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Abstract

This paper is a sequel to [Liu and Wang, preprint] in which we studied nodal property of multi-bump type sign-changing
solutions constructed by Coti Zelati and Rabinowitz [Comm. Pure Appl. Math. 45 (1992) 1217]. In this paper we remove a
technical condition that the nonlinearity is odd, which was used in [Comm. Pure Appl. Math. 45 (1992) 1217; Liu and Wang,
Multi-bump type nodal solutions having a prescribed number of nodal domains: I, Ann. I. H. Poincaré — AN 22 (2005) 597-608]
for constructing multi-bump type nodal solutions having a prescribed number of nodal domains.
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Résumé

Cet article est la suite de [Liu and Wang, preprint] sur I'analyse de la propriété nodale des solutions des multi-bosses,
construites par Coti Zelati et Rabinowitz dans [Comm. Pure Appl. Math. 45 (1992) 1217]. Nous supprimons la condition
technique que le terme nonlinéaire impair comme elle est utilisée dans [Comm. Pure Appl. Math. 45 (1992) 1217; Liu and
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597-608], pour construire des solutions nodales de multi-bosses ayant un nombre de domaines nodaux prescrits.
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1. Introduction

Building upon the work of Coti Zelati-Rabinowitz [3], in [5] we have given estimates on the number of nodal
domains of multi-bump type nodal solutions and in some cases constructed multi-bump type nodal solutions which
have exactly a prescribed number of nodal domains for nonlinear time-independent Schrddinger equations of the
form

—Au+V@u=f(x,u) ins, u=0 onas2, Q)

which satisfyu(x) — 0 as|x| — oo, here2 is a smooth cylindrical unbounded domainR4 or the whole
spaceR", and the potential function is assumed to be periodic in the unbounded directishslofparticular

when the domain is a cylinder iRV, £2 = w x R with w ¢ R¥~1 a bounded smooth domain, we have proved

the existence of multi-bump type nodal solutions having exastljodal domains for any integet > 2. The

current paper is to remove one of the conditions imposed on the nonlinggritgmely, f is odd inu. This
condition plays a crucial role in the constructionnodilti-bump nodal solutionby Coti Zelati—-Rabinowitz [3]. In

order to remove this condition we shall combine the gluing procedure in [3] with some ideas in using invariant
sets of descending flows which has been developed for unbounded domains recently in [1]. Following closely the
framework of [3], this requires to use a more precise description of the basic one bump solutions and to modify the
gluing procedure of [3] from the beginning, though most of the intermediate arguments of [3] can still be used. For
reader’s convenience we shall give a detailed construction for the setting studied in [3], namely,

—Au+V@)u=f(x,u), Iin RV. (2)
Let us make the following assumptions.
(V1) Ve C(RM,R), Vo:=infgny V(x) > 0, is periodic in each aof, ..., xy.

(f1) f e CYHRN x R,R) is periodic in each ofy, ..., xy.

(fZ) f(xv o) = O: fu(-x1 0)
(f3) ThereisC > 0 such that

| fulx, )| < C(1+ |ulP~2)

forall x e RV, u € R where 2< p < 2.
(f4) Thereisu > 2 such that

O<uF(x,u) :=Mv/f(x,t)dt<uf(x,u)
0

forallx e RY,u e R\ {0}.

The periodicity conditions imply that Eq. (2) B" invariant. The weak solutions of (2) correspond to critical
points of

1
I(u):= > / (|Vu|2 + V(x)uz) dx — / F(x,u)dx,
RN RN
in E = WL2(RV). Define the mountain pass valuas

c=inf sup I(g()
g€l 1e[0,1] ( )

where
I = {g IS C([O,l], E) | g(0)=0, I(g(l)) < O}.
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We shall follow [2,3] to use the notationg? = {u € E | I(u) <b}, I, ={u € E|I(u) >a}, I’ ={ucE|a<
Tw)<b,K=ueE|I')=0},K)={uecE|I'u)=0,Iu)=c}, KP=KnI’, Kb=KNI>.

In [3], it was proved that Eq. (2) has infinitely makybump solutions, and in particular thmﬁjgfg/ZN is
infinite, provided that () and (f)—(f4) and the following condition are satisfied

(%) thereisx > 0 such thaiCct®/zV is finite.

Under the additional condition thatis odd inu, it was proved thazc,’ggfg/zN also contains infinitely many nodal
solutions. The conditiory being odd inuz allows the authors of [3] to use both positive and negative solutions

at the same mountain pass leveds basic one-bump solutions which are glued into multi-bump nodal solutions.
Without this condition the positive and negative mountain pass solutions maydiféeagnt energy levels, which

makes the gluing procedure in [3] difficult to finish. The main purpose of this paper is to remove the condition
that f is odd. We shall develop a modified version of the gluing procedure in [3] to glue the positive and negative
mountain pass solutions of different energy levels. This will be done by building upon the main framework of [3]
and by developing some new ideas of invariant sets of descending flows which have been very successful recently
in dealing with nodal solutions.

Eqg. (2) withV and f satisfying the assumptions {Yand (f)—(f4) will be discussed in detail. As in [5], we will
also discuss two other cases: Eq. (1) wittand f being periodic inxy and$2 a cylindrical domain, and Eq. (2)
with V and f being radially symmetric i1, ..., x, and periodic inx,+1, ..., xy for some 1< n < N. Results
for the latter two cases will only be stated in Sections 3 and 5 since the proofs are almost the same as for the first
case.

The paper is organized as follows. Section 2 contains the constructions of basic one-bump positive and negative
solutions which will be used as building blocks for constructing multi-bump nodal solutions. Section 3 is devoted
to the statements of the main theorems on multi-bump nodal solutions, whose proofs will be given in Section 4. In
Section 5 we will state results concerning number of nodal domains of multi-pump nodal solutions together with a
few remarks.

