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Abstract

We construct an additive indexI on the set of compact “parts” of the setHH (Γ ) of “small” H-surfaces (|H |< 1
2) that are

spanned into a simple closed polygonΓ ⊂ R3 with N + 3 vertices (N � 1) by a combination of Heinz’ and Hildebrandt
examinations of H-surfaces and Dold’s fixed point theory. We obtain that the index ofHH (Γ ) is always 1, independent ofH
andΓ . Moreover we compute that thěCech cohomologyȞ (P) of a partP that minimizes the H-surface functionalEH locally
is non-trivial at most in degrees 0, . . . ,N − 1 and there even finitely generated, which implies the finiteness of the nu
of connected components ofP in particular. Finally the index of such an “EH -minimizing” part reveals to coincide with it
Čech–Euler characteristic, which yields a variant of the mountain-pass-lemma.

1. Introduction and main result

Let Γ be some closed piecewise linear Jordan curveΓ ⊂D3 := {x ∈R3 | |x|� 1} with N + 3 vertices (N ∈N)

(P0,A1, . . . ,Al;P1;Al+1, . . . ,Am;P2;Am+1, . . . ,AN), (1)

where the three verticesP0, P1, P2 and the indices 0� l � m � N are fixed. We consider the (Plateau-) cla
C∗1(Γ ) of surfacesX ∈H 1,2(B,R3)∩C0(�B,R3), B := B1(0)⊂R2, that are spanned intoΓ , i.e. whose boundar
valuesX|∂B :S1 → Γ are weakly monotonic mappings with degree equal to 1, satisfying a three-point-cond

X|∂B(eiψk )= Pk, ψk := k
2π

3
, k = 0,1,2, (2)

and that are contained in the closed unit ballD3, i.e.‖X‖C0(�B) � 1. We endowC∗1(Γ ) with the norm‖ · ‖H1,2∩C0 :=
‖ · ‖C0(�B) + ‖ · ‖H1,2(B). Moreover we consider the subspaceHH (Γ ) ⊂ (C∗1(Γ ),‖ · ‖H1,2∩C0) of all “small”

H-surfaces, i.e. classical solutionsX ∈ C∗1(Γ )∩C2(B,R3) of the differential equations
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f the

ularity
6]) of
�X = 2H(Xu ∧Xv) onB, (3)

|Xu|2 = |Xv|2, 〈Xu,Xv〉 = 0 onB, (4)

for some arbitrarily fixedH ∈ (−1
2, 1

2). We note that Eqs. (3) are just the Euler–Lagrange equations o
“H-surface functional”EH :H 1,2(B,R3)∩L∞(B,R3)→R, given by

EH (X) :=
∫
B

|∇X|2+ 4H

3
〈X,Xu ∧Xv〉dudv. (5)

For some fixed polygonΓ andH ∈ (−1
2, 1

2) Heinz [7] constructed a map

ψ :T → (
C∗1(Γ ),‖ · ‖H1,2∩C0

)
on a convex, open, bounded subsetT ⊂ RN (whereN + 3 was the number of vertices ofΓ ), whose following
crucial properties shall be proved in this paper using Heinz’ isoperimetric inequality in [8], his boundary reg
theorem in [10] combined with an idea of Hildebrandt [12] and the author’s generalizations ([15] resp. [1
Courant’s fundamental ideas in [2,3]:

Reduction theorem.

(i) ψ andf := EH ◦ψ are continuous onT .
(ii) We have evenf = EH ◦ψ ∈ C1(T ,R).

(iii) For every sequence{τn}n∈N with dist(τn, ∂T )→ 0 there holds

f (τn)→∞ for n→∞.

(iv) The restriction

ψ |K(f ) :K(f )
∼=→HH (Γ ) (6)

yields ahomeomorphismbetween the compact setK(f ) of critical points off and(HH (Γ ),‖ · ‖H1,2∩C0).

We furthermore define the two following notions in

Definition 1.1. (i) A compact subsetP ⊆HH (Γ ) is termed a part (ofHH (Γ )) if P has an open neighborhoodU in
(C∗1(Γ ),‖ · ‖H1,2∩C0) which satisfiesP = U ∩HH (Γ ), i.e. which separatesP from the complementHH (Γ ) \P ,
and we set

KH (Γ ) := {
P ⊆HH (Γ ) |P is a part

}
. (7)

(ii) An EH -minimizingpartP (�= ∅) of HH (Γ ) is characterized by the two following additional properties:

(1) EH (X)≡ const.(P) ∀X ∈P ,
(2) there exists an open neighborhoodU of P in (C∗1(Γ ),‖ · ‖H1,2∩C0) such that

EH (X) � const.(P) ∀X ∈ U .

Now we can state the

Main theorem. To any closed polygonΓ ⊂D3 andH ∈ (−1
2, 1

2) one can assign an(H-surface-) index

I : KH (Γ )→ Z

with the following properties:
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(i) I(HH (Γ ))= 1, independent ofH andΓ .
(ii) I is additive onKH (Γ ), i.e. any decompositionP =⊔m

j=1Pj ∈KH (Γ ) (m � 1) yields

I(P)=
m∑

j=1

I(Pj ). (8)

(iii) Moreover theČech cohomology̌H(P) of anEH -minimizing partP ⊆HH (Γ ) is non-trivial at most in degree
0, . . . ,N− 1 and there even finitely generated,P consists of only finitely many connected components an
H-surface-index coincides with itšCech–Euler-characteristic:

I(P)=
N−1∑
i=0

(−1)i dimQ Ȟ i(P,Q)=: χ̌ (P,Q). (9)

This theorem immediately implies the following

Corollaries.

(i) HH (Γ ) �= ∅.
(ii) A variant of themountain-pass-lemma:If there existm � 2 differentEH -minimizing partsPj in HH (Γ ) with

�m
j=1χ̌ (Pj ,Q) �= 1, then the complementHH (Γ ) \⋃m

j=1Pj is not empty. This situation is encountered es

cially if there existm � 2 homotopy equivalentEH -minimizing partsPj in HH (Γ ). If in particular these parts
Pj are points, i.e. isolated H-surfacesX1, . . . ,Xm which are local minimizers ofEH in (C∗1(Γ ),‖ · ‖H1,2∩C0),
then the H-surface-index of the complementary partP :=HH (Γ ) \ {X1, . . . ,Xm} amounts to

I(P)= 1−m < 0.

The author would like to point out the similarity of statement (i) of the main theorem to the result of Tro
papers [21] resp. [22], where Tromba constructs a “minimal surface index” which can be assigned to
minimal surfaces spanning a wireΓ ∈ Hr,2(∂B,Rn) (r > 18, n � 3) that arenon-degeneratein two different
senses depending on the two casesn > 3 resp.n = 3. The fundamental tool for his “Index formula” of [21,2
yields the deep Index Theorem of Böhme and himself [1] which guarantees that at least for an open, den
of boundary curvesΓ in Hr,2(∂B,Rn) (so-called generic curves) the setM(Γ ) of all minimal surfaces spanningΓ
indeed consists of isolated andnon-degeneratepoints in the two casesn > 3 resp.n= 3. One should also compa
our main theorem to Struwe’s achievements in [19], where he develops a complete Morse theory for the de
of M(Γ ), providedΓ ⊂ Rn (n � 2) is aC5-regular boundary curve that spans only minimal surfaces which
non-degeneratecritical points of the Dirichlet integral, which is guaranteed at least for generic wiresΓ ⊂ Rn for
n � 4 by the Index Theorem [1] of Böhme and Tromba. Finally one should notice the similarity of Corolla
to Struwe’s resp. Imbusch’s mountain-pass-lemma in [20], p. 51, resp. [14], p. 17, which also does not req
existence of differentstrict local minimizers of the considered functional (there it is the Dirichlet integral) on
class of admitted surfaces spanned into the boundary curve.

2. Fundamental properties of EH and H-surfaces

ForX ∈H 1,2(B,R3)∩L∞(B,R3) and anyL2-measurable subsetB ′ ⊆ B we set

DB ′(X) := 1

2

∫
′
|∇X|2 dudv, FB ′(X) :=

∫
′
〈X,Xu ∧Xv〉dudv and
B B
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EH
B ′(X) := 2DB ′(X)+ 4H

3
FB ′(X) for |H |< 1

2
, (10)

and we shall use the abbreviationsD(X) :=DB(X), F(X) := FB(X) andEH (X) := EH
B (X). At first we have for

X ∈H 1,2(B,R3)∩L∞(B,R3) with ‖X‖L∞(B) � 1 due to|Xu ∧Xv|� 1
2|∇X|2 the estimates(

1− 2

3
|H |

)
2DB ′(X) � EH

B ′(X) �
(

1+ 2

3
|H |

)
2DB ′(X) (11)

on anyL2-measurable subsetB ′ ⊆ B. By these inequalities one obtains as in Lemma 3.4 in [11] the lower s
continuity ofEH with respect to weak convergence inH 1,2(B,R3):

Lemma 2.1. For a sequence{Xj } ⊂H 1,2(B,R3)∩L∞(B,R3) with Xj ⇀ X in H 1,2(B,R3) and‖Xj‖L∞(B) � 1
we have

EH (X) � lim inf
j→∞ EH (Xj ).

