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Abstract

The classical Black—Scholes hedging strategy of a European contingent claim may require rapid changes in the replicating
portfolio. One approach to avoid this is to impaseriori bounds on the variations of the allowed trading strategies, called
gamma constraints. Under such a restriction, it is in general no longer possible to replicate a European contingent claim, and
super-replication is a commonly used alternative. This paper characterizes the infimum of the initial capitals that allow an
investor to super-replicate the contingent claim by carefully choosing an investment strategy obeying a gamma constraint.
This infimum is shown to be the unique viscosity solution of a nonstandard partial differential equation. Due to the lower
gamma bound, the “intuitive” partial differential equation is not parabolic and the actual equation satisfied by the infimum is the
parabolic majorant of this equation. The derivation of the viscosity property is based on new results on the small time behavior
of double stochastic integrals.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

La stratégie de couverture classique d’'une option européenne, dictée par le modele de Black et Scholes, peut conduire a
des rebalancements rapides du portefeuille répliquant. Afin d’éviter de telles situations indésirables, nous introduisons des
contraintes spécifiques sur le portefeuille, appelEmsraintes gamma. Il n'est alors pas possible en général de répliquer
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parfaitement I'option européene. Par conséquent, la surréplication est alors une alternative fréquemment utilisée. Dans ce papie
on caractérise l'infimum des capitaux initiaux qui permet a un investiseur de surrépliquer I'actif contingent en choisissant
soigneusement une stratégie de portefeuile satisfaisant a une contrainte gamma. Nous montrons que cet infimum est I'uniqu
solution de viscosité d’une équation aux dérivées partielles non standard. A cause de la borne inférieure sur la contrainte gamme
I'équation aux dérivées partielles «intuitive » n'est pas parabolique, et I'équation effectivemet satisfaite par I'infimum est le
mojorant parabolique de I'équation «intuitive ». L'obtention de la propriété de viscosité s’appuie sur des résultats nouveaux
portant sur des intégrales stochastiques doubles.

© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

The classical Black—Scholes theory provides a mechanism for pricing and hedging contingent claims depending
on a risky asset. In this framework it is assumed that the price of the risky asset follows a geometric Brownian
motion

dS()=S®)[pdr+odZ()]

for a Brownian motionZ and parametera > 0, o > 0, and that apart from the risky asset, money can also be
invested in a cash account, where it grows with a constant continuously compounded interest rate, which, without
loss of generality, can be assumed to be zero. Then, investments in the cash account stay constant, and the price
the risky asset can be written as

dS(r) = S(t)o dW (1), (1.1)

where W is a Brownian motion under a probability measure that is equivalent to the original one. For a finite
time horizonT > 0, € [0, T] ands € (0, c0), we denote by{S; (r), t < r < T} the solution to (1.1) with initial
conditionS(¢) = 5. Consider a European contingent claim with tim@ayoff ¢ (S; s (T)) for a measurable function
g:(0,00) — [0, 00) that is dominated by a polynomial. The Black—Scholes price

vB3(t, 5) = E[g(S:.5(1))]

of the contingent claim is a smooth function of time [0, T') and the price of the underlying risky asset (0, 00).

The Black—Scholes hedging portfolio consists;_B?(t, s) many shares of the risky asset and the amount of money
vBS(z, s) — UE’S([, s)s in the cash account. The value of this portfolio at maturity is equal to the payoff of the
contingent claim, that is, the Black—Scholes hedging strategy replicates the contingent claim.

Several interesting constraints and deviations from the Black—Scholes model have been studied in the literature
for example, short-selling constraints or stochastic volatility; we refer to [3,6,7,9-11,18] and the references therein.
Under such constraints or imperfections, it is in general no longer possible to replicate a given contingent claim.
Usually, one then tries to find a hedging portfolio that approximates the contingent claim in some sense or super-
replicates it.

In this paper we study the super-replication problem of a European contingent claim under gamma constraints.
We will allow the contingent claim to depend on several risky assets whose prices can have stochastic volatility.
But to simplify the notation in this introduction, we here consider only one risky asset with price dynamics given
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by (1.1). In the Black—Scholes framewaork, the contingent claim’s gamma is giveifby, s). It gives the variation
of v?s(t, s) due to the variation of the underlying risky asset. Note that by 1td’s lemma, ddr, 7],

r r

U?S(r, St.s (r)) = vf’s(t, s) +/ (u Sr Y(u)) du +/ (u St y(u)) ds: s (u), (1.2)
t t

where, is the Dynkin operator of; ; given by

Lo(t,s) a(r)+1“82 (t,5)
,8) = — , S —0° s —5 ,8).
¢ Bt(p 2 Bsz(p

Motivated by (1.2), we consider self-financing trading strategies such that the process describing the number of
shares of the risky asset held at time [z, T'] can be written as
r

Y(r)=a(r)+/7/(u)d5t,s(u) 1.3

t

for a progressively measurable finite variation proecessid a progressively measurable processuch that the
pair (a, y) satisfies certain boundedness conditions to be specified in Subsection 2.2. We then denote the associatec

trading strategy of the form (1.3) tiy(“ ) and the corresponding wealth process with initial capitalR by
X0 =x 4 [ 15 wdsaw. reinTl
t

Now, a gamma constraint can be expressed as a restriction on the pyodasthis paper we consider gamma
constraints of the form

L <S2,(ry(ry<r*, forallrelr, T, (1.4)

where—oco < Iy < I'* < oo are two fixed constants. Byl; ; we denote the set of all paits, y) that satisfy the
above conditions for the initial conditio$Y¢) = s and some other technical conditions described in Subsection 2.2.
In view of the approximation results of Leventhal and Skorokhod [13] and Bank and Baum [1], these technical
conditions are very important. A detailed discussion is given in Remark 3.11 below.

The infimum of all initial capitals that allow to super-replicate the contingent claim is given by

v(t, s) :=inf{x: X,(’“s’f;,)(T) > g(S1.5(T)) for some(a, y) € A 4}, (1.5)

where the inequality is understood in the almost sure sense. The purpose of this paper is to characterize the func-
tion v as the unique viscosity solution of a partial differential equation together with a terminal condition. The
equation will be derived from a dynamic programming principle (DPP). Therefore, we will refer to it as the dy-
namic programming equation (DPE) for

Note that ifg is twice continuously differentiable and satisfies the gamma constraint

I, <s%g(s) < T foralls € (0,00), (1.6)

then also,

520851, 5) =5 —E[ (sexp{o[W(T)— W] - %GZ[T—I]}>:|

= E[(S:.5(T)) 55 (S:.5(T))] € [T, T¥]
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for all s € (0,00). Hence, it can be seen from (1.2) that the Black—Scholes strategy satisfies the gamma constraint
and thereforeyBS = v. For functionsg that do not necessarily satisfy the gamma constraint (1.6), the DPE for
derived in [15] for the one-dimensional case with= —oc is

. 1
mln{—v, — Eazszvss; r*— szvss} =0. a.7)

(In fact, in [15], the gamma constraint,, < I'* is considered, which leads to a DPE slightly different from (1.7).
However, if the arguments of [15] are adapted to the gamma constraint (1.4), one gets (1.7).) Eq. (1.7) agrees with
the intuition that the solution of the problem consists in forgetting about the constraint as long as it is satisfied, and
a free boundary behavior whenever the constraint binds.

The same kind of reasoning, leads us to guess that the DPE associated to (1.5). (withoo) is

. 1
F(s, v, Uss) = mm{_vr - Eozszvss; I* — 55 52055 — F*} =0. (1.8)

However, one immediately observes thét, v;, vss) iS not monotone ing,. Hence, we do not expect the above
equation to be the correct one, and indeed, it is not.
It follows from Theorem 3.6 below that the functioris a viscosity solution of the equation

f(s, v (1, 5), vgs (2, 5)) =0,

where F(s, p, A) is the smallest functiog > F which is decreasing in the variable. We give the following
example to illustrate this point:

Example 1.1.Consider the problem in one dimension wittf = 400, I, =0, 0 =1, and withg(s) = s A 1 for
s € (0,00). Then,

. 1
F(s, v, v55) = mln{ —vy — > szvss; szvss}. (1.9

Notice that any function satisfying F (s, v, vss) = 0 in the viscosity sense also satisfigs > 0 in the viscosity
sense and is therefore convex. However, we claim that the minimal super-replicatingrctiss example is equal
to g. In particular, it is not convex. Indeed, consider the following strategy:<if1, then use initial capitat = s
and buy and hold one share of the risky asset. The resulting terminal wedlth=isS > g(S7). If s > 1, then
with x = 1 buy no shares of the risky asset and hold the money in the cash account. This leads to a terminal wealth
of X7 = 1> ¢g(S7). Hence, this strategy with = g(s) is super-replicating and therefore(s, r) < g(s) for all
(t,5) €[0,T) x (0,00).

The opposite inequality and consequently g follows from Theorem 3.6 and the fact thatis a viscosity
solution of the equatiorf(s, v, vss) = 0. Notice thatv = g is not a viscosity supersolution efv,; = 0. So, we
see in this example thatneed not be a viscosity solution of Eq. (1.9). Alsas in general not differentiable, and
vss does not necessarily satisfy the gamma constraint (1.4) in the viscosity sense.