2. Basic one-bump positive and negative solutions

In the following E denotes the Sobolev spaBe-2(R") with the norm

1/2
||M||=</(IVu|2+V(X)u2)dx) _

RN
For two setsA, B C E, the distance betwees andB is defined by
lA=Bll= inf |u—v].
ueA,veBB

Fora > 0, thea-neighborhood of a sed C E is defined by
No(A) ={u € E||u — Al < a},

whose closure and boundary are denotedVpy.4) and N, (A), respectively. We will us¢ - | to represent the
norm inRY . For two setsd, B C RY, the distance betweet and B is given by

A—B|= inf -yl
| | xeA,yeB |x y|
The ball inRY centered at and with radiusk will be denoted byBg(x). The ball inE centered at: and with

radius R will be denoted byBg (1). Without loss of generality we assume the periods in all directions are equal
to 1.
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Let j = (j1, ..., jx) € ZV and define translations on tR& by
Tju(x) =u(x1+ ji,..., XN + jn).
For a finite subsek of £ and an integet > 1, we denote

J
T(Ep) = { ka,- v;

i=1

1<j<I, vieEq kieZV}.

This set will be used later with a specifically constructad For anyu € E, denote
ut(x)= max{u(x), O} and u (x) = min{u(x), 0}.

Consider the positive corf@™ and the negative corfé™ in E defined by
P*=luecE|+u>0}.

Any u € K\ (P UP™) will be a nodal solution of Eq. (2). In what follows); will always stand for positive
constants.

Lemma 2.1. Let (V) and(f1)—(f4) be satisfied. Then

() thereisv > 0 such thatjju|| > v for all u € K \ {0},
(ii) thereisc > 0suchthatl (u) > ¢ forall u € K\ {0},
(i) forall u e K\ {O}with I (u) < b,

2ub \ Y2
lull < <—> ,
w—2

(iv) for anyb > 0, there isv1 > 0 depending orb such that||ui||Lz(RN) > vy forall ue £\ (PTUP) with
I(u) <b.

Proof. See [3, Remark 2.14] for (i) and [3, Lemma 2.17] for (ii), (iii). We will prove (iv) for the negative sign; it is
the same for the positive sign. Letbe any nodal solution of Eq. (2). Multiplying (2) with~ and taking integral
we have

™17 = / W f (e u)dx.
RN
By (f2)—(f3), there existsA1 > 0 such that

Vo _
|| < S lul + AglulP
Then
_ Vo, _ _
™12 < Sl Wz + A2l g,

Since

- - — 1=t
flu ||Lp(RN)<||u ||th(RN)||“ ||L2*(RN)

wherer satisfies
1 ¢+ 1—1¢

2T
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we have by the Sobolev inequality

\%
-2 0. -2 —pt — 1 p(1=
1% < 5 e oy + Al 12 g e 1747

By the definition ofVy,
lu™ 11 = Vollu™ 17 2qn -
Thus

—.2 — . pt
llu™|I” < 2A2[lu”||

— 1—
Dol 170,

which implies

2 —
llu™[1° < Asllu™ |7

Sinceu is a nodal solution of Eq. (2)s~ # 0 and the last inequality yields

_ -1 -2
™|l > A5 P72,

If 1(u) < b then the assertion (i) and (3), (4) imply
1-n/2
~2/(p-2) 2ub \" _—

which yields the assertion (iv). O

613

®)

(4)

Let A: E — E be given byA(u) := (—A + V)1 f(-,u(-))] for u € E. Then the gradient of has the form
I'(u) = u — A(u). Note that the set of fixed points dfis the same as the set of critical pointsZofvhich isC. By

the proof of [3, Proposition 2.1}, : E — E is locally Lipschitz continuous. Indeed,

T = Sz — 7

(u)—illull —J(w),
where

J(u):/F(x,u)dx,

RN
and according to (2.11) in [3], we have for amyv € E,

|G = 7' @) < (Ax+ A2l V2 + ol YN 2)) e — v

Since nodal solutions are critical points bfoutside of P+ and P, our strategy to find nodal solutions is

to construct subsets df containing all the positive and negative solutions of Eq. (2) such that these subsets are
strictly positively invariant for the descending flow Bfnodal solutions can then be found outside of these subsets.

The following lemma was proved in [1].

Lemma 2.2. Let (V) and(f1)—(f4) be satisfied. There is arpy > 0 such that for0 < a < ag there holds

(i) A@N,(P7)) C N,(P7), and every nontrivial solution € N, (P ™) of (2) is negative;
(i) AON,(PY)) C N,(PT), and every nontrivial solution € N, (P™) of (2) is positive.

Remark 2.3. Furthermore, according to the proof of [1, Lemma 3.1], we h&(®, (P*)) c N, (P*). Lemma 2.2
implies that (cf. [4]) the set&/, (P*) are strictly positively invariant for the negative gradient flpwlefined by

%‘P(tau)z—l/((p(t,u)) fortr >0 and ¢(0,u)=u.
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That is,¢(t, u) € N,(P*) for any O< ¢t < T'(«) andu € N,(P*), whereT (u) € (0, oo] is the maximal existence
time for the trajectory (¢, u).

Using Lemma 2.2, we can study the behavior of (PS) sequences in the wholeFspaosell as inN, (P*).
The first part of the next lemma is [3, Proposition 2.31].

Lemma 2.4. Let (V) and (f1)—(f4) be satisfied. Letu,,) C E be such that (u,,) — b > 0 and I’(um) — 0. Then
there is ar/ € N (depending orb), v1, ..., v € K \ {0}, a subsequence af, and correspondingk’,) C Z" such
that

I
Uy — Z Thi Vi|| = 0, (5)
i=1

1
D Iw)=b, (6)
i=1

and fori # j,

ki — ki, | — oo. @)

Moreover, there exists an; € (0, ap] (depending orb) such that if (u,,) C ﬁal(?ﬂ (Ngy (P7), resp) then
v, ..., € (K\{OHNPT (K\{0HNP~, resp).

Proof. We only need to prove the second part. This will be done for the positiveisigine case for the negative
sign— is the same. Leb; andag be the two numbers from Lemmas 2.1 and 2.2, respectively. Define

. Vi
ap = mm(ao, OTW> 8)

Suppose thatu,,) C ﬁal(P+) satisfiesl (u,,) — b > 0 andI’(u,,) — 0. Then according to the first part of the
result, there is ahe N (depending om), vy, ..., v; € K \ {0}, a subsequence of, and corresponding’ ) c ZV¥
such that (5)—(7) hold. Choose, € P™ such that

e — wi || < az. (9)
By (5) and (9),

<ai.

I
limsup kain Vi — Wy
i=1

m—00

Arguing indirectly, we assume that ¢ (K \ {0}) NP+ for somei € {1, ...,[}. Rewrite the last inequality as

limsup||v; + E Td—i Vi~ Tk, W <ai.
m-—0o0 . g
JF#
Denote

27 = {x e RN | v;i (%) <0}.