Analogously one can prove the same statement for the functionalGH := D + 4H
3 F (for |H |< 1/2). By these

tools one easily infers (see [17], Lemma 2.2)

Lemma 2.2. Let {Xj } be a sequence inH 1,2(B,R3)∩L∞(B,R3) with ‖Xj‖L∞(B) � 1 ∀j ∈N,

EH (Xj )→ EH (X) and (12)

Xj ⇀ X in H 1,2(B,R3) for j →∞, (13)

for some surfaceX ∈H 1,2(B,R3), then there holds:

D(Xj )→D(X) for j →∞.

Now we consider the Dirichlet problem forEH and prescribed boundary valuesr := X|∂B of a surfaceX ∈
C∗1(Γ ), i.e. the variational problem of minimizingEH within a given boundary value class

[X|∂B ] :=
{
Y ∈H 1,2(B,R3)∩L∞(B,R3) | Y −X ∈ H̊ 1,2(B,R3), ‖Y‖L∞(B) � 1

}
:

℘H (X|∂B) :EH →Min. in [X|∂B ]. (14)

By [11], Theorem 3.6 resp. 3.7, we have the following existence, uniqueness and regularity result:

Theorem 2.1. For anyX ∈ C∗1(Γ ) andH ∈ (−1
2, 1

2) there exists a unique solutionX∗ := X∗(X,H) ∈ [X|∂B ] of
the problem℘H (X|∂B) which additionally belongs toC0(�B,R3) ∩ C2(B,R3) and solves Eq.(3) in the classical
sense.

Remark 2.1. Since the unique solutionX∗ of the problem℘H (X|∂B) belongs to[X|∂B ]′ := [X|∂B ] ∩ C0(�B,R3)

we inferEH (X∗)= inf[X|∂B ] EH � inf[X|∂B ]′ EH � EH (X∗), hence inf[X|∂B ] EH = inf[X|∂B ]′ EH .

Let h(r) denote the uniquely determined harmonic extensionh ∈ C0(�B,Rn)∩C2(B,Rn) of prescribed contin
uous boundary valuesr ∈C0(∂B,Rn) with ‖r‖C0(∂B) � 1, for n � 1. From [9], Hilfssatz 5, we have the followin
boundary estimate for “small” solutions of (3):

Lemma 2.3. Let |H | < 1
2 be arbitrarily fixed. For surfacesX ∈ C2(B,R3) ∩ C0(�B,R3) satisfying (3) and

‖X‖C0(�B) � 1 there holds∣∣X(ρ eiϑ )−X(eiϑ )
∣∣ � |H |

2(1− 2 |H |)
∣∣h(|r|2)(ρ eiϑ )− ∣∣r(eiϑ )

∣∣2∣∣+ 1− |H |
1− 2|H|

∣∣h(r)(ρ eiϑ )− r(eiϑ )
∣∣ (15)

for anyρ ∈ [0,1] andϑ ∈ [0,2π], wherer :=X|∂B .
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We use this boundary estimate to prove the following central compactness result:

Theorem 2.2. A sequence{Xk} ⊂ C∗1(Γ ) ∩ C2(B,R3) of surfaces which solve(3) and have bounded Dirichle
integrals, i.e.D(Xk) � const., ∀k ∈N, is compact inC0(�B,R3).

Proof. On account of Hilfssatz 3 in [9] one can estimate the moduli of the gradients{|∇Xk|} on Bρ(0)⊂ B

uniformly by a constantC(ρ,H) for any fixedρ ∈ (0,1), which yields∣∣Xk(w1)−Xk(w2)
∣∣ � C(ρ,H)|w1−w2| ∀k ∈N, (16)

∀w1,w2 ∈ Bρ(0). Since theXk satisfyD(Xk) � const.,‖Xk‖C0(�B) � 1 and the three-point-condition (2)∀k ∈ N

we obtain by the Courant–Lebesgue lemma and Arzelà–Ascoli’s theorem a subsequence of the bounda
Xk|∂B =: rk (which will be renamed{rk}) that converges inC0(∂B,R3) to some continuous functionr . Conse-
quently by the weak maximum principle for harmonic functions we infer for the unique harmonic extensionh(rk)

resp.h(|rk|2):
max�B

∣∣h(|rk|2)− h
(|r|2)∣∣=max

∂B

∣∣|rk|2− |r|2∣∣→ 0 and

max�B
∣∣h(rk)− h(r)

∣∣ �
√

3max
∂B

|rk − r| → 0,

for k →∞, implying the equicontinuity of{h(rk)} and{h(|rk|2)} on �B. Now combining this with Lemma 2.3 w
obtain for a fixedH ∈ (−1

2, 1
2): for an arbitrarily chosenε > 0 there is aδ( ε

3) > 0 such that

∣∣Xk(ρ eiϑ )−Xk(e
iϑ )

∣∣ � |H |
2(1− 2|H|)

∣∣h(|rk|2)(ρeiϑ )− ∣∣rk(eiϑ )
∣∣2∣∣

+ 1− |H |
1− 2|H|

∣∣h(rk)(ρ eiϑ )− rk(e
iϑ )

∣∣ <
ε

3
(17)

if 1 − ρ < δ( ε
3), uniformly ∀k ∈ N. Together with the equicontinuity of theXk on every closed discBρ(0)⊂ B

by (16) and the equicontinuity of the boundary valuesrk on ∂B one finally achieves the equicontinuity of{Xk}
on �B (see the proof of Theorem 2.2 in [17]). Hence by‖Xk‖C0(�B) � 1 ∀k ∈N Arzelà–Ascoli’s theorem yields th
assertion. �

Moreover we will use the following boundary regularity result for H-surfaces and an asymptotic expan
the complex gradientXu − iXv about a boundary branch point due to Heinz [10], Satz 3:

Theorem 2.3. Let X ∈H 1,2(B,R3) ∩ C0(�B,R3) ∩ C2(B,R3) be a solution of(3) and (4) which maps an open
connected arcγ ⊂ ∂B weakly monotonically into a regular, open Jordan curveΓ̃ of classC3.

(i) Then for everyw0 ∈ γ there is anε0 > 0 such that

X ∈ C1,ν(�Zw0,ε0,R3) ∀ν ∈ (0,1)

on the closure of the “circular bigon”Zw0,ε0 := Bε0(w0)∩B.
(ii) If w0 ∈ γ is a boundary branch point ofX and |Xu| �≡ 0, then one has

(Xu − iXv)(w)= a(w−w0)
k + o

(|w−w0|k
)

for �Zw0,ε0 �w →w0,

for some complex vectora ∈C3 \ {0} and a positive integerk ∈N.



562 R. Jakob / Ann. I. H. Poincaré – AN 22 (2005) 557–578

-

3.2 in
Using this theorem Hildebrandt derived in [12], Satz 3, the following

Corollary 2.1. The boundary values of an H-surfaceX ∈HH (Γ ) perform a homeomorphism:

X|∂B : ∂B
∼=→ Γ.

For surfacesX ∈H 1,2(B,R3) we denote its area by

A(X) :=
∫
B

|Xu ∧Xv|dudv.

In (39) we will make use of Heinz’ isoperimetric inequality for “small” H-surfaces, Theorem 3 in [8]:

Theorem 2.4. For an arbitrary “small” H-surfaceX ∈HH (Γ ) there holds

A(X) � 1

4π

1+ h

1− h
L(Γ )2, (18)

whereh := |H |‖X‖C0(�B) (< 1
2) andL(Γ ) := length ofΓ .

3. Heinz’ map ψ

In this section we construct Heinz’ mapψ :T → (C∗1(Γ ),‖ · ‖H1,2∩C0), where the setT ⊂ RN is defined as
follows:

Definition 3.1. Let T be the set ofN -tuples

(τ1, τ2, . . . , τN)=: τ ∈ (0,2π)N ⊂RN

which satisfy the following chain of inequalities:

0=ψ0 < τ1 < · · ·< τl < ψ1 < τl+1 < · · ·< τm < ψ2 < τm+1 < · · ·< τN < 2π, (19)

wherel andm are the same fixed indices as in (1).

ObviouslyT is a convex, open and bounded subset ofRN .

Definition 3.2. To eachτ ∈ T we assign a setU(τ ) of surfacesX ∈ C∗1(Γ ) which meet the following “Courant
condition”:

X|∂B(eiτj )=Aj for j = 1, . . . ,N. (20)

At first for any fixedτ ∈ T one can easily construct boundary valuesr yieldingh(r) ∈ U(τ ), hence we have

Lemma 3.1. U(τ ) �= ∅ ∀τ ∈ T .

As we requireΓ to be a closed polygon one easily verifies the convexity ofU(τ ) for any τ ∈ T , which is a
rather important point.

