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Abstract

We study the homogenization of fully nonlinear degenerate second-order pde, with “ellipticity” of the same order as t
oscillations, in periodic and almost periodic. As a special case we consider the class of quasi-linear, degenerate el
The results apply to level sets equations describing the evolution of fronts with prescribed normal velocity. We also di
application about the averaged properties of interfacial motions in periodic and almost periodic environments.

1. Introduction

In this note we consider the behavior, asε → 0, of the solutionuε ∈ BUC(RN) of

F(εD2uε,Duε,uε, x, ε−1x) = 0 in R
N, (1.1)

where, ifSN is the space ofN ×N symmetric matrices andBUC(X) is the space of real valued bounded uniform
continuous functions defined onX and‖ ‖ is thesup-norm,F ∈ C

0,1
loc (SN × R

N × R × R
N × R

N) is degenerate elliptic,
i.e., for all X,Y ∈ SN, p,x, y ∈ R

N andr ∈ R,

if X � Y, thenF(X,p, r, x, y) � F(Y,p, r, x, y).

(1.2)
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The key property ofF which allows for the homogenization is a kind of “uniform” almost periodicity. T
precise assumption is that for all x ∈ R

N, r ∈ R andR > 0, the family{
F(Q,p,x, r, · + z): z ∈ R

N, (Q,p) ∈ B(0,R)× B(0,R)
}

is relatively compact inBUC(RN).

(1.3)

In other words, we assume that, for each fixedx ∈ R
N, r ∈ R and R > 0, given (zj )j∈N ⊂ R

N such that,
asj → ∞, |zj | → ∞, the sequence(F (Q,p, r, x, · + zj ))j∈N is relatively compact inBUC(RN) uniformly in
(Q,p) ∈ �B(0,R)× �B(0,R).

For F independent ofQ,p, r andx, (1.3) is one of the definitions forF(Q,p, r, x, y) to be almost periodic
with respect to the fast variabley. The additional requirement in (1.3) is that this property must hold, for each
x andr , in a local uniform way with respect to the other variables. In the sequel, we call a function satisfyin
almost periodic with respect toy locally uniformly in (Q,p).

The main result of the paper is that, under some additional technical assumptions onF , there exists�F :RN ×R×
R

N → R such that, asε → 0, uε → ū in C(RN), whereū ∈ BUC(RN) is the unique solution of the homogeniz
(averaged) pde

�F(Dū, ū, x) = 0 in R
N. (1.4)

Similar results hold for boundary value as well as time dependent versions of (1.1) with Dirichlet an
oscillatory Neumann-type conditions. In particular, our results apply to the initial value problem{

uε
t + F(εD2uε,Duε,uε, x, ε−1x, t) = 0 in R

N × (0,∞),

uε = u0 onR
N × {0}, (1.5)

and yield the effective equation{
ūt + �F(Dū, ū, x, t) = 0 in R

N × (0,∞),

ū = u0 onR
N × {0}. (1.6)

To simplify the presentation, we state results for the time independent problem (1.1). When we disc
application to the interfacial motions, we will, however, use the evolution equation. Throughout the paper,
the ideas simple, we do not aim for the most general assumptions. Finally, we writey to denote the “fast” variable
ε−1x.

To fix the ideas, we continue describing our results as they apply to general quasi-linear equations of th

−ε trA(Duε, x, ε−1x)D2uε + H(Duε,uε, x, ε−1x) = 0 in R
N. (1.7)

The assumptions onH are:H ∈ C
0,1
loc (RN × R

N × R
N × R

N) ∩ C0,1
(
B(0,R)× R

N × R
N × R

N
)
,

for eachR > 0, and, for each fixedx ∈ R
N andr ∈ R,

H is almost periodic with respect toy,

(1.8)

{
there existsC > 0 such that, for allp ∈ R

N , r ∈ R andx, x̂, y, ŷ ∈ R
N ,

|DxH | + |DyH | � C
(
1+ |H |), (1.9)

and {
there existsγ > 0 such that, for allp,x, y ∈ R

N andr, s ∈ R with r � s,

H(p, r, x, y) − H(p, s, x, y) � γ (r − s).
(1.10)