For anye > 0 andR > 0, sincev; (1< j < /) are solutions of (2) anpk,{, — ki, | — oofor j #i,if mis sufficiently
large then for € Bz (0),

T i UVji(X
Z kin—ki, i)

J#i

€
(measgBg(0)))/2’

Se€1:=
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where mea&Br(0)) is the measure aBg (0). For suchm,

vi + E T —ki Vi Tk, W = Vo|vi + E T —ki Vi~ Tk, W L
J#L J#I (RY)
2 VO v; + E T, i — T_ki Wy
km_k m 2
J#L L=(Br(0))
=2V UH-E Tj_ Vj—€1— T_pi Wy — Voe.
km_k;n * m _
L2(BR(O)N2])

J#i
Since onBR(0) N £2;7, v; is negative,

—2¢1 < Zrk, kl —€1 <0,
JF#

and T_ti Wi is positive, we have

Vit D T g Vi €L Ty W > vt D g vi—
i L2(BRr(O)N$2;” ) i L2<BR<0>m,-‘)
2 |lv; ||L2(BR(0)Q_Q'_*) — 2e.
Thus
lim sup Z T Vi — W || = Vollvill 12,02y — 3V0€,
m—0oQ i

which implies

a1 = Vollvi ”LZ(BR(O)ﬂQf) — 3Vpe.
Lettinge — 0 andR — oo yields

a1 = Vollv; Il 2Rwy-

By Lemma 2.1, we have; > Vpvs, contradicting (8). O

Fora € [0, a1], we define
rF={geC(0,1], N,(P*)) | g(0) = 0 and! (g(1)) < 0}

and
+
= inf max I(g(®
c, pe T 0a10.1) (g( ))
Fora =0, N,(P*) = P*. In this case, we denote® = I} andc® = c3.

Lemma 2.5. Let (V) and (f1)—(f4) be satisfied. Then there existse (0, a1) such thate = ¢* for all a € (0, a2].

Proof. We only provec = c™. Itis similar to provec, = ¢™. By (f2)—(f3), for anye > 0 there existsi > 0 such
that foru € E

/ F e, u) dx < €lull 5 qny + Al -
RN
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Forr € [2,2*] there existX, > 0 such that fowi € E,

—nr < i _ r < P _ r < _ Dty
™17 movy \UIQL e = vl gyy < Kr vlef;L lu—vl" < Kpllu —PT|".
Foru € E, since|ju~|| > |lu — P, we have

I(u*)zgnu*nz—/F(x,u*)dx
RN

1
> Sl — P2 —eKallu — PTI% — AcK pllu — PP

Sincee > 0 is arbitrary, there exists, € (0, a1) suchthatl (u™) > 0if 0 < |lu — PT| < ap. Let 0< a < ap. The
definition ofc;” impliesc;” < ¢g. Now for anye > 0 there existg € I'," such that

max I(g(®)) <c' +e.
0€[0,1] (g( )) €a T

Sincellg(®) —P*ll <a<az [((g(0)7) >0.Butl(g(0) =1((g(0)7) + 1((g(0))™). Therefore

+ +
Jmax I((s®)") <cq +e.

Since the map™ : E — E defined byp™ (1) = u™ is continuous [3, Proposition 7.2]g(-))* is continuous from
[0,1]to P, which yieldscj < ¢ + €. Lettinge — 0, we haverd < ¢ for 0 < a < ay, finishing the proof. O

‘Denotek’ = KNP for i € {+, —}. We will also use the notationsk’')” = X' n 1, (K'); =K' n 12, and
Ki(c") =K(c") NP fori € {+, —}. Instead of(x), we need the following conditions.

(¥)+ Thereisa > 0 such tha(lCi)ciJf"‘/ZN is finite.

Choose a representative i from each equivalent class '(rIC")Ci*"‘/ZN and denote the resulting set iy,
i € {+,—}. Let ¢ > 0 be the number from Lemma 2.1 which satisfigsa) > ¢ for all u € £ \ {0}. Denote
I = [(c* + @) /c]. According to [3, Proposition 2.57] or [2, Proposition 1.55], we have

Lemma 2.6. ju(Z= (F*)) = inf{llu — w]| |u # w € Tj=(F*)} > 0.
Now we have a deformation lemma;, (P*), which is an analogue of [3, Proposition 2.60].

Lemma 2.7. Leti € {+, —} anda € [0, az]. AssumgV), (f1)—(f4), and (x);. If b € (O,ci_+ ), E_satisfieso <
b—é<b+ée<c +a,andr < %M(Z,- (F1)), then there exist € (0,€), n € C([0,1] x N, (P}, N.(P")), and
o € C(I"*€ N N,(P"), [0,1]) such that

1° n(0,u) =u forall Nang),

2° n(s,u)y=uifu¢g Ifjg NN, (PY),

3° I(n(s,u)) is nonincreasing iy,

42 (L, I N N (P \ N (KDEE) C 1€ N NL(PY),

5 o) =0 if u e I"€ N Ny(P) \ N.((KH2TE) and I (n(o (), u)) = b — € for all u € 121 N Ny (P \
NA((KD5D),

6° |In(o(u),u) —ull <rforall ue N,(P)),

7° n(s, Tju) =tjn(s,u)forall j e ZN s €[0,1], u € N,(P).
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Proof. This is similar to the proof of [2, Proposition 2.3]. However, we should construct a descending flow of
which makesV, (P") invariant so that the deformation is froWy, (P') to itself. First of all, there exist& > 0 such
that

|1’ =8 forue 175 N NP\ Nyso(Tii (F)). (10)
Indeed, if not, there is a sequen@e,) C 1775 N N, (P')\ Ny/so(Z;: (F1)) such thatl’ (u,) — 0 and! (uy,) — y €

[b—€,b+€]. By Lemma 2.4, along a subsequentcg,— 7 (F1, contrary tou,, & Ny s0(Z;i (F%). Now, choose
€ andé such that

ré
é inl €, — ). 11
O<E<€<m|n<6, 100> (11)

Similar to [2], foru € E let
llu — Ny /g((KH2TE)
llu — Noyg((KDITO N + [l — N (P \ Nyya((KHETE)|

¢u) =

and
lu — (1P~ U I ) N N (PH]|
llu — (I=€ U L) N Ng (PO 4 llu — 17T 0 N (P ||

€

Y(u) =

DefineV(u) = 3¢1'(w)/||I'(w)||? for u € E \ K. ThenV satisfies

@ VI < 77
(b) I'w)V(u) > 2¢,
(©) V(u)=Vw) forallkeZN, ue E\ K.