In the literature, super-replication problems under constraints are usually approached by duality. Then, the dual
formulation turns out to be in the standard form, and it is straightforward to arrive at the associated DPE. However,
the usual techniques from this literature do not apply in our setup, and we are currently not able to derive the correct
DPE for the problem (1.5) via convex duality techniques. In this paper, we continue with the method developed by
Soner and Touzi in [15], and later in [16] and [17], in order to derive the DPE for (1.5). The main ingredients in this
derivation are the two partial dynamic programming principles presented in Subsections 4.2 and 5.2 and a precise
analysis of the small time behavior of double stochastic integrals. This analysis is carried out in the accompanying
paper [4]. The results from [4] that are needed in this paper are reported in the Appendix.
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Notation. Equalities and inequalities between random variables are understood to hold in the almost sure sense.
By M¢ we denote the set of all x d matrices with real coefficientst” is the transpose of a matrik € M? and

Tr[A] its trace. The se$? is the collection of all symmetric matrices #ft?. The subset of positive semi-definite
symmetric matrices will be denoted I8if.. Forx € RY, we set

| x| ::,/xf+--~+x3
and forA e M?,

|Al:= sup Ax.
xeR4, |x|<1

For a vector € R, diad x] is thed x d-diagonal matrix with diagonal elemen@, e, Xg.
For a functionv on a subse of R”, we denote by* andv, the functions orQ given by

v*(x) = lim sup  v(y), xeQ,
™0 yeQ, [y—x|<r

and

V4 (x) = lim inf vy, xe€0,
=10 o Mg 1O ¥E0

respectivelyv* is the smallest upper semicontinuous function majoriziand is called the upper semicontinuous
envelope ob. v, is the largest lower semicontinuous function minorizingnd is called the lower semicontinuous
envelope ofv.

2. Problem formulation
In this section, we describe the model and the admissible trading strategies.
2.1. Model

We consider a financial market which consists of a cash accound aisly assets. Since we are interested in
almost sure super-replication, it is enough to specify the price dynamics under a risk neutral probability iReasure
Let T > 0 be a finite time horizon an¥ (t), 0 <t < T} ad-dimensional Brownian motion on a complete prob-
ability space(£2, F, P). By FW we denote the smallest filtratidd®" (), 0 <t < T} that contains the filtration
generated bYW (r), 0 <t < T} and satisfies the usual conditions. We take the cash account as numéraire and
assume that the prices of the risky assets evolve according to the stochastic differential equation

dS(r)=diag S(r)]o (S(r)) dW (r), (2.1)

whereo is a Lipschitz-continuous, bounded{¢-valued mapping defined o, co)? such that (s) is invertible
for all s € (0, 00)?. By Exercise 1X.2.10 of [14], the SDE (2.1) has for all initial conditions

St)=s, (t,5)€l[0,T]x (0,00,
a unique strong solution, which we denote$y . Note that every componeff ; ; of S; ; satisfies

d r

. 1/
St5.i(r) = si exp(Z[/ 0 (S, (u)) AW (u) — E/Oif-(Sz,s(u))du])

Jj=1L% t
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From this and Doob’'d.?-inequality (see e.g. Theorem 11.1.7 in [14]), it can be deducedShats a martingale
that satisfies

E[ sup |S,,S(r)|p] <oo, forallp>0. (2.2)
t<r<T

Throughout this paper, we fix a parameger 0, and for ari*V -progressively measurable procégs(r), t <
r < T} taking values irR, RY or M?, we define
H
Sup |H ()]

B,00
IH|P = —_—
r<r<r L+ 185(r)|P

Lo
2.2. Trading strategies and gamma constraints

Consider an economic agent that starts at timeth initial capital x and holdsY’ (r) shares of thé-th risky
asset at time < [r, T]. Assume that the stochastic integféIY(u)T ds; s(u), r € [t, T], exists and trading is done
in a self-financing way. Then, the evolution of the economic agent’s wealth is given by

X(r):x—l—/Y(u)TdS,,S(u), relt, Tl (2.3)
t

To introduce constraints on the variations of investment stratégies require them to be of the form

N—1 r r
Y = 3 ¥ Ly <rennyn + f r(ue) du+ f y () dS),, ), (2.4)
n=0 t t

where||Y||f’,°° <o00;t=19< 11 < --- Is an increasing sequence[of T']-valuedF " -stopping times such that the
random variableV := inf{n € N: 7, = T} is boundedy” is anR¢-valued,F" (z,)-measurable random variable
satisfyingy”" 1(;, 1) = 0; « is anR" -progressively measurablg¢-valued process such th|at||ﬁ;°° < 00; andy
is anS“-valued stochastic process such thnaﬂfffo < oo and theij component of/ is of the form
N—=1 r r
Vi) = il <reny) + / v () du + / v dW (), (2.5)
n=0 i i
wherez?j is anF " (r,)-measurable random variable satisfyhﬁpl{fn:n =0; yl% is anR" -progressively measur-
able,R-valued process such th|a;t/l.’1j ||£;°° < 00; andyl% is anF" -progressively measurable process taking values
in R¢ such that]y?, 11 < co.
Under these assumptions, a trading strategy is determined by the choice of the ceat(ot,, y"),>0, @, ¥).

The set of admissible controld, ; is the collection of all such controls which in addition obey to the following
gamma constraint

diagS;.s(r) ]y (r)diad S, s(r)] e K forallr <r <T, (2.6)
whereKk is a closed, convex, strict subset$f such that
Oecint(K). 2.7

The boundedness conditions imposed on the stratégi® crucial for the proof of the viscosity supersolution
property in Section 5. Without these conditions our main results, Theorems 3.6 and 3.7 do not hold true. More
details are given in Remark 3.11.
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By
{(X;},s,x’ Ytu,s)(”)» I<r< T}

we denote the process defined by the dynamics (2.3) and (2.4), the initial condjtigriz) = x, and the control
v € A ;. It can easily be deduced from (2.2) and the special form of our controlXthat is a square integrable

martingale for allz, s, x) € [0, T] x (0,00)? x R andv € A;.s. In particular,
x=E[X], (T)]. (2.8)

1,8,

2.3. Value function

We now are in a position to define the stochastic control problem of interest. Consider a European contingent
claim with time T payoff ¢g(S; s(T)) for some lower semicontinuous functigsn (0, c0) — [0,00). The value
functionv of the super-replication problem gfunder the gamma constraint (2.6) is given by

v(t,s) :=inf{x e R: X}

t,8,X

(T) = g(S,s(T)) for somev € A, ;},

where we set infl := oo.

Remark 2.1.For (z, 5) € [0, T) x (0,00)¢, letx € R andv € A, ; such that
X! (T) = g(Si.s(T)).

By (2.8),
x=E[X} (D] = E[g(S1,,(D)]-

This shows that
v(t,s) > E[g(S:5(1))] =0 forall(t,s)€[0,T) x (0,00)".

3. Main results
3.1. Operators

We start by introducing the operators that will be used in our analysis. The Dynkin operator associated to the
processS is given by

Lo(t,s):=—L(s, ¢ (t,5), D*p(t,s))
whereD? denotes the second derivative with respect tasthariables and. is the parabolic operator
1
L(s,p,A):=—p— > Tr[o (s)" diagls]A diagis]o (s)]. (3.1)
To express the constraint (2.6) as an inequality, we defind foxS? the signed distance of to the complement
of K in 8¢
inf{|[A— B]: BeS‘\ K}, ifAek,

HA = —inf{lA-B|: BeK}, ifAeSI\K. (3:2)

Sincek is a non-empty, strict subset 8f, —oo < H(A) < oo for all A € §¢. Itis clear thatd is in K if and only
if H(A) >0, andA is in the interior ofK if and only if H(A) > 0. Furthermore, it follows from the convexity
of K thatH is concave.
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With this notation thel-dimensional analog of the operator in (1.8) can be written as
F(s,p, A) = min{L(s, p,A), H(diaQS]A diag[s])}. (3.3)
Note thatF (s, p, A) is concave inp, A) because the mappingg, A) — L(s, p, A) and(p, A) — H(A) are
s0. On the other hand; (s, p, A) is in general not monotone id. Simply consider the following example:
Example 3.1.Let 0 I'* < oo and—oo < T < 0 be two symmetric matrices such that all eigenvaluesof- I,
are strictly positive. Then,
K=l T":={Aec8": <AL}

is a closed convex subset &f that contains 0 in its interiofl, = —oo (resp.I™ = oo) means that there is no
lower (resp. upper) constraint on the control proges d =1 and—oo < I'y < I'* < 0o, then

HA) =min{l™ — A, A— T},

andF (s, p, A) is not monotone im.
3.2. Parabolic envelope

For any functionp : 8¢ — R, we define the functiop : S¢ — (—oco, oc] as follows:
$(A) := sup ¢(A+ B).
BeSi

Lemma 3.2.¢ is the smallest decreasing majorantgaf

Proof. 1. The inequalityﬁ > ¢ follows from the fact that @ ij.
2. Now, letA > A’ be two ordered matrices . Then,S¢ C 8¢ + (A’ — A), and therefore,

p(A)=supp(A+ (A —A)+B)=  sup  ¢(A+B)> sup ¢(A+ B)=p(A).
BeSY BeS¢+(A'—A) BeSY

3. Let¢ be a decreasing mapping fraff to (—oo, co] such thatp > ¢. Then, for allA € S? and B € S¢, we
haved(4) > ¢(A + B) > ¢(A + B). Hence (A) > supy ¢ ¢ (A + B) =¢(A). O

For a functiong : (0,00)? x R x 8¢ — R, we definep by

d(s, p, A):= sup ¢(s, p, A+ B).
BeSi

Lemma 3.3.Lets € (0,00)?. If ¢ (s, -, -) is concave, then so iﬁ(s, ).

Proof. First assume that there exists a p@ii, A1) € R x S¢ such thatf[s(s, p1, A1) = oco. For every(p, A) €
R x S?, there exists @p», A2) € R x S such that

1 1
(p, A) = 5(p1, A1) + 5(p2, A2).
2 2
By the definition of$ and the concavity af (s, -, -),

N 1 1 1
¢(ss p, A) 2 ¢<Sa D A + EB> 2 §¢(S7 P1, Al+ B) + §¢(S7 P2, AZ)
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for all B € 8¢, which implies that (s, p, A) = co. Henceg(s, p, A) = oo for all (p, A) € R x S¢. In particular,
é(s, -, -) is concave.