Now we state a slight generalization of Lemma 1 in [7] which Heinz asserted without proof (see Lemma
[17] for a proof):
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Lemma 3.2. For any two surfacesX ∈ H 1,2(B,R3) and Z ∈ C0(�B,R3) ∩ H 1,2(B,R3) and any monotonically
increasing sequence of radiir∗n ↗ 1 there exists in each interval[r∗n − εn, r

∗
n + εn], for εn := (1− r∗n)/2, a subset

Rn with L1(Rn) � εn, such that for an arbitrary sequence of radii{ξn} with ξn ∈Rn ∀n ∈N there holds:

2π∫
0

∣∣Z(ξn eiϕ )−Z(eiϕ )
∣∣∣∣Xϕ(ξn eiϕ )

∣∣dϕ→ 0 for n→∞.

The following basic integral identity, (1.9) in [7], is proved in [17], Lemma 3.3.

Lemma 3.3. For anyX,Z ∈C0(�B,R3)∩H 1,2(B,R3) there holds:

FBr(0)(X+Z)−FBr(0)(X)

= 3
∫

Br (0)

〈Z,Xu ∧Xv〉dudv+
∫

Br(0)

〈3X+Z,Zu ∧Zv〉dudv+ 1

r

∫
∂Br (0)

〈
X,Z ∧ (Xϕ −Zϕ)

〉
ds (21)

for a.e.r ∈ (0,1).

Combining Lemma 3.2 with the identity (21) Heinz achieved in [7], Lemma 2, the following formula (see
Lemma 3.4 in [17] for a more detailed proof):

Lemma 3.4. For any two surfacesX1,X2 ∈ U(τ ), for an arbitraryτ ∈ T , we have:

F(X2)−F(X1)

= 3
∫
B

〈
X2−X1, (X1)u ∧ (X1)v

〉
dudv+

∫
B

〈
2X1+X2, (X2−X1)u ∧ (X2−X1)v

〉
dudv. (22)

Recalling the convexity of the setsU(τ ) the above lemma yields the following crucial inequality due to He
[7], Lemma 3 (see also Lemma 3.5 in [17]):

Lemma 3.5. Let τ ∈ T be arbitrarily chosen, then for any two surfacesX1,X2 ∈ U(τ ) there holds:

1

2

(
EH (X1)+ EH (X2)

)− EH

(
X1+X2

2

)
� 1

2

(
1− 2|H|)D(X1−X2). (23)

Now we are prepared to prove the main result of this section using Theorems 2.1, 2.2 and the above in
(see also Lemma 8 in [7]):

Proposition 3.1. For an arbitrary τ ∈ T there exists inU(τ ) a uniquely determined minimizerX(τ) of EH , i.e.

EH
(
X(τ)

)= inf
U(τ )

EH . (24)

FurthermoreX(τ) belongs toC2(B,R3) and solves(3) in the classical sense.

Proof. Existence: Let{Xk} ⊂ U(τ ) be a minimizing sequence forEH , i.e.

EH (Xk)→ inf EH for k →∞. (25)

U(τ )
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Now Theorem 2.1 guarantees the existence of a sequence{X∗
k } ⊂ C0(�B,R3) ∩ C2(B,R3) which satisfiesX∗

k ∈
[Xk|∂B ], EH (X∗

k )= inf[Xk |∂B ] EH and (3), thus{X∗
k } is again a minimizing sequence forEH in U(τ ) in particular.

By (11) we see

D(X∗
k ) � const. ∀k ∈N, (26)

which together with‖X∗
k‖C0(�B) � 1 implies‖X∗

k‖H1,2(B) � const.∀k ∈N. Consequently we obtain a subseque
{X∗

kn
} with

X∗
kn

⇀ X∗ in H 1,2(B,R3) (27)

for someX∗ ∈H 1,2(B,R3), which by the theorems of Rellich and Riesz implies the existence of a further s
quence (that will be renamed{X∗

kn
}) with

X∗
kn

(w)→X∗(w) for a.e.w ∈ B.

On account of (26) Theorem 2.2 finally yields a further subsequence (that will be renamed{X∗
kn
} again) satisfying

X∗
kn
→X∗ in C0(�B,R3). (28)

Hence, we obtainX∗ ∈ U(τ ). Together with limn→∞ EH (X∗
kn

)= infU(τ ) EH and the weak lower semicontinuity o

EH by Lemma 2.1 applied to (27) we finally obtainEH (X∗)= infU(τ ) EH . Furthermore together with[X∗|∂B ]′ =
[X∗|∂B ] ∩C0(�B,R3)⊂ U(τ ) and Remark 2.1 we infer:

EH (X∗)= inf
U(τ )

EH � inf
[X∗|∂B ]′

EH = inf[X∗|∂B ]
EH � EH (X∗),

thusX∗ is a solution of the Dirichlet problem℘H (X∗|∂B). Consequently Theorem 2.1 yields thatX∗ belongs to
C2(B,R3) and solves (3) in the classical sense.

Uniqueness: LetX∗
1 andX∗

2 be twoEH -minimizers inU(τ ), i.e. we haveEH (X∗
1) = infU(τ ) EH = EH (X∗

2).
As U(τ ) is convex1

2(X∗
1 +X∗

2) belongs toU(τ ), thusEH ((X∗
1 +X∗

2)/2)� infU(τ ) EH . Consequently Lemma 3.
yields

1

2

(
1− 2|H|)D(X∗

1 −X∗
2) � inf

U(τ )
EH − EH

(
X∗

1 +X∗
2

2

)
� 0,

henceD(X∗
1 −X∗

2)= 0 due to|H |< 1
2. SinceX∗

1 andX∗
2 are continuous on�B and satisfy the same three-poin

(and even Courant-) condition (2) we provedX∗
1 ≡X∗

2 on �B. �
Now the above proposition suggests the following

Definition 3.3. For an arbitrarily chosen polygonΓ ⊂D3 andH ∈ (−1
2, 1

2) we define “Heinz’ map”

ψ :=ψΓ (H) :T → (
C∗1(Γ ),‖ · ‖H1,2∩C0

)
by ψ(τ) :=X(τ) (29)

andf := f Γ (H) :T →R by f := EH ◦ψ .

4. Proof of the reduction theorem

On account of the invariance of the functionalF with respect to orientation preserving diffeomorphis
φ : �B ∼= �B, the “positive definiteness” ofEH onC∗1(Γ ) (11), Lemmas 2.1 and 2.2, Theorem 2.2 and Proposition
the assertion (i) of the reduction theorem can be proved exactly as Theorem 6.6 in [16] (see also [7], Lem

Since orientation preserving diffeomorphisms and especially conformal automorphisms of the disc wil
central role in later sections we add a few observations on such mappings.
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4.1. Inner variations of the disc�B

Definition 4.1. A family of orientation preservingC3-diffeomorphismsφε := φ(·, ε) : �B → �B, ε ∈ [−ε0, ε0] (for a
fixed, sufficiently smallε0 > 0), are called inner variations of�B of “medium” type if they are three times contin
ously differentiable inε on [−ε0, ε0], i.e.φ ∈ C3(�B × [−ε0, ε0],R2) and a perturbation of the identity:φ0 = id�B .
The set of these variations of�B will be denoted byV .

Remark 4.1. (a) A family φ ∈ V possesses a Taylor expansion with respect toε: φε = id�B + ελ+ o(ε) on �B, for
ε → 0, whereλ := ∂

∂ε
φε |ε=0 is called the generator of the familyφ, and its remainder of first order can be estima

by 1
2‖φ‖C2ε2.
(b) The inverse family{φ−1

ε } is again a family of inner variations of�B of medium type and possesses the Tay
expansionφ−1

ε = id�B − ελ+ o(ε) on �B, for ε → 0.

Remark 4.2. Now we consider the action of inner variationsφ ∈ V on the setT . Let K � T be compact and
φ ∈ V arbitrarily chosen. Then there is anε0 = ε0(K,φ) > 0 such that the family{φε}ε∈[−ε0,ε0] induces a flow
(φε)� :K → T via arg(·):S1 ∼=R/(2πZ) by:

τ = (τ1, . . . , τN ) �→ (
arg◦ φε |∂B(eiτ1), . . . ,arg◦ φε |∂B(eiτN )

)=: (φε)�(τ ). (30)

Next we consider the mapΛ :V × T →RN given byΛ(φ, τ) := ∂
∂ε

(φε)�(τ )|ε=0. A simple calculation yields

Λ(φ, τ)= ∂

∂ε
(φε)�(τ )

∣∣∣∣
ε=0

=
(

1

ieiτ1
λ(eiτ1), . . . ,

1

ieiτN
λ(eiτN )

)
,

whereλ denotes the generator of the family{φε}. Now we fix someτ ∈ T . For an arbitraryΥ = (Υ1, . . . ,ΥN) ∈
SN−1 we want to construct aφ ∈ V such that the pair(φ, τ ) is mapped byΛ ontoΥ . This can easily be carried o
by means of “hill functions”hm ∈ C∞

c (R2) (m= 1, . . . ,N) with respect to the fixedτ = (τ1, . . . , τN ) which can
explicitly be given by

hm(w) :=
{

e
1
r e−1/(r−|w−eiτm |) for |w− eiτm |< r,

0 for |w− eiτm |� r

for m ∈ {1, . . . ,N}, where we have putτN+1 := τ1 and require

r <
1

2

[
min

l∈{1,...,N},k∈{0,1,2}
{|eiτl − eiτl+1|, |eiτl − eiψk |}].