SetW ) = ¢ )y (u)V(u) and letn (s, u) with maximal existence intervgD, S(u)) be the solution of

dn

ds

Then Remark 2.3 shows thats, u) € N,(P!) for anys € (0, S(u)) andu € N, (P"), sincen(s, u) is just a repara-
meterization ofp (¢, u) defined there. Indeed,

=—W() fors>0 and n,u)=u.

n(s,u) =@(t,u)
with

N

_/3€¢(n(a,u))w(n(a,u))
t= do
11 (n (e, u)) |2

In view of this fact, we can get the assertioris-3> and 7 immediately. By Lemma 2.4, we can prove that, u)
exists for alls > 0 andu € N, (P') in the same way as in [2], distinguishing the two casesY := (I1*~¢U I, . U
Ny s((KH2FE)) N N, (P') andu € N,(P') \ Y. Next we define the required e C(1°*€ N N, (P, [0, 1]). For
u € 1PN NP\ Nayys((KH5TE) ands € [0, 1), at least one of the three cases must occur:

(i) n(s,u) reaches neitherB, g(u) nor d1=¢,

(i) n(s,u) reaches 3, ,g(u) before it reacheg1b—¢,
(iii) n(s, u) reaches®1°—¢ before it reaches8B, g(u).
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Sinceu ¢ Na/g(KHTE), By jg(u) N N, ja(KH5TE) = @. In case (i), the definitions af andy yield

o(n(s,w)) =y (nGs,u))=1 forall0<s < 1.

But then we obtain a contradiction
1

2¢ > 1) — I(n(l, u)) > / I/(n(s, u))V(n(s, u)) ds > 2¢,

0
which rules out (i). In case (ii), we have either

By 24(u) N Ny yso(Ti (F)) =0 12)
or

(By/8) \ Byj12w)) N Nryso(Tpi (F)) = 9. (13)

Otherwise, there exist € B,/24(u) N Ny/so(Zi (F')) and w € (B,g(u) \ Byj12(w)) N N, 50(Z;i (F')). Choose
v1, w1 € T (F) such thatlvg — v]| < /50 and|lwy — w|| < r/50. Then a direct computation shows that
0 < |lv1 — w1| < r. This contradicts the assumption< %M(T,- (F1)) and the definition of¢(Z;; (F7)). No matter
(12) or (13), as a consequence of (10) there exists® < s> < 1 such that

G2, = nGs2.0)] > 2

[7'(n(s,w)| =8 forsi<s<sa,
and

b—e< (77(5 ’/‘))<b+6 for s1 <s <s2.
Then we have

52 52
4
22 < Intss0 =2, 00] < /wuvn ds < ;/wf ds
51 s1

and
52 52
I(n(s1,u)) — I(n(s2,u)) =/¢¢I’Vds > 2@/@51& ds.
51
The last two inequalities imply; < =57, which contradicts (11). Thus (ii) is also impossible and (i) occurs. Now

defineo (1) to be the time at WhIChn(s u) reache® 1°=€ for u € 1)7 N N, (P') \ Na,/s(K)5tE); o (u) =0 for
u eI’ €N N, (PY); and

U(u)zsup{s: 0<s <1, I(r/(s u)) >b—e}

for u € 177 N N.(P)) N Nawya((KH2TE). Then 4 and 5 are satisfied. Obviously,°@s satisfied fou e 171 N
N, (P’)\Ngr/g((lC’)b+€) andu € 1"~ N N, (PY). Foru € I775 N N, (PY) mNgr/g((/c)“f) if (s, u) stays inside
N3,/8((ICl)b+€) for 0 < s < o(u) then the fact tha(ICl)ZJr€ C T (F) andr < 3M(T, (F1) implies that there is
ave (IC’)”Jre such thaty (s, u) stays inside33,/g(v) for 0 < s < o (x) and 6 is satisfied; if not, there ig1(u) €

(0, o (1)) which is the first time form (s, u) to reachaNgr/g((ICl)”“) and the case (iii) above must occur with
n(o1(u), u) in place ofu and again we have

In(o ). u) =] < (o @).u) = n(os0).u) [ + [n(er.w) —u| < T+ F <r O
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The following theorem asserts existence of one-bump positive and negative solutions at the mountain pass level.
These one-bump solutions will be used later to construct multi-bump nodal solutions.

Lemma 2.8. Let (V), (f1)—(f4) and (x)+ be satisfied. Thea® are critical values off and there is a critical point
u® e K* such that/ (u®*) = c*.

Proof. We follow the same way as in the proof of [3, Theorem 2.61].iLef{+, —}. If the result was not true for

¢ then(x); would imply (IC")szg = ¢ for all smallé > 0. Choosing any such, r < 3.(7; (F7)), ande as given
by Lemma 2.7, selegt € I'? such that

max 1(g(0)) < +e.
6€l0,1] (g( )) ¢+

Then by 4 of Lemma 2.7,
max 1(n(1, g(®))) < —e.
e 111 50) <

But 2° of Lemma 2.7 implies)(1, g) € I'!, a contradiction to the definition of. O

By (%), there is anx1 € (0, @) such that

(KNS =K ().

ci—aq

Lemma2.9. Let(V), (f1)—(f4) and (x)+ be satisfied. Then there exist finite sétsc K (ct) andA~— c K~ (¢™)
having the property that for any < %, r1 < %ZM(Zi (F*)), and p € N, there is ane; € (0,é1) and gli er+
such that
lo I + 9 < + E_]_,
Jmax I(s3(60)) < c* + 5
2° if 1(g5(0)) > c* — €1 thengi (9) € N,y (AF).
Proof. We just need to modify the proof of [2, Proposition 2.22] with the help of Lemma 2.7. For the present
casec, 7;(F), I', andK(c) in the proof of [2, Proposition 2.22] should be replaced with 7;= (F*), I'*, and

KC*(cT) respectively. Then as in the proof of [2, Proposition 2.22], there exists a finitgset C* (¢*) such that
for &g = a1/2, ro = 151(T= (F%)), andp € N, there exisk € (0, &) andgy e I'* such that

€0
max I(gZ(0)) <c* + =
96[0,1] (gO( )) X p

and
1(g50) >t —eo implies g3 (6) € Nyo(AD).