If (s, p, A) < ocoforall (p, A) € R xS?, consider two pairép1, A1) and(p2, A2) inR x84, and lets € (0, 1).
For alle > 0, there existB] andB; in Si such that

d(pi, A) < d(pi, Ai + B) +e fori=1,2.
Then,
Ap (s, p1. A1) + (L — W)g(s, p2, A2) <A (s, p1. A1+ BS) + (1— W) (s, p2. A2+ BS) +¢
<P(s,Apr+ (A —A)p2, AM(A1+ Bf) + (1 — M) (A2+ B5)) + ¢
<(s.ap1+ (1 —)p2. AA1+ (1— M Ag) +e,
and the required result is obtained by sendinig zero. O
SinceF (s, p, A) < L(s, p, A) andL(s, p, A) is decreasing im, it follows from Lemma 3.2 thaf (s, p,A) <
L(s, p, A) and F is the smallest function above that is monotone im. Therefore, we call it thgparabolic
envelopeof F. By Lemma 3.3 F (s, -, -) inherits the concavity fron¥ (s, -, -).
Lemma 3.4.The mapping
f:(O,oo)d xRx8T >R
is continuous.

Proof. 1.Lower semicontinuity: Letso, po, Ao) € (0,00)? x R x S¢ ande > 0. By definition of F and continuity
of F, there exists &g € Si and a neighborhoot of (so, po, Ag) such that for alls, p, A) e U,

~ & ~
F(So,po,Ao)—8<F(So,po,A0+Bo)—E<F(S,p,A+Bo)<F(S,p,A),

which proves thaf is lower semicontinuous.
2. Upper semicontinuity: Let(sy, pr, Ar)r>1 be a sequence iM0,00)? x R x 8¢ converging to a point
(50, po, Ag) € (0,00)¥ x R x S¢. There exists for alk > 1, aB; € S¢ such that
~ 1 1
F(sk, px, Ax + Bi) 2 F (sk, pr, Ax) — % 2 F(sk, pk, Ax) — T

SinceF (s, px, Ax) — 1/ k converges tdF (s, po, Ao) ando (so) is assumed to be invertible, it follows from the de-
finition of F (3.3) and the form of. (3.1) that the sequend®;)«>1 is bounded. Hence, there exists a subsequence
By, that converges to &y € S¢. Then,

imsupF (sx,. pi;. Ax,) < iMSUPF (s, px,. Ax, + Br;) = F(s0, po. Ao + Bo) < F (s0. po, Ao).
k—o0

j—o0o

This shows thafF is upper semicontinuous.
3.3. Equation

Earlier results indicate that the value functiois a viscosity solution of the equation
f(s, u(t,s), D?v(t,s)) =0 for(t,s) €[0, T) x (0,00)?, (3.4)

whereF is the parabolic majorant of the functidgndefined in (3.3).
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This equation has to be complemented with an appropriate terminal condition. In the next subsections, we will
describe the terminal behavior and state the main results.

Note that the procesS never reaches the lateral boundary. For this reason, we do not need to specify lateral
boundary conditions.

3.4. Terminal condition

It has already been observed in the literature that constraints on the hedging strategy can lead to the situatior
that the limit

lim v, s)
t' ST, s'—s

exists but does not coincide with the functignWe refer to [3] and [7] for the case of portfolio constraints and
to [15] for the case of an upper gamma bound. The reason for this phenomenon is the following: The gamma
constraint induces restrictions on the functign, s) on [0, T') x (0, c0)“. If the functiong does not fulfill corre-
sponding restrictions, the value functiorwill converge to the minimal functiog that is above; and satisfies the
restrictions.

Since the functior from (3.2) describing the gamma constraint is in general not decreasing, we will have to
work with the function

H(A):= sup H(A+ B), Aed&’.
BeSJdr

As in Lemma 3.3, it can be shown th&tinherits the concavity off. Hence, it is eitheR-valued and continuous
or identically equal tao.
By G(g) we denote the set of all viscosity supersolutions of the equation

min{ f — g; H(diags]D?f (s)diagl])} =0, se (0,00)", (3.5)
and we define

o(s):= inf .
g(s) felrgl(g)f(S)

It can be made sure thatis finite by making the assumption that there exists a finite constasuch that
g(s) <G(s):=c*[1+s1+s524---+s4], forallse (0,00). (3.6)
Since by assumption (2.7),0K, it is clear thaiG € G(g). Therefore,
g also satisfies (3.6). (3.7)

Also, it follows from Perron’s method (see Section 4 in [5]) tAas a viscosity solution of (3.5). Moreover, for all
t € [0, T), the investment proces&r) =y := (c*, ..., c*), r € [t, T], is admissible, and the corresponding value
process starting atis given by

X/ ox(T)=x+ Y (S s(T) —s) =x + G(St,s(T)) —G(s).
Hence, forx = G(s), X/ ,(T) =G (S 5(T)) = g(S:.s(T)), and thereforey(z, s) < G(s) for all s € (0, 00)4.

1,8,x
To prove our main results we will need that one of the two following conditions is fulfilled:

g is continuous and bounded (3.8)
or

g is lower semicontinuous, satisfies (3.6) akid= [ I',, diagy*] ], (3.9
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where[ Iy, diagy*]] is a bounded interval of symmetric matrices as in Example 3.1, containing the zero matrix in
its interior. We require the upper bound in (3.9) to be a diagonal matrix because of the following: The upper bound
ony induces

diads1D?§(s) diagis] < I°*,
in the viscosity sense, which implies
D?3(s) < diags]~tr*diags]*

in the viscosity sense. In the proof of Proposition 6.4 we will n€&do be of such a form that the matrix-valued
function diags]~17"* diag[s] 1 is the Hessian of a smooth function. This is the case if and orly ifs equalto a
diagonal matrix diag/*], in which case the smooth function can be taken as

d
U(s) :=— Zy/* logs;.
j=1

Lemma 3.5.

(a) If g satisfieq3.8), theng is also bounded.
(b) Assumg3.9). Then

8(s) = hconds) + U (s),
wherehoncis the concave envelope of

h(s) =g(s) = U(s).

Moreover,g is locally Lipschitz continuous and it is twice continuously differentiable for Lebesgue-almost every
s € (0,00)?. In particular, it satisfieg3.5) Lebesgue-almost everywhere, and

diags1D?8(s) diagls] < diagy*] for Lebesgue-almost atle (0, 00)?.

Proof. (a) If g satisfies (3.8), then every constant that dominatiesa supersolution of (3.5). Henggis bounded.

(b) Assume that (3.9) holds. Then, get hconc+ U. We claim thatg = g. Indeed, sincéconcis concave, it is
Lebesgue-almost everywhere twice differentiable &% conc < 0. Therefore, dialg] D?g diags] < diagy*]in
the viscosity sense. Also, it is clear thag: g. Hence, by the definition ¢f, it follows thatg > g. Sinceg € G(g),
D?% — diags]~1diagy*]diagls]~1 < 0 in the viscosity sense, implying that— U is concave. Sincé > g, we
haveg — U > h. Therefore, it follows thag — U > hconcand consequently, > g.

To prove the regularity of, observe thahiconc= (s) — U is concave in(0,c0)¢. Therefore, it is locally
Lipschitz and twice differentiable Lebesgue-almost everywhere. The same holds tfué\iqroints of twice dif-
ferentiability, (3.5) holds pointwise. Hence, diapgD2s diags] < diagy *] at points of twice differentiability. &

3.5. Viscosity characterization

The chief result of this paper is the following characterization of the funatidn addition to characterizing
v as the unique viscosity solution of Eq. (3.4), we also describe the exact terminal condition satisfiebh by
many cases, the characterization of the terminal condition is the key to obtain an explicit solution by solving the
Black—Scholes equation with this modified terminal condition.

Theorem 3.6 (Viscosity Property) Assume thaf3.8) or (3.9) holds. Thenyp is a continuous viscosity solution
of (3.4) and there exists a constaatso that

lu(t,s) — g(s)| <€, forall (r,5) €[0,T) x (0, 00)". (3.10)
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Theorem 3.7(Terminal Condition) Assume thaf3.8) or (3.9) holds. Thenp extends to a continuous functién
on [0, 71 x [0, c0)? satisfying the terminal condition

O(T,s)=g(s), forallse(0,00). (3.11)
In particular, g is continuous.
To prove Theorems 3.6 and 3.7 we will introduce a lower semicontinuous functior{0, 7] x [0, c0)¢ and
an upper semicontinuous functidron [0, 7] x [0, c0)¢ such that
v<v<® on[0,T]x (0,00)".

In Section 4 we show thatis a viscosity subsolution of Eq. (3.4) and in Section 5 thigta viscosity supersolution
of (3.4). In Section 6 we show that

u(T,") =8, (T, )< g

and there exists a constafit- 0 such that for allz, s) € [0, T] x (0, 00)?,
v(t,s) =2 g(s)—C and v(t,s)<g(s)+C.

From the comparison result, Proposition 3.9 below, we can then deduaehatwhich implies
V=v=7

and completes the proof of Theorems 3.6 and 3.7.
The following theorem shows thatis the unique solution of Eg. (3.4) in a certain class of functions.

Theorem 3.8(Uniqueness)Assume that eithgf8.8) or (3.9) holds. Letw be a viscosity solution of E¢3.4) that
satisfies the condition8.10)

w*(T,s) < §(s) (3.12)
and

wy (T, 5) > &(s). (3.13)
Thenw =v.

Uniqueness is an immediate consequence of the following comparison result, which will be proved in Section 7.