Obviously thehm have the following properties:

hm(eiτl )= δml for m, l ∈ {1, . . . ,N}, (31)

hm(eiψk )= 0 for m= 1, . . . ,N andk = 0,1,2.

Now we setυ :=∑N
m=1 hmΥm on �B. Then the inner variationsφε(w) := w exp(iευ(w)), which we term(τ,Υ )-

variations, induce

(φε)�(τ )= (τ1+ εΥ1, . . . , τN + εΥN)= τ + εΥ ∈ T

(for |ε| sufficiently small), which completes the construction.

Remark 4.3. Finally we mention that in general a family{φε} ∈ V affects the three points{eiψk }k=0,1,2; conse-
quently the inner variationsX ◦ φε of some surfaceX ∈ C∗(Γ ) might leave this class. In order to overcome t
1
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technical difficulty we follow Courant’s idea of [2] to “renorm”{φε} by a family of conformal automorphism
{Kε} ⊂ Aut(B) which is uniquely determined by its desired property

φ̃ε(e
iψk ) := (φε ◦Kε)(e

iψk )
!= eiψk for k = 0,1,2.

Moreover via a straightforward calculation one has to ensure that this renormed family{φ̃ε} is an element ofV
again (see [15], p. 71, for a proof).

4.2. Proof of the points (ii)–(iv) of the reduction theorem

The proof of statement (ii) of the reduction theorem is based on the following result (see [17], Lemma
a proof).

Proposition 4.1. Let {φε}ε∈[−ε0,ε0] be a family inV andX ∈H 1,2(B,Rn) some surface, then

D(X ◦ φε) : [−ε0, ε0]→R

is twice continuously differentiable with respect toε and we have(i):

d

dε
D(X ◦ φε)

∣∣∣∣
ε=0

= 1

2

∫
B

a(λ1
u − λ2

v)+ b(λ1
v + λ2

u)dudv=: ∂D(X,λ), (32)

wherea := |Xu|2− |Xv|2 andb := 2〈Xu,Xv〉 and (ii):

EH (X ◦ φε) � EH (X)+ 2ε∂D(X,λ)+ ε2cD(X), (33)

where the constant c depends only on{φε} (and{φ−1
ε }) but not onX.

On account of the inequalities (33) and (11) the following theorem can be proved as Theorem 6.13 in [16
the continuity off , Lemma 6.12 in [16] and Remark 4.1(b) (see also Lemma 11 in [7]).

Theorem 4.1. (i) At every pointτ ∈ T there exist all directional derivatives off . (ii) Let τ ∈ T and Υ ∈ SN−1

be arbitrarily chosen and consider the corresponding(τ,Υ )-variationsφε(w) := exp(iευ(w)) (see Remark4.2),
then there holds

∂

∂Υ
f (τ)= 2∂D

(
X(τ),−λ

)
, (34)

whereλ(w) := iwυ(w) for w ∈ �B.

Now the assertion (ii) of the reduction theorem can be proved as Theorem 6.14 in [16] combining the
theorem with Lemma 6.12 in [16] (in [7] this statement is asserted in Theorem 1 without proof).

By (11) assertion (iii) of the reduction theorem can be proved as Lemma 6.16 in [16].
Now usingf ∈ C1(T ) the proof of Theorem 4.1 yields the following counterpart of the statement of T

rem 4.1(ii) (see Corollary 6.15 in [16] for a proof).

Corollary 4.1. Consider someφ ∈ V which leaves the three points{eiψk } invariant, its generatorλ, some fixed
point τ ∈ T and the corresponding vectorΥ :=Λ(φ, τ)= ∂

∂ε
(φε)�(τ )|ε=0 (see Remark4.2). Then

∂D
(
X(τ),λ

)=−1

2

∂

∂Υ
f (τ)=−1

2

〈∇f (τ),Υ
〉
. (35)

A combination of this representation of inner variations of the Dirichlet integral with Remark 4.3
Lemma 6.18, Proposition 6.19 in [16] yields analogously to Theorem 6.17 in [16] (see also Theorem 2 in [
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Corollary 4.2. If τ ∈ T is a critical point off , thenX(τ) is conformally parametrized onB, i.e.X(τ) satisfies(4).

Now recalling Proposition 3.1 the above corollary just states that the restriction ofψ to the setK(f ) of critical
points off maps intoHH (Γ ), i.e.

im(ψ |K(f ))⊂HH (Γ ). (36)

In order to achieve even

im(ψ |K(f ))=HH (Γ ) (37)

one needs Lemma 6 in [7] (see also Theorem 4.3 in [17] for a more detailed proof):

Theorem 4.2. If an H-surfaceX belongs to the intersectionHH (Γ )∩ U(τ ) for someτ ∈ T , then there holds

EH (X)= inf
U(τ )

EH . (38)

Now let there be given an arbitrary H-surfaceX ∈ HH (Γ ). Then it must be contained in some classU(τ )

for someτ ∈ T due to the surjectivity of its boundary values ontoΓ . Hence, combining the above theore
with Proposition 3.1 we exposeX to be ψ(τ), which means im(ψ) ⊃ HH (Γ ). Furthermore by (32) we se
∂D(X,λ)= 0 ∀λ ∈ C1(�B,R2) sinceX is conformally parametrized onB, i.e. sinceX satisfies (4). Consequent
by Theorem 4.1(ii)τ must be a critical point off , which implies even im(ψ |K(f ))⊃HH (Γ ). Thus together with
(36) we finally obtain (37). Furthermore Corollary 2.1 implies

Corollary 4.3.

ψ |K(f ) :K(f ) �HH (Γ ) is injective.

Proof. If we assume the contrary, i.e. that there exist points{τ1 �= τ2} ⊂K(f ) with X(τ1)= ψ(τ1)= ψ(τ2)=
X(τ2), then especially the boundary valuesX(τ1)|∂B =X(τ2)|∂B ∈ C0(∂B,R3) would have to coincide. Howeve
in the tuples(τ1

1 , . . . , τ1
N)= τ1 �= τ2 = (τ2

1 , . . . , τ2
N) there is at least one different pairτ1

j �= τ2
j (e.g.τ1

j < τ2
j ), and

due to the weak monotonicity of the boundary valuesX(τ1)|∂B = X(τ2)|∂B these would have to be constant
the open, connected arc between exp(iτ 1

j ) and exp(iτ 2
j ), in contradiction to Corollary 2.1. �

Moreover combiningA(X) = D(X) for any X ∈HH (Γ ) with (37), (11) and Heinz’ isoperimetric inequali
(18) we obtain for every critical pointτ ∈K(f ) the estimate

0� f (τ)= EH
(
ψ(τ)

)
< const.

(|H |,L(Γ )
)=: c. (39)

Together with point (iii) of the reduction theorem this yields

K(f ) � f−1([0, c)
)
� T . (40)

Hence,K(f ) reveals to be a compact subset ofT , which together with the continuity ofψ , (37) and Corollary 4.3
implies assertion (iv) of the reduction theorem.

5. Application of Dold’s fixed point theory and Čech cohomology

In this section we combine the reduction theorem with singular homology,Čech cohomology [6] and Dold’
fixed point theory [4] in order to define the H-surface-indexI : KH (Γ )→ Z and derive its asserted properties.
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5.1. Definition of the H-surface indexI

We define a continuous flowφ :T × [−t0, t0]→ T by

φ(τ, t) := τ − tη(τ )∇f (τ) (41)

for a sufficiently smallt0 > 0, depending on∇f and a cut-off functionη ∈C0
c (T , [0,1]) to be defined precisely i

Definition 5.1 below with the property

f−1([0, c]) � [η= 1], (42)

wherec= c(|H |,L(Γ )) is the constant from (39). We compute

d

dt
f

(
φ(τ, t)

)=−η(τ)
〈∇f

(
φ(τ, t)

)
,∇f (τ)

〉
(43)

∀t ∈ [−t0, t0] and∀τ ∈ T . At first we state the following elementary

Lemma 5.1. If there holds|∇f | � δ for someδ > 0 on a compact subsetK ⊂ T , then there exists somet� =
t�(K,∇f ) ∈ (0, t0] such that

f
(
φ(τ, t)

)
� f (τ)− t

2
η(τ)δ2 � f (τ) (44)

uniformly∀τ ∈K and∀t ∈ [0, t�] and

f
(
φ(τ, t)

)
� f (τ)+ |t |

2
η(τ)δ2 � f (τ) (45)

uniformly∀τ ∈K and∀t ∈ [−t�,0].