As far asA is concerned, we assume that{
A ∈ C0,1(RN × R

N × R
N ;SN) and, for eachx ∈ R

N , (1.11)

A is almost periodic with respect toy locally uniformly inp
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and, ifMN×M is the space ofN × M matrices,{
A = ΣΣT, where, for eachR > 0,

Σ ∈ C
0,1
loc (RN × R

N × R
N ;MN×M) ∩ C0,1

(
B(0,R)× R

N × R
N ;MN×M

)
,

(1.12)

and {
there existsθ ∈ (0,1) such that

lim
|p|→∞

|p|−2
(
θ(1− θ)H 2 + θ‖Σ‖2DyH · p)

> ‖DyΣ‖2‖Σ‖2, (1.13)

where, givenΣ = (σij ) ∈ MN×M and using the summation convention,‖Σ‖ = σ 2
ij . Notice that, ifA ∈ SN and

Σ ∈MN×M are such thatA = ΣΣT, thenA � 0 and‖Σ‖ = trA.
We remark that, ifH satisfies (1.9) and (1.13), it is immediate that, uniformly inx, y andr ,

H(p, r, x, y) → ∞, as|p| → ∞. (1.14)

If A ∈ SN satisfies (1.12), it is, of course, degenerate elliptic. Moreover, ifA ∈ C1,1(RN ;SN) is degenerate el
liptic, a classical result (see, for example, Oleinik [32] and Freidlin [19]) yields that there existsΣ ∈ C0,1(RN ;SN)

such that

A = ΣΣT and, for allX ∈ SN , |trDyAX| � 2N(trAX)1/2‖D2
yA‖. (1.15)

Finally, for future reference, we recall that, ifA,B ∈ SN with A � 0 andD,E ∈ MN×M , a simple application
of Cauchy–Schwartz inequality yields that

(trAB)2 � tr(ABB) trA and (trDETB)2 � tr(DDTBB)‖E‖2. (1.16)

Our result is:

Theorem 1.1. Assume (1.8)–(1.13). There exists �F ∈ C
0,1
loc (RN × R × R

N) satisfying (1.9), (1.10)and (1.14)such
that, if uε ∈ BUC(RN) and ū ∈ BUC(RN) solve respectively (1.7)and (1.4), then, asε → 0, uε → ū in C(RN).

WhenA is uniformly elliptic, Theorem 1.1 is a special case of [18]. When, however,A is only degenerate ellip
tic, it is not possible to use the classical Krylov–Safonov-type estimates which provide uniform Holder-con
This is where (1.13) comes in. Indeed (1.13) is a technical hypothesis that we use in order to obtain app
uniform Lipschitz estimates in our proof. As we discuss at the end of Section 3, whenN = 1, (1.13) is not neces
sary. We do not know, however, whether, whenN > 1, this condition is actually necessary for the homogeniza
of almost periodic quasi-linear equations. For further comments we refer to the discussion after Lemma 3

The Lipschitz estimates we obtain using (1.13) are new in the context of quasilinear elliptic pde and ge
other estimates, which were obtained by Serrin [36] and one of the authors [25] under the assumption of
ellipticity.

Finally it is immediate that (1.13) holds for anyH satisfying (1.9) and grows superlinearly with respect top,
uniformly in y, i.e., uniformly iny and as|p| → ∞,

|p|−1H(p,y) → ∞.

In the statement of Theorem 1.1 we assume that there exists a solutionuε ∈ BUC(RN) of (1.7). To guarantee
this fact without restricting the growth ofH , we need to change (1.13) to include some information abou
dependence ofA andH onx. In particular, to obtain, for each fixedε > 0, Lipschitz continuous solutions of (1.7
we assume that{ for eachε > 0, there existsθε ∈ (0,1) such that

lim |p|−2
(
θε(1− θε)H

2 + θε‖Σ‖2(DyH + εDxH) · p)
>

∥∥(Dy + εDx)Σ
∥∥2‖Σ‖2.
|p|→∞
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A variant of Theorem 1.1 applies to geometric equations, a special class of quasi-linear evolution eq
describing the propagation of interfaces with prescribed normal velocity. Geometric equations do not sa
the assumptions of the above theorem, since, in this case,A is discontinuous whenp = 0. A straightforward
approximation argument together with the stability properties of the viscosity solutions takes care of this di