Proposition 3.9(Comparison)Assume thag satisfieq3.6). Suppose that is an upper semicontinuous viscosity
subsolution 0f3.4) and (3.12) and w is a lower semicontinuous viscosity supersolutior{3fl) and (3.13) If
there exists a constaudt so that

u(t,s)<g@s)+C and w(,s)>g6)—C (3.14)
forall (z,s) € [0, T) x (0,00)4, then
ut,s) <w(,s) forall (r,5)€[0,T)x (0,00)".
Assumption (3.14) is essentially a growth condition. It can be slightly weakened by t@kiodpe a sublinear

function ofs. Here we chose to work with a constant to simplify the presentation. However, without an assumption
of this type, comparison does not hold as illustrated in the example below.
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Example 3.10.Consider Eq. (3.4) in one dimension with =1, I', = —00, o (s) =0 and

g(s) = (s —10gs — 1) 1j1,00)(s).
Note that fors > 1, s2¢” (s) = 1. Henceg = g. Sincel, = —o0, Eq. (3.4) has the form

1
mind —v, — =025 vy 1—s52 v =0, (t,5)€[0,T) x (0,00). (3.15)
2

Let f be the function defined by (r) =1+ (T —r) and set
u(t,s):= g(f(t)s).

(i) First, consider the case= 0. Then, it can easily be checked that both functimasdg are viscosity solutions
of (3.15) and the terminal condition (3.11). Hence, comparison does not hold. Notice that Condition (3.14) is
not satisfied.

(i) For o > 0, the functionu is a viscosity subsolution of (3.15) and (3.11). The Black—Scholes solution

w(t, s) = E[g(S;.5(T)]
solves (3.15) and (3.11). Moreover, cleattyz, s) < s and, fortr < T and sufficiently large, we haves <
u(t, s). This provides another counterexample to comparison.

Remark 3.11.Consider the Black—Scholes prices
vB3(t,5) = E[g(S,.5(1))] and 55, s) = E[§(S,5(T))]

corresponding tog and g, respectively. ObviouslypBS < 9BS, and vBS < 9BS and vBS(z,s) < 0BS(, s) if
Plg(S.5(T)) < §(S;.5(T))] > 0. Note thatBS(T, -) = 2. Also,

L0588, 5) =0,
which implies
F(s, 0850, 5), D?08S(t, 5)) < L(s, 8BS, 5), D?0BS(1,5)) = 0
for all (r,s) € [0, T) x (0,00)?. Hence,sBS is a viscosity subsolution of (3.4) and (3.12). If (3.8) or (3.9) holds,
then it can also be shown that there exists a congtan0 such that
385(t,5) < g(s)+C forall (¢,5) € [0, T) x (0,00)?.
Hence, it follows from Proposition 3.9 that
38S(1,5) <v(t,s) forall (z,s) €[0, T) x (0,00)".

However, if the class of trading strategies is larger tiap, it can happen that < vBS and Theorems 3.6 and 3.7
are no longer valid. For instance, it follows from Lemma A.3 of [13] that if the number of jumpsthe defini-
tion (2.4) is only required to be finite but not bounded, then for eyex\0, ¢(S; s (T)) can be super-replicated with
initial capital v®S(z, s) + ¢ and a strategy of the form (2.4) with= 0 andy = 0. Theorem 4.4 of [1] shows that
if ||a||ff;°° is not required to be finite, then for evesy- 0, g(S; (7)) can be super-replicated with initial capital
vBS(z, 5) + ¢ and a strategy of the form (2.4) without jumps and witk= 0.

4. Viscosity subsolution property

We here prove the subsolution property for a convenient upper semicontinuous majofantlt will follow
from the results in Sections 5, 6 and 7 that v if either (3.8) or (3.9) is satisfied.
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4.1. The function
Forv = ((tu, Y")n>0, @, y) € A 5, we define
IIUIIE,} :_max{||N||Loo IIYIIH ,IIOtII” ’”y“tv ,maXII)/,jllm ,maxll)/,jll

To definev, we consider for every/ > 0, the set

AV = v e At VIPT < M),
and we introduce the associated stochastic control problem

vM(t,s) :=inflx eR: X' (T) > g(S,s(T)) for somev € A }. (4.1)
Clearly, we have

Ars= AE_JOA, ', and therefore, v(t, s) = AilrlfovM(t,s).

The functionv is defined by

v(t,s) = ALnfo(vM)*(t’s)’ (t,5) € [0, T] x [0, 00)%.
Sincew is an infimum of upper semicontinuous functions, it is upper semicontinuous as well, and therefare,
4.2. Partial dynamic programming principle

Lemma 4.1.Letr €[0,T), s € (0,00)¢, x € R and 8 a [, T]-valuedF" -stopping time. LetM1, M> > 0 and
ve AN, such that
©) > vM2(0, S, 50)).

l‘YX

Then there exists a contréle A%lJ“MZ such that
X} (1) = g(S,.5(T)).

Proof. Set(s, &) := (8,.5(0), X} . (6)). It can be deduced from the definition of the control problem (4.1) and a
measurable selection argument, that there exists a conﬂode e such that

X} e (T) > g(So.c(1)). (4.2)
This step is not trivial. For more details we refer the reader to [17]. Next, ke given by

Y(r):= Li<r<oy Y, (r) + 1{9<r<T}Y9 <
and note that the corresponding contias$ in AM”MZ It follows from (4.2) that

X} (D) =X} o (T) > g(So.c (1)) = g(S1.5(T)),

which proves the lemma. DO



P. Cheridito et al. / Ann. I. H. Poincaré — AN 22 (2005) 633-666 647

4.3. Proof of the viscosity subsolution property

Theorem 4.2.If g satisfieq3.6), then the functiof is a viscosity subsolution of the equation

F(s, v (t,5), D?v(1,5)) =0 on[0,T) x (0,00)".
Proof. By (2.8) and assumption (3.6),0u(z, s) < G(s) for all (¢, s) € [0, T) x (0, 00)?. In particular,s is finite.
Let (10, s0) € [0, T) x (0, 00)¢ andg € C*([0, T] x [0, 00)?) such that

0= (v —¢)(t0,50) > (v —@)(t,s) forall (z,s) # (0, 50)-

Assume that for some matri& € S¢,

(10, s0) := —L(to, s0) — %TI’[UT(SO) diags]B diaQS]o(so)] >0,
and
h(tg, sg) := diaQSo](Dz(p(to, s0) + B) diag so] € int(K).

In the following steps we will obtain a contradiction.
1. Observe that the functiorisand/ inherit the smoothness ¢f. Consider the following neighborhood 6§, so):

N = {(t,s) €[0,T) x (0,00)¢ N By(to, s0): 1(t,s) > 0 andh(z, s) € int(K)},

whereBi (fo, so) is the closed unit ball ilR¢*t1 around(zg, sg). Choose a constaiM > 2 such that for each fixed
pair (, §) € \V, all the functions

3

Do(t,s)+ B(s —3§). LDe(t,s), D%p(t.5)+ B, maxLDZe(t,s)
ij

max(DDZ¢(1,))" diadslo (s)]
ij :

are bounded by/1 on V. By definition, v = inf-o(v™)*. Therefore, it can be deduced from the fact thetso)
is a strict maximizer of — ¢, 3\ is compact andv™)* — ¢ is upper semicontinuous for alf, that there exists
ann > 0 and anM> > 0 such that

wM2)*(t,5) < p(t,s) —4n forall (r,s) € ON.
2.Let M3:= M1 + M>. There exists &, §) € N such that

v¥3(7, ) = (M%)* (10, 50) — n = 810, s0) — 1 = (t0, 50) — 1 = (7. §) — 21, (4.3)
We setS := S; ; and consider the stopping time

0:=inf{r >1: (1,50)) ¢ N}
Then,0 > 7 and (@, §(9)) € IN because the proce§s’s almost surely continuous. Therefore,

wM2)%(6,5(6)) < (6, S(6)) — 41. (4.4)
3. Set

(to, 71, T2) = (1,0, T), 3°:= Do({,§), $1:=0,

&(r) =L, LD(r, S() and () =L, o (D%0(r. S()) + B).

By our choice ofM3, the corresponding contrélis in Atf”el.
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4. Consider the initial capital
=M, §) —n, (4.5)
and denotéX, Y) := (X!, ., ¥} ). Then,

0
X(©) —vM2(0,50)) =vM2 (@, §) —n+ / YT dS(r) — v™2(9,5(6))

>0, 8) =30+ | Y(OT dS¢r) —v™2(6,5(0))

Vit ~— -

by (4.3). Using (4.4) and Ité’s lemma, we see that
6

X(©) —vM2(0,560)) = o, 5) — 30+ / YT dS(r) — (6, S(0)) + 41

f
0 r

0 T
/E(p r, S(r) dr+/(/3d§(u)) dS(r) +n
P

6
/1 (r, S(r)) dr + 1(S(9) —3)"B(56) - 5) +n.

SinceB € 84, this provides
6

X)) — UMZ(G, §(9)) > /l(r, §(r)) dr+n=>=n

t

by definition ofé as the first exit time frora\V. Hence, it follows from Lemma 4.1 that3(7, §) < &, contradict-
ing (4.5). O

5. Viscosity supersolution property

In this section, we prove that a convenient lower semicontinuous function is a viscosity supersolution of
the DPE (3.4). It will follow from results in the next sections that v if (3.8) or (3.9) holds.

5.1. A weak formulation of the super-replication problem

For technical reasons, we here also consider controls that are not necessarily adapted to the filtration generate
by the Brownian motion driving the price processLet W be a Brownian motion on a filtered probability space
(2,F,F={F@), t [0, T]}, P) that satisfies the usual conditions. o

For all (z,5) € [0, T] x (0,00)? and M > 0, we defineS; ; and AY, (£2) on (2, F,F, P) like S, and AM
are defined or(2, 7,F", P). Forx € R and a controly € A [(2), the processef," and X;’” are defined
analogously tdr,”; andX,”s .