Proof. From |∇f |� δ > 0 onK , the compactness ofK , the continuity of∇f and (43) one can easily derive th
existence of somet� ∈ (0, t0] (depending onK and∇f ) such that

d

dt
f

(
φ(τ, t)

)
�−η(τ)

2

∣∣∇f (τ)
∣∣2

uniformly ∀τ ∈K and∀t ∈ [−t�, t�]. Hence, by the fundamental theorem of calculus we obtain:

f
(
φ(τ, t)

)− f (τ)=
t∫

0

d

dt′
f

(
φ(τ, t ′)

)
dt′ �−t

η(τ )

2

∣∣∇f (τ)
∣∣2 �−t

η(τ )

2
δ2

∀τ ∈K and∀t ∈ [0, t�] and

f
(
φ(τ, t)

)− f (τ)=
t∫

0

d

dt′
f

(
φ(τ, t ′)

)
dt′ = −

0∫
t

d

dt′
f

(
φ(τ, t ′)

)
dt′ � |t |η(τ)

2

∣∣∇f (τ)
∣∣2 � |t |η(τ)

2
δ2

∀τ ∈K and∀t ∈ [−t�,0]. �
From the above inequalities we derive

Corollary 5.1. There is somet∗ ∈ (0, t0] such that

φ(·, t)|f−1([0,c]) :f−1
([0, c])→ f−1

([0, c]) and
φ(·, t)| −1 � id −1 relK(f )

(46)

f ([0,c]) f ([0,c])
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φ(·, t)|f−1((c,∞)) :f−1
(
(c,∞)

)→ f−1
(
(c,∞)

)
and

φ(·, t)|f−1((c,∞)) � idf−1((c,∞)) rel[η= 0] (47)

for an arbitrary t ∈ [−t∗,0].

Proof. Due to (40) there exists some open setO such thatK(f ) � O � f−1([0, c]). On the compact se
f−1([0, c]) \ O we thus have|∇f | � δ1 for some δ1 > 0 and Lemma 5.1 yields the existence of so
t
�
1 ∈ (0, t0] such that im(φ(·, t)|f−1([0,c])\O) ⊂ f−1([0, c]) ∀t ∈ [0, t

�
1]. Furthermore due to the compactne

of �O � f−1([0, c]) and the continuity of∇f there is somet�2 ∈ (0, t0] such that im(φ(·, t)| �O) ⊂ f−1([0, c])
∀t ∈ [0, t

�
2]. Hence, the assertion (46) holds fort� :=min{t�1, t

�
2} and we may simply use a linear homotopy. An

ogously we argue that by (40) there holds|∇f |� δ2 for someδ2 > 0 on the compact setf−1([c,∞)) ∩ supp(η).
Thus by Lemma 5.1 there is somet

�
3 ∈ (0, t0] such that im(φ(·, t)|f−1((c,∞))∩supp(η))⊂ f−1((c,∞)) ∀t ∈ [−t

�
3,0].

On [η= 0] the assertion (47) holds trivially∀t ∈ [−t0, t0]. Thus also in (47) we may use a linear homotopy and
corollary is proved fort∗ :=min{t�, t�3}. �

Thus by (40), (42) and (46) we obtain the following identity:

K(f )= Fix
(
φ(·, t)|f−1([0,c])

)=: F (48)

for any t ∈ (0, t∗], where Fix denotes the fixed point set of a continuous selfmap.
Now we compactify the convex open setT ∼= D̊N by some homeomorphism

ϕ :�T \ ∂T
∼=→ SN \ {∞}, (49)

where∞ can be chosen as the “North Pole”eN+1 := (0, . . . ,0,1)∈ RN+1, and we transport the flowφ onto the
SN by setting

φ̃(·, t) := ϕ ◦ φ(·, t) ◦ ϕ−1 :SN \ {∞}→ SN \ {∞}
∀t ∈ [−t0, t0]. Due to supp(η)� T there holdsφ̃(·, t) ≡ id on some punctured neighborhood about∞ on the
SN ∀|t | � t0. Hence,φ̃(∞, t) := ∞ ∀t ∈ [−t0, t0] exposes to be the unique continuous extension ofφ̃ onto the
entireSN . Moreover due to point (iii) of the reduction theorem we may extend

f̃ := f ◦ ϕ−1 :SN \ {∞}→R

to a continuous functioñf :SN →R∪ {∞} by settingf̃ (∞) :=∞. In particular (47) transforms to

φ̃(·, t)|f̃−1((c,∞]) : f̃−1((c,∞])→ f̃−1((c,∞]) and

φ̃(·, t)|f̃−1((c,∞]) � id
f̃−1((c,∞]) relϕ

([η= 0])∪ {∞} (50)

for an arbitraryt ∈ [−t∗,0].
Now we choose some sufficiently small contractible neighborhoodV ∼= D̊N of the “North Pole”∞ in SN which

satisfiesV � f̃−1([c,∞]). Moreover we define

M :=max
{
f̃ (τ )|τ ∈ f̃−1([c,∞]) \ V

}
(51)

and see firstly due to(f̃−1([c,∞]) \ V̊ ) �= ∅ and (40)M > c and secondly

f̃−1((M,∞])⊂ V (52)

just by construction ofM , for if there were a pointτ ∈ f̃−1((M,∞]) \ V , then by (51) we would havẽf (τ) � M ,
in contradiction toτ ∈ f̃−1((M,∞]).

Now we are prepared for
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Definition 5.1. We define the cut-off functionη ∈ C0
c (T , [0,1]) in (41) by

η(τ) := dist(τ, f−1([M + 1,∞)))

dist(τ, f−1([M + 1,∞)))+ dist(τ, f−1([0,M])) , τ ∈ T ,

thus [η= 1] = f−1([0,M]) and [η= 0] =f−1([M + 1,∞)
)
.

Due toM > c η satisfies the requirement (42). Moreover by this precise definition ofη we implicitly fix an
interval[−t0, t0] for the “maximal duration” of the flowφ which consequently only depends onf , ∇f andL(Γ ).

Now let K ⊂ T be a compact subset andU � T some open neighborhood ofK in T , then there correspon
via ϕ

K ⊂U � T
ϕ←→ K̃ ⊂ Ũ � SN \ {∞}.

In the sequelH∗(_) :=H∗(_,Z) will denote the functor of singular homology with coefficients inZ.

Definition 5.2. Let o be a fixed generator ofHN(SN)∼= Z. With respect too we define the fundamental classoK

aroundK (see [5], p. 202) as the image ofo under the following composition:

HN(SN)
i∗→HN(SN,SN \ K̃)

∼=→HN(Ũ, Ũ \ K̃)
∼=→HN(U,U \K), (53)

o �→ i∗(o) �→ oK,

where we used the induced homomorphismi∗ of the inclusion i : (SN,∅) ↪→ (SN,SN \ K̃), the excision-
isomorphism andϕ∗.

Remark 5.1. We note that for two open neighborhoodsU1 ⊂ U2 of K the induced homomorphismi∗ of the
inclusion i : (U1,U1 \ K) ↪→ (U2,U2 \ K) takeso1

K into o2
K , hence, we are allowed to dropU in the notation

of oK .

Now we fix somet ∈ (0, t∗] and abbreviateφ := φ(·, t).

Definition 5.3. A compact subsetP of F is termed a part ofF if it possesses an open neighborhoodU in T with
P = F ∩U .

By (40), (42) and (48) we can chooseU � [η= 1]. Now we consider the following map of pairs:

idU −φ|U = t∇f |U : (U,U \ P)→ (
RN,RN \ {0}).

Following Dold ([5], p. 203) application ofH∗ yields

Definition 5.4. We define the fixed point index ofφ around a partP ⊂ F by

(t∇f |U)∗ :HN(U,U \ P)→HN

(
RN,RN \ {0})∼= Z

oP �→ Iφ|U · o0.

Remark 5.2. We note that on account of Remark 5.1 the above definition does not depend onU , since for two

neighborhoodsU1
i

↪→U2 of P we derive fromi∗(o1
P )= o2

P :

Iφ|U1
· o0 = (t∇f |U1)∗(o1

P )= (t∇f |U2)∗ ◦ i∗(o1
P )= (t∇f |U2)∗(o2

P )= Iφ|U2
· o0.

Furthermore the homotopy invariance of singular homology guarantees the independence ofIφ|U from the chosen
t ∈ (0, t∗].
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Remark 5.3. In Proposition 5.10 of [5], p. 205, the definition of the fixed point index of the set of contin
functionsg :U → RM , that are defined on open setsU of RM (M � 1), is uniquely extended to maps whi
are defined on open subsetsU of an arbitrary topological spaceY , g :U → Y , whereU additionally has to be a
ENR:=Euclidean Neighborhood Retract; i.e. there has to exist an open subsetV of RM , an embeddingi :U ↪→ V

and a continuous mapr :V � U (retraction) such thatr ◦ i = idU . Now if g :U → Y is a continuous map with
compact fixed point set Dold defines its generalized fixed point index by

Ig := Ii◦(g◦r|
(g◦r)−1(U)

).

