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Abstract

We study the homogenization of fully nonlinear degenerate second-order pde, with “ellipticity” of the same order as the space
oscillations, in periodic and almost periodic. As a special case we consider the class of quasi-linear, degenerate elliptic pde.
The results apply to level sets equations describing the evolution of fronts with prescribed normal velocity. We also discuss an
application about the averaged properties of interfacial motions in periodic and almost periodic environments.

© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In this note we consider the behavior,sas> 0, of the solutioru® € BUC(RY) of
F(sDzus,Dug,ug,x,sflx)zO inRY, (1.1)

where, if SV is the space ol x N symmetric matrices anBUC(X) is the space of real valued bounded uniformly
continuous functions defined onand| | is thesup-norm,

FeCRisN xRN x R x RN x RY) is degenerate elliptic,

e, forall X,Y €SV, p,x,yeRN andr e R, (1.2)
if XY, thenF(X,p,r,x,y)>F,p,r,x,y).
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The key property ofF which allows for the homogenization is a kind of “uniform” almost periodicity. The
precise assumption is that

forallx e RY,r e R andR > 0, the family
{F(Q,p.x,r,-+2): zeRY, (Q,p) € BO,R) x B(0, R)} (1.3)
is relatively compact iBUC(RY).

In other words, we assume that, for each fixed RV, r e R andR > 0, given (z;)jen C RY such that,
asj — oo, |zj| — oo, the sequencer (Q, p,r, x, - + z;)) jen IS relatively compact iIBUC(RYN) uniformly in
(0, p) € B(O, R) x B(O, R).

For F independent oD, p, r andx, (1.3) is one of the definitions faF (Q, p,r, x, y) to be almost periodic
with respect to the fast variable The additional requirement in (1.3) is that this property must hold, for each fixed
x andr, in a local uniform way with respect to the other variables. In the sequel, we call a function satisfying (1.3)
almost periodic with respect tplocally uniformly in (Q, p).

The main result of the paper is that, under some additional technical assumptiBngene exists : RY x R x
RY — R such that, as — 0, u® — i in C(R"), wherei € BUC(R") is the unique solution of the homogenized
(averaged) pde

F(Di,ii,x)=0 inRV. (1.4)

Similar results hold for boundary value as well as time dependent versions of (1.1) with Dirichlet and non-
oscillatory Neumann-type conditions. In particular, our results apply to the initial value problem

l/lf-l-F(SDZMS,DME,MS,X,S_lx,I)=0 inRY x (0, 00), (1.5)
u® =ug onR¥Y x {0}, '
and yield the effective equation

i, + F(Dii,ii,x, 1) =0 inRY x (0,00), (1.6)
i=up onRY x {0}. '

To simplify the presentation, we state results for the time independent problem (1.1). When we discuss the
application to the interfacial motions, we will, however, use the evolution equation. Throughout the paper, to keep
the ideas simple, we do not aim for the most general assumptions. Finally, weoitienote the “fast” variable

-1
& “X.
To fix the ideas, we continue describing our results as they apply to general quasi-linear equations of the form

—etr A(Du®, x, e *x)D%u® + H(Du®,u®,x, e 1x)=0 inR". 1.7)
The assumptions oH are:

HeCOL®RN x RN x RN x RN) N COL(B(O, R) x RN x R x RV),

for eachR > 0, and, for each fixed € RY andr € R, (1.8)
H is almost periodic with respect g
there exist<C > 0 such that, for alp e RV, r e R andx, £, y, e RV, (1.9)

|DyH|+ |DyH| < C(1+ [H]),
and
there existy > 0 such that, for alp, x, y € R andr, s € R with r > s, (1.10)
H(p,r.x,y)—H(p,s,x,y) 2y —s).