Note that sinceS, sisthe unlque strong solution of the SDE (2.1) with driving Brownian moﬁo,rit is adapted
to the filtrationF" generated byW But, the control processesm (.Q) and thereforeY, s and XV are not

1,8,X
necessarily adapted 1.
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For M > 0, we define the relaxed stochastic control problem

WM, s) = inf{x eR: XV

1,8,

(T) > g(S,.,) for some(2, F, F, P) andi € AM (2)},
and the functions

B(t, 5) = Ai/lrlfoyM(t, 5), (t,5)€[0,T) x (0,00)?,

and
v(t,s):=104(t,5), (t,5)€[0,T]x[0,00).

By definition, v is lower semicontinuous, and obviousiy?, s) < v(z,s) on[0, T) x (0, c0)<.
5.2. Partial dynamic programming principle

Lemma 5.1.Let W be ad-dimensional Brownian motion on a filtered probability spe((fé FF= {]-"(t)
€[0,71}, P) that satisfies the usual conditions. Lets) € [0, T) x (0,00)?, x e R, M > 0 and ¥ € AM (2)
such that

XPs. x(T) > g(S; s(T)) (5.1)

Then, for everyr, T]-valued]F-stopping timey,
X) @) =0M(0.5,.,0)).
Proof. Let

(5.8) = (5.5, X} ) 0).
and denote by: the probability measur® o (6, ¢,£)~% on [1, T] x R+, Since XP (T) = )N(‘;’g’s(T) and
S.5(T) = Sp.(T), it follows from (5.1) that

1= P[X], (1) > 8(815(D)] = P[X] (1) > g(So.5(T))]

= f PR} (1) 2 g(S0.c(1)] 6. 5.6 = ("' )] du(e', 5", x)
[t, T]xRd+1

~

= / P[ t,s x’(T) >g(Sﬂ ’(T))] du,s’, x).

[t,T]xR4+1
Hence, foru-almost all(r’, s’, x’) € [¢, T] x R4+, the controlp satisfies
P[X] g o(T) > g(Sr.o(D))] =
Now, observe that the control corresponding to the restricted straiggy r; belongs toA%S,(ﬁ). Therefore,
we can conclude that for-almost all(#’, s', x) € [¢, T] x R4*1,
X' =M@,

which shows thak

t,8,x

) =vM@,5.506). O
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5.3. Properties op™

Lemma 5.2. Assume thag satisfies(3.6) for a constantc* > 0. Then, for all M > ¢*, v¥ is a finite, lower
semicontinuous function and existence holds for the probém

Proof. ForallM > ¢*, v™(z, s) is dominated by the functio6 (s) from (3.6). Together with (2.8), this shows that
vM is finite.
Next, we show that for alMf > c*, existence holds fos™ . So, fix M > ¢*, (t,s) € [0, T) x (0,00)? and set
1
xi=oMs),  we=xds, k2l

By definition of the problemvy, there exists for alk > 1, ad-dimensional Brownian motiof/* on a filtered
probability spacés2¥, 7%, ¥, P¥) that satisfies the usual conditions and a contfat A (2X) such that

X5 (T) > g(SE(T)). (5.2)

By Lemma 5.3 below, there existg/adimensional Brownian motiol on afiltered probability spac(efz F,F, P)
that sat|sf|es the usual conditions and a con\’urel AM (£2) such that, possibly after passing to a subsequence,

(SK )k>1 converges weakly t()S, 5 ). Therefore, it follows from (5.2) that

t,s° tsxk

t s, x(T) (§t,s(T))~
To show thaw is lower semicontinuous, we léf;, s;)r>1 be a sequence converging(tos), and assume that

ls,x

xi = vM (1, si) —> x for somex € R.

Again, it can be shown that there exists/alimensional Brownian motion¥ on a filtered probability space
(2, F,F, P) that satisfies the usual conditions and acorﬁreIA (Q) such that

lA x(T) (St,x(T))~

This shows that > v (¢, s). Hencep™ is lower semicontinuous. O

Lemma 5.3.Letx > 0 and M > 0. For everyk > 1, let W* be ad-dimensional Brownian motion on a filtered
probability space(2*, 7%, F*, P*) that satisfies the usual conditions antl a control in 4 (2¥). Then there
exists ad-dimensional Brownian motiof¥’ on a filtered probability spaceﬁ F.F, P) that satisfies the usual
conditions and a contro] € AM (£2) such that, possibly after passing to asubseque(m‘ﬁg x )k>1converges
weakly to(S, s X sx)-

1,8,

Proof. For the sake of notational simplicity we assume that 1. The caseé > 1 works analogously. Lé¥’ be a
one-dimensional Brownian motion on a filtered probability spaee 7', F/, P’) that satisfies the usual conditions
andv a control inAf‘fS(Q’). Recall that is specified by the processes

Z y” l[fnsfn+l)’ «, Z Zn 1[711,T)z+1)7 yl and )/2
n=0

Hence, we can identify with the process

1 . 1 . .
(/ > ynllr,,,ml)(u)du,/a(u)du,/ > Z”llr,,.rm)(u)du,/Vl(u)dW/yz(u)du)
¢ n=0 t ¢ n=0 t

t
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and view it as a random variable with values@z, T'1)°, whereC[z, T'] denotes the space of continuous functions

on [z, T] endowed with the uniform topology. Then, it follows from Proposition XI11.1.5 in [14] that the sequence
(vk)k>1 is tight, and it can be shown along the lines of the proof of Theorem 7.10in [12] that there exists a Brownian
motion W on a filtered probability spac(e? F, IB‘ P) that satisfies the usual conditions and a coritreIA ((2)

such that, possibly after passing to a subseque{méesl,s, 1.2 )k>1 converges weakly tov, S, P Xl sx)- O
5.4. Proof of the viscosity supersolution property

Theorem 5.4.Assume thag satisfieg3.6) for a constant* > 0. Then for allM > ¢*, v is a viscosity superso-
lution of the equation

F(s,v(z,5), D?v(z,5)) =0 on[0,T) x (0,00)".
Proof. FixanM > c¢*. By Lemma 5.2pM is finite and lower semicontinuous for alf > ¢*. Consider dto, so) €
[0, T) x (0, 00) together with a test functiop € C*([0, T] x [0, 00)¢) such that

0= (v™ - 9) (10, 50) = min M — ), 5).
(t,5)€[0,T]x [O,oo)d

The proof is complete if we can show that there exisBsaS_‘ﬁ such that

—Lg(to, s0) — %TF[OT(So)diag[so]B diadsolo (s0)] >0
and
diadisol (D?¢(t0, s0) + B) diadisol € K.

1. Setxg := vM(to, s0). By Lemma 5.2, there exists&adimensional Brownlan motiof on a filtered probability
space(.Q F.,F, P) satisfying the usual conditions and a confrat AY _(£2) such that

to 50, XO(T) > g(Sfo So(T))
For the rest of the proof we denote
(S Y X) - (Sto 502 10 50° Xv

10,50, xO)

to 50

Let 71 be the first jump time aftery appearing in the contrdl and define
6=t Ainflr > 10: S(r) ¢ s0eP1@},

whereB1(0) is the closed unit ball iiR? around 0 and the exponential and product are taken component-wise. For
alln > 0, set

0":=0 A (to+mn),
and notice tha#” > 7o P-almost surely. By the partial dynamic programming principle of Lemma 5.1,
X@©") =M (67, 5@6M). (5.3)
Sincev™ > ¢, it follows from (5.3) that
o
.m+/?vﬂﬁn—¢wﬂﬁmn>o
fo

By twice applying Ité’s lemma, it follows that
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on on r r T
/l(r)dr—l—f<c+/a(u)du+/b(u)d§(u)> dS@r) >0, (5.4)
fo fo fo o

where

I(r):=—Lp(r n6, S A 0)),
a(r) :==&(r A8) — LIDY)(r A0, S(r A D)),
b(r):=7(r AO) — D?p(r A6, S(r A6))

and

¢ :=3° = Dy(to, 50).
Note that, by our choice of the stopping timgthe processdsa andb are bounded. Hence, there exists a constant
C1 > 0 such that for alh > 0,
on
/l(r) dr
fo
Moreover, the process

m(r) := Ly <oy diag S ]o (S¢r)), r elto, T,

satisfies the continuity assumption (A.3) of Proposition A.3ydbr ¢ = 0. Therefore, it follows from Proposi-
tion A.3 that for every constant> 0, almost surely,

< Cin. (5.5)

on , r T to+n, r T

; —3/24¢ S(r) — li —3/2+¢ W (r) =

rl}anOn /(fa(u) du) dsS(r) —J’I{‘non / (/a(u) du) m(r)dw () =0. (5.6)
to o fo 4]

It can easily be checked thétis almost surely Holder-continuous of order 1/3. Hence, the progesatisfies the
continuity assumption (A.1) of Theorem A.1 fer=2/3, and it follows from Theorem A.1.a that there exists a
constaniC, > 0 such that

0" r

T
/ ( / b(u)dfi(u)> ds(r)
o

4]

lims

up
n\O0

nloglog(1/n)

to+n

T
/ (/b(u)m(u)dvT/(u)> m(r)dW (r)
o

1o
2. By the Dambis—Dubins—Schwarz Theorem (see e.g. Theorem V.1.6 in [14]), there exists a BrownianZnotion
such that

9'7 97/ 0’7

/CT dS(r) = /ch(r) dW () = Z</ |ch(r)|2dr).

to fo 1o
Hence, it follows from (5.4)—(5.7) and the law of the iterated logarithm for Brownian motion (see e.g. Theo-
rem 11.1.9 in [14]) thaic” m(t9) = 0, which by our assumption thai(so) is invertible, implies

¢ =0. (5.8)

r

=lim

N < Ca. 7
P rloglog(1/m) c2 -7
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3. By (5.8), we can rewrite (5.4) as