Although our results apply to more general geometric equations, to keep the presentation simple, here
sider the particular example{

uε
t − εδ tr[(I − D̂uε ⊗ D̂uε)D2uε] + a(ε−1x)H(Duε) = 0 in R

N × (0,∞),

uε = u0 onR
N × {0} (1.17)

where, forp ∈ R
N \ {0}, p̂ = |p|−1p, δ > 0 and

H ∈ C0,1
(
R

N ; [0,∞)
)

is positively homogeneous of degree 1
with respect top, i.e., there existsv ∈ C0,1

(
∂B(0,1); (0,∞)

)
such that, for allp ∈ R

N \ {0}, H = |p|v(p̂),

(1.18)

a ∈ C0,1(RN) is almost periodic and infa � 0, (1.19)

and

inf
(
a2v − (N − 1)δ|Dya|) > 0. (1.20)

It turns out (see [37,38] for a general discussion) that the setΓ ε+ = {x ∈ R
N : uε(x, t) = 0} is the generalized

evolution ofΓ ε
0 = {x ∈ R

N : u0(x) = 0} with normal velocity

V = −εδ trDn − a(ε−1x)H(−Dn). (1.21)

The result is:

Proposition 1.2. Assume (1.18), (1.19)and (1.20). For each δ > 0, there exists �Hδ ∈ C0,1(RN ; [0,∞)) satisfy-
ing (1.18) such that, if uε and ū solve (1.17) and (1.6) with �F = �Hδ and initial datum uε

0 and u0 in BUC(RN)

respectively, then, if, as ε → 0, u0
ε → u0 in C(RN), then uε → ū in C(RN × [0,∞)). In particular, if (Γ ε

t )t�0
and (�Γt )t�0 are the generalized evolutions of Γ0 = {x ∈ R

N : u0(x) = 0} with normal velocities given by (1.21)
and − �Hδ(−Dn) respectively, then, as ε → 0, Γ ε

t → �Γt in the Hausdorff metric.

Assumption (1.20) corresponds, in the setting of geometric equations, to (1.13). We do not know whethe
is necessary for the above result or whether infa > 0 is enough, as it is the case when there is no second-order
in (1.17) (we refer to [5,16,29,30] for a detailed discussion of the case of only first-order velocity). Note tha
N = 1 or δ = 0, (1.20) reduces to the usual assumption that infa > 0. If (1.20) is indeed necessary, this may
related to issues related to “pinning” of interfaces [15,31].

We continue with the result for the general problem (1.1). We need to assume that
there existsρ ∈ C([0,∞); [0,∞)) with ρ(0+) such that
F(X,α(x − y), r, x, y,ω) − F(Y,α(x − y), r, x̂, ŷ,ω)

0� ρ
(
α|x − x̂|2 + |x − x̂| + β|y − ŷ|2 + |y − ŷ|)

for all α,β > 0, r ∈ R, x, y, x̂, ŷ ∈ R
N andX,Y ∈ SN such that

−3(α + β)
(

I 0
0 I

)
�

(
X 0
0 −Y

)
� 3(α + β)

(
I −I

−I I

)
,

(1.22)

{ there exists a constantγ > 0 such that, for all
(X,p,x, y) ∈ SN × R

N × R
N × R

Nandr, s ∈ R with r � s, (1.23)

F(X,p, r, x, y) − F(X,p, s, x, y) � γ (r − s),



P.-L. Lions, P.E. Souganidis / Ann. I. H. Poincaré – AN 22 (2005) 667–677 671

ch
bounds
n of
(1.24) in

owever,
sity
similar
ect
.,
sentation
course in

dvances
ic and
ults we
proofs of

periodic
Jacobi

function
nder the
ore
other
tions in
ond-order
s of the

e in ran-
tensively
y, it is
limited.

the ho-
oblems
and 
there exist positive constantsL andR such that, for all
(X,p, r, x, y) ∈ SN × R

N × R × R
N × R

N with |p| > R,

if − tr(DXF(X,p, r, x, y)XX) + DyF(X,p, r, x, y) · p � 0
and F(X,p, r, x, y) � R, then|p| � L.