As far asA is concerned, we assume that

A e COLRN x RN x RN; §V) and, for each e RV, (1.11)
A is almost periodic with respect tolocally uniformly in p '
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and, if MN*M is the space oN x M matrices,

A=XXT where, for eact® > 0, (1.12)
¥ e Cpr@®N x RN x RN; MN*M)y 0 COL(B(0, R) x RN x RN; MN*M), '
and
there exist® € (0, 1) such that
lim |pI~2(0(L—0)H?>+ 60| Z|?DyH - p) > | Dy X2 X2, (1.13)
|pl—00

where, givenX = (0;;) € MY*M and using the summation conventid || = 05. Notice that, ifA € SV and

¥ e MN*M gre suchthatt = X X7, thenA > 0 and| X|| =tr A.
We remark that, ifd satisfies (1.9) and (1.13), it is immediate that, uniformlyjry andr,

H(p,r,x,y) —> 00, as|p|l— oo. (1.14)

If A e SV satisfies (1.12), it is, of course, degenerate elliptic. Moreover,afCL1(RY; SV) is degenerate el-
liptic, a classical result (see, for example, Oleinik [32] and Freidlin [19]) yields that there exist§ %1(RY; sV)
such that

A=xx" and forallXx esY, |trDyAX|<2N@trAX)Y?|D3A|. (1.15)

Finally, for future reference, we recall that,Af, B € S¥ with A >0 andD, E e MV*M  a simple application
of Cauchy—Schwartz inequality yields that

(trAB)?> <tr(ABB)trA and (tr DETB)?><tr(DD"BB)||E|> (1.16)

Our result is:

Theorem 1.1. Assume (1.8)—(1.13) There exists F € COL(RYN x R x RV) satisfying (1.9), (1.10)and (1.14)such

loc

that, if u® € BUC(RY) and i e BUC(R") solve respectively (1.7)and (1.4), then, ase — 0, u® — i in C(RY).

WhenA is uniformly elliptic, Theorem 1.1 is a special case of [18]. When, howevés,only degenerate ellip-
tic, it is not possible to use the classical Krylov—Safonov-type estimates which provide uniform Holder-continuity.
This is where (1.13) comes in. Indeed (1.13) is a technical hypothesis that we use in order to obtain appropriate
uniform Lipschitz estimates in our proof. As we discuss at the end of Section 3, Whef, (1.13) is not neces-
sary. We do not know, however, whether, wh€én- 1, this condition is actually necessary for the homogenization
of almost periodic quasi-linear equations. For further comments we refer to the discussion after Lemma 3.2.

The Lipschitz estimates we obtain using (1.13) are new in the context of quasilinear elliptic pde and generalize
other estimates, which were obtained by Serrin [36] and one of the authors [25] under the assumption of uniform
ellipticity.

Finally it is immediate that (1.13) holds for ary satisfying (1.9) and grows superlinearly with respecpto
uniformly in y, i.e., uniformly iny and ag p| — oo,

IpI *H(p, y) — .

In the statement of Theorem 1.1 we assume that there exists a soltitowBUC(R") of (1.7). To guarantee
this fact without restricting the growth off, we need to change (1.13) to include some information about the
dependence o and H onx. In particular, to obtain, for each fixedt> 0, Lipschitz continuous solutions of (1.7),
we assume that

for eache > 0, there existg, € (0, 1) such that
. _ 2
lim |pl=2(0:(1— 6.)H? + 6, | Z|>(DyH + eDsH) - p) > |(Dy + D) Z||| 2%

[pl—o0
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A variant of Theorem 1.1 applies to geometric equations, a special class of quasi-linear evolution equations
describing the propagation of interfaces with prescribed normal velocity. Geometric equations do not satisfy all
the assumptions of the above theorem, since, in this cade,discontinuous whemp = 0. A straightforward
approximation argument together with the stability properties of the viscosity solutions takes care of this difficulty.

Although our results apply to more general geometric equations, to keep the presentation simple, here we con-
sider the particular example

ut — e8tr[(I — Du® ® Du?)D2uf]+ a(e 1x)H(Duf) =0 inRY x (0, 00), (1.17)
u® =ug onRY x {0} '
where, forp e RV \ {0}, p = |p|~1p, 8 > 0 and
H e C*Y(RN; [0, 00)) is positively homogeneous of degree 1
with respect top, i.e., there exists € C%1(3B(0,1); (0,00)) (1.18)
such that, for allp € RN \ {0}, H = |p|v(p),
a € C®L(RY) is almost periodic and inf > 0, (1.19)
and
inf(a?v — (N — 1)8| Dyal) > 0. (1.20)

It turns out (see [37,38] for a general discussion) that the'get {x € RVN: u(x,t) = 0} is the generalized
evolution of I} = {x € RV: ug(x) = 0} with normal velocity

V = —e8tr Dn —a(e x)H(—Dn). (1.21)

The result is:

Proposition 1.2. Assume (1.18), (1.19)and (1.20) For each § > 0, there exists Hy € C%1(R":; [0, 00)) satisfy-
ing (1.18) such that, if * and @ solve (1.17)and (1.6) with F = Hs and initial datum «{ and ug in BUC(RY)
respectively, then, if, as e — 0, uo® — ug in C(RY), then u® — it in C(RY x [0,00)). In particular, if (I¥);>0
and (ﬁ),>o are the generalized evolutions of Iy = {x € RY: ug(x) = 0} with normal velocities given by (1.21)
and — Hs(— Dn) respectively, then, ase — 0, I'¥ — I} in the Hausdorff metric.

