inequality, by the definition of:, the k-term is going to—oo sinceuw; — w2 < 0 but the left-hand side is
bounded; so necessarily — 1, > 0.
We next prove (ii). Suppose by contradiction that thergarandu, such that the corresponding value functions
U, andU; defined by (38) are uniformly bounded@ x [0, co). We assume that > u2. We have

t
Ur(x,1) = Ua(x,t) = (n1 — n2) (iam)‘ (Ex / d|k|s)- (42)
0

By lettingr — +o00 we get a contradiction because of the condition (39).
We leave the proof of (iii) to the reader since it is an easy adaptation of the arguments we give above.
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Appendix A
A.1. A comparison argument using oiii1), (F2)

The difficulty comes from (F1) and can be seen on a term-ike (A (x) D%u): in general, one assumes that
has the formA = oo T for some Lipschitz continuous matréxand the uniqueness proof uges an essential way,
both in the degenerate and nondegenerate case. Here we want just to Assubgenondegenerate and Lipschitz
continuous and we do not want to usegeven if, in this case, the existence of sucls well-known.

In the comparison argument of [9], the only difference is in the estimate of the differBhcep, X) —
F(y,q,Y).

The key lemma in [12] to solve this difficulty is the following: if the matricEsY satisfy (22) (withn = 0)
then

Ke?

X-Y< 5 (tX+(1—t)Y)2 forallr €[0,1].

A slight modification of this argument allows to take in accountifhierm and yields
z .2

X-Y< —KTE(IX+(1—I)Y)2+ O(n) foralltel0,1].

Now we show how to estimaté(x, p, X) — F(y, q, Y). By using (F1), (F2) together with the above inequality for
t =0, we get

F(x,p,X) = F(y,q,Y) > F(x,p,X) = F(x, p, Y + O(n))

—K(Ip —ql+1x = yI(IpI + Y1) + O(n)
Re2_
= S Tr(Y*) — K(Ip —ql+Ix - yl(lpl + 1Y)+ 0.
In this inequality, the “bad” term iK |x — y|||Y || since the estimates on the test-function does not ensure that it

converges to 0. But this term is controlled by the “good term” Bi(in the following way: by Cauchy—Schwarz’s
inequality

Re? P
K|x—y|||Y||>—K—Tr<Y2>—0<'x el )
6 £

And this estimate is now sufficient since we know that- y|2/¢? — 0 ase — 0.
A.2. Proof of Lemma.1

We use here argument which are borrowed from [8]. We prove the result under the weaker assumption
(F1), (F2).
Since® is aC? domain, fors > 0 small enoughyd (x — sn(x)) = s whered is the distance to the boundaiy.
We setxg = x — sn(x) for such ans and we build a functiop of the following form
¢(y) = exp(—ps®) — exp(—ply — xol°),
where p has to be chosen later. Finally we choase s/2. Sinces = |x — xo|, we havep(x) =0 and if y €
a0 N B(x,r) —{x}, |y — xo| = s/2 and thereforge(y) > 0. Moreover

Do(y) = 2p(y — xo0) exp(—ply — xol),
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and by the definition okg, De(x) = kn(x) with k = 2spexp(—ps?) > 0. Finally, we computeF(y, Do (),
D?%p(y)). Using the notationg(y) = 2pexp(—p|y — x0|?) and p(y) = y — xo, we have
Foo(y, D9(y), D?0()) = Foo(y. £(») p(»), £ 1d =20L(») p(») ® p(»)).
By homogeneity, it is enough to have

Foo(y, p(»),1d=2pp(») ® p(y)) > 0.
We notice that, inB(x, r), p(y) does not vanish and (H2ields

Foo (v, (). 1d=20p(0) ® p(») = 260{A=2(3) p(»). PO + Foo (v, (). 1) + 0 (1) 20| p(3) .
In order to have the left-hand side positive, it is enough to chpdaege enough. And the proof is complete

A.3. Sketch of the proof of Lemmd

We just sketch the proof since we follow very closely the strategy of proof of Lemma 2.6 in Arisawa [5]. Let
¢ € C2%(O) be such thaw — ¢ has a local maximum at € ©. We suppose that € 90, the casex € O being
similar and even simpler.

For alle > 0 andn > 0, we introduce the auxiliary function

X+y -

Pep(x,y) =usr(x) —u2(x) — Y n(x,y) — ¢<T) — | —x[* (43)
wherey, ,(x, y) is the test function built in Barles [9] relative to the boundary condition (2).(kgty.) be the
maximum point of®, , (x, y) in O x O. Sincex is a strict local maximum point of — w(x) — ¢ (x) — |x — x|%,
standard arguments show that

|xe — yel?

(xg, ye) = (x,X) and —0 ass—0.

2

&

On the other hand, by construction we have
L('x67 Dy e n(xe, ye)) >up if xe €90,
L(.st —Dy e y(xe, Ys)) <p if y.€90.

Moreover, if & ,(x, y) 1= e 5 (x, ) + ¢ (CF2) + |x — X|*, by standard arguments (cf. [21]), we know that, for
everya > 0, there existX, Y € §" such that

(Daben(xe, o), X) € T 5Fua(xe),
(=DyGen(xe, ¥e), ¥) € T 2 ua(ye),

and
1 X 0
_<; + || ngé‘,r](-x&‘v )’S)H> Id < < 0 —Y) < (|d +0lD2§s,n(xaa ys))szs,n(xss Ye)-

Now suppose that

—¢(x)—C|DT¢()E)| > 0.