0" on , r r

T
/l(r)dr+/(/a(u)du+/b(u)d§(u)> dS(r) > 0. (5.9)

110) o o) 10
It follows from (5.9), (5.5) and (5.6) that

r

on T
o 1 ~ ~
0

fo

Sinceb is right-continuous, it follows from (5.10) and Theorem A.1.b that
m(t0)" b(to)m(t0) € SY. (5.11)
Sinceo (so) is invertible, this implies thab (1) € S¢, and it follows from the gamma constraint (2.6) that
diagisol(D?¢(to, s0) + b(to)) diadsol € K.
By the boundedness and continuity of the prodesg obtain from (5.9) and (5.6) that

on r T
—Lo(to, s0) = (1) >|imsupE ( / —b(u)d§(u)> dS(r). (5.12)
7\0 ’7t0 A

Sinceb is of the form (2.5), it satisfies the continuity assumption (A.2) of Theorem A.2. Hence, we get from (5.11)
and Theorem A.2 that

0" r

T
Iimsup% (/—b(u)dg(u)> dsS(r)
o

n\0
1o

to+n , r T

. 1 ~ ~

=limsup- / (f—b(u)m(u)dW(u)) m(r)dW (r)
™o 7 2o\i

1 1 _ .
= ETr[m(ro)Tb(to)m(to)] = éTr[a (so)" diadsolb(to) diag solo (s0) |-
Together with (5.12), this shows that
1 . .
—~Ly(to, 50) = 5 Tro (s0)" diagisolb(10) diadisolor (s0)] > 0,

which completes the proof. O

Corollary 5.5. If g satisfieq3.6), thernv is a viscosity supersolution of the equation

F(s, v (t,5), D?u(r,5)) =0 on[0,T) x (0,00)".

Proof. The corollary can be deduced from Theorem 5.4 with the following argument borrowed from Remark 6.3
of [5], see also Proposition 2.3 of [19].
Let (10, s0) € [0, T) x (0, 00)¢ andg € C*([0, T] x [0, 00)?) such that

0= (v—9)(to, s0) < (v —@)(t,s) forall (z,s) # (t0, s0).
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Let B1(0) be the closed unit ball if®? and denote

0:= |:O fot T] x s0eP1©
b 2 9

where the product and exponential are take component-wise. By definitigritare exists a sequen@e, si)x>1
in Q such that

(t, sk) — (10, 50)
and
v (1, 1) — w(to, 50).-
Forallk > 1, let(z,,s,) be a minimizer ofuX — ¢ on Q. Then, necessarily,
(2 84) — (10, 50)- (5.13)

Indeed, assume that there exists a subseqt{e_rggegki)j% of (z4,8)k>1 that converges to a poitit, s ) € Q.
Then, S

0=(v—)(t0.50) = lim (V" — @) (t,, 5,) = liminf (V" — ) (1, .5,) > (v —@)(2.9).
j—o0 - . j—o00 J J

Hence,(¢, s) = (0, s0), and (5.13) follows. By (5.13), there exist&é@> 1 such tha(z,, s, ) is a local minimizer
of v* — ¢ for all k > ko. Hence, Theorem 5.4 implies that

F(sg 0i(t.s0. D?p(14,5,)) 20, forallk > ko.
By Lemma 3.4F is continuous. Therefore, by sendikhgo oo, we get
F(s0, 1 (t0, 50), D?p (10, 50)) > 0,

which proves the corollary. O

6. Terminal condition

In the previous sections, we proved thagibatisfies (3.6), thei is a viscosity subsolution anda viscosity
supersolution of Eq. (3.4). Here, our objective is to show that if one of the conditions (3.8) or (3.9) holds, then

V:=u(,) and V:=u(T,")
satisfy the terminal condition

V=V=4g, (6.1)
and there exists a constafitsuch that for allz, s) € [0, T) x (0, 00)4,

v(t,s) > g(s)—C and v(t,s) <g(s)+C. (6.2)

We first prove the lower bound > g and then the upper bound < . The lower bound can be proved
under (3.6). For the proof of the upper bound we need that either (3.8) or (3.9) is satisfied, and the proof is different
in the two cases. The inequalities (6.2) are trivial under (3.8) and can be deduced more or less directly from (6.1)
under (3.9).
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6.1. Lower bound undgf.6)

Proposition 6.1.If g is lower semicontinuous and satisfi@6), thenV is a viscosity supersolution ¢8.5). In
particular, V > g.
Proof. 1.Letsg € (0, 00). Assumption (3.6) insures that

u(t,5) <B(t,5) <v(t,s) < G(s) forall (t,5) [0, T) x (0,007,
and by the definition ob, there exists a sequen@e, si)x>1in [0, T) x (O, o0)¢ converging to(7', so) such that

U(tk, sk) = v(T, s0) = V.(s0).
There exists for alk > 1, a filtered probability spaceQ" F*,F*, P*) satisfying the usual conditions with a
d-dimensional Brownian motioW* and a controb® € ( J,,. o AM, (Qk) such that

tk Sk Xk (T) > g( T, Sk (T))
wherexy := v(, sx) + 1/ k. By (2.8),
Ek[X,‘;( Sk xk(T)] 2 Ek[ ( s Sk(T))] E[8(Sy.s (D)].

and obV|oust,

St (T) — so  almost surely (6.3)
Since,g is lower semicontinuous, it follows from (6.3) that

liminf g(Stk,sk (T)) 2 g(s0).

k— 00
Therefore, Fatou’s lemma implies

V(so) = I|m X > I|m |nf E[g(Si.s (T))] = g(s0).

2. Let (so, ¥) € (0,00)¢ x C[0,00)¢ be such that
O0=(V—-vY)(s0)= min (V —v)(s).
[0.00)¢

se

Choose a sequencg, s )1 wWhich converges toT, so), such that;, < T and

lim (., sx) = V(s0).
k—o00

For allk > 1, we define the functiom; on [z, T'] x [0, c0)¢ as the lower semicontinuous envelope of the function
¥ restricted tdz, T) x (0, 00)?. Thenwy = 3, = v on (&, T'] x [0, 00)¢ but we do not know whether;, is equal to
vong x [0,00)?. However, we can replace 0 byin Corollary 5.5 and deduce thay, is a viscosity supersolution
of Eq. (3.4) on[#, T) x (0,00)?. Define the auxiliary test function

—1
T -t

and denote by (0) the closed unit ball ifR? around 0. For alk > 1, let(z,,s,) be a minimizer ofw; — ¢* on
[tx. T1 x s0 €81 Note that

okt 5) =Y (s) —|s — sol* +

(i — @)1k, 51) = (i — Y) 1k, 51) + sk —sol* —1— =1 ask — oo.
Hence, fork large enough,

(Wi — ") (t, 5) < 0.
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On the other hand,
(wr — @N(T, )=V (s) —Y(s)+|s —so/* >0 foralls e (0,00)7.

Hence, € [#, T) for large enouglt. Now, lets* € (0,00)¢ such that, possibly after passing to a subsequence,
s, — s*. Then,

Is* —sol*= lim |5, — sol*
k—o00

< liminf{ we — o) 1k, 51 — wie = @) (L 5,0 + I = sol '}

=liminf{ (we — ), sk) — (Wi — V) (24, 84) + + |sx — sol” —
k— 00 T — 1 T -1

< Iiminf{@— ¥)(s0) — (V — ) (s%) — ﬂ} <o.

k—00 T —t

This shows thatt,,s;) — (T, so) ask — oo. Sincewy is a viscosity supersolution Q’f(s, v, D?v) =0 on
[t, T) x (0,00)?, we have

F(sg0f (140 50), D?0F (14, 50)) >0,
and in particular,

H (diads ;1(D?¥ (s4) — D5 — sol*) diads 1) >0,
which, by continuity ofH, implies

H (diagiso] D*y(so) diadisol) > O.

Hence,V is a viscosity supersolution of (3.5), and therefdrez g. O

The next result provides more detailed information about the lower bound if the convExiséiounded from
below by a matrix of the form-a*1;, wherea™ is a constant and; thed x d-identity matrix.

Corollary 6.2. Assume; satisfieq3.6) and for some constait’, A > —a*1,; for everyA € K. Then, there exists
a constantC such that
u(t,5) 2 &(s) = C(T —1) on[0, T) x (0,00)".

Proof. In view of the previous lemma, it suffices to show that there exists a conStantthatv is a viscosity
supersolution of the equation

—v(t,s)+C=0. (6.4)
To prove (6.4), considdlo, so) € [0, T) x (0, 00)¢ and a test functiop € C*([0, T] x [0, c0)¢) so that
0= (v—9)(to,50) = min (v—9)(,s5).

(t,5)€[0,T1x[0,00)4

By Corollary 5.5, we have
F((t0. 50). ¢ (t0. 50). D% (10, 50)) >0,

which implies that there existse S¢ such that

1 . .
—¢ (to, 50) — ETY[G(SO)T diagisol(D%¢(to. s0) + B) diagisolo (s0)] > —1 (6.5)
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and

H (diadsol(D%¢(t0, s0) + B) diaglso]) > —1. (6.6)
It follows from the assumption and (6.6) that

diag(sol (D?¢ (10, s0) + B) diadisol > —(a* + 1) Iy,
Hence, by (6.5),

— @i (to, s0) =2 —1— %(a* + DTro(s0) o (s0)].
Sinceo is bounded, this implies that
—¢:(to, s0) =2 —C
for some positive constaudt that is independent dafg, sg). O

Note that the hypothesis of the previous corollary holds under the assumption (3.9). Under the assumption (3.8),
v(t,s) andg are bounded.

6.2. Upper bound und€.8)
Note that in the proof of the following proposition we need the continuity.of
Proposition 6.3.Assumé3.8). ThenV < 3.