(1.24)

Hypotheses (1.2), (1.22) and (1.23) are the standard assumptions (see [13]) which guarantee, for eaε > 0,
the existence and uniqueness of viscosity solutions of (1.1). Assumption (1.24) is used to obtain Lipschitz
on the solutions of (1.1) which are independent ofε. In the case of the quasi-linear problem (1.7), the assertio
(1.24) follows from (1.12) and (1.13) and, in some sense, incorporates the conclusions one obtains using
the quasi-linear setting.

To justify the Lipschitz bounds it is necessary to use either the classical Bernstein method, which, h
requires that the solutions andF are at leastC2, or some more involved arguments from the theory of visco
solutions (weak Bernstein method), like the ones introduced by Ishii and Lions [21] and Barles [3] to study
questions. TheC2-regularity can be achieved ifF is either convex or concave and uniformly elliptic with resp
to X, while, in the general case, it is not known. Hence for non convexF , it is necessary to follow [3,21], etc
or to come up with some approximations which have the needed properties. In this paper, to keep the pre
simple, we use the classical Bernstein method assuming tacitly that we have the necessary regularity. Of
the case of quasi-linear equations, the regularity can be achieved by straightforward regularizations.

Our main result is:

Theorem 1.3. Assume (1.2), (1.3), (1.22), (1.23)and (1.24). There exists �F ∈ C
0,1
loc (RN ×R×R

N) satisfying (1.22)
and (1.23)such that, if uε, ū ∈ BUC(RN) solve (1.1)and (1.4)respectively, then, as ε → 0, uε → ū in C(RN).

The paper is organized as follows: Section 2 is devoted to a brief review and a discussion of recent a
of the theory of homogenization of fully nonlinear first- and second-order pde in periodic, almost period
stationary ergodic environments. We also discuss why the previously known theory does imply the res
present here. Section 3 is devoted to the main estimate leading to Theorem 1.3 as well as a sketch of the
Theorem 1.1 and Proposition 1.2.

2. A review and recent advances in the theory of homogenization

There is an extensive literature about the homogenization of nonlinear first- and second-order pde in
and almost periodic settings. Lions et al. [29] were the first to consider the homogenization of Hamilton–
equations. This problem was revisited by Evans [17,18], who introduced the method of the perturbed test
for viscosity solutions and considered a number of examples for second-order pde including (1.1), but u
assumption thatF is uniformly elliptic. We also refer to Caffarelli [8], Majda and Souganidis [30], and, m
recently, Arisawa [1], Arisawa and Lions [2], Cocordel [12], E [16] and Bhattacharya and Cracium [5] for
results always in the periodic setting. Ishii in [20] considered the homogenization of Hamilton–Jacobi equa
almost periodic settings. There are not, however, many results for the homogenization of degenerate sec
pde in either setting except of the work of Arisawa and Lions [2], which, however, does not cover the result
paper at hand.

Recently, there has been a resurgence of interest in the homogenization of first- and second-order pd
dom stationary ergodic media. This is a very general setting lacking the compactness properties used ex
in various places in the study of the periodic/almost periodic homogenization. To overcome this difficult
necessary to employ the ergodic theorem in various places. The literature in the random setting is far more
Papanicolaou and Varadhan [33,34] and Kozlov [24] (see also Jikov et al. [22]) were the first to consider
mogenization of linear uniformly elliptic operators. Their results were extended to particular quasi-linear pr
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by Bensoussan and Blakenship [4] and Castel [11]. We also refer to Bourgeat and Piatniski [6] for som
recent results in the linear case as well as more references. The first nonlinear result in a variational se
obtained by Dal Maso and Modica [14].