To prove thisA* is valid for anye; < €g, 1 < ro, andp € N, we can proceed as in the proof of [2, Proposition 2.22].
Instead of (2.28) in [2], we choosea> 0 such that

+ , €
max I(uw)<c+ —.
UEN, (K*(c*)) p

The functiong in [2] should be replaced with

llu — Nyg(KE(H))|
llu — Npg(KECH)) | + llu — PEN\ Npja(KE(cH)I’

) =
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while settingé = max{e1, €g} < €p, instead off we define

) = lu — (I"€U I ) N PE|
lu — (1P~ U Iyye) NPE| + lu — 1275 NP

Note thatXC on page [2, p. 710] should also be replaced viith(c*). Then one can follow the same line of the
proof of [2, Proposition 2.22] to complete the present proaf.

3. Existence of multi-bump type nodal solutions

Depending on whether the domaihis the whole spacB” or a cylindrical unbounded domain and on whether
V and f are periodic in ally, ..., xy or only partially, the results will be stated in distinguished three cases in
the following three subsections. In Section 3.1, we will state a result for Eq. (2) in the caseWvhackf satisfy
(V1) and (f)—(f4). Similar results in two other cases will be stated in Sections 3.2 and 3.3. In Section 3.2, a result
for Eq. (1) will be given provided tha¥ and f are periodic inxy and$2 is a cylindrical domain. A result also
for Eq. (2) will be stated in Section 3.3 where it is assumed Yhand f are radially symmetric inq, . .., x, and
periodic inx,11, ..., xy forsome 1<n < N.

3.1. Eg. (2) withV and f satisfying (M) and (f)—(f1)
Let A= At U A~ with A* given in Lemma 2.9. For any fixed integee= 2 we fix two positive integerg™*

andk~ such thatkt = k* + k~. DenoteAt ={1,...,kt}, A= ={kT +1,...,k}.Letj;eZN fori=1,..., k be
fixed such thatj; # j,, fori #m and ifv; e A* fori € AT andv; e A~ fori € A~ then

JiVi|| Z =
i=1 2
and
k o
I(thivi) — Gkttt +k ¢ < =.
i=1
Define
k
M(jl,...,jk,A,k+,k—)={Zr,-,.ui vieAtforie AT, vye A forie A~
i=1
and

by=kTct+k .
Our main theorem in this paper reads as
Theorem 3.1. Let (V1), (f1)—(f4), and (x)+ be satisfied. Then there is ag> 0 such that for any € (0, rp),
Ny (MU, L AT RD) N (e /zN) #

for all but finitely manyi € N.
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3.2. Eq. (1) withe2 being an unbounded cylindrical domain

In this subsection, we state a result for Eqg. (1) in the case wf2eiea cylinder type domain such that the set
{x’ e RVN=1| (x’, xn) € £2 for somexy € R} is bounded andx’, xy + j) € £2 forany(x’, xy) € 2 andj € Z. We
assume that

V1) VeC(£2,R),info V(x) > 0,is 1-periodic inxy.
(f1) feCl(2 xR,R) is 1-periodic inxy.

We understand the assumptiong-{f4) are now satisfied far € £2. In this case Eq. (1) i€ invariant. We define
E = W&’Z(.Q) with the norm

1/2
llull = (f (IVul? + V (x)u?) dx> :
2

For j € Z andu € E, we define
Tju(x', xn) =ux’, xy + j)

for (x’, xn) € 2. Define the same notations as in Sections 2 and 3.1 accordingly. We need to assume
(+')1 There ise > 0 such that/C*)* +2/Z is finite.

Then all the results in Section 2 have analogues valid in the present case. In particular, we also have two finite sets
AT Cc KT (ct)andA™ c K~ (c¢™) having the property in Lemma 2.9.

Using the same notations before Theorem 3.1 with an understandifjgeaZ, we can state the following
theorem for Eq. (1).

Theorem 3.2. Let (V1), (f1), (f2)—(f4), and (') + be satisfied. Then there is ag> 0 such that for any < (0, rp),

Ne (MUt - L, ALK K N KT /2) £ 0

br—a

for all but finitely many € N.
3.3. Eq. (2) withv and f being partially radially symmetric and partially periodic
In this subsection, we state a result for Eq. (2). We assume that therensd N such that

(V1) V e C(RN,R), infgy V(x) > 0, is radially symmetric inx1, ..., x, and 1-periodic inc, 11, ..., xy.
(fr) f e CYHRN x R,R) is radially symmetric inxy, . . ., x,, and 1-periodic in, (1, ..., xy.

In this case Eq. (2) igV~" invariant. We define

E= {u e WH2RN) ‘ / V(x)u?dx < oo, u is radially symmetric incy, .. .,xn}
RN
with the norm

1/2
lull = (/ (IVu|2+ V(x)uz) dx) )

RN
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Let j e Z¥~" andu € E and we define

Tiu(X1, .oy Xy, XLy - oo, XN) = U(XD, oo, Xy Xyl + Jnt1, XN + JN)

for (x1,...,xy) € RY. Define the same notations as in Sections 2 and 3.1 accordingly. Since everything can be
confined inE, critical points inKC are radially symmetric inq, ..., x,,. We need to assume

(*")+ There isa > 0 such tha(lCi)ciJ”"/ZN*" is finite.

Then all the results in Section 2 are also valid in the present case,jWitd ¥ =" being understood, we can state
the following theorem for Eq. (2).

Theorem 3.3. Let (V1), (f1r), (f2)—(f4), and (¥”)+ be satisfied. Then there is ag > 0 such that for any
r € (0, ),

N (MU, - i, A K D)) N (K ZN =1y £

b —a

for all but finitely manyi € N.

