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Abstract

We address the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler–
Poisson system in a cylinder supplemented with non-small boundary data. A special Helmholtz decomposition of the velocity field 
is introduced for 3-D axisymmetric flow with a nonzero swirl (= angular momentum density) component. With the newly intro-
duced decomposition, a quasilinear elliptic system of second order is derived from the elliptic modes in Euler–Poisson system for 
subsonic flows. Due to the nonzero swirl, the main difficulties lie in the solvability of a singular elliptic equation which concerns 
the angular component of the vorticity in its cylindrical representation, and in analysis of streamlines near the axis r = 0.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

The steady Euler–Poisson system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div (ρu)= 0,

div (ρu ⊗ u + pIn)= ρ∇�,
div (ρEu + pu)= ρu · ∇�,
�x�= ρ − b(x),

(1.1)
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is a hydrodynamical model of semiconductor devices or plasmas, describing local behaviors of the electron density 
ρ, the macroscopic particle velocity u, and the total energy E = |u|2/2 + e, where e is the internal energy. The first 
equation, which is also called as the continuity equation, expresses the conservation of electrons, the second equations 
express the conservation of momentum, where ρ∇� is the Coulomb force of electron particles. The third equation 
expresses the conservation of energy, and the last Poisson equation expresses the local change of the electric potential 
� due to the volumetric charge density. The function b(x) > 0 is the prescribed density of fixed, positively charged 
background ions. Physically, by solving the Euler–Poisson equations in predetermined macroscopic device region 
with the relevant boundary conditions, we get the electric distribution or electric current in any proper cross sections.

To close the system (1.1), we introduce the equation of state

p = p(ρ, e)= (γ − 1)ρe, (1.2)

where γ > 1 is called the adiabatic constant. In terms of the entropy S, one also has

p(ρ,S)=Aexp

(
S

cv

)
ργ , (1.3)

where A and cv are positive constants. For more details about the physical background of the semiconductor device 
or models, one may refer to [25–27].

Define Bernoulli’s function B by

B = |u|2
2

+ e+ p

ρ
= |u|2

2
+ Aγ

γ − 1
exp

(
S

cv

)
ργ−1. (1.4)

Then, the system (1.1) can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div (ρu)= 0,

div (ρu ⊗ u + pIn)= ρ∇�,
div (ρuB)= ρu · ∇�,
�x�= ρ − b(x).

(1.5)

The system (1.5) is a hyperbolic–elliptic coupled system, and behaves quite differently in subsonic states (|u| <√
∂ρp(ρ,S)) and supersonic states (|u| >√

∂ρp(ρ,S)), respectively. The goal of this work is to prove the structural 
stability of three dimensional axially symmetric subsonic flows with nonzero swirl (= nonzero angular momentum) 
to the system (1.5) in a circular cylinder of finite length without assumptions of small momentum or small flow speed. 
The existence and the uniqueness of subsonic flows to Euler–Poisson system were proved in [1,3–6,10,11,26,29,31]. 
In [10,11], the unique existence of subsonic flows for Euler–Poisson system is proved for small data. Subsonic flows 
with small current flux were studied in [1,3,26,31]. The structural stability of subsonic flows for multidimensional 
potential flow and two dimensional flow with nonzero vorticity was proved in [4–6], where no smallness of data was 
assumed. In [29], the unique existence of three dimensional subsonic flows with nonzero vorticity was proved. It 
used the Bernoulli’s law to provide a new formulation of Euler–Poisson equations by reducing the dimension of the 
velocity, this idea is originally from [28]. Although the method in [29] works for the 3-D non-isentropic Euler–Poisson 
system, there are some smallness requirements on the background solutions.

The new feature of this work is that we construct three dimensional subsonic flows with nonzero vorticity, and 
that no smallness of data is required. In [4], it is found that a special structure of potential flow model of Euler–
Poisson system yields the structural stability of multidimensional subsonic solutions without assumption of smallness 
of data. This result is extended to the case of two dimensional flow with nonzero vorticity through a two dimensional 
Helmholtz decomposition u = ∇ϕ + ∇⊥ψ in [5]. In this paper, we introduce a Helmholtz decomposition for three 
dimensional subsonic flows in the form of

u = ∇ϕ + curlV with V = her +ψeθ ,

where ϕ, h, ψ are functions of (x, r) for r =
√
x2

2 + x2
3 . With using this decomposition, we investigate axisymmetric 

subsonic flows with nonzero vorticity. In particular, the function ψ concerns the swirl (= angular momentum den-
sity). There are many other studies of axially symmetric smooth subsonic solutions to the steady compressible Euler 
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equations [2,12,21,30]. To our best knowledge, all the previous studies on the steady axially symmetric flows mostly 
concern the case of zero swirl component. We expect not only the result of this work contributes to understand a 
stabilizing or in-stabilizing effect of vorticity to three dimensional subsonic flows of Euler–Poisson system, but also 
the new Helmholtz decomposition introduced in this work may open a new approach to investigate multidimensional 
transonic shock solutions to Euler–Poisson system or even transonic shock solutions to Euler system, which were 
previously studied in [7–9,13–15,20,21,23,24] and in the references therein.

In the cylindrical coordinates (x, r, θ) satisfying

(x1, x2, x3)= (x, r cos θ, r sin θ),

for x = (x1, x2, x3) ∈ R
3, any function f (x) can be represented as f (x) = f (x, r, θ), and a vector-valued function 

u(x) can be represented as u(x) = ux(x, r, θ) ex + ur(x, r, θ) er + uθ (x, r, θ) eθ , where

ex = (1,0,0), er = (0, cos θ, sin θ), eθ = (0,− sin θ, cos θ).

We say that a function f (x) is axially symmetric if its value is independent of θ and that a vector-valued function 
h = (hx, hr, hθ ) is axially symmetric if each of functions hx(x), hr(x) and hθ (x) is axially symmetric.

Assume that the smooth solution (ρ, u, S, �) is axially symmetric, i.e.

ρ(x)= ρ(x, r), S(x)= S(x, r), �(x)=�(x, r),
u(x)= ux(x, r)ex + ur(x, r)er + uθ (x, r)eθ ,

then (1.5) can be simplified as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(ρux)+ ∂r(ρur)+ ρur

r
= 0,

ρ(ux∂x + ur∂r )ux + ∂xp = ρ∂x�,
ρ(ux∂x + ur∂r )ur − ρu2

θ

r
+ ∂rp = ρ∂r�,

ρ(ux∂x + ur∂r )uθ + ρuruθ

r
= 0,

ρ(ux∂x + ur∂r )S = 0,

��= ρ − b,

(1.6)

Hereafter we assume that the function b is axially symmetric. Define


(x, r) := ruθ (x, r).

(x, r) represents the angular momentum density, and it is derived from (1.6) that

ρ(ux∂x + ur∂r)
= 0. (1.7)

Fix a constant b0 > 0. We first compute one dimensional solutions (ρ, u, p, �) of (1.5) in N with b = b0, u2 =
u3 = �x2 = �x3 = 0, ρ > 0, and u1 > 0. Set E := �x1 . Then (1.5) is reduced to the following ODE system for 
(ρ, u1, S, E)

(ρu1)
′ = 0,

S′ = 0,
B′ =E,
E′ = ρ − b0,

(1.8)

where ′ denotes the derivative with respect to x1. Then ρu1 = J0 and S = S0 for constants J0 > 0 and S0 > 0 to be 
determined by the entrance data. Therefore we can further reduce (1.8) to the following ODE system for (ρ, E):

ρ′ = ρE

γAexp
(
S0
cv

)
ργ−1− J2

0
ρ2

,

E′ = ρ − b0.