If x, € 00, then, fore small enough, we have

d¢ (X)
on

L(xe, DxCen(Xe, ¥6)) = L(xe, Dxre ) + = ( - K!DT¢(2)|) +0:(1) > 1,
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while if y, € 00

17 9¢(x)
L(yg, _Dyé‘s,n(xas )75)) < L(ye, —Dyl//g’n) — 5(1) P

Therefore, ife is small enough, wherevet, y. lie we have

- K|DT¢(2)}> +0e(1) < p.

F(x& Dy &e y(xe, ye)s X) <A,

F()’E7 =Dy e n(xe, Ye), Y) = A
By subtracting the above inequalities, using the above estimatés Briogether with the arguments of Subsec-
tion A.1, the assumption (F1) and (F2) and the definition of the Pucci's extremal opgratoby lettinge tend
to 0, we are lead to

~M*(D?p(®) - K|Dg ()] <O,

and the conclusion follows. O
A.4. TheC% regularity results and estimates {f0]

As mentioned in the introduction, we describe in this section the results of [10] we are using in this paper, in
order to have an as self-contained article as possible. In fact, since we use here global estimates (and not loce
ones), we can follow the remark at the end of the second section in [10] and have results with a little bit weaker
assumptions. Of course, we reformulate the results of [10] in this global framework.

These results concern nonlinear Neumann boundary value problems of the form

F(x,u, Du, D>¢) =0 inoO,
G(x,u,Du)=0 onoo,

where O C R" is a smooth, bounded domaifi, and G are, at least, real-valued continuous functions defined
respectively or0 x R x R" x §" anddO x R x R".
The assumptions are the following: on the domain, we require

(44)

(H1) (Regularity of the boundary) is a bounded domain with@?-boundary. while the basic assumptions/on
andG are the
(H2) (Growth condition onF) For any R > 0, there exist positive constang, C¥, CX and functionswf,
R Rt — R such thatwf (0+) = 0 andwX () = O(r) asr — 0, and for anyx,y € O, —R <u,v <R,
p,geR" M eS"andK >0
F(x,u, p, M) = F(y,v,q, M + Kd) <of (Ix = y|(1+|p| + 1g1) + [p — 1) IM]| + w5 (K)

+ R+ cR(1pPP+191%) + CRix — (1012 +14913),
and

(G1) ForallR > 0, there existgLg > 0 such that, for everyx, u, p) € 90 x [—R, R] x R", andx > 0, we have
G(x,u,p—l—)»n(x))—G(x,u,p)}uR)\, (45)

wheren(x) denotes the unit outward normal vectorto atx € 00.
(G2) For allR > 0 there is a constarKz > 0 such that, foralk, y €00, p,q € R", u,v € [—R, R], we have

|G(x,u, p) — Gy, v,q)| < Kg[(1+1pl+lgl)lx — |+ |p — gl + |u—v]]. (46)
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Before formulating additional assumptions, we want to point out that (H2) is obviously satisfied when (F1) holds.
These basic assumptions have to be complemented by a “strong ellipticity assumption” which are different in
thelinear case, i.e. whexy is an affine function op, typically when it is of the form

(Du,y () +a@)ux) +gx)=0 onyo (47)

and in thenonlinear case
In the linear case, the “strong ellipticity assumption” is the following

(H3a) Oblique-derivative boundary condition and ellipticityhere exists a Lipschitz continuous function
A0 — 8" with A > ¢old, for someco > 0 such thatA(x)y (x) = n(x) for everyx € 30, and for any
R > 0, there existLg, Ag > 0 such that, for alk € O, |u| < R, |p| > Lg andM, N € §" with N > 0, we
have

F(x.u, p. M+ N) = F(x.u, p. M) < =g [NA—L(x) p. A=1(x) p) + oD NI, (48)

whereo(1) denotes a function of the real variabpg which converges to 0 4| tends to infinity.
Finally, on the boundary condition (47), we require

(H4) (Regularity of the boundary conditipMhe functionsy anda in (47) are Lipschitz continuous ohO,
(y (), n(x)) > B > 0 for anyx € 90 andg is in C%#(30) for some 0< g < 1.

The result in theinear caseis the

Theorem A.1. AssumgH1)-(H2)-(H3a)-(H4) Then every continuous viscosity solutomf (44) with G given

by (47)is in C%%(0) for any0 < « < 1if = 1 and witha = B if g < 1. Moreover theC%*-norm ofx depend
onlyono, F, y, a, g through the constants and functions appearingHt2)-(H3a) the C%1-norm ofy anda,

the C%#-norm ofg and theC2-norm of the distance function of the boundary including the modulus of continuity
of D?d.

Now we turn to the nonlinear case where we assume uniform ellipticity, namely

(H3b) (Uniform ellipticity) For any R > 0, there ishz > 0 such that, for alk € O, —R <u < R, p e R" and
M, N € §" such thatM < N, we have

Fx,u,p,M)— F(x,u,p, N) Z A Tr(N — M).

For the nonlinear boundary condition, we require
(G3) For allR > 0 andM > 0O there isK ) > 0 such that

G
‘<$(X,M,P),P>—G(X,M,P)‘ < Kg oM, (49)

forallx €90 andforallp e R", |p| > M, |u| < R.
(G4) There is a functioli o, : 00 x R x R” — R such that

1
XG(X’ u,\p) > Goo(x,u, p) asi— oo (50)

uniformly in (x, u, p).
The result in the nonlinear case is the

Theorem A.2. AssumegH1)-(H2)-(H3b) and (G1)—-(G4). Then every bounded continuous solutioof (44) is
in C%%(0) for any 0 < a < 1. Moreover theC%“-norm ofu depend only or0, F, G, through the constants
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and functions appearing i(H2)-(H3b), and in(G1)—(G4), theC?-norm of the distance function of the boundary
including the modulus of continuity &i%d.
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