4. Proofs of the main theorems

Theorem 3.1 will be proved in detail. Theorems 3.2 and 3.3 can be proved similarly and their proofs
will be omitted. As in [3], for6 = (61,...,6k) € [0,1F, let G = (61, ...,6;_1, 0,604+1,...,6¢) and % =
61,...,60;-1,1,0,41,...,6r), 1<i < k. Letas be asin Lemma 2.5 ande [0, az] and define

Ii(a)={G=g1+ -+ g | g satisfies(g1) — (g3), 1<i <k},

where

(91) gi € C([0,1]F, No(PH)) for i € A%,

(92) £i(0;)=0andl(gi(1)) <0, 1<i <k, L

(g3) There are bounded open s&bs, 1 <i <k, such thatO; N O; =@ if i # j and supg;(¥) c O; for all
6 € (0,1}

Lemma4.l. Let(V1), (f1)—(f4), and (x)+ be satisfied. Define

br(a)= _inf max I(G(®)).
Gely(a)6el0,1]x

Thenbi(a) = by =ktcT + k= ¢~ fora € (0, ao].

Proof. For eachG € I'i(a), by the proof of [2, Proposition 3.4], there exist8 & [0, 1] such thatl (g; (9)) > c;t
fori e A*. By Lemma 2.5/ (g; (9)) > ¢ fori € A*. Thus

k

max 1(G©))=1(G©®) =) I1(gi@)=kTct+k ¢ =by,

k
6¢€[0,1] o1

andby(a) > by. Lete > 0. To prove the reversed inequality, chogsee I'* such that

€
max I(g* (1)) <cT + —.
1€[0,1] (g ()) ¢ +2k
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Let R > 0 andxr € C*°(R*,R™) such thatyg(z) =1 if z< R, =1 < x4(z) <0, andxg(z) =0if z > R+ 2,

Define

25 (@) = xr(Ix)g* ().
As in the proof of [3, Proposition 3.4], iR is sufficiently large theg™ € I'* and

€
max I(g*@)) <ct + -.
t€[0,1] (g ()) ot k

Then forj € ZV such thatj; # j,, for i #m andl € N sufficiently large,
GO = ) &HON+1j)+ Y & O +1jp) € Ii(@)
iel't iel'—
and

max 1(G©®)) <ktct+k7c™ +e.
0el0,1]*

Letting e — 0 yieldsby(a) < k¢t + k~c¢™ = by. This completes the proof.O

Define
M* = MG i AT ) =M. L AT EO).
leN
As [2, Proposition 3.12] and [3, Proposition 3.22], we have the following lemma.

Lemma 4.2. Let (V1), (f1)—(f4), and (x)+ be satisfied. There is arn = ri(A, «) such that ifr <r; andw €

Ny (M*(ja. ... ks Ak KT N, thenw € K He,
As in [2, Remark 3.19], we also assume thak ry_1 < --- < r1.
Lemma4.3. Let (Vy), (f1)—(fs), and (x)+ be satisfied and
(1 1V
r< m|n<1—2u(Tli(}' ). > f’k)-

Then either

(14)

(i) thereisas; =68 /(j1,..., jk, A, kT, k=, r) such that]I'(w)| > & forall w e N,(M(lj1, ..., L, A, k+, k7)),

or
(i) thereisaw e N,(M(ja, ..., Ljx, A, kT, k") NK.
Moreover, if
L ={leN]| ) holds forN,(M(lj1, ..., Ljx, A, k", k7))}
and

W= M- Lje, A kT k),
lel

thenthereis@ =3(j1, ..., jk. A, k", k., r) independent dfsuch that| ' (w)| > § forall w € N. (W) \ Ny/g(OV).



624 Z. Liu, Z.-Q. Wang / Ann. |. H. Poincaré — AN 22 (2005) 609-631

This lemma is the same as [3, Proposition 3.23] and can be proved as [2, Proposition 3.20].
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will follow the five steps in the proof of [3, Theorem 3.27] and indicate only the
differences. Arguing indirectly, we assume tlifais an infinite set.

Step 1: The construction ¢f. Letr andé be as in Lemma 4.3 angy be defined before Lemma 2.9. We further
require that

(1 a>
min{ =, — 15
r<min( . 12). (15
wherea; is the number from Lemma 2.5. Choose
- L (ré a1 L
re & , 1
el<m|n<4o, 5chie > (16)

With this choice ofe1, r1 = ﬁ, andp = 6k, by Lemma 2.9, there is an= %1 € (0, g—1) andgit e I'*t such that

€
max I (g (1)) <c* + —
t€[0,1] (s1 ) <c T

and
1(gF (1) > ¢t —2¢ implies gi (1) € Nyjasi(A).

By an approximation argument as in Lemma 4.1, theggtis I'* andR > 0 such that
+ + r
r)— DI < ——>
ls*® —er @ < 15

(g () — I(sF(0)| < =
[1(e*®) = 1{er )| < 51
and

suppg® (1) C Br/2(0) forallr € [0,1]. (17)
Then we have

€
max (gt () <ct + —
r€[0,1] (g ()) ¢ +2k
and
3¢
1(g=(1) > = — ?6 implies g% (1) € N, /g0 (A%).

For6 €[0,1} and!l € L, set

GOY=D migt O+ Y ujig” ®). (18)
ieAt ieA™
Then
k
suppG () C |_J Bry2(ii).- (19)

i=1
For anyg > 0, sincel is an infinite set, there is dne £ such that
|Br(Lji) — Br(Ljm)| 2 2B+ 4 fori #m. (20)
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Fix such an =1(8). ThenG € I (0) andG satisfies
I(GO)= > I(g* @)+ > I(g~6) <kTc" +k ¢ +e=bi+e. (21)
ieAt ieA™
Now if 1(G(0)) > by — e thenfori e AT,

3
I(g+(9[)) >by—e— (kT — 1)<cJr + 26—k> -k~ <c_ + 26_k) >ct— ?e

which impliesg™ (6;) € Ny/a(A™1). Similarly, if 1(G(6)) > by — € then fori € A™, g7(6;) € Ny/g(A™). Foro
satisfyingl (G(0)) > by — €, choosingy; € AT for i € A* such that

.
e ) —vi| < a

we have

k
GO) =Y ;v

i=1

_ r
< Z H8+(9i)—vi || + Z Hg ;) — v; H < g

ieAt ieA™
Thus
1(G(0)) > by —e implies G(6) € N,jg(W). (22)

Step 2: The deformation of G.Letr ande be as in Step 1. Set=« and choosé < (e, €). Define foru € E,

o) llu = Ny g (Dl
lu— Ny (Rt — E\ N,a(K ¢
lu = Nyjg(Rp O + llu = E\ Nyja(Kyt 2|

by —€

and
lu — (I U I, )