The homogenization of fully nonlinear, convex, first-order (Hamilton–Jacobi) equations in random en
ments was considered first by one of the authors [39] (see also [35]). In a subsequent work [27], the
showed that in this case, in general, there are no correctors, i.e., solutions, of the associated macrosco
lem. The homogenization of fully nonlinear, uniformly elliptic equations was studied by Caffarelli, Souganid
Wang in [10]. In a forthcoming paper [9], Caffarelli and the authors show that correctors exist for convex
nonlinear, uniformly elliptic equations. Recently the authors studied, in [26], always in the stationary ergo
ting, the homogenization of (1.7), when the matrixA is independent ofp andH is convex. Both assumptions a
necessary for the techniques of [26], which uses the sub-additive ergodic theorem, the stochastic control
tion of the problem, hence the assumptions of the convexity ofH and the independence ofA on p, together with
a number of new Lipschitz estimates similar to the one’s in this paper, which do not depend on these res
More recently, Kosynga et al. [23] considered, using different methods, a problem similar to the one of [26
the stronger assumptions of uniform ellipticity onA and strict convexity ofH . We are not aware, however, of a
results for (1.1) in the random setting even for uniformly ellipticF .

Going back to the periodic/almost periodic setting we remark that the case at hand, i.e., degenerat
equations, like (1.1), (1.7) and (1.17), was not covered by any previous work and in any setting. The closes
are the ones of Section 8 of [18], which, however, assume thatF is uniformly elliptic and, hence, exclude th
important case of geometric equations. The techniques of [18] rely heavily on this assumption and, hence
be relaxed without new estimates. Although it is possible to obtain in some cases bounds for approximate e
the estimates depend strongly on and degenerate at the limit of the approximations.

3. Sketch of the proofs

We begin with Theorem 1.3 and concentrate first on the periodic setting. Using appropriate (perturb
functions (see [29,17,18,30], etc.), it follows that it suffices to solve the associated cell problem, i.e., to
each(p, r, x) ∈ R

N × R × R
N , a unique constant�F(p, r, x) such that the equation

F(D2v,Dv + p, r, x, y) = �F(p, r, x) in R
N (3.1)

admits a solutionv ∈ BUC(RN). This is the object of the next result.

Proposition 3.1. Assume (1.2), (1.3) (withF periodic), (1.22), (1.23)and (1.24). For each (p, r, x) ∈ R
N ×R×R

N ,
there exists a unique constant �F(p, r, x) such that (3.1)has a solution v ∈ BUC(RN).

The uniqueness of the constant is a consequence of the theory of viscosity solution (see, for examp
once it is established that there exists a solutionv ∈ BUC(RN) of (3.1). Note that, sinceF is periodic, (3.1) is
actually solved only in the periodic domain, hence the name cell problem. In the almost periodic as well as
stationary ergodic settings, (3.1) has to be considered in the whole space. We believe that in such sett
more appropriate to call (3.1) the macroscopic problem. In this case, to guarantee the uniqueness of�F(p, r, x), it
suffices to find solutionsv ∈ UC(RN) with strictly sub-linear growth at infinity—see [27,26] and [39]. Below
concentrate on the issue of the existence of solutionsv ∈ BUC(RN) in the periodic setting.

To simplify the presentation, in what follows, we assume that

F ∈ C2(SN × R
N × R × R

N × R
N) and vλ ∈ C2(RN). (3.2)

Otherwise we either approximate and regularize the equation and obtain a priori bounds independe
regularization or alternatively we use the weak Bernstein method. (See the discussion before the stat
Theorem 1.3.) Moreover, sincep, r andx are fixed, we drop next the explicit dependence on them.
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We begin with the approximate problem

λvλ + F(D2vλ,Dvλ, y) = 0 in R
N, (3.3)

which, in view of the theory of viscosity solutions (see [13]), admits a unique periodic continuous solutiovλ ∈
BUC(RN) satisfying the bound

sup
λ>0

‖λvλ‖ < ∞. (3.4)

It is worth remarking that (3.3) is an approximation which is closely related to homogenization. Inde
vλ = λvλ(λ

−1y), then

vλ + F(λD2vλ,Dvλ,λ−1y) = 0,

and the limiting behavior of thevλ’s, asλ → 0, is equivalent to the limiting behavior, again asλ → 0 , of the λvλ’s
in balls of radius O(λ−1).