Assumption (1.20) corresponds, in the setting of geometric equations, to (1.13). We do not know whether (1.20)
is necessary for the above result or whetheisf0 is enough, as it is the case when there is no second-order term
in (1.17) (we refer to [5,16,29,30] for a detailed discussion of the case of only first-order velocity). Note that when
N =1ord§ =0, (1.20) reduces to the usual assumption that inf0. If (1.20) is indeed necessary, this may be
related to issues related to “pinning” of interfaces [15,31].

We continue with the result for the general problem (1.1). We need to assume that

there existe € C([0, 00); [0, 00)) with p(0+) such that

FX,a(x —y),rx,y,0) — FY,a(x —y),rx,y, )

0< p(alx — 12+ |x — £+ Bly — $1>+ 1y — 3I) (1.22)
foralla, >0, reR, x,y,%,y € RY andX, Y € SV such that

=3+ A (67) < (8 ) <3@+A(L 7).

there exists a constapt> 0 such that, for all

(X, p,x,y) € S¥ xRN x RN x RNandr, s e Rwithr > s, (1.23)
F(X,P:”vx»y)—F(X,P»&x’y)23/(”—5),




P-L. Lions, PE. Souganidis/ Ann. |. H. Poincaré— AN 22 (2005) 667—677 671

and
there exist positive constanisand R such that, for all
(X, p,r,x,y) € S¥ xRN x R xRN x RN with |p| > R,
if —tr(DxF(X,p,r,x,y)XX)+D,F(X,p,r,x,y)-p<0
and F(X,p,r,x,y) <R, then|p|<L.

Hypotheses (1.2), (1.22) and (1.23) are the standard assumptions (see [13]) which guarantee sfor @ach
the existence and uniqueness of viscosity solutions of (1.1). Assumption (1.24) is used to obtain Lipschitz bounds
on the solutions of (1.1) which are independent ofin the case of the quasi-linear problem (1.7), the assertion of
(1.24) follows from (1.12) and (1.13) and, in some sense, incorporates the conclusions one obtains using (1.24) in
the quasi-linear setting.

To justify the Lipschitz bounds it is necessary to use either the classical Bernstein method, which, however,
requires that the solutions arfdare at leastC?2, or some more involved arguments from the theory of viscosity
solutions (weak Bernstein method), like the ones introduced by Ishii and Lions [21] and Barles [3] to study similar
questions. Th&2-regularity can be achieved I is either convex or concave and uniformly elliptic with respect
to X, while, in the general case, it is not known. Hence for non corivei is necessary to follow [3,21], etc.,
or to come up with some approximations which have the needed properties. In this paper, to keep the presentation
simple, we use the classical Bernstein method assuming tacitly that we have the necessary regularity. Of course in
the case of quasi-linear equations, the regularity can be achieved by straightforward regularizations.

Our main result is:

(1.24)

Theorem 1.3. Assume (1.2), (1.3), (1.22), (1.23)nd (1.24) Thereexists F € C21RY x R x RY) satisfying (1.22)

loc

and (1.23)such that, if u®, s € BUC(R") solve (1.1)and (1.4) respectively, then, ase — 0, u® — i in C(RY).

The paper is organized as follows: Section 2 is devoted to a brief review and a discussion of recent advances
of the theory of homogenization of fully nonlinear first- and second-order pde in periodic, almost periodic and
stationary ergodic environments. We also discuss why the previously known theory does imply the results we
present here. Section 3 is devoted to the main estimate leading to Theorem 1.3 as well as a sketch of the proofs of
Theorem 1.1 and Proposition 1.2.