In Proposition 5.10 of [5], p. 205, Dold shows that this extension of the fixed point index does not depend
choices ofi andr and that all properties of the “special” index remain valid (see [5], p. 206). This generaliz
will be valuable for us when we will consider some neighborhoodU � [η = 1] of a partP ⊂ F with P = F ∩U ,
which is a compact ENR and on whichφ acts as a selfmap (thus here isY :=U ), and when we will need the uniqu
existence ofIφ|U and its coincidence with the fixed point index as defined in Definition 5.4:

Iφ|U = Iφ|W (54)

for some open neighborhoodW of P with W ⊂U (see [5], p. 206, (5.11)).

Proposition 5.1. The parts ofF and those ofHH (Γ ) correspond to each other viaψ :

F ⊃ P
ψ←→P ⊂HH (Γ ).

Proof. (i) Let P be a (nonempty) part ofF , thenψ(P ) is compact, thus especially closed in(C∗1(Γ ),‖ · ‖C0∩H1,2).
Now we suppose thatψ(P ) would not be a part ofHH (Γ ). Then there would have to exist a sequence{Xi} ⊂
HH (Γ ) \ψ(P ) with

dist
(
Xi,ψ(P )

)→ 0 for i →∞. (55)

By the compactness ofF (6) yields the compactness ofHH (Γ ). Thus there would be a subsequenceXik converging
to someX ∈HH (Γ ) and (55) impliesX ∈ψ(P )=ψ(P ). Hence, again by (6) we would obtain:

F \ P �ψ−1(Xik )→ψ−1(X) ∈ P for k →∞,

which is impossible since the partP is separated fromF \ P by some open neighborhood.
(ii) Now let P be a part ofHH (Γ ), i.e. there exists an open neighborhoodO ⊂ C∗1(Γ ) of P with

O ∩HH (Γ ) = P . By (6) ψ−1(P) is compact and due to the continuity ofψ on T ψ−1(O) is an open neigh
borhood ofψ−1(P) in T . Now by (O \ P) ∩HH (Γ ) = ∅ one easily concludes (ψ−1(O) \ ψ−1(P)) ∩ F = ∅,
which means thatψ−1(O) separatesψ−1(P) from F \ψ−1(P), i.e. thatψ−1(P) is a part. �

Now the above correspondence, Definition 5.4 and Remark 5.2 suggest

Definition 5.5 (Definition of the H-surface index). We define the H-surface index

I : KH (Γ )→ Z by I(P) := Iφ|U , (56)

whereU is some open neighborhood of the partP :=ψ−1(P) in T satisfyingP =U ∩ F andU � [η= 1].

From the additivity of Dold’s fixed point indexI (see [5], p. 203 and p. 206) we can immediately derive
additivity of the H-surface indexI, just as asserted in (8). Furthermore we noteI(∅)= 0.
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Thus by
5.2. Proof of the point (i) of the main theorem

Due to (40) we may apply Lemma 5.1 toK := f−1([c,M + 1]), whereM was defined in (51), and obtain th
inequality (45) with some appropriatet� ∈ (0, t0] andδ > 0. Iteration of (45) yields

Lemma 5.2. For k ∈N with k > M−c
ε

, ε := t�

2 δ2, there holds:

f
(
φk(τ,−t�)

)
> M ∀τ ∈ f−1((c,∞)

)
,

whereφk(·,−t�)|f−1((c,∞)) denotes the kth iterate of the selfmapφ(·,−t�)|f−1((c,∞)) (see(47)).

Proof. We abbreviateφ� := φ(·,−t�)|f−1((c,∞)). For some arbitrarily chosenτ ∈ f−1((c,∞)) we distinguish the
following cases:

1) τ ∈ f−1((c,M]), 2) τ ∈ f−1((M,M + 1]), 3) τ ∈ f−1((M + 1,∞)
)
.

For a τ satisfying case 3 the assertion is an immediate consequence of[η = 0] = f−1([M + 1,∞)). If case 2
holds true forτ , then the assertion follows from (45) on account of the possible choiceK := f−1([c,M + 1]) in
Lemma 5.1. In case 1 we applyφ� to thisτ and classifyφ�(τ ) with respect to the cases 1, 2, 3 and so on. No
is impossible to obtaink consecutive times case 1 fork > M−c

ε
, for if we again chooseK := f−1([c,M + 1]) in

Lemma 5.1 and note[η = 1] = f−1([0,M]), then an application of (45) to each iterate(φ�)j (τ ) ∈ f−1((c,M]),
j = 0, . . . , k− 1, finally implies:

f
(
(φ�)k(τ )

)
� f (τ)+ kε > c+M − c=M,

with ε := t�

2 δ2. �
Transferred onto theSN this means together with (52):

φ̃k(·,−t�)|
f̃−1((c,∞]) : f̃−1((c,∞])→ f̃−1((M,∞])⊂ V. (57)

Now we consider the reduced homology ladder of the pair(f̃−1((c,∞]),V ) and the mapφ̃k :=
φ̃k(·,−t�)|

f̃−1((c,∞]) (with coefficients inZ):

H̃m(V )
i∗−−−→ H̃m(f̃−1((c,∞])) ∼=−−−→ Hm(f̃−1((c,∞]),V )

∂∗−−−→ H̃m−1(V )

‖
0 (φ̃k)∗ ↓ ≡ ↓ (φ̃k)∗

‖
0

H̃m(V )
i∗−−−→ H̃m(f̃−1((c,∞])) ∼=−−−→ Hm(f̃−1((c,∞]),V )

∂∗−−−→ H̃m−1(V )

(�)

∀m ∈ Z. Firstly due toV ∼= D̊N there holdsH̃∗(V ) = 0, exposing the two middle horizontal arrows to be i
morphisms, secondly by (50) we obtain for the left vertical arrow(φ̃k)∗ = id

H̃m(f̃−1((c,∞])), and thirdly by (57)

there holds for the right vertical arrow im(φ̃k)∗ = 0∈Hm(f̃−1((c,∞]),V ) ∀m ∈ Z. Using the commutativity o
the diagram we gain im(id

H̃m(f̃−1((c,∞]))) = 0, hence, together with the universal coefficient formula of sing
homology (see [5], p. 153) in particular:

H̃m

(
f̃−1((c,∞]),Q

)= 0 ∀m ∈ Z. (58)

Sincec is a regular value off , f−1([0, c]) turns out to be a compact manifold with boundary on account o
inverse function theorem (see [13], Section 4.1). In particular,f−1([0, c]) is locally compact and locally con
tractible and consequently a compact ENR on account of a theorem due to Borsuk (see [5], p. 83).
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f̃−1((c,∞]) = SN \ f̃−1([0, c]) we derive from (58) and Alexander duality (with coefficients inQ) (see [5],
p. 301):

H̃N−i
(
f̃−1([0, c]),Q

)∼= H̃i−1
(
f̃−1((c,∞]),Q

)= 0 ∀i ∈ Z.

Moreover the universal coefficient formula of singular cohomology yields (see Satz 13.4.8 in [18])=
H̃N−i (f̃−1([0, c]),Q)∼=HomQ(H̃N−i (f̃

−1([0, c]),Q),Q). Hence, we achieve

H̃N−i

(
f−1([0, c]),Q

)= 0 ∀i ∈ Z,

which implies for the Euler-characteristic:

χ
(
f−1([0, c])) := χ

(
f−1([0, c]),Q

) :=∑
j∈Z

(−1)j dimQ Hj

(
f−1([0, c]),Q

)= 1. (59)

Now let us consider sequencesV := {Vj }j∈Z of finite dimensional vector spaces overQ. We define the Lefschet
numberΛ of a sequence(β :V → V ) := {βj :Vj → Vj }j∈Z of endomorphisms with im(βj ) �= {0} for only finitely
manyj ∈ Z by Λ(β) :=∑

j∈Z(−1)j Spur(βj ) (compare with [5], p. 208, for a more general definition).
We abbreviateφ|f−1([0,c]) := φ(·, t)|f−1([0,c]) for some arbitraryt ∈ (0, t∗]. By (46)φ|f−1([0,c]) yields a selfmap

of the compact ENRf−1([0, c]) and is homotopic to idf−1([0,c]), thus the Lefschetz numberΛ((φ|f−1([0,c]))∗)
reduces to the Euler-characteristicχ(f−1([0, c])). Moreover sinceHH (Γ ) corresponds toF � f−1([0, c)) via ψ

we infer from the definition ofI, (54) with W := f−1([0, c)) andU := f−1([0, c]), Dold’s fixed point theorem
(see [5], p. 209 and p. 212) and (59):

I
(
HH (Γ )

)= Iφ|
f−1([0,c))

= Iφ|
f−1([0,c]) =Λ

(
(φ|f−1([0,c]))∗

)= χ
(
f−1([0, c]))= 1.

RecallingI(∅)= 0 we verify HH (Γ ) �= ∅ as asserted in Corollary (i) of Section 1.