Consider next the function̂vλ = vλ − vλ(0), which solves the equation

λv̂λ + F(D2v̂λ,Dv̂λ, y) = −λvλ(0) in R
N. (3.5)

Sinceλvλ(0) is bounded, the claim will follow, if we show that along subsequencesλn → 0, v̂λn → v̂ in C(RN)

for somev̂ ∈ BUC(RN). This in turn follows, if it is shown that the family(vλ)λ>0 is equi-continuous. Notice tha
the equi-continuity of thevλ’s also establishes, in view of the assumption of periodicity, the bound on thev̂λ’s and
v̂. In the uniformly elliptic case this is, of course, provided by the regularity theory of such equations (see
and Caffarelli [7]), and the bound depends on the ellipticity constants. This is the reason that the resul
note does not follow by regularizing (1.1) to a uniformly elliptic equation and using the stability properties
viscosity solutions. The bound deteriorates as the ellipticity constant goes to zero.

It is therefore necessary to obtain a modulus of continuity directly for the degenerate case. This is the o
the next lemma, which yields a uniform Lipschitz bound.

Lemma 3.2. Assume (1.2), (1.22)and (1.24). There exists a constant L > 0 such that, for all x, y ∈ R
N ,∣∣vλ(x) − vλ(y)

∣∣ � L|x − y|. (3.6)

Note that we do not assume (1.3), since the periodic/almost periodic structure ofF plays absolutely no role in
the proof. Before we present the proof of the lemma, we remark that, of course, thevλ’s can be uniformly equi-
continuous without being uniformly Lipschitz continuous. We refer to [28] for a number of explicit example
discussed in the Introduction we do not know whether (1.24) is necessary for the homogenization. It is
however, in [28] that (1.24) is necessary and sufficient for the above lemma to hold.

Proof of Lemma 3.2. 1. To simplify the presentation below we writev instead ofvλ and assume that we have t
regularity asserted in (3.2).

2. Letw = |Dv|2. A straightforward differentiation yields,

2λw + tr(DXFD2w) − 2(trDXFD2vD2v) + 2DyF · Dv + DpF · Dw = 0,

and, hence, at a maximum point ofw,

λw − trDXFD2vD2v + DyF · Dv � 0.

Moreover (3.3) and (3.4) yield thatF � R = ‖λvλ‖.
3. It follows from (1.24), that there exists a constantL such that the claim holds.�



674 P.-L. Lions, P.E. Souganidis / Ann. I. H. Poincaré – AN 22 (2005) 667–677

to find

e at hand,
Next we discuss the extension to the almost periodic setting. It turns out that, in this case, it suffices
“approximate correctors”, a fact which is equivalent to showing that, for each(p, r, x) ∈ R

N × R × R
N , asλ → 0,

λvλ → − �H(p, r, x) or λv̂λ → 0 uniformly onR
N .

In our context this can be shown by a straightforward modification of the arguments of [20]. We have

Lemma 3.3. Assume (1.2), (1.3), (1.22)and (1.24)and let v̂λ be the solution of (3.3). Then, as λ → 0, λv̂λ → 0,
uniformly in R

N .

Proof. 1. We argue by contradiction and we assume, for definiteness, that there existθ > 0, λj → 0 andyj ∈ R
N

such that, asj → ∞,

λj v̂λj
(yj ) � 4θ and |yj | → ∞. (3.7)

2. The functions̃vj (y) = v̂λj
(y + yj − yk) satisfy the equation

0= λj ṽj + F(D2ṽj , p + Dṽj , y + yj − yk) + λjvj (0).

Moreover, Lemma 3.2 yields a, uniform inλ, Lipschitz bound with constantL for the v̂λ’s and, hence,̃vj ’s.
3. The proof of the comparison principle of viscosity solutions (see [13]) yields, for eachα > 0, the estimate

λj ṽj � λj v̂λj
+ ρ(Lα−1) + L

α,L
F,k,j in R

N,

whereρ is as in (1.22) and

L
α,L
F,k,j = sup

{∣∣F(Q,p,y + yk) − F(Q,p,y + yj )
∣∣: ‖Q‖ � 3α, |p| � L, y ∈ R

N
}
.