2 bitey”
llu = (I2E U I Ol + llu = 1,7

v u) =

As before, seV(u) = 31’ (w) /|| I’ w) |2 and W (1) = ¢ (u) ¥ (u)V(u) for u € E \ K and lety(s, u) be the solution
of

d
d—n =—W(m) fors>0 and 50, u)=u.
S
Setv = G (). Then by (21) (v) < by + €. If I(v) < by — €, Seto (v) = 0 so thaty (o (v), v) € I’ €. If I(v) >
by — € then (22) shows that € N,/8(WV); we will show in this case there is a uniqugv) € (0, 1) such that
I(n(o(v),v)) =br — e and||n(o (v), v) — v|| <r. Chooser € W such thaw € B,/g(u). Fors € [0, 1], one of the
three cases must occur:

(i) n(s,v) reaches neithet3, (u) nord1%—<,
(i) n(s,v) reached s, 2(u) before it reache8%—¢,
(i) 5 (s, v) reaches 1% < before it reache8B, 2(u).

In case (i), since: € W implies B, (1) N KC = @, the definition ofp andy yields
o(n(s,v)) =¥ (n(s,v)) =1 forall0<s <1,
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which implies

1
2¢ 2 1(v) —I(n(1,v)) > / I'(n(s, v))V(n(s, v)) ds > 2¢,
0

a contradiction. In case (ii), by Lemma 4.3, there exist ) < s2 < 1 such that

3
[nGs1.v) = nGs2. )| > =

8’
[7'(n(s, )| =8 forsi<s< sz
and
b —e <I(n(s,v)) <bx+e forsy<s<so.

These inequalities imply

52

o[l

8 ds
51

52 . 52
ds < [guivies< %/st
51 51
and
52 52
2 > 1(n(s1,w)) — I(n(s2, u)) =/¢1/II/VdS > 2@/(}51// ds.
s1 51

Then, ¥ < %, which contradicts (16). Thus case (jii) occurs. Then there is a uniqug € (0,1) such that

I(n(o(v),v)) = by — €. Sincen(o (v), v) € B,/2(u) andv € B, g(u), [In(o(v),v) —v| <r. Asin [3], we define
G(0) =n(o(G(H)), G(®)) so that for allb € [0, 1T,

1(G®)) <bx—e (23)
and

|G@O)—G®O)| <r (24)
In addition, fori € A™,

GO)= D g O+ Y g ),

meAt, m#i meA~

which implies

€ € €
1(G(0)) < (kT — 1)<c+ + 5{) +k—<c— + 5{) <bp—ct+ > < by —e.

Here, we have used< %c+ which was deduced frome (0, %) and (16). In the same way, fore A~

I(G(Oi)) < by —e.
Thus, for 1< i <k,

G(0)=G(0)). (25)
Similarly, for 1< i <k,

G(1)=G1). (26)
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Step 3: Modn‘ymg@ Using a convolution operatafe« with a smooth peaking kernel to mollifg to get
G* = Jex (G) and then cutting dowrG* (see [3] for more details), we get @ € C([0,1F, E) such that
G(0) e C®(RN,R) for each¥ € [0, 1] and for someR > 0,

1(G®) < b — Z’ (27)
1G®) - G®)| <2r, (28)
k
suppG 0) C | J Br(ji) foro=0;and %, 1<i <k, (29)
i=1
and
SuppG (9) C By, ,(0) forallg € [0, 11, (30)

Here, (27) is obtained from (23); (28) is from (24); (29) comes from (19), (25), and (26); and (30) is a result of
cutting down. Also by (25) and (26), we have

G*(0)=Je+(G(©®)) = Jex(G(0)) foro=0;and 1, 1<i <k,
which together with (19) imply
G(0) =G*H) = Jor (G@®)) foro=0;and %, 1<i<k. (31)

Step 4: ModifyingG. Let
k
S = {x eRV||x] <R+2andx ¢ J BR(ljl-)}.
i=1
It can be assumed that fordi <k,

|0B#,,(0)— Br(lji)| > lrr;m|BR(zji> — Br(Ljm)|- (32)
Let
E©®) ={ve W-2(S) |v=G(®) onds and||v]l 12 < 8r}

and
lI/(v):/(%(|Vv|2+v2)—F(x,v)> dx
s

Consider the minimization problem

minimize v (v).

veE(0)
We further restrict such that
£3 23 1 —_ 23 23 7
AgkZ (8r)? 2 < 5 and AgK? (8r)* 2 < g (33)
whereAg, Ag, andK are positive constants satisfying

Vi "
F(x,2) < —0|z|2+ Aglz|Z forxeRM, zeR,

| fulx,2)| < —+A8|z|2 2 forxeRV, zeR,
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and
lwll 2 (5) < Kallwllyrzs, forwe wha(s),

respectively. Here&, depends only otV but notS. Then according to [3, Proposition 5.7] and its proof, there is a
uniquev = v(0) € E(9) minimizing ¥, v() € C27(S) for all y € (0,1) andé < [0, 1], v depends continuously
ond € (0,11 (in | - [ly2.s)), andu(6) satisfies

lv@] wizs) S 4 (34)
and

—Av+ V@)= f(x,v) inS, v==G(0) onas. (35)
Foré < [0, 1%, define

GO)(x) forx¢s,
v(@)(x) forxes.

U@ (x) = {
By (19) and (28),

GO yr25,= 1GO) = GO yao5) < 2r-
Then (34) implies

[U©®) =GO < Ivllwrzs + [GO) | yyrogs) < 4r+2r=6r.
Thus, for allo € [0, 1},

lu®)—-G®)| <|u®) -GO)|+|G1) - GO)| <8 (36)
Also, for all 6 € [0, 11%, by (27) and the definition of,

1(U®) <1(G®)) < bx — Z. 37)
Foro =0; andd =1;, 1<i <k, by (29)

G@O)(x)=0 forxes,
which implies by the definition of

v(@)(x)=0 forxesS.
Thus ford =0; andd =1;, 1<i <k andx € RV,

U@®)(x) =GO)x) (38)
and by (29) again

k
suppU (9) < | Br ). (39)

i=1
Forp >0, letD, ={x € S||x — 35| > p}. Sincev satisfies (35), by [3, Proposition 5.24] where the requirement
r< % from (15) was needed, there ika > 0 depending only om, p, andN such that

IvllLe,) < K2llvllwizgs)- (40)
According to [3], (40) implies that if
r <(8K2)71z, (41)
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wherez is a number such th&t| < z implies| f (x, z)| <|z|/2, then
v2(x) < 2z2eP/?coshl (42)
forall x € U;¢; <, A where

Ai={xeRY|R+p-2<|x—Ljjl <R+ B+2}.