2. A review and recent advancesin the theory of homogenization

There is an extensive literature about the homogenization of nonlinear first- and second-order pde in periodic
and almost periodic settings. Lions et al. [29] were the first to consider the homogenization of Hamilton—Jacobi
equations. This problem was revisited by Evans [17,18], who introduced the method of the perturbed test function
for viscosity solutions and considered a number of examples for second-order pde including (1.1), but under the
assumption thaf' is uniformly elliptic. We also refer to Caffarelli [8], Majda and Souganidis [30], and, more
recently, Arisawa [1], Arisawa and Lions [2], Cocordel [12], E [16] and Bhattacharya and Cracium [5] for other
results always in the periodic setting. Ishii in [20] considered the homogenization of Hamilton—Jacobi equations in
almost periodic settings. There are not, however, many results for the homogenization of degenerate second-order
pde in either setting except of the work of Arisawa and Lions [2], which, however, does not cover the results of the
paper at hand.

Recently, there has been a resurgence of interest in the homogenization of first- and second-order pde in ran-
dom stationary ergodic media. This is a very general setting lacking the compactness properties used extensively
in various places in the study of the periodic/almost periodic homogenization. To overcome this difficulty, it is
necessary to employ the ergodic theorem in various places. The literature in the random setting is far more limited.
Papanicolaou and Varadhan [33,34] and Kozlov [24] (see also Jikov et al. [22]) were the first to consider the ho-
mogenization of linear uniformly elliptic operators. Their results were extended to particular quasi-linear problems
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by Bensoussan and Blakenship [4] and Castel [11]. We also refer to Bourgeat and Piatniski [6] for some more
recent results in the linear case as well as more references. The first nonlinear result in a variational setting was
obtained by Dal Maso and Modica [14].

The homogenization of fully nonlinear, convex, first-order (Hamilton—Jacobi) equations in random environ-
ments was considered first by one of the authors [39] (see also [35]). In a subsequent work [27], the authors
showed that in this case, in general, there are no correctors, i.e., solutions, of the associated macroscopic prok
lem. The homogenization of fully nonlinear, uniformly elliptic equations was studied by Caffarelli, Souganidis and
Wang in [10]. In a forthcoming paper [9], Caffarelli and the authors show that correctors exist for convex, fully
nonlinear, uniformly elliptic equations. Recently the authors studied, in [26], always in the stationary ergodic set-
ting, the homogenization of (1.7), when the mattixs independent op and H is convex. Both assumptions are
necessary for the techniques of [26], which uses the sub-additive ergodic theorem, the stochastic control formula-
tion of the problem, hence the assumptions of the convexi#/ @nd the independence afon p, together with
a number of new Lipschitz estimates similar to the one’s in this paper, which do not depend on these restrictions.
More recently, Kosynga et al. [23] considered, using different methods, a problem similar to the one of [26] under
the stronger assumptions of uniform ellipticity dnand strict convexity off. We are not aware, however, of any
results for (1.1) in the random setting even for uniformly ellipfic

Going back to the periodic/almost periodic setting we remark that the case at hand, i.e., degenerate elliptic
equations, like (1.1), (1.7) and (1.17), was not covered by any previous work and in any setting. The closest results
are the ones of Section 8 of [18], which, however, assume Ehat uniformly elliptic and, hence, exclude the
important case of geometric equations. The techniques of [18] rely heavily on this assumption and, hence, cannot
be relaxed without new estimates. Although it is possible to obtain in some cases bounds for approximate equations
the estimates depend strongly on and degenerate at the limit of the approximations.

3. Sketch of the proofs

We begin with Theorem 1.3 and concentrate first on the periodic setting. Using appropriate (perturbed) test
functions (see [29,17,18,30], etc.), it follows that it suffices to solve the associated cell problem, i.e., to find for
each(p,r,x) e RY x R x RV, a unique constant(p, r, x) such that the equation

F(D*v,Dv+ p,r,x,y)=F(p,r,x) inRY (3.1
admits a solution € BUC(RY). This is the object of the next result.

Proposition 3.1. Assume (1.2), (1.3) (withF periodic), (1.22), (1.23pnd (1.24) For each (p, r, x) e RV x RxRY,
there exists a unique constant F (p, r, x) such that (3.1) has a solution v € BUC(RY).