(1.9)

For a detailed information on various types of solutions to (1.9), one can refer to [23]. In this paper, we are particularly 
interested in subsonic solutions.
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Fig. 1. (1) 1
2E

2
0 −H(ρ0) < 0, (2) 1

2E
2
0 −H(ρ0)= 0, (3) 1

2E
2
0 −H(ρ0) > 0.

Proposition 1.1. Fix b0 > 0. Given constants J0 > 0, S0 > 0, ρ0 > ρc :=
(

J 2
0

γAexp(
S0
cv
)

) 1
γ+1

and E0, there exist positive 

constants L, ρ�, ρ�, and ν0 such that the initial value problem (1.9) with

(ρ,E)(0)= (ρ0,E0) (1.10)

has a unique smooth solution (ρ(x), E(x)) on the interval [0, L] satisfying

ρc < ρ� ≤ ρ ≤ ρ� and γAexp

(
S0

cv

)
ργ−1 − J 2

0

ρ2
≥ ν0 on [0,L]. (1.11)

Proof. For fixed constants b0 > 0, J0 > 0 S0 > 0, ρ0(> ρc) and E0, let (ρ, E) be C1 solution to (1.9) with initial 
condition (1.10). Since the right-hand sides of (1.9) are smooth near (ρ0, E0), the initial value problem (1.9)–(1.10)
admits a unique C1 solution (ρ, E) on Iε0 := [0, ε0] for some small ε0 > 0.

Note that (1.9) is a Hamiltonian system in the sense that if (ρ, E) is a C1-solution to (1.9)–(1.10), then it satisfies

1

2
E2 −H(ρ)= 1

2
E2

0 −H(ρ0) (1.12)

for H(ρ) given by

H(ρ)=
ρ∫

ρc

t − b0

t

(
γAexp

(
S0

cv

)
tγ−1 − J 2

0

t2

)
dt. (1.13)

By using (1.12), we can draw ρE-phase plane (see Fig. 1). Two cases need to be considered separately: (i) b0 < ρc, 
(ii) b0 > ρc. In this proof, we only consider the case of

b0 < ρc,

as the case of b0 ≥ ρc can be treated similarly.

(Case 1) Assume that E0 ≥ 0. Due to the condition of b0 < ρc, if E0 ≥ 0 then E > 0 and ρ ≥ ρ0 hold while the 
solution (ρ, E) exists. Solve (1.12) for E, and substitute the result into the first equation in (1.1) to get

ρ′ =
ρ

√
2(H(ρ)−H(ρ0))+E2

0

γAexp

(
S0
cv

)
ργ−1 − J 2

0
ρ2

=: 1

q1(ρ)
. (1.14)

Set Q1(ρ) :=
∫ ρ
ρ0
q1(�) d�, then (1.14) can be rewritten as d

dx
Q1(ρ) = 1 so that ρ(x) is given as a solution to

Q1(ρ(x))= x for each x > 0.
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It can be directly checked from (1.13) that H ′(ρ) > 0 whenever ρ > ρc, and that

H(ρ)= γAexp

(
S0

cv

)
ργ

(
1 − (ρ0

ρ
)γ

)
+O( 1

ρ
).

Therefore, one can find constants ρ∗ ∈ (ρ0, ∞) and C ≥ 1 so that if ρ ≥ ρ∗, then q1(ρ) satisfies

ρ
γ
2 −2

C
≤ q1(ρ)≤ Cρ

γ
2 −2,

which yields that

lim
ρ→∞Q1(ρ)=

{
finite if 1< γ < 2

∞ if γ ≥ 2.
(1.15)

Therefore, if γ ≥ 2, then the initial value problem (1.9)–(1.10) admits the unique solution (ρ, E) on [0, +∞), and if 
1 < γ < 2, then it admits the unique solution on a finite interval [0, L∗) for

L∗ = lim
ρ→∞Q1(ρ).

Due to (1.13) and (1.14), L∗ is given depending on (J0, S0, γ, ρ0, E0). If ρ0 > ρc, then Q1(ρ) increases for ρ > ρc
thus the solution ρ(x) of (1.14) is given by the implicit relation

Q1(ρ)= x with ρ(0)= ρ0.

(Case 2) Assume that E0 < 0. This case is divided into two cases again: (i) 1
2E

2
0 −H(ρ0) < 0, (ii) 1

2E
2
0 −H(ρ0) ≥ 0.

If 1
2E

2
0 −H(ρ0) < 0, then there exists a unique ρmin > ρc such that H(ρmin) =H(ρ0) − 1

2E
2
0 and ρ ≥ ρmin while 

the solution (ρ, E) exists. Moreover, ρmin satisfies γAexp

(
S0
cv

)
ρ
γ−1
min − J 2

0
ρ2

min
≥ δ0 > 0 for some δ0 > 0. While E < 0

holds, ρ decreases, and this implies that ρ′ ≥ −ρ0|E0|
δ1

. This means that there exists L̃ > 0 such that the initial value 

problem (1.9)–(1.10) admits the unique solution (ρ, E) on [0, L̃] and (ρ, E)(L̃) = (ρmin, 0). For x > L̃, E(x) > 0
holds so that we are back to case 1.

Finally, assume that 1
2E

2
0 −H(ρ0) ≥ 0. Let E∗ be a solution to

1

2
E2∗ = 1

2
E2

0 −H(ρ0)+H(ρc), E∗ ≤ 0.

Note that H(ρc) = 0 by (1.13). In this case, C1 solution to (1.9)–(1.10) satisfies E < 0, and the solution with satis-
fying ρ > ρc ceases to exist when (ρ, E) reaches to (ρc, E∗). Fix a small constant σ ∈ (0, ρ0−ρc

2 ). By modifying the 
argument of (case 1), we obtain that if (ρ, E) solves (1.9)–(1.10) then

x =
ρ0∫

ρ(x)

q1(t) dt

for q1 given by (1.14). Since ρ decreases in this case, for each σ ∈ (0, ρ0−ρc
2 ), we have

∫ ρ0
ρc+ρ0

2

γAexp

(
S0
cv

)
tγ−1 − J 2

0
t2
dt

ρ0|E0| ≤
ρ0∫
q1(t) dt = x|ρ=ρc+σ ≤

ρ0∫
q1(t) dt <+∞.
ρc+σ ρc
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Under the assumption of b0 < ρc, we conclude the following:

(i) If E0 ≥ 0 and 1 < γ < 2, then there exists L∗ <+∞ such that (1.9)–(1.10) admits a unique C1 solution (ρ, E)
satisfying (1.11) on the interval [0, L∗) so that L can be chosen as L =L∗ − ε for any small ε > 0. Furthermore, 
ρ tends to ∞ as x→L∗−.

(ii) If E0 ≥ 0 and γ ≥ 2, then (1.9)–(1.10) admits a unique C1 solution (ρ, E) satisfying (1.11) on [0, L) for any 
L > 0. Furthermore, ρ tends to ∞ as x→ ∞.

(iii) If E0 < 0, 1
2E

2
0 −H(ρ0) < 0 and 1 < γ < 2, statement (i) holds.