5.3. Proof of point (iii) of the main theorem

At first it should be pointed out that we are going to use two different constructions ofČech cohomology in
this subsection (see Section 5.2 in [17]). The more general one is theČech-extensionȞ of singular cohomology
H ∗ from the categoryPOLK of compact polyhedrons and simplicial maps to the categoryT OPK of compact
Hausdorff spaces and continuous maps, following Eilenberg and Steenrod [6], Chapters IX–X, resp. D
pp. 348–366. For compact subsetsK ⊂RM (M � 1) we can also define itšCech cohomology groups by the dire
limit lim→{H ∗(V )}V∈ΘM(K), whereΘM(K) denotes the set of all neighborhoodsV of K in RM which is directed
by “inverse inclusion”, i.e.V ′ � V :⇔ V ′ ⊆ V for V , V ′ ∈ΘM(K) (see [5], p. 281). Now by the continuity of̌H on
T OPK (see [6], p. 261) these two notions ofČech cohomology groups fortunately coincide (up to isomorphi
on compact subsetsK of RM (see [17], p. 82). Hence, together with the homotopy invariance ofȞ onT OPK (see
[5], p. 363) and its functor properties we achieve

Proposition 5.2. LetP be an arbitrary(nonempty)part ofHH (Γ ) andP the corresponding part ofK(f ) via ψ ,
then there holds:

ψ̌ |P : Ȟ (P)
∼=→ Ȟ (P )∼= lim→

{
H ∗(V )

}
V∈ΘN(P )

, (60)

for coefficients inZ or Q.

Now we are prepared for theproof of point(iii) of the main theorem.
(a) We consider anEH -minimizing partP (�= ∅) of HH (Γ ), i.e. there hold (1) and (2) of Definition 1.1(ii) fo

some neighborhoodU of P in C∗1(Γ ) with U ∩HH (Γ )= P . Proposition 5.1 yields thatP :=ψ−1(P) is a part of
K(f ) and thatU ∩K(f )= P for U :=ψ−1(U). Consequently we obtain forf = EH ◦ψ :
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f (τ)≡ b ∀τ ∈ P and (61)

f (τ) > b ∀τ ∈U \ P. (62)

(62) is verified easily since (2) of Definition 1.1(ii) immediately impliesf (·) � b on U . Hence, supposing th
existence of a pointτ ∈U \P with f (τ)= b, by the openness ofU τ would have to be a local minimizer off , in
particular a critical point off in contradiction toU ∩K(f )= P .

As U is an open neighborhood of the compact setP (�= ∅) we haveε := dist(∂U,P ) > 0. We define theσ -
neighborhood ofP by P σ := {τ ∈U |dist(τ,P ) < σ}, for σ ∈ (0, ε], and choose open neighborhoodsV0, V1 of P

with V1 � V0 � P ε ⊂U . Moreover we set

a1 :=min
{
f (τ) | τ ∈ V0 \ V1

}
. (63)

On account ofV0 \ V1 ⊂U \ P and (62) we seea1 > b, which together with (61) andU ∩K(f )= P implies that
a1 is a regular value off |U . Furthermore we define

Ma1 :=
{
τ ∈ V0 | f (τ) � a1

}
(64)

and obtain

Lemma 5.3. (i) M̊a1 = (f |V0)
−1([b, a1)), (ii) M̊a1 is an open neighborhood ofP , (iii) M̊a1 ⊂ V1, (iv) Ma1 is a

compact manifold with boundary, especially a compact ENR.

Proof. (i) M̊a1 ⊇ (f |V0)
−1([b, a1)) is obvious, for the definition ofMa1, (61), (62) and the continuity off imply

that(f |V0)
−1([b, a1)) is an open subset ofMa1, hence must be contained in the open kernelM̊a1. In particular, we

notice thatM̊a1 is not empty. Now we suppose thatM̊a1 ⊆ (f |V0)
−1([b, a1)) would be wrong, then there woul

exist a pointτ ∈ M̊a1 with f (τ)= a1, which by (64) would expose to be a local maximizer off |U , thus especially a
critical point off |U , contradicting the fact thata1 is a regular value off |U . Now assertion (ii) follows immediatel
from (i), a1 > b andP = (f |V0)

−1(b). For (iii) we argue similarly as in (52). For a pointτ ∈ M̊a1 \ V1 (63) and
(64) imply f (τ) � a1, in contradiction toτ ∈ (f |V0)

−1([b, a1)) by (i). In particular, this impliesMa1 ⊂ �V1 � V0,
which guarantees the compactness ofMa1.

Now sincea1 is a regular value off |U assertion (iv) follows from the inverse function theorem (see [1
Section 4.1) together with Borsuk’s theorem (see [5], p. 83).�

Since in the above lemma we exposedMa1 to be a neighborhood ofP we can again choose an open neighb
hoodV2 of P with V2 � Ma1 ∩ P ε/2 (⊂ �V1) and definea2 :=minV1\V2

f . By the above reasoning we seea2 > b,
thusa2 is a regular value off |U . Consequently we obtain as in the proof of Lemma 5.3 that

Ma2 :=
{
τ ∈ V1 | f (τ) � a2

}
is a compact ENR,M̊a2 ⊂ V2 and thatM̊a2 = (f |V1)

−1([b, a2)) is an open neighborhood ofP = (f |V1)
−1(b).

Hence, inductively we obtain

Corollary 5.2. (i) There exist sequences{Vn}n∈N resp.{Man}n∈N consisting of open sets resp. compact ENRs w
are cofinal inΘN(P ) and satisfy

Man ⊂ �Vn � Man−1 ∩ P ε/n ∀n ∈N (65)

(with Ma0 := ∅).
(ii) {an}n∈N is a monotonically decreasing sequence withan ↘ b.

Proof. (i) follows by induction overn ∈ N, where Lemma 5.3 yields the start of the induction (withMa0 := ∅)
and the stepn �→ n + 1 works just like the step 1�→ 2 by choosing an open neighborhoodVn of P with Vn �
Man−1 ∩ P ε/n and definingan :=min f and thenMan := (f |Vn−1)

−1([b, an]).
Vn−1\Vn
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(ii) From the above induction we immediately obtainan > b ∀n ∈N. Now we suppose thatan > an+1 would be
wrong for somen ∈ N. Combining the points (i) and (iii) of Lemma 5.3 (in stepn) we would obtain thatM̊an =
(f |Vn−1)

−1([b, an)) = (f |Vn)
−1([b, an)), which together withM̊an+1 = (f |Vn)

−1([b, an+1)) and our hypothesis
an � an+1, would imply:

M̊an = (f |Vn)
−1([b, an)

)⊂ (f |Vn)
−1([b, an+1)

)= M̊an+1,

in contradiction toM̊an � M̊an+1 by (65). Now letτn ∈ Vn−1 \ Vn, for n ∈ N, be an arbitrarily chosen sequen
with f (τn)= an. By (65) there holdsτn ∈ P ε/(n−1) ∀n ∈N. Combining this with (61) and the uniform continui
of f on �V0 we finally achieve:an = f (τn)↘ b. �

Now we consider some consecutive pairMan � Man+1(� �Vn+2). FromU ∩K(f )= P and the continuity of∇f

we derive the existence of someδn > 0 such that|∇f |� δn onMan \ Vn+2. Hence, we can apply Lemma 5.1 wi
K :=Man \ Vn+2 and obtain inequality (44) for somet�n ∈ (0, t0]:

f
(
φ(τ, t)

)
� f (τ)− t

2
δ2
n � f (τ) ∀τ ∈Man \ Vn+2 (66)

and∀t ∈ [0, t
�
n], where we noteη≡ 1 on Man due to (40) and (42) having chosenn sufficiently large. Analogously

to (46) we obtain

Lemma 5.4. There exists somêtn ∈ (0, t
�
n] such that

φ(·, t)|Man
:Man →Man, φ(·, t)|Man

� idMan
relP and (67)

φ(·, t)|Man+1
:Man+1 →Man+1, φ(·, t)|Man+1

� idMan+1
relP (68)

for some arbitraryt ∈ [0, t̂n].