The uniqueness of the constant is a consequence of the theory of viscosity solution (see, for example, [13]),
once it is established that there exists a solutianBUC(RY) of (3.1). Note that, sincé is periodic, (3.1) is
actually solved only in the periodic domain, hence the name cell problem. In the almost periodic as well as general
stationary ergodic settings, (3.1) has to be considered in the whole space. We believe that in such settings it is
more appropriate to call (3.1) the macroscopic problem. In this case, to guarantee the uniquéness,af, it
suffices to find solutions € UC(RY) with strictly sub-linear growth at infinity—see [27,26] and [39]. Below we
concentrate on the issue of the existence of solutica8UC(RY) in the periodic setting.

To simplify the presentation, in what follows, we assume that

FeC?SY" xRN xRx RN xRY) and v, € C2RY). (3.2)
Otherwise we either approximate and regularize the equation and obtain a priori bounds independent of the

regularization or alternatively we use the weak Bernstein method. (See the discussion before the statement o
Theorem 1.3.) Moreover, singe r andx are fixed, we drop next the explicit dependence on them.
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We begin with the approximate problem
Avy. + F(D?vy, Dvy,y) =0 inRY, (3.3)

which, in view of the theory of viscosity solutions (see [13]), admits a unique periodic continuous sefuton
BUC(RY) satisfying the bound

sup||Av;. || < oo. (3.4)
A>0
It is worth remarking that (3.3) is an approximation which is closely related to homogenization. Indeed, if
v* = v, (A7 1y), then

v* + FuD%*, Dv*, a7 ty) =0,

and the limiting behavior of the*’s, asix — 0, is equivalent to the limiting behavior, againjas> 0, of the Ad"’s
in balls of radius O(x1).
Consider next the functiofy, = v, — v; (0), which solves the equation

Ay + F(D?0;, DOy, y) = —Av,(0) inRV. (3.5)

Sinceiv; (0) is bounded, the claim will follow, if we show that along subsequenges- 0, 9, — v in C[RN)
for somed € BUC(RY). This in turn follows, if it is shown that the familgw, ), 0 is equi-continuous. Notice that
the equi-continuity of the,'s also establishes, in view of the assumption of periodicity, the bound o#) thand
v. In the uniformly elliptic case this is, of course, provided by the regularity theory of such equations (see Cabre
and Caffarelli [7]), and the bound depends on the ellipticity constants. This is the reason that the result of this
note does not follow by regularizing (1.1) to a uniformly elliptic equation and using the stability properties of the
viscosity solutions. The bound deteriorates as the ellipticity constant goes to zero.

It is therefore necessary to obtain a modulus of continuity directly for the degenerate case. This is the object of
the next lemma, which yields a uniform Lipschitz bound.

Lemma 3.2. Assume (1.2), (1.22)and (1.24) There exists a constant L > 0 such that, for all x, y € RV,
lua(x) — v (| < Llx — yl. (3.6)
Note that we do not assume (1.3), since the periodic/almost periodic structarplafs absolutely no role in
the proof. Before we present the proof of the lemma, we remark that, of course,'shean be uniformly equi-
continuous without being uniformly Lipschitz continuous. We refer to [28] for a number of explicit examples. As

discussed in the Introduction we do not know whether (1.24) is necessary for the homogenization. It is shown,
however, in [28] that (1.24) is necessary and sufficient for the above lemma to hold.

Proof of Lemma 3.2. 1. To simplify the presentation below we writénstead ofv, and assume that we have the
regularity asserted in (3.2).
2. Letw = | Dv|2. A straightforward differentiation yields,

2)w + tr(Dx F D?*w) — 2(tr Dx FD?vD?v) + 2Dy F - Dv+ D, F - Dw =0,
and, hence, at a maximum pointwf
Aw —tr Dy FD?vD?v + Dy F - Dv <O0.

Moreover (3.3) and (3.4) yield thd < R = ||Av, ||
3. It follows from (1.24), that there exists a constanguch that the claim holds.O
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Next we discuss the extension to the almost periodic setting. It turns out that, in this case, it suffices to find
“approximate correctors”, a fact which is equivalent to showing that, for éach x) e RN x R x RV, asx — 0,
Avy — —H(p,r,x) or Ad, — 0 uniformly onR”.