Choose nextα sufficiently large so that

ρ(Lα−1) � θ

and, sinceF satisfies (1.3) withR = max(3α,L) >0, choose sufficiently largek andj so that

L
α,L
F,k,j � θ.

It follows that

λj ṽj � λj v̂λj
+ 2θ in R

N.

4. Evaluating the above inequality aty = yk and using the uniform inλ Lipschitz continuity ofv̂λ with constant
L lead to

λj v̂λj
(yj ) � λj v̂λj

(yk) + θ � λjL|yk| + 2θ,

which gives a contradiction asλj → 0. �
We continue with the

Proof of Theorem 1.1. 1. It suffices to show that

F(X,p, r, x, y) = − trA(p,x, y)X + H(p, r, x, y)

satisfies the assumptions of Theorem 1.1. Indeed (1.2), (1.3), (1.22) and (1.23) are immediate. In the cas
the quantity in (1.24) is

− tr(DXFXX) + DyF · p = tr(AXX) − tr(DyAX) · p + DyH · p.

3. If

− tr(DXFXX) + DyF · p � 0, (3.8)
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resting
y since in

is

el set

rward
then

trAXX + DyH · p � tr(DyAX) · p = tr
(
(DyΣ)ΣTX

) · p + tr
(
Σ(DyΣ

T)X
) · p = 2 tr

(
(DyΣ)ΣTX

) · p,

and, in view of (1.16),

tr(AXX) + DyH · p � 2‖DyΣ‖(trΣΣTXX)1/2|p| = 2‖DyΣ‖(trAXX)1/2|p|.
Hence, for allθ ∈ (0,1),

tr(AXX) + DyH · p � θ tr(AXX) + ‖DyΣ‖2|p|2. (3.9)

If F � R, then

H − R � tr(AX),

and, in view of (1.16),

(H − R)+ � (trAXX)1/2‖Σ‖,
Hence, for allθ ∈ (0,1),

θ(1− θ)‖Σ‖−2(H − R)2+ + θDyH · p � θ−1‖DyΣ‖2|p|2. (3.10)

Finally using in above estimate the particularθ for which (1.13) holds, we see that there exists someL > 0 such
that

|Dv| � L. �
The growth condition (1.13) is, of course, sufficient for the arguments we are using. It is, however, an inte

question to see whether they are, in general, actually necessary for the homogenization to hold, especiall
the case of the front propagation it yields (1.19).

We remark, for example, that forN = 1, (1.13) is not necessary. Indeed consider the equation

−a(y, v′)v′′ + b(y)|v′| = 0 in R

with b > 0. It is immediate that infb > 0 yields a Lipschitz bound onv. It is shown, however, in [28] that (1.13)
indeed necessary to have uniform Lipschitz estimates forN > 1.

We continue with the

Proof of Proposition 1.2. 1. We refer to [38,39] for a discussion about how the homogenization of the lev
equations yields the asserted convergence of the interfaces.

2. For the homogenization it suffices to check that (1.12) and (1.13) hold. This follows from a straightfo
computation.

Indeed in this setting, forp ∈ R
N \ {0}, we have{

A(p) = δ(I − p̂ ⊗ p̂), Σ(p) = δ1/2(I − p̂ ⊗ p̂), and
H(p,y) = a(y)|p|v(p̂), DyH = Dya|p|v(p̂) and ‖Σ‖2 = δ(N − 1).

In what follows, to simplify the presentation, we argue as ifA,σ,a andv were smooth.
3. With the above particular form ofA, (3.8) reads

δ tr(AXX) + Dya · p|p|v � 0.

Repeating the argument of the proof of Theorem 1.1, we find that there existsR > 0 such that, for allθ ∈ (0,1),(
av|p| − R

)2
+ + ‖Σ‖2Dya · p|p|v � 0. (3.11)

Then (1.20) yields the desired bound.�
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