Proof. We will show that ifg satisfies (3.8), their is a viscosity subsolution of (3.5). On the other hagds a
viscosity supersolution of the same equation. Moreover, we assumgithaounded. Thereford, — g is bounded,
and we can apply a comparison result for Eq. (3.5), to concludéthag (see Remark 7.6). In the remainder of
this proof, we show tha¥ is a viscosity subsolution of (3.5).

Consider a paitso, ¥) € (0,00)? x C*([0, 00)?) such that

0= (V —)(s0) = max (V —)
[0,00)¢

and

¥ (s0) > g(s0). (6.7)
Fork > 1, set

o (t,5) =y (s) +Is —sol* + k(T —1), (t.5) €[0,T] x [0,00)".
Fix B € Si and assume that there exists & 1 such that

F(s, ¢k, 5), D®*(t,5) + B) > 0 (6.8)
on the set

Quk =T —1/k, T] x s0€P/+©

whereB1,4(0) is the closed ball of radius 1 /&round 0 inR? and the product and exponential are taken component-
wise. Then,

—Lok @, s) — %Tr[o (s)" diads1B diagfslo (s)] > 0
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and
H(diads1(D?¢* (s) + B) diads]) > 0,

for all (z, s) € Q1/«. In the following steps we derive a contradiction to (6.8).
1. There exists a constam; > 2 such that for each fixed paif, 5) € 01/« all the functions

Dyk(t,s)+ B(s —§), LD¢*(t.5), D?¢*(t.s)+ B, maqLDZe"(1.s)].
ij

max (DD ¢* (. 5))" diagls]o ()|

ij

are bounded by/1 on Qq /4.
2. Sinceg is continuous, it can be deduced fram= infy-o(v)* and (6.7) that there exist € (0,1/k] and
M5 > 0 such that

W"2)* <t — 4y
on the parabolic boundary
0,0y := ([T —n,T] x 8(soeB”(O)) U ({T} X soeB”(O)))

of the setQ, = [T —n, T] x so eBn(0)
3.SetM3:= M1 + M. There exists &, §) € Q, such that

w37, 8) = (WM)*(T, 50) —n = B(T, 50) — 1 =" (T, 50) — 0> ¢" (£, 5) — 2,
DenoteS := S; ; and introduce the stopping time
0 :=inf{r >7180) €9,0,)}.
Then, (0, §(0)) € 9, Q, because the proce§sis almost surely continuous. Therefore,
"2)*(0,5(0)) < ¢*(6,5(0)) — 4n.
4. Set

A

(o, 71, 82) = (1,6, ),  §°:=Do(i.3), §':=0,

&(r) =L, LDE" (r.5() and P (r) == 1<, gy (D%"(r. S(r)) + B).
Then, the corresponding contmis in A;Wj
5. Consider the initial capital

=M, 5) —n.
Proceeding as in Step 4 of the proof of Theorem 4.2, we obtain that

X! 0) = 0M2(0,50)) + 1,

8,
which is in contradiction to the partial dynamic programming result of Lemma 4.1.
Hence, there exists for all> 1 a(, sx) € Q1/« such that

F (s, of (tx, 1), D20" (1, sx) + B) <0,

and therefore,
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min{ L (sk, ¢ (te, sx), D?0* (1, sx) + B); H(diadise1(D%0* (1, s¢) + B) diadise]) }
= min{k — %Tr[a (s T diadisk 1(D?{W (si) + Isk — sol*} + B) diadiselo (si0)];

H (diadise1(D?{¥ (s¢) + Isk — sol*} + B) diaqsk])} <O0.

This shows that for large enough

H (diadsi1(D?{ ¥ (si) + Isk — sol*} + B) diads¢]) < 0.
It follows that

H (diagfsol (DY (s0) + B) diadsol) <O,
and sinceB was arbitrary,

H(diaglol D%y (so) diadisol) <0. O

6.3. Upper bound und€.9)

Proposition 6.4.Assumé3.9). Then there exists a constansuch that
5(t,s) < 8(s)+ C(T —1), forall (z,5) €0, T] x [0,00)".

Proof. Fix a (19, s0) € [0,T) x (0,00)?. By Lemma 3.5.b, the functio§ — U is concave, wherd/(s) =
— Z‘;zl )/;.“ logs;. Therefore, there exists a vectoe R? such that
8(s) —U(s) <&(s0) — U(so) + 27 (s —so) foralls e (0,00)".
Hence, the function
f($):=8(s0) = U(s0) + U(s) + 2" (s — s0)
dominates. Since 0< g < G, there exists &>-approximationf of f that dominateg such thatf (so) = &(s0),
all derivatives off are bounded and
diags]1D? f(s) diags] € K
for all s € (0, 00)?. Now, let the controb be given by
(t0,71) := (t0, T),  ¥°:= D f(s0),
a(r):=LD f(Sp,5(r),  vr)i=D?f(Sis5(r) forrelto, T1.
Then, by twice applying Itd's lemma, we obtain for aj > 0,
Xy so.00(T) = f(Si0,50(T)
T

- 1 . ~ .
=x0— f(s0) — f ETr[a(S,M0 (,))T diad[ Syg.s0(r)] D2 T (Sto.s0(r)) diad Sig,s0(r) |0 (St,50 (1)) ] dr

fo
T

~ 1 .
2 X0 — f(SO) - / éTr[O-T(Sto,So(r)) dlaqy*]a(sto,so(r))] dr

o
= x0 — f(s0) — C(T —10)
for some constant that does not depend @ny, so). Forxg = f(so) + C(T — tp), we get
X} 00T = F(Sins0(T)) = &(Si0.50(T)) = 8(Sipuso (1))
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Since all the derivatives of are bounded, there exists a constéht 1 such thav € A¥ _ and

10,50
vM (10, 50, yo) < x0 = f(s0) + C(T — t0) = &(s0) + C(T — to).

An inspection of the above argument shows that there exists a neighbokhobdr, sg) and a constant > M
such that

v (1,5) < 2(s) + C(T = 1),
for all (¢, s) € M. This implies
v(t,5) < 8(s) +C(T —1)
forall (¢, s) € [0, T) x (0,00)¢, and the proposition is proved.c

7. Comparison result

In this section, we prove the comparison result, Proposition 3.9. Although this comparison is valid for more
general nonlinear equations, we work here with the specific equation under consideration to simplify the presenta-
tion.

Our proof uses standard techniques from the theory of viscosity solutions. We start by recalling the notion of
a strict viscosity supersolution. We will then establish the comparison result when the viscosity supersolution is
strict, and deduce Proposition 3.9 from there.

7.1. Strict viscosity supersolutions
Definition 7.1. For a non-negative constant we say that a functiomw is ann-strict viscosity supersolution of
Eq. (3.4) if
F (s0, 1 (t0, 50), D?¢(t0, 50)) > n,
for all (19, s0) € [0, T) x (0,00)¢ andy € C*®([0, T] x [0, 00)?) such that

0= (ws« — 9)(to, 50) = min (wy —@)(2, ).
(t,s)e[O,T]x[O,oo)d

In Section 11.4 in [8], it is shown that an equivalent definition is obtained by allowifgo) to be a local instead
of a global minimum ofw, — ¢.
The first step in the proof of Proposition 3.9 is to find a strict viscosity supersolution of Eq. (3.4).
Lemma 7.2.Assumg3.6). Then, the function
wlt,s) =T —t)+c*[1+s1+ -+ 54]
is ann-strict viscosity supersolution of E8.4)for somen! > 0, andw?! > §.

Proof. The inequalityw! > ¢ follows from (3.7). It follows from (2.7) that (0) > 0, and therefore,
f(s, wtl(t, s), Dzwl(t, s)) > F(s, wll(t, s), Dzwl(t, s)) = min{l, H(O)} =: 2171 > 0. O

Lemma 7.3.Letw? be a lower semicontinuous viscosity supersolution of the equation
F(s, wl@, s), D?wO(t, 5)) =0. (7.1)

Furthermore, letw! be a lower semicontinuousstrict viscosity supersolution of E({.1) for somey > 0.
Then, for allu € (0, 1), the functiorw” := (1 — u)w® + pwt is a uy-strict viscosity supersolution of E(7.1).



P. Cheridito et al. / Ann. I. H. Poincaré — AN 22 (2005) 633-666 661

Proof. We only need and prove this result for the case where C2([0, T) x (0, 00)?). The general case can be
treated as in [2, page 39]. Fare (0, 1), let (fo, so) € [0, T) x (0,00)? andg € C>®([0, T'] x [0, c0)¢) such that

0= (w" — ¢)(to, s0) = min (wh —o)(t,s).
(t,5)€[0,T]1x[0,00)4

Then, (fo, so) is @ minimizer of the difference® — v, where
¥i= (1= e — pwh).

Therefore,
E (0, ¥ (10, 50), DY (10, 50)) >0

tlecausevo is a viscosity supersolution of (7.1). Note that (1 — u)y + 1 wl, and by Lemma 3.3, the function
F(so, -, -) is concave. Therefore,

F(s0, 1 (t0, s50), D% (10, 50)) = (1 — 1) F (50, ¥ (t0, 50), D*¥ (10, 50)) + i F (s0, w} (to, s0), D*w (10, 50))
> un. O

7.2. Proof of the comparison result

Proposition 7.4.Assumg3.6). Suppose is an upper semicontinuous viscosity subsolutiof8af)andw a lower
semicontinuoug-strict viscosity supersolution @8.4) for somen > 0. Furthermore, assume that there exists a
constantC so that

u(t,s) <g@s)+C and w(t,s)>g(s)—C forall (z,s5) €[0,T) x (0, 00)?. (7.2)
Thenu(T, ) < §(-) < w(T,-) implies thatu(r, s) < w(t, s) on[0, T) x (0, 00)<.

Before proceeding to the proof of this proposition, let us show how it allows to complete the proof of the main
comparison result.