(iv) If E0 < 0, 1
2E

2
0 −H(ρ0) < 0 and γ ≥ 2, statement (ii) holds.

(v) If E0 < 0 and 1
2E

2
0 −H(ρ0) ≥ 0, there exists Lc <+∞ such that (1.9)–(1.10) admits a unique C1 solution (ρ, E)

satisfying (1.11) on the interval [0, Lc) so that L can be chosen as L =Lc − ε for any small ε > 0. Furthermore, 
ρ tends to ρc as x→ Lc−. �

For fixed positive constants (b0, J0, S0, ρ0) with ρ0 > ρc, and a fixed constant E0 (which is not necessarily posi-
tive), let (ρ̄, Ē) be the unique smooth solution to the initial value problem of (1.9) and (1.10) on the interval [0, L]. 
We fix a three dimensional axially symmetric nozzle of the length L by

N := {x = (x1, x2, x3) ∈R
3 : 0< x1 <L, x

2
2 + x2

3 < 1}.
The entrance �0, exit �L and the wall �w of the nozzle N are defined as

�0 = {0} × {(x2, x3) : x2
2 + x2

3 ≤ 1}, �L = {L} × {(x2, x3) : x2
2 + x2

3 ≤ 1},
�w = (0,L)× {(x2, x3) : x2

2 + x2
3 = 1}.

And, we set ū1 := J0
ρ̄

and ū = (ū1, 0, 0). We define �0(x) and ϕ0(x) by

�0(x)=
x1∫

0

Ē(t) dt and ϕ0(x)=
x1∫

0

ū1(t) dt for x = (x1, x2, x3) ∈N . (1.16)

We call Ū := (ρ̄, ū, S0, �0) the background solution to (1.5) in N associated with the entrance data (b0, J0, S0, ρ0,

E0). For the background solution, set

B0 := J 2
0

2ρ2
0

+ γA

γ − 1
exp

(
S0

Cν

)
ρ
γ−1
0 . (1.17)

The goal of this work is to construct three dimensional solutions with nonzero swirl by perturbing background 
solutions.

Before we state the main result, some weighted Hölder norms are first introduced: For a bounded connected open 
set � ⊂R

n, let � be a closed portion of ∂�. For x,y ∈�, set

δx := inf
z∈� |x − z| and δx,y := min(δx, δy).

Given k ∈ R, α ∈ (0, 1), and m ∈ Z
+, define the standard Hölder norms by

‖u‖m,� :=
∑

0≤|β|≤m
sup
x∈�

|Dβu(x)|, [u]m,α,� :=
∑

|β|=m
sup

x,y∈�,x�=y

|Dβu(x)−Dβu(y)|
|x − y|α

where Dβ denotes ∂β1
x1 · · ·∂βnxn for a multi-index β = (β1, · · · , βn) with βj ∈ Z+ and |β| = ∑n

j=1 βj . And, define 
weighted Hölder norms by

‖u‖(k,�)m,0,� :=
∑

0≤|β|≤m
sup
x∈�

δ
max(|β|+k,0)
x |Dβu(x)|,

[u](k,�)m,α,� :=
∑

sup
x,y∈�,x�=y

δmax(m+α+k,0)
x,y

|Dβu(x)−Dβu(y)|
|x − y|α ,
|β|=m
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‖u‖m,α,� := ‖u‖m,� + [u]m,α,�, ‖u‖(k,�)m,α,� := ‖u‖(k,�)m,0,� + [u](k,�)m,α,�,

C
m,α
(k,�)(�) denotes the completion of the set of all smooth functions whose ‖ · ‖(k,�)m,α,� norms are finite.

Problem 1.2 (Main problem). Given functions (b, Sen, Ben, νen, �bd, pex), find a solution (ρ, u, S, �) ∈ [C0(N ) ∩
C1(N )]5 × [C1(N )∩C2(N )] to the nonlinear system (1.6) with the following boundary conditions

(S,B,
)(0, x2, x3)= (Sen,Ben, rνen)(r) on �0, (1.18)

u · er = 0 on �0, (1.19)

�(x, r)=�bd(r) on �0 ∪ �L, (1.20)

u · nw = ∂nw�= 0 on �w, (1.21)

p(L,x2, x3)= pex(r) on �L, (1.22)

where nw is the unit normal vector field on �w with being oriented interior to N .

Remark 1.3. For simplicity, we prescribe the Dirichlet boundary condition for � on �0 ∪�L as in (1.20). A physical 
condition such as ∂x� =Een on �0 can be also considered by a simple adjustment of the argument in this paper.

Remark 1.4. If an axisymmetric vector field V = Vx(x, r)ex + Vr(x, r)er + Vθ(x, r)eθ is C1 in R3, then it must 
satisfy Vr(x, 0) = Vθ(x, 0) ≡ 0. From this point of view, we prescribe a compatibility conditions for νen as follows:

νen(0)= 0. (1.23)

Theorem 1.5. Let Ū = (ρ̄, ū, S0, �0) be the background solution in N associated with the entrance data 
(b0, J0, S0, ρ0, E0). Assume that νen satisfies (1.23), and that �bd satisfies the compatibility condition

∂nw�bd = 0, on (�0 ∪ �L)∩ �w. (1.24)

Given functions (b, Sen, Ben, νen, �bd, pex)(r), set

ω1(b) := ‖b− b0‖α,N ,
ω2(Sen,Ben, νen) := ‖(Sen,Ben)− (S0,B0)‖1,α,�0 + ‖ven‖1,α,�0 ,

ω3(�bd,pex) := ‖�bd −�0‖(−1−α,∂(�0∪�L))
2,α,�0∪�L + ‖pex − pL‖(−α,∂�L)1,α,�L

,

(1.25)

and set

σ := ω1(b)+ω2(Sen,Ben, νen)+ω3(�bd,pex)

for pL = p(ρ̄(L), S0). Then there exists a constant σ1 > 0 depending only on (γ, b0, J0, S0, ρ0, E0, L, α) so that if

σ ≤ σ1, (1.26)

then Problem 1.2 has an axially symmetric solution (ρ, u, S, �) satisfying

‖(ρ,u)− (ρ̄, ū)‖(−α,�w)1,α,N + ‖S − S0‖1,α,N + ‖�−�0‖(−1−α,�w)
2,α,N ≤Cσ, (1.27)

for the constant C depending only on (γ, b0, J0, S0, ρ0, E0, L, α).

Regarding (Sen, Ben −�bd, νen) as functions of r ∈ [0, 1], let us set ω4(Sen, Ben, νen, �bd) as

ω4(Sen,Ben, νen,�bd) := ‖(Sen,Ben −�bd, νen)− (S0,B0,0)‖C2,α([0,1]). (1.28)

Then, there exists a constant σ2 > 0 depending only on (γ, b0, J0, S0, ρ0, E0, L, α) such that if

σ +ω4(Sen,Ben, νen,�bd)≤ σ2, (1.29)

then the axially symmetric solution (ρ, u, S, �) with satisfying (1.27) is unique.
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Remark 1.6. Since it is assumed in (1.25) that the axisymmetric functions (Sen, Ben, νen, �bd, pex)(r) are C1 in �0, 
the compatibility conditions

∂r(Sen,Ben, νen,�bd,pex)(0)= 0

are naturally imposed.