In our context this can be shown by a straightforward modification of the arguments of [20]. We have

Lemma 3.3. Assume (1.2), (1.3), (1.22pand (1.24)and let 9, be the solution of (3.3). Then, asA — 0, A0, — 0,
uniformly in RV,

Proof. 1. We argue by contradiction and we assume, for definiteness, that there existh ; — 0 andy; RN
such that, ag — oo,
)»jﬁ)\j (yj)) =40 and |y;| — oo. (3.7)
2. The functiong; (y) = 0, (y + y; — ) satisfy the equation
0=14,d; + F(D%j, p+ Dij.y+y; — yi) + 2jv; (0).

Moreover, Lemma 3.2 yields a, uniform in Lipschitz bound with constarit for the 9,’s and, hencey;’s.
3. The proof of the comparison principle of viscosity solutions (see [13]) yields, foreach, the estimate

ATy < hjin, 4 p(La™) + L‘}”i,j in RV,
wherep is asin (1.22) and
Ly%  =Supl{|F(Q,p,y+y) — F(Q,p,y+¥)]: 101 <3e, IpI<L, yeRV}.
Choose next sufficiently large so that
p(La~h) <6
and, sinceF satisfies (1.3) withlR = max(3«, L) > 0, choose sufficiently largeandj so that
L
Ly} ; <9,
It follows that
)Ljf)j < )tjﬁkj +20 in RV,

4. Evaluating the above inequality = y; and using the uniform i Lipschitz continuity ofo;, with constant
L lead to

Ao, (v) < At () +60 <ALyl + 20,
which gives a contradiction @s; — 0. O

We continue with the

Proof of Theorem 1.1. 1. It suffices to show that
FX,p,r,x,y)=—trA(p,x, )X+ H(p,r,x,y)

satisfies the assumptions of Theorem 1.1. Indeed (1.2), (1.3), (1.22) and (1.23) are immediate. In the case at hanc
the quantity in (1.24) is

—tr(Dx FXX) 4+ D,F - p=tr(AXX) —tr(DyAX) - p+ D, H - p.
3. If
—tr(Dx FXX) + DyF - p<0, (3.8)
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then
tr AXX + DyH - p <tr(DyAX) - p=tr((Dy2)2TX) - p+tr(Z(DyZN)X) - p=2tr((Dy2) X7 X) - p,
and, in view of (1.16),
tr(AXX) + DyH - p <2||D, X ||(tr XX X)Y2|p| = 2D, Z||(tr AX X) 2| p|.
Hence, for alb € (0, 1),
tr(AXX) + DyH - p <Ot(AXX) + || Dy 2|2 p|>. (3.9)
If F <R,then
H — R <tr(AX),
and, in view of (1.16),
(H—R)4 < (trAXX)?| 2|,
Hence, for alb € (0, 1),
0(L—6)| Z[72(H — R)2 +0DyH - p <6~ YD, X|?|pl2 (3.10)

Finally using in above estimate the particudaior which (1.13) holds, we see that there exists sdme0 such
that

|Dv| < L. ]

The growth condition (1.13) is, of course, sufficient for the arguments we are using. Itis, however, an interesting
question to see whether they are, in general, actually necessary for the homogenization to hold, especially since in
the case of the front propagation it yields (1.19).

We remark, for example, that fov =1, (1.13) is not necessary. Indeed consider the equation

—a(y, v)0" +b(y)v'|=0 inR

with b > 0. It is immediate that inf > 0 yields a Lipschitz bound oun. It is shown, however, in [28] that (1.13) is
indeed necessary to have uniform Lipschitz estimated/fer 1.
We continue with the

Proof of Proposition 1.2. 1. We refer to [38,39] for a discussion about how the homogenization of the level set
equations yields the asserted convergence of the interfaces.

2. For the homogenization it suffices to check that (1.12) and (1.13) hold. This follows from a straightforward
computation.

Indeed in this setting, fop € RY \ {0}, we have

{A(p):w—ﬁ@ﬁ), X(p)=8Y2(1-p®p), and
H(p,y)=a|plv(p), DyH = Dyalplv(p) and [|Z|?>=8(N —1).

In what follows, to simplify the presentation, we argue a4 jr, a andv were smooth.
3. With the above particular form of, (3.8) reads

Str(AXX) + Dya - p|plv <0.
Repeating the argument of the proof of Theorem 1.1, we find that there &xist3 such that, for alp € (0, 1),
2
(avlpl = R) + 1 Z1°Dya - plplv <O. (3.11)
Then (1.20) yields the desired bounda
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