Proof. By Man ⊂ �Vn � Vn−1, the compactness ofMan and the continuity of∇f , there exists somẽt1
n ∈ (0, t

�
n]

such that

im
(
φ(·, t)|Man

)⊂ Vn−1 ∀t ∈ [0, t̃1
n ]. (69)

Analogously one gains the existence of at̃ 2
n ∈ (0, t

�
n] with im(φ(·, t)|Man+1

) ⊂ Vn ∀t ∈ [0, t̃ 2
n ]. We set t̃n :=

min{t̃1
n, t̃ 2

n }. Now displacingf−1([0, c]) by Man (resp.Man+1), O by Vn+2 andK(f ) by P in the proof of statemen
(46) one achieves the following reasoning: Combination of (66) and (69) yields

φ(τ, t) ∈ (f |Vn−1)
−1([b, an]

)=Man ∀τ ∈Man \ Vn+2

and∀t ∈ [0, t̃n]. Moreover by the compactness of�Vn+2 � Man and the continuity of∇f there exists ât1
n ∈ (0, t̃n]

such thatφ(τ, t) ∈Man ∀τ ∈ �Vn+2 and∀t ∈ [0, t̂1
n ] still holds, which proves the first statement of (67) on[0, t̂1

n ].
We thus can use a linear homotopy in (67). By the construction oft̃n and�Vn+2 � Man+1 one analogously obtain
the existence of somêt 2

n ∈ (0, t̃n] such that both statements of (68) hold on[0, t̂ 2
n ]. Hence, the lemma is proved fo

t̂n :=min{t̂1
n, t̂ 2

n }. �
Similarly to the proof of Lemma 5.2 we now obtain

Lemma 5.5. For kn ∈N with kn > (an − an+1)/ρn, ρn := (t̂n/2)δ2
n, there holds:

φkn |Man
:Man →Man+1, (70)

where we setφ := φ(·, t̂n).
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Proof. We distinguish again the cases: 1)τ ∈Man+1, 2) τ ∈Man \Man+1.
In case 1 (68) immediately yieldsφkn(τ ) ∈Man+1. In case 2 we see by (67) thatφ(τ) ∈Man , thus we can again

classifyφ(τ) with respect to the cases 1 and 2 and so on. Now it is impossible to obtainkn consecutive times case
for due toMan \Man+1 ⊂Man \Vn+2 an application of (66) to each iterateφj (τ ) ∈Man \Man+1, j = 0, . . . , kn−1,
finally yields:

f
(
φkn(τ )

)
� f (τ)− knρn < an − (an − an+1)= an+1. (71)

Thus due toan+1 < an we have especiallyf (φkn(τ )) < an, and by (67) we know thatφkn(τ ) ∈ Man =
(f |Vn−1)

−1([b, an]). Hence, we concludeφkn(τ ) ∈ (f |Vn−1)
−1([b, an)) = M̊an ⊂ Vn. Combining this with (71)

we finally achieveφkn(τ ) ∈ (f |Vn)
−1([b, an+1))= M̊an+1 ⊂Man+1. �

Similarly to � in Subsection 5.2 we now use the cohomology ladder of the pair(Man,Man+1) and the map
φkn := φkn(·, t̂n) : (Man,Man+1)→ (Man,Man+1) with coefficients inZ resp.Q (see [5], p. 151):

Hj(Man+1)

(φkn )∗

Hj(Man)
i∗

(φkn )∗

Hj(Man,Man+1)

(φkn )∗

Hj−1(Man+1)
δ∗

(φkn )∗

Hj−1(Man)
i∗

(φkn )∗

Hj(Man+1) Hj (Man)
i∗

Hj(Man,Man+1) Hj−1(Man+1)
δ∗

Hj−1(Man)
i∗

∀j ∈ Z, wherei∗ is induced by the inclusioni = in+1
n :Man+1 ↪→Man . On account of the homotopies in (67) a

(68) we obtain(φkn |Man+1
)∗ = idH ∗(Man+1) and(φkn |Man

)∗ = idH ∗(Man ) for the four exterior vertical arrows and b

(70) im(φkn)∗ = 0 ∈ H ∗(Man,Man+1) for the middle vertical arrow. On the other hand we see together with
exactness and commutativity of the cohomology ladder directly or by the five lemmaH ∗(Man,Man+1)= 0, hence

i∗ = (in+1
n )∗ :H ∗(Man)

∼=→H ∗(Man+1) (72)

for an arbitrary (sufficiently large chosen)n ∈ N, thus without loss of generality∀n ∈ N. Now we con-
sider the direct system{Hj(Man)}n∈N, whose morphisms are given by compositions of the isomorph

in (72) (imn )∗ :Hj(Man)
∼=→ Hj(Mam) for n < m and (inn)∗ = idH ∗(Man ), and the universal transformatio

u := {un} : {H ∗(Man)} → lim→H ∗(Mam) (see [5], p. 272–274). Applying Proposition 5.18 in [5], p. 277, tou

we easily obtain

un :H ∗(Man)
∼=→ lim→ H ∗(Mam) ∀n ∈N, (73)

and since{Man}n∈N is a cofinal sequence inΘN(P ) by Corollary 5.2 we conclude together with (60) (see Pro
sition 5.17 in [5], p. 276):

Ȟ j (P)∼= Ȟ j (P )∼=Hj(Man) ∀n ∈N, (74)

for an arbitraryj ∈ Z and coefficients inZ or Q. Now we consider again the compactificationϕ :�T \ ∂T
∼=→

SN \{∞} from (49) and set̃P := ϕ(P ). For a pointQ̃ ∈ P̃ we denote byi : Q̃ ↪→ P̃ the inclusion and byr : P̃ → Q̃

the retraction, then we have id
Ȟ (Q̃)

= (r ◦ ǐ) = ǐ ◦ ř . Hence, the long exacťCech cohomology sequence (see [
p. 245) yields for everyj � N > 0:

· · ·0= Ȟ j (Q̃)
ǐ←− Ȟ j (P̃ )

∼=←− Ȟ j (P̃ , Q̃)
δ̌=0←− Ȟ j−1(Q̃)

ǐ
� · · · . (75)

Combination with (60) and Alexander duality (see [5], p. 301) finally yields:

Ȟ j (P)∼= Ȟ j (P̃ , Q̃)∼= H̃N−j−1(S
N \ P̃ )= 0 for j � N > 0 (76)
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and coefficients inZ or Q. With regard to the proof of formula (9) below in (c) it is already noted here
Corollary 6.5 in [5], p. 73, implies

Hj(M̃an,Z)= 0 for j � N (77)

sinceM̃an = ϕ(Man) � SN \{∞} is a neighborhood retract inSN . Furthermore Proposition 4.11 in [5], p. 103, gu
antees thatHj(Man,Z) is finitely generated∀j ∈ Z becauseMan is a compact ENR. Together with the univer
coefficient formulas of singular (co-) homology (see [5], p. 153) we obtain∀j ∈ Z:

Hj(Man,Z)∼= Zrj ⊕ Tor
(
Hj−1(Man,Z)

)
and (78)

Hj(Man,Q)∼=Hj(Man,Z)⊗Q⊕ Tor
(
Hj−1(Man,Z),Q

)∼=Qrj , (79)

with rj := rang(Hj (Man,Z)) < ∞, since Ext(Zrj−1,Z) vanishes andQ is torsion-free. Hence, by (74) and (7
we conclude thatȞ j (P,Z) is finitely generated∀j ∈ Z and non-trivial at most in degreesj = 0, . . . ,N − 1 due
to (76). Moreover combining (74), Satz 13.4.8 in [18] and (79) we obtain

Ȟ j (P,Q)∼=Hj(Man,Q)∼= (
Hj(Man,Q)

)∗ ∼=Qrj ∀j ∈ Z (80)

with rj �= 0 at most forj = 0, . . . ,N − 1 on account of (76) (or (77)).
(b) SinceP̃ = ϕ(P ) is compactSN \ P̃ must be open inSN , thus especially a neighborhood retract inSN .

Now for an arbitrary subsetA⊂ SN we denote byΓ (A) the additive group of locally constant functionsα :A→
H̃N(SN) and byZ(A) the number of connected components ofA. A combination of Lemma 7.1 in [5], p. 78, wit
theJ -isomorphism (for theSN ) from Proposition 6.4(b) in [5], p. 72, applied toSN \ P̃ ⊂ SN , i.e.

J :HN(SN,SN \ P̃ )
∼=→ Γ

(
SN \ (SN \ P̃ )

)= Γ (P̃ )

(with coefficients inZ), yields the following formula:

Z(P̃ )= rang
(
Γ (P̃ )

)= rang
(
HN(SN,SN \ P̃ )

)
. (81)

Now we apply Lefschetz duality (see Proposition 7.2 in [5], p. 292) to the compact subsetP̃ of SN , i.e.

__� oP̃ : Ȟ 0(P̃ )
∼=→HN(SN,SN \ P̃ )

(with coefficients inZ), and achieve together with (81), (74) and (78)

Z(P)= Z(P̃ )= rang
(
Ȟ 0(P̃ )

)= rang
(
H 0(Man,Z)

)= r0 <∞
for the number of connected components ofP .

Remark 5.4. We shall note that the finiteness of the number of connected components of an arbitrary partP does
not follow a priori from its compactness since it is not known ifP is locally connected.

(c) Furthermore we can proceed as in Subsection 5.2. We abbreviateφ|(_) := φ(·, t̂n)|(_) for the t̂n > 0 deter-
mined in Lemma 5.4. By (67)φ|Man

yields a selfmap of the compact ENRMan . SinceP corresponds toP via
ψ and sinceVn+1 is an open neighborhood ofP with Vn+1 ∩ F = P andVn+1 � Man we can derive from the
definition ofI, (54) withW := Vn+1 andU :=Man , Dold’s fixed point theorem (see [5], p. 209 resp. p. 212),
homotopy in (67), (79), (77) and (80):

I(P)= Iφ|Vn+1
= Iφ|Man

=Λ
(
(φ|Man

)∗
)= χ(Man,Q)=

N−1∑
j=0

(−1)j rj = χ̌ (P,Q).

Now combining the points (i), (ii) and (iii) of the main theorem we immediately obtain Corollary (ii) of
tion 1.
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