Unless otherwise specified, we say that a constant C is chosen depending only on the data if C is chosen depending 
only on (γ, b0, J0, S0, ρ0, E0, L).

In extending the results from [5] to three dimensional cases, the main difficulty is how to find a plausible Helmholtz 
decomposition of the velocity field. Fortunately, in the axisymmetric setting, the decomposition u = ∇ϕ + curl V(x)
with V(x) = h(x, r)er + ψ(x, r)eθ works. With using this representation, (1.5) is decomposed as a weakly coupled 
system of second order elliptic equations for (ϕ, �, ψ), and transport equations for (S, B, 
) for 
 = r∂xh. In this 
reformulation, two new difficulties arise. As we shall see in the next section, the equation for ψ contains a singular 
coefficient which blows up to infinity at r = 0. Secondly, due to nonzero swirl, a careful analysis of streamlines is 
required near the axis r = 0 in order to solve the three transport equations (S, B, 
).

The rest of the paper is organized as follows. In §2, we introduce a Helmholtz decomposition for axisymmet-
ric velocity fields, then reformulate the Euler–Poisson equations into a quasilinear second order elliptic system for 
(ϕ, �, ψ), and three transport equations for the hyperbolic quantities (S, B, 
). In §3, the unique solvability of a 
boundary value problem with a linearized elliptic system is discussed. We also prove the unique existence of C1 so-
lutions to transport equations. Finally, we implement an iteration to prove Theorem 1.5, the main result of this work, 
in §4.

2. Helmholtz decomposition for axisymmetric flow of nonzero swirl

Assume that (ρ, ux, ur, uθ , S, �) ∈ (C1(N ))5 ×C2(N ) is a solution to (1.6) with satisfying ρ > 0 and ux > 0 in 
N . We define a pseudo-Bernoulli’s function K by

K := B −�. (2.1)

Then one can directly check that (1.6) is equivalent to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(ρux)+ ∂r(ρur)+ ρur
r

= 0,

ρ(ux∂x + ur∂r )ur − ρu2
θ

r
+ ∂rp = ρ∂r�,

ρ(ux∂x + ur∂r )
= 0,

ρ(ux∂x + ur∂r )K = 0,

ρ(ux∂x + ur∂r )S = 0,

��= ρ − b.

(2.2)

As in [5], we introduce a new representation of the velocity field u. For

V(x)= h(x, r)er +ψ(x, r)eθ , ϕ(x)= ϕ(x, r),
set

u(x)= ∇ϕ(x)+ curl V(x) (2.3)

Suppose that her , ψeθ and ϕ are C2 in N . Then a straightforward computation yields

u(x) =
(

1
r
∂r (rψ)+ ∂xϕ

)
ex + (−∂xψ + ∂rϕ)er + ∂xh(x, r)eθ , (2.4)

from which we derive that

ux = 1

r
∂r (rψ)+ ∂xϕ, ur = −∂xψ + ∂rϕ, uθ = 


r
= ∂xh. (2.5)
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Remark 2.1. The representation (2.4) is well defined in N up to the axis r = 0 if ur = uθ = 0 on r = 0. Hereafter, any 
continuous vector field W =Wxex +Wrer +Wθeθ represented in the cylindrical coordinates is considered to satisfy 
Wr =Wθ = 0 on the axis {r = 0}.

Hereafter we denote the velocity field as

u = q(r,ψ,Dψ,Dϕ,
), (2.6)

for D = (∂x, ∂r ) where q = (qx, qr , qθ ) is given by the righthand sides of (2.5).
The vorticity field ω(x) = curl u(x) = ωxex +ωrer +ωθeθ is given by

ωx(x, r)= 1

r
∂r (ruθ ), ωr(x, r)= −∂xuθ , ωθ (x, r)= ∂xur − ∂rux.

For r > 0, we have

divV(x)= 1

r
∂r (rh), �V(x)=�(her )+�(ψeθ )=

(
�− 1

r2

)
her + (�− 1

r2
)ψeθ .

Substituting the representations into curl u(x) = curl curl V(x) = ∇divV(x) −�V(x), we obtain that

−�(ψeθ )= ωθeθ . (2.7)

And, from (2.1), (2.2) and (2.5), it follows that

ωθ = ∂xur − ∂rux = 1
ux

[(ux∂x + ur∂r )ur − ∂r 1
2 |u|2 + uθ∂ruθ ]

= 1
1
r
∂r (rψ)+∂xϕ

(
T (ρ,S)∂rS − ∂rK + 


r2 ∂r


)
,

(2.8)

for

T (ρ,S)= A

cv(γ − 1)
exp

(
S

cv

)
ργ−1.

Remark 2.2. Note that if ψeθ is C2 in N , and if ωθ = 0 on r = 0, the equation (2.7) is well defined. 
Since ψ is assumed to depend only on (x, r) in the cylindrical coordinates, if limr→0+(� − 1

r2 )ψ(x, r) =
limr→0+

(
ψxx + 1

r
∂r (rψr)− 1

r2ψ
)
(x, r) = 0, then the equation −�(ψeθ ) = ωθeθ can be simply written as

−
(
�− 1

r2

)
ψ(x, r)= ωθ(x, r). (2.9)

The main challenge of this work is to find a solution ψ to (2.9) with satisfying

lim
r→0+(�− 1

r2
)ψ(x, r)= lim

r→0+

(
ψxx + 1

r
∂r (rψr)− 1

r2
ψ

)
(x, r)= 0 for all x ∈ [0,L] (2.10)

provided that the compatibility condition stated in Remark 1.6 holds. If the existence of such a solution ψ is proved, 
then ψ(x, r)eθ solves the vector equation (2.7). Details are discussed in Proposition 3.3.

It follows from (1.4) and (2.1) that

ρ =H(S,K +�− 1

2
|q(r,ψ,Dψ,Dϕ,
)|2), (2.11)

where

H(ξ, τ )=
[
(γ − 1)τ

γA
exp

(
− ξ

cv

)] 1
γ−1

. (2.12)

Using (2.8) and (2.9), it can be directly checked that (2.2) is equivalent to the following system:
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div

(
H(S,K +�− 1

2
|q(r,ψ,Dψ,Dϕ,
)|2)q(r,ψ,Dψ,Dϕ,
)

)
= 0, (2.13)

��=H(S,K +�− 1

2
|q(r,ψ,Dψ,Dϕ,
)|2)− b, (2.14)

−�(ψeθ )=
T (ρ,S)∂rS − ∂rK + 


r2 ∂r


1
r
∂r (rψ)+ ∂xϕ

eθ , (2.15)

ρ

[(
1

r
∂r (rψ)+ ∂xϕ

)
∂x + (−∂xψ + ∂rϕ)∂r

]
S = 0, (2.16)

ρ

[(
1

r
∂r (rψ)+ ∂xϕ

)
∂x + (−∂xψ + ∂rϕ)∂r

]
K = 0, (2.17)

ρ

[(
1

r
∂r (rψ)+ ∂xϕ

)
∂x + (−∂xψ + ∂rϕ)∂r

]

= 0. (2.18)

Next, we derive the corresponding boundary conditions for (ϕ, ψ) from (1.18), (1.21) and (1.22). If ϕ = k1 for 
some constant k1 and ψx = 0 on �0, then u given by (2.4) satisfies (1.18) on �0. Also, if ψ = k2 for some constant k2
and ∂nwϕ = 0 on �w , then (1.21) holds. So we prescribe:

ϕ = 0, on �0, ∂nwϕ = 0 on �w, (2.19)

−∂xψ(0, r)= 0 on �0 and ψ = 0 on �w. (2.20)

At the exit �L of nozzle N , we fix a boundary condition for ψ as

∂xψ(L, r)= 0 on �L. (2.21)

We also require

ψ(x,0)= 0, ∀x ∈ [0,L] (2.22)

so that u(x) given by (2.4) satisfies a necessary condition to be a C1 axisymmetric vector field in N . See Remark 1.4.
We collect the boundary conditions for (ϕ, ψ, �, S, K, 
) as follows

ϕ = 0 on �0 and ∂nwϕ = 0 on �w, (2.23)

�=�bd on �0 ∪ �L, ∂nw�= 0 on �w, (2.24)

∂xψ(0, r)= 0 on �0, ∂xψ(L, r)= 0 on �L, and ψ = 0 on �w, (2.25)

(S,K,
)= (Sen,Ken, rνen) on �0, (2.26)

Aexp

(
S

cv

)
Hγ

(
S,K +�− 1

2
|q(r,ψ,Dψ,Dϕ,
)|2

)
= pex on �L. (2.27)

Theorem 1.5 will directly follow from the following theorem.

Theorem 2.3. Let σ > 0 be defined by (1.25) in Theorem 1.5. Under the same assumptions as Theorem 1.5, there 
exists a constant σ3 > 0 depending only on the data and α so that if

σ ≤ σ3, (2.28)

then the boundary value problem (2.13)–(2.18) with (2.22)–(2.27) has an axially symmetric solution (ϕ, ψ, �, S, K, 
)
satisfying

‖(ϕ,�)− (ϕ0,�0)‖(−1−α,�w)
2,α,N + ‖ψeθ‖2,α,N + ‖(S,K,
)− (S0,B0,0)‖1,α,N ≤Cσ, (2.29)

for constant C > 0 depending only on the data and α.
Moreover, there exists a constant σ4 > 0 depending only on the data and α such that if

σ +ω4(Sen,Ben, νen,�bd)≤ σ4, (2.30)

then the axially symmetric solution (ϕ, ψ, �, S, K, 
) with satisfying (2.29) is unique.
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3. Linear boundary value problem associated with (2.13)–(2.18)

3.1. Linearization of (2.13)–(2.18)

To prove Theorem 2.3, we first investigate the unique solvability of a linear boundary value problem associated 
with the nonlinear boundary value problem of (2.13)–(2.18) and (2.22)–(2.27). For (ζ, η, z) ∈ R

3, v = (v1, v2, v3), s =
(s1, s2, s3) ∈ R

3, define A = (A1, A2, A3) and B by

Aj(ζ, η, z,v, s)= B(ζ, η, z,v, s)vj for j = 1,2,3,

B(ζ, η, z,v, s)=H
(
ζ, η+ z− 1

2 |v + s|2
)
.

Set K0 = B0 for B0 given by (1.17), and denote V0 = (S0, K0, �0, Dϕ0, 0). Set

aij (x)= ∂vj Ai(V0), bi(x)= ∂zAi(V0) ci(x)= ∂vi B(V0), d(x)= ∂zB(V0) (3.1)

for i, j = 1, 2, 3. Note that aij , bi, ci, d are functions of x only because V0 depends only on x ∈ [0, L].

Lemma 3.1. The coefficients aij , bi, ci, d defined by (3.1) satisfy the following properties:

(a) The matrix [aij (x)]3
i,j=1 is diagonal and a22(x) ≡ a33(x) in N , and there exists a constant ν1 > 0 satisfying

ν1I3 ≤ [aij (x)]3
i,j=1 ≤ 1

ν1
I3 for all x ∈ N , (3.2)

where the constant ν1 depends only on the data.
(b) For each i = 1, 2, 3, we have

b1(x)+ c1(x)≡ 0, bj (x)= cj (x)≡ 0 for j = 2,3 in N . (3.3)

(c) For each k ∈ Z+, there exists a constant Ck > 0 depending only on the data and k such that

3∑
i=1

‖aii‖k,N + (‖b1‖k,N + ‖c1‖k,N )+ ‖d‖k,N ≤ Ck. (3.4)

(d) There exists a constant ν2 > 0 depending only on the data such that

d(x)≥ ν2 in N . (3.5)

Lemma 2.17 has been proved in [5] so we skip to prove it. But we remark that (3.3) in Lemma 2.17 is essential for 
obtaining the well-posedness of the linearized elliptic system (3.8) stated below.

For q(r, ψ, Dψ, Dϕ, 
) defined by (2.6), set

t(r,ψ,Dψ,
) := q(r,ψ,Dψ,Dϕ,
)− ∇ϕ.
For later use, we further represent t(r, ψ, Dψ, 
) as

t(r,ψ,Dψ,
)= t1(r,ψ,Dψ)+ t2(r,
)

for

t1(r,ψ,Dψ)= 1

r
∂r (rψ)ex − ∂xψer , t2(r,
)= 


r
eθ . (3.6)

Then (2.13) and (2.14) can be written as

div (A(S,K,�,Dϕ, t(r,ψ,Dψ,
)))= −div (B(S,K,�,Dϕ, t(r,ψ,Dψ,
)))t(r,ψ,Dψ,
)) ,
��= B(S,K,�,Dϕ, t(r,ψ,Dψ,
))− b.

For (�0, ϕ0) given by (1.16), set
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(�,φ) := (�−�0, ϕ − ϕ0).

Set K0 := B0, and denote

U := (�,φ,ψ), W := (S,K,
), W0 := (S0,K0,0), Wen := (Sen,Ken, rνen).
Then (�, φ) satisfy the equations{

L1(�,φ)= div F(x,W −W0,�,Dφ, t(r,ψ,Dψ,
)),
L2(�,φ)= f1(x,W −W0,�,Dφ, t(r,ψ,Dψ,
)),

(3.7)

where L1, L2, F = (F1, F2, F3) and f1 are defined as follows:{
L1(�,φ)= ∑3

i=1 ∂i(aii(x)∂iφ)+ ∂x(b1(x)�),

L2(�,φ)=�� − c1(x)∂xφ − d(x)�, (3.8)

and

Fi(x,Q) = −B(V0 +Q)si −
1∫

0

D(η1,η2,s)Ai(V0 + tQ)dt · (η1, η2, s) (3.9)

−
1∫

0

D(z,v)Ai(V0 + tQ)−D(z,q)Ai(V0)dt · (z,v), i = 1,2,3,

f1(x,Q) =
1∫

0

D(η1,η2,s)B(V0 + tQ)dt · (η1, η2, s)− (b− b0) (3.10)

+
1∫

0

D(z,v)B(V0 + tQ)−D(z,v)B(V0)dt · (z,v)

with Q = (η1, η2, z, v, s) ∈ R
3 × (R3)2. We subtract the expression

Aexp

(
S0

cv

)
Hγ

(
S0,K0 +�0 − 1

2
|Dϕ0|2

)
= pL on �L

from (1.22) to get

∂xφ(L, r)= g(r,W −W0,Dφ, t(r,ψ,Dψ,
)) on �L (3.11)

with g defined by

g(r,K −K0,Dφ, t(r,ψ,Dψ,
)) = −1

r
∂r (rψ)+ K −K0 +�bd − 1

2 |Dφ + t(r,ψ,Dψ,
)|2
ū(L)

−
p

γ−1
γ
ex

(
Aexp

(
S
cv

)) 1
γ − p

γ−1
γ

L

(
Aexp

(
S0
cv

)) 1
γ

(γ − 1)ū(L)
(3.12)

for �bd =�bd −�0. From (1.20) and (2.19), we can derive the boundary conditions for � and φ:

φ = 0 on �0, ∂nwφ = 0 on �w, (3.13)

� =�bd on �0 ∪ �L, ∂nw� = 0 on �w. (3.14)

Since W0 is a constant vector, (2.15) can be rewritten as

−�(ψeθ )= f2 (x,W −W0,�,Dφ, t(r,ψ,Dψ,
), ∂r (W −W0)) eθ (3.15)
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for f2 defined by

f2(x,Q, ∂r (W −W0))=
T (B(V0 +Q),S0 + η1)∂r (S − S0)− ∂r (K −K0)+ 


r2 ∂r(
−
0)

∂xϕ0(x)+ v1 + s1 . (3.16)

By introducing the vector field

M(S,K,�,∇φ, t(r,ψ,Dψ,
))
:=H(S,K +�0 +� − 1

2
|∇ϕ0 + ∇φ + t(r,ψ,Dψ,
)|2) (∇ϕ0 + ∇φ + t1(r,ψ,Dψ,
))

=H(S,K +�0 +� − 1

2
|∇ϕ + t(r,ψ,Dψ,
)|2)

[(
∂xϕ + 1

r
∂r (rψ)

)
ex + (∂rϕ − ∂xψ)er

]
,

(3.17)

we can rewrite the transport equations (2.16)–(2.18) in the form of

M · ∇W = 0, in N ,
W(0, r)=Wen(r), on �0.

(3.18)

Here M =Mxex +Mrer satisfies

∂x(rMx)+ ∂r (rMr)= 0 ∀(x, r) ∈�= [0,L] × [0,1], Mr(x,0)=Mr(x,1)= 0. (3.19)

Therefore (3.18) can be regarded as transport equations in a two dimensional rectangular domain with the divergence-
free vector field rM.

3.2. Linearized elliptic system for (�, φ)

Suppose that F = (F1, F2, F3)(x, r) ∈ [C1,α
(−α,�w)(N )]3, f1(x, r) ∈ Cα(N ) and g(r) ∈ C1,α

(−α,∂�L)(�L). Consider 
the linear system{

L1(�,φ)= divF
L2(�,φ)= f1

in N (3.20)

with boundary conditions

φ = 0 on �0, ∂nwφ = 0 on �w, ∂xφ = g(r) on �L (3.21)

� =�bd on �0 ∪ �L, ∂nw� = 0 on �w. (3.22)

Lemma 3.2. Suppose that F = (F1, F2, F3)(x, r) ∈ (C1,α
(−α,�w)(N ))

3, f1(x, r) ∈ Cα(N ) and g(r) ∈ C1,α
(−α,∂�L)(�L)

for α ∈ (0, 1). If, in addition, �bd satisfies the compatibility condition

∂nw�bd = 0 on (�0 ∪ �L)∩ �w, (3.23)

then the linear boundary value problem (3.20)–(3.22) has a unique axially symmetric solution (φ, �) = (φ, �)(x, r) ∈
(C1,α(N ) ∩C2,α(N ))2. Moreover, (φ, �) satisfy the estimate

‖(φ,�)‖1,α,N ≤ C1(‖g‖α,�L + ‖�bd‖1,α,N + ‖F‖α,N + ‖f1‖α,N ),
‖(φ,�)‖(−1−α,�w)

2,α,N ≤ C1(‖g‖(−α,∂�L)1,α,�L
+ ‖�bd‖(−1−α,�w)

2,α,N + ‖F‖(−α,�w)1,α,N + ‖f1‖α,N )
(3.24)

where C1 > 0 depends only on the data and α.

Proof. The well-posedness of (3.20)–(3.22) and the estimate (3.24) have been proved in [4, Proposition 4.1]. So we 
only prove the axi-symmetric property of the unique solution (φ, �) to (3.20)–(3.22).

For any θ ∈ [0, 2π), define

f θ (x)= f (x1, x2 cos θ − x3 sin θ, x2 sin θ + x3 cos θ).

Since a22 ≡ a33 and ∂2
x + ∂2

x is invariant under the rotation group, we have

2 3
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L1(�
θ ,φθ )= divF(x1, x2 cos θ − x3 sin θ, x2 sin θ + x3 cos θ)= divF(x),

L2(�
θ ,φθ )= f1(x1, x2 cos θ − x3 sin θ, x2 sin θ + x3 cos θ)= f1(x),

where we have used the axially symmetric properties of F and f1. Therefore (φθ , �θ) is also a solution to 
(3.20)–(3.22). By the uniqueness of a solution, we conclude that (φθ, �θ) = (φ, �), therefore φ and � are axially 
symmetric. �
3.3. Elliptic equation for ψ with a singular coefficient

We consider the following boundary value problem for a vector field V :N → R
3:

−�V = f2(x, r)eθ in N ,
∂xV = 0 on �0 ∪ �L,
V = 0 on �w.

(3.25)

If f2eθ is Cα in N , then the standard elliptic theory ([16]) yields that (3.25) has a unique solution V :N →R
3 which 

satisfies the estimate

‖V‖2,α,N ≤C‖f2eθ‖α,N
for a constant C > 0 depending only on L and α. Note that the continuity of f2(x, r)eθ in N naturally implies that the 
function f2(x, r) satisfies the compatibility condition

f2(x,0)≡ 0, ∀x ∈ [0,L]. (3.26)

As discussed in Remark 2.1, we will show that the unique solution V to (3.25) has the form of

V =ψ(x, r)eθ , (3.27)

where ψ solves

−
(
∂xx + 1

r
∂r (r∂r )− 1

r2

)
ψ = f2(x, r) in N ,

−∂xψ(0, r)= 0 on �0,

ψ = 0 on �w,

∂xψ = 0 on �L,

ψ = 0 on N ∩ {r = 0}

(3.28)

in the following sense:

(i) As a function of (x, r) in a two dimensional rectangle � = (0, L) ×(0, 1), ψ is C2 in �, and satisfies the equation 
and all the boundary conditions of (3.28) pointwisely;

(ii) As a function of x ∈ N , ψ is not necessarily C2 up to r = 0, but it is a solution to (3.28) in distribution sense, 

where we write as (� − 1
r2 )ψ =

(
∂xx + 1

r
∂r (r∂r ) − 1

r2

)
ψ ;

(iii) As a vector field in N , ψeθ is a classical solution to (3.25).

Proposition 3.3. For a fixed α ∈ (0, 1), suppose that a vector field f2(x, r)eθ : N → R
3 is Cα in N . Note that the 

compatibility condition (3.26) is naturally imposed. Then the linear boundary value problem (3.25) has a unique 
solution V :N →R

3 which satisfies the estimate (3.27). Furthermore, V is represented as

V(x)=ψ(x, r)eθ in N , (3.29)

where ψ solves (3.28) in the sense of (i)–(iii) stated above. Furthermore, ψ satisfies the estimate

‖ψ‖2,α,� ≤C2‖f2‖α,N (3.30)

for a constant C2 > 0 depending only on the data and α, where ψ is regarded as a function defined in the two 
dimensional rectangle � = [0, L] × [0, 1]. Note that V is well defined by (3.29) due to the condition ψ(x, 0) = 0 for 
all x ∈ [0, L].
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Proof. We prove this proposition in two methods.

(Method I) 1. In order to represent V in the form of (3.29), we need to find a solution ψ to (3.28).
The main idea to solve (3.28) is to rewrite it as a boundary value problem in R5 so that the singular term ψ

r2 is 
removed from the equation for ψ . This idea has been used extensively in the study of Navier–Stokes equations, see 
[18,22].

Set

ξ(x, r) := ψ(x, r)

r
, f (x, r) := − f2(x, r)

r
. (3.31)

We regard ξ and f as functions defined in

D := (0,L)× {y′ ∈R
4 : |y′|< 1} ⊂R

5,

where y = (x, r, ω) ∈ R ×R
+ × S3 represent cylindrical coordinates in R5. By the compatibility condition (3.26), we 

have

|f (x, r)| ≤ [f2]αr−1+α. (3.32)

Define

F(x, y′)= (0,F (x, r)y2,F (x, r)y3,F (x, r)y4,F (x, r)y5), ∀(x, y′) ∈ D,
with

F(x, r)= 1

r4

r∫
0

s3f (x, s)ds,

so that f (x, r) = divyF(x, y′) for ∀(x, y′) ∈ D. By using (3.32), one can directly check that F ∈Cα(D) and

‖F‖
α,D ≤C‖f2‖α,N . (3.33)

A formal computation shows that ψ solves (3.28) if ξ solves

�yξ = divyF(x, y′) in D,
−∂xξ(0, y′)= 0 on B0 := {0} × {y′ ∈ R

4 : |y′| ≤ 1},
ξ(x, y′)= 0 on Bw := [0,L] × {y′ : |y′| = 1},
∂xξ(L,y

′)= 0 on BL := {L} × {y′ ∈ R
4 : |y′| ≤ 1}.

(3.34)

(3.34) has a unique weak solution ξ ∈H 1(D), and the weak solution satisfies

‖ξ‖1,α,D ≤C‖F‖α,D ≤ C‖f2‖α,N . (3.35)

The estimate (3.35) is obtained by adjusting Theorem 3.13 of [17]. As in Lemma 3.2, we can prove that ξ is axially 
symmetric (i.e. ξ(y) = ξ(x, |y′|)) by using the special orthogonal group SO4 and the uniqueness of a weak solution 
to (3.34). Due to the uniqueness of a weak solution to (3.34), ξ is axially symmetric i.e. ξ(y) = ξ(x, r).

For each constant δ ∈ (0, 1), define Dδ = {y ∈ D : r > δ}. Since f is Cα in D away from r = 0, the standard 
Schauder estimate ([16]) yields a constant Cδ > 0 depending on (δ, α) to satisfy

‖ξ‖2,α,Dδ ≤ Cδ‖f ‖α,Dδ/2 ≤ Cδ‖f2‖α,N . (3.36)

Therefore ψ = rξ satisfies all the boundary conditions in (3.28) and the equation −(� − 1
r2 )ψ = f2(x, r) in 

N \ {r = 0} in the classical sense.

2. Next, we show that ψ is C2 with respect to (x, r) especially up to r = 0. Regarding ψ as a function of two 
variables (x, r) ∈� for � = [0, L] × [0, 1], ψ solves the following two dimensional linear boundary value problem:

(∂2
x + ∂2

r )ψ = −∂rξ − f2

(
= −

(
1
r
∂r − 1

r2

)
ψ − f2

)
, in int�= (0,L)× (0,1),

−∂xψ(0, r)= ∂xψ(L, r)= 0 ∀r ∈ [0,1],
ψ(x,0)=ψ(x,1)= 0 ∀x ∈ [0,L].

(3.37)
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Since −∂rξ − f2 is Cα in � due to (3.35), it follows from the maximum principle and Hopf’s lemma that the boundary 
value problem (3.37) has a unique classical solution. Furthermore, the standard Schauder estimate indicates that the 
classical solution, which is ψ , is C2,α up to the boundary of �. Then we obtain from (3.35) that ψ satisfies the estimate 
(3.30). Note that (3.30) does not mean that ψ as a function in N is C2 up to r = 0. In fact, ψ is not necessarily C2 in 
N up to r = 0. In the next step, we show that ψ satisfies (2.10), and that the vector field ψeθ is C2 in N up to r = 0
so that Remark 2.2 implies that V =ψeθ is the unique C2 solution to (3.25).

3. In this step, ψ is regarded as a function of the cylindrical coordinates in N . By L’Hospital’s rule, we have

lim
r→0+

(
1

r
∂r − 1

r2

)
ψ = lim

r→0+
r∂rψ −ψ

r2
= lim
r→0+

r∂2
r ψ + ∂rψ − ∂rψ

2r
= 1

2
∂2
r ψ(x,0),

taking the limit r → 0+ to the equation −
(
∂xx + 1

r
∂r (r∂r ) − 1

r2

)
ψ = f2(x, r), we obtain that

− lim
r→0+

3

2
∂2
r ψ(x, r)= f2(x,0)+ ∂2

xψ(x,0)= 0 for all x ∈ [0,L],
where the second equality is obtained from (3.26) and the condition ψ(x, 0) = 0 on [0, L]. This indicates that

∂2
r ψ(x,0)≡ 0.

Then a straight forward computation with using ∂2
r ψ(x, 0) ≡ 0 shows that the vector field V =ψeθ is C2 in N with

DkxV(x,0,0)≡ 0 for k = 0,1,2.

By the uniqueness of a C2 solution to (3.25), we finally conclude that (3.27) holds.

(Method II) As another approach to prove the proposition, we modify the arguments used in Lemma 2.2 of [19].
1. Let V = V1(x)e1 + V2(x)e2 + V3(x)e3 be a C2 solution to (3.25). Here, each ej for j = 1, 2, 3 denotes the 

unit vector in the positive direction of xj -axis for x = (x1, x2, x3) ∈ N . Since er · e1 = 0, we have �V1 = 0 in N , 
∂x1V1 = 0 on �0 ∪�L, and V1 = 0 on �w . And, this implies that V1 ≡ 0 in N . So it suffices to consider the cylindrical 
representation of the vector field V2e2 + V3e3 in N .

Let T be a one dimensional torus with period 2π . As functions of (x, r, θ) ∈ [0, L] ×[0, 1] ×T(=:Dcyl), we define{
Ur(x, r, θ) := V · er = V2(x, r cos θ, r sin θ) cos θ + V3(x, r cos θ, r sin θ) sin θ

Uθ (x, r, θ) := V · eθ = −V2(x, r cos θ, r sin θ) sin θ + V3(x, r cos θ, r sin θ) cos θ.

By the boundary conditions for V in (3.25), (Ur , Uθ) satisfy

∂x(Ur,Uθ )= 0 on �0 ∪ �L, (Ur,Uθ )= 0 on �w. (3.38)

Due to C2,α regularity of V in N , the functions Ux , Ur and Uθ are C2,α with respect to the cylindrical variables 
(x, r, θ) in Dcyl, and there exists a constant C depending only on (L, α) such that

‖(Ur,Uθ )‖2,α,Dcyl ≤C‖V‖2,α,N (3.39)

Furthermore, Ux , Ur and Uθ satisfy⎧⎪⎪⎨
⎪⎪⎩
Lcyl

1 (Ur ,Uθ ) :=
(
∂2
x + ∂2

r + 1
r
∂r + 1

r2 ∂
2
θ − 1

r2

)
Ur − 2

r2 ∂θUθ = 0,

Lcyl
2 (Ur ,Uθ ) :=

(
∂2
x + ∂2

r + 1
r
∂r + 1

r2 ∂
2
θ − 1

r2

)
Uθ + 2

r2 ∂θUr = −f2(x, r),

in intDcyl. (3.40)

The left-hand sides of the expressions in (3.40) are well-defined for r > 0, and are well defined up to r = 0 by 
continuation with taking the limits as r tends to 0+. In taking the limits, note that the fact of f2(x, 0) is also essential.

2. For each n ∈N, define functions Unr , U
n
θ by

Unr (x, r, θ) :=
1

2n

2n−1∑
k=0

Ur

(
x, r, θ + 2πk

2n

)
, Unθ (x, r, θ) :=

1

2n

2n−1∑
k=0

Uθ

(
x, r, θ + 2πk

2n

)
in Dcyl.

Each (Unr , U
n
θ ) satisfies the following properties:
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(i) Since the coefficient of each differential operator is independent of θ , it follows from (3.40) that (Unr , U
n
θ ) satisfy

(Lcyl
1 ,L

cyl
2 )(U

n
r ,U

n
θ )(x, r, θ)= (0,−f2(x, r)) in Dcyl;

(ii) (3.39) yields the estimate

‖(Unr ,Unθ )‖2,α,Dcyl ≤C‖V‖2,α,N ; (3.41)

(iii) By definition, each (Unr , U
n
θ ) satisfies

{
Unr (x, r, θ)=Unr (x, r, θ + 2πj

2n )

Unθ (x, r, θ)=Unθ (x, r, θ + 2πj
2n ),

∀0 ≤ j ≤ 2n − 1, n≥ 1. (3.42)

By (3.41) and Arzelá–Ascoli theorem, there exists a sequence {nk} with limk→∞ nk = ∞ such that {(Unkr , Unkθ )}
converges to functions (Ũr , Ũθ ) in C2,α/2(Dcyl). By properties (i) and (ii), (Ũr , Ũθ ) satisfy

(Lcyl
1 ,L

cyl
2 )(Ũr , Ũθ )(x, r, θ)= (0,−f2(x, r)) in Dcyl, (3.43)

and

(Ũr , Ũθ )(x, r, θ)= (Ũr , Ũθ )
(
x, r, θ + 2πj

2nk

)
∀0 ≤ j ≤ 2nk − 1, ∀k ≥ 1.

Since (Ũr , Ũθ ) are continuous in θ ∈ T, we conclude that Ũr,θ (x, r, θ) = Ũr,θ (x, r, θ + 2κπ) for any 0 ≤ κ < 1, i.e., 
Ũr , Ũθ are independent of θ . Then the system (3.43) for (Ũr , Ũθ ) is decomposed into two separate elliptic equations:(

∂2
x + ∂2

r + 1

r
∂r − 1

r2

)
(Ũr , Ũθ )(x, r)= (0,−f2(x, r)) in Dcyl. (3.44)

3. To simplify notation, set ψ(x, r) := Ũθ (x, r) for (x, r) ∈ [0, L] × [0, 1]. Define a vector field W :Dcyl → R
3

by

W(x, r, θ)=ψ(x, r)eθ .
Note that ψ satisfies the estimate ‖ψ‖2,α,Dcyl ≤ C‖V‖2,α,N by (3.41). By (3.44), ψ(x, r) can be represented as

ψ(x, r)= r2
(
∂2
x + ∂2

r + 1

r
∂r

)
ψ(x, r)+ r2f2(x, r)

for each r > 0, and the representation is well defined up to r = 0 by taking limit r → 0+. Furthermore, we obtain that

ψ(x,0)≡ 0 for all x ∈ [0,L]. (3.45)

By repeating Step 3 of (Method 1), we obtain from (3.44) and (3.45) that ∂2
r ψ(x, 0) ≡ 0 for all x ∈ [0, L]. This 

implies that the vector field W =ψeθ is in fact C2 in N as a vector field of three dimensional Euclidean coordinates. 
Furthermore, W solves (3.25). By the uniqueness of a solution to (3.25), we conclude that

V ≡ W in N . �
Remark 3.4. For ψ in Proposition 3.3, the vector field t1(r, ψ, Dψ) : N → R

3 given by (3.6) is a C1 axisymmetric 
vector field. Furthermore, there exists a constant C > 0 depending only on (L, α) such that

‖t1(r,ψ,Dψ)‖1,α,N ≤ C‖ψ‖2,α,�. (3.46)
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3.4. Transport equation with a div-free vector field

Finally, we need to solve a linearized version of the problem (3.18). We regard (3.18) as a problem defined in a two 
dimensional rectangular domain � = [0, L] × [0, 1].

Proposition 3.5. Suppose that a vector field M(x, r) = (Mx(x, r), Mr(x, r)) satisfies

∂x(rMx)+ ∂r (rMr)= 0 ∀(x, r) ∈�= [0,L] × [0,1], Mr(x,0)=Mr(x,1)= 0, (3.47)

and that Mx satisfies the estimate

‖Mx‖(−α,{r=1})
1,α,� ≤K0, (3.48)

for a constant K0 > 0. In addition, assume that there exists a constant ν∗ > 0 satisfying

Mx ≥ ν∗ in �. (3.49)

Then there exists a constant ε0 > 0 small depending on (K0, L) such that if Mr satisfies

‖Mr‖(−α,{r=1})
1,α,� ≤ ε0, (3.50)

then the problem

(Mx∂x +Mr∂r)W(x, r)= 0 in �, W =Wen on �en = ∂�∩ {x = 0} (3.51)

has a unique solution W ∈C1,α(�) satisfying

‖W‖1,α,� ≤C∗‖Wen‖1,α,�en , (3.52)

where the constant C∗ depends only on (L, ν∗, K0, ε0, α).

Proof. Set

w(x, r) :=
r∫

0

sMx(x, s)ds in �. (3.53)

It follows from (3.47)–(3.49) that w satisfies{
∂rw = rMx ≥ ν∗r
∂xw(x, r)= −rMr(x, r) in �,

∂xw = 0 on ∂�∩ {r = 0,1},
(3.54)

and

‖w‖(−1−α,{r=1})
2,α,� ≤ CK0 (3.55)

where the constant C depending only on L.
Since ∂xw(x, 0) = ∂xw(x, 1) = 0, we have w(x, 0) = w(0, 0) and w(x, 1) = w(0, 1). Also ∂rw(x, r) =

rMx(x, r) ≥ ν∗r , then w(x, r) is strictly increasing in r ∈ [0, 1] for each fixed x ∈ [0, L]. This implies that for each 
x ∈ [0, L], the closed interval [w(x, 0), w(x, 1)] is simply fixed as [w(0, 0), w(0, 1)]. Therefore, one can uniquely 
define a function ϑ :� → [0, 1] to satisfy

w(x, r)=w(0, ϑ). (3.56)

Set G(r) :=w(0, r). Since G : [0, 1] → [w(0, 0), w(0, 