Step 5: The construction &f. In this last step we will construct ali € I';(a) with a € (0, ap] such that

€
max I(H@)) < by — =, 43
0[O0, 1k (H©) <bx 8 (43)
which is a contradiction to Lemma 4.1. As in [3], we define fe£1 < k,
v, lx —Ljil <R + B,
hi@)(x) =1 [lx = Ljil = (R+ B+ D|UO)(x), R+B<|x—Lljj|l<R+B+1,
0, otherwise

and

k
H®) = Zhi(e).
i=1
Then as a consequence of (2B) satisfies(gs). Foro0 =0, andd =1;,i =1,..., k, by (39) we have
supph; (8) C Br(lji).
By (17), (18), (31), and (38) we see that, foe Bg(lj;) with i € A%,

hi (0)(x) = U(0)(x) = G(0;)(x) = Je+(G(0) (x) = Je (87(0)) (x) =0 (44)
and

hi(1)(x) = U 1)) = G(L)(x) = Jes(G (1)) (x) = Je= (87 (D) (x). (45)
By (45), fore* small enough

I(hi(1)) <0 fori=1,....k. (46)

Thath; satisfy(g») follows from (44) and (46). Defin§ = Ule Bryp(lji) andD =S\ S. Since

V ,
F(x,2) < I°|z|2+ AdzlZ forxeRM, zeR,

we see that for = v(6),
1 262 2
/ F(-xv 'U) d-x g <Z + A5||”||w12(s)) ”v”Wl,Z(’D)'

By further requiring

Asr? < 7, @7)
it can be deduced (see [3]) from (42) that fofor equivalentlyl € £) large enough,

1(H®) - 1(U®)]| < %. (48)

Now (43) follows from (37) and (48). To verify that satisfies(g1), using (36) and the definition @f; () we see
that
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[7:©) = GO [ yr284, 5,200

< 1@ =UO |z, pma05) + 1UO = GOz, ,.0ain

< |ni) - 18

U®) “ WL2(Brip1(Lji)\Br+ (1))
By (20) and (32) Br+s+1(lji) \ Br+g(lj;) C S. Then (34) and the definition d&f (6) and#h; (6) imply

|hi©) — <2.4r=8r
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By (17), (18), and (20)G (0)|Bx. 5,1j) € P* andh; € C([0,1], N1g-(PF)) for i € A*. Thus, as a consequence
of (15),h; satisfieqg1). Letr = rg be a number satisfying (14), (15), (33), (41), and (47). Thds a valid number
for the theorem. O

5. Further remarks

Combining the theorems in Section 3 and the argument from [5], we can obtain information on the number of
nodal domains of non-symmetric multi-oump nodal solutions for Eq. (1) and Eq. (2), extending the results in [3]
and improving the results in [5].

Theorem 5.1. Assume(V1) and (f1)—(f4). Supposex*)+ holds. For multi-bump nodal solutions of E), the
number of nodal domains is bounded by the number of bumps. In particular, the two-bump nodal solutions have
exactly two nodal domains. Moreover, there are infinitely many, geometrically different, two-bump, nodal solutions
which have exactly two nodal domains.

Theorem 5.2. AssuméV 1), (f1), and(f2)—(f4). Supposéx’)+ holds. Then for any integeks> m > 2, Eq.(1) has
infinitely many, geometrically different;bump, nodal solutions irii,fc‘f"‘ which have exactly: nodal domains.

o

More precisely, given any positive integérs ko, .. ., k, such that) /" ; k; = k > 2, there are infinitely many,
geometrically differentk-bump, nodal solutions im,f;jg which have exactlys nodal domainsD;, i =1,...,m

such thatu|p, is ak;-bump positive or negative solution.

Theorem 5.3. AssuméV 1), (f1), and(f2)—(f4). Supposéx")+ holds. For any integek > 2, Eq.(2) has infinitely
many, geometrically different-bump, nodal solutions im,fgjg‘ such that the numbers of their nodal domains are
bounded betweefé] + 1 and k. In particular, there are nodal solutions such that the numbers of their nodal
domains tend to infinity.

Looking back at the proof, we see that if we take= 0, we will end up obtaining-bump solutions with only
positive bumps. Together with Theorem 1.1 of [5] we gdtump positive solutions. This is an alternative way of
obtaining positive multi-bump solutions (see Theorem 7.22 in [3]).

Recently, the construction of multi-bump solutions [3] has been extended to the case that the nonlinearity is
asymptotically linear instead of superlinear. This was done by van Heerden in [6]. Obviously, our results on multi-
bump nodal solutions can be carried to this case and we refer to [6] for precise conditions.



Z. Liu, Z.-Q. Wang / Ann. |. H. Poincaré — AN 22 (2005) 609-631 631

Acknowledgements

The authors are grateful to the referee for his inspiring comments and to Paul Rabinowitz for his encouragements
of this work. This paper was written when the first author was visiting Utah State University. He is grateful to
the members in the Department of Mathematics and Statistics at Utah State University for their invitation and
hospitality.

References

[1] T. Bartsch, Z.L. Liu, T. Weth, Sign changing solutions of superlinear Schrodinger equations, Comm. Partial Differential Equations 29
(2004) 25-42.

[2] V. Coti Zelati, P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer.
Math. Soc. 4 (1991) 623-627.

[3] V. Coti Zelati, P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDERSn Comm. Pure Appl. Math. 45 (1992)
1217-1269.

[4] Z.L. Liu, J.X. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differ-
ential Equations 172 (2001) 257—299.

[5] Z.L. Liu, Z.-Q. Wang, Multi-bump type nodal solutions having a prescribed number of nodal domains: I, Ann. |. H. Poincaré — AN 22
(2005) 597-608.

[6] F. van Heerden, Homoclinic solutions for a semilinear elliptic equation with an asymptotically linear nonlinearity, Calc. Var. Partial
Differential Equations 20 (2004) 431-455.