Proof of Proposition 3.9. We use the technique of the proof of Theorem 2.7 in [2, page 38]Ju et an upper
semicontinuous viscosity subsolution of (3.4) such that

u(T,)<g() and u(t,s)<g@s)+C on[0,7T)x (0,oo)d,
andw a lower semicontinuous viscosity supersolution of (3.4) such that

w(T,)=¢g() and w(,s)>g(s)—C on[0,T)x (0,oo)d.

Let w! be then!-strict viscosity supersolution of (3.4) defined in Lemma 7.2. Then, it follows from Lemma 7.3
that

wh =1 - pw+ pwt
is aunl-strict viscosity supersolution of (3.4) satisfying
w*(T,s) > 8(s) and w”(t,s)>8@s)— (1—w)C forall(r,s) €[0,T) x (0,00)".

We are then in the context of Proposition 7.4 and can concludeuthat s) > u(¢, s) on [0, T) x (0,00)?. The
required result follows by sendingto zero. O

In preparation of the proof of Proposition 7.4, we provide the following technical conditions satisfied by
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Lemma 7.5.There exist a positive consta@itand a functiom: : [0, oo] — [0, co] with lim,_ o/ (x) = 0 such that

|F(s, p.A) = F(s, p'. A)| <Ip—Pl. (7.3)
F(s, p,A) — F(s, p, A+ B) < C Tr[ diags] B diads1], (7.4)
F(s',a@—1),A") = F(s,a(t —1'), A) < h(als —5'1? + s — 5']), (7.5)
forall (r,5),(t',s") €[0,T) x (0,00)%, 0 > 1, peR, Be S, and(A, A’) € §¢ x 8¢ satisfying
I; O A 0 Iy -1
_Sa(o Id><<0 _A,)<3a(_ld I, ) (7.6)

Proof. These conditions are classical in the theory of viscosity solutions, and are satisfied by a large class of
second order nonlinear partial differential equations, see [5]. The inequalities (7.3) and (7.4) can be verified directly.
Inequality (7.5) can be shown as in Example 3.6 of the User’s Guide [5].

Proof of Proposition 7.4. We adapt the general procedure reported in [5].
1. Fore, a > 0, consider the upper semicontinuous function

DN (1,1 5,5 ) i=ult,s) —w(',s") —e(l(s) +1(s")) — %a((r — 12+ (s —5)?),

where
d
1(s):= Z [s; —logs;],
j=1
and set

(1, 5) = DEY(t,1,5,5)
(note thatp® is independent o&). In view of (7.2),
o, 8) =u(t,s) —w(t,s) — 2el(s) < 2C — 2¢l(s),
which shows that

max  ¢°(t,s) = ¢°(ts, s.) for some(ss, s¢) € [0, T] x (0, 00)?.
[0,T]x[0,00)4

In Step 2 below, we will prove that
t, =T for some sequenc@y)i>1 with e > 0 andgy — 0. (7.7)
Using this, we arrive at
u(t,s) —w(t,s) =¢*(t,s) + 2el(s) < @™ (T, s¢;) + 2exl(s)
=u(T, se) — w(T, 5¢,) — &l (s¢,) + 2exl (s)
<u(T, sg) — w(T, sg,) + 26l (s)
by the non-negativity of. Sinceu (T, -) < w(T, -), this shows that
u(t,s) —w(t,s) <2el(s) forall(r,s) €0, T) x (0,00),

and the required result follows by sendihdp infinity.
2.In order to prove (7.7), we assume to the contrary that there is a coastabisuch that

te<T forall0<e<e,
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and we work towards a contradiction.
Set

—~ 1 1
PNt 5,5) 1= @5 5, 5) = [ - t)2 + (1 — 1)?] - alls = sel+ 15" — sl ],

and¢3£ (t,s) := ol (t,t,s,s). Then,(t, s¢) is a strict maximizer oﬁS.ABy Proposition 3.7 in [5], for every < g,
there exists a sequeneg — oo and local maximizers, t}(, Sk, s,/c) of @&*) satisfying

(tkst]isskas]/()—)(t87t81S8aS8) aSk_)oo
and
ay (e — 102+ (s — s,/()z) — 0 ask— oo.

In particular, fore sufficiently small andy; sufficiently larges; < T andz;, < T. We now apply Theorem 3.2 in [5]
to the sequence of local maxina, 1, sk, s;) of @ @) Then, for sufficiently large, there exist two symmetric
matricesAg, A, € S¢ such that,

(Ax, A}) satisfieq7.6),
(P + (i — 10, gk, Ak +eD?L(sk) + Q(sk — 50)) € T> " uty, 1),
(px — (4 — o). g1 Ay — eD?1(sp) — Q(s; — s0)) € T2 T w(tg, sp),
where
pe=ext =), Q@) =2z@z+ 2L,
qr = ax(sx — s¢) + (sk — 5¢)lsk — 5¢|* + eDl(sp),
qp = ax(sk — sp) — (sp — Se)|sp — se|? — e DI(s}).
Here, /2T u(t, s) andJ%v(z, s) denote the closed second order superjet and subjet of the funcibtne point

(t,5), see [5] for the definition.
Sinceu is a viscosity subsolution of (3.4),

F(sk, p+ (tx — 1), Ak + £ D21 (s1) + Q(sx — 5¢)) <O.
Also, the positivity of D% and Q, together with (7.3) and (7.4), imply
F(sk. pi. Ak) < F (st pic+ (e — te), A + e D?L(sk) + Qs — 5¢))
+ |tx — te] + C Tr(diad s [e D% (sx) + Qs — s¢)] diadse]),
<l — te] + Cle + Ist — s Ise ],

for some constant. In the last step we used the fact that did®?l(s) diagls] = 14, the identity matrix.
We proceed as above and use the fact thaét ann-strict viscosity supersolution of (3.4). The result is,

F(st, pe AY) =0 — 1t — te] = Cle + Isg — se ?Is; 7],
Combining the last two inequalities, we get

F (st pioo ) = F sk, pro A) = 1 — |t — te] = |t — te] = C[ 28 + sy — sePIsk | + I, — s |Ist ].
Therefore,

lim inf[f(s,’(, Py A} — F(sk, Dk Ak)] >n— 2Ce. (7.8)
k— 00
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On the other hand, sincé, A satisfy (7.6), it follows from (7.5) that
F (s, pro A — F s, pies Ar) < e[ Isk — sp12] + Ise — sp)- (7.9)

Sinceay[|sr — s,/{|2] + |sx — s,’{| tends to zero ag approaches infinity, (7.9) is in contradiction to (7.8) tok
n/(26). Hence, (7.7) has to hold.O

Remark 7.6.Note that, whery is continuous, the above comparison proof also applies to Eq. (3.5):
min{ f(s) — g(s), H(diads1D?f (s)diagls])} =0,

and then yields that if is a viscosity subsolution and is a viscosity supersolution such that- w is bounded,
thenu < w.
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Appendix. Small time behavior of double stochastic integrals

We here report results from [4] on the small time path behavior of double stochastic integrals that are needed
in Section 5. In this appendixW (¢), r > 0} is ad-dimensional Brownian maotion on a filtered probability space
(2, F,F={F@), t >0}, P) satisfying the usual conditions. The filtrati@can be bigger than the smallest
filtration that satisfies the usual conditions and contains the filtration generat&d by

For B € S, we denote by,*(B) the largest eigenvalue d8. Note thati* is a continuous, and therefore,
measurable function fror§¢ to R.

Theorem A.1.Let{M (), t > 0} be anR?-valued martingale defined by
t
M) :=/m(r)dW(r), t>0,
0

where{m(t), t > 0} is a boundedM¢-valued JF-progressively measurable process such that there exists a random
variablee > 0 so that almost surely,

t
/|m(r) —m(0)|*dr =01*¢) for s \,0. (A.1)
0

(@) Let {b(r), t > 0} be a boundedM?-valued, F-progressively measurable process such that forra#l 0,
Im(0)T b(t)m(0)| < 1. Then

t u

T
/(/b(u) dM(u)) dM(r)
0 0

limsup <1

1
~o0 tloglog(1/t)




P. Cheridito et al. / Ann. I. H. Poincaré — AN 22 (2005) 633-666 665

(b) Let B be a bounded(0)-measurableS?¢-valued random variable with*(B) > 0. If {b(r), t > 0} is a
boundedS?-valued,F-progressively measurable process such that for &0,

m(0)" b(t)m(0) > B,
then

p

r T
su (/b(u)dM(u)) dM () > A*(B).
N\O 9

1 t
tloglog(1/t) ,/
0

Theorem A.2.Let{M(¢), ¢ > 0} be anR?-valued martingale defined by

t
M(t):/m(r)dW(r), t>0,
0

where {m(t), t > 0} is a bounded,M?-valued, F-progressively measurable process. l{gtr), t+ > 0} be a
bounded,M?-valued,F-progressively measurable process wittd) € S¢, and assume that there exists a ran-
dom variables > 0 such that almost surely,

t t
/|m(r)—m(0)|2dr:O(tl+8) and /|b(r)—b(0)|2dr:O(tl+8) for £ \, 0. (A.2)
0 0

If m(0)" b(0)m(0)< 0, then

r

t T
|imsup§ (/b(u)dM(u)) dM(r) = —Tr[m(0)" b(0)m(0)).
N0
0o ‘o

Proposition A.3. Let {a(r), ¢ > 0} be a boundedR¢-valued, F-progressively measurable process ajmi(r),
¢ > 0} an M“-valued,F-progressively measurable process such that

t
/|m(r)|2dr <oo forallr>0,
0

and there exists &, 1]-valued random variable such that almost surely,

1
/ r2m@r)|>dr =0(>#) for:\,0. (A.3)
0
Then,

t r T
!@)13/2+€/(/a(u)du> m(r)dW(r)=0.
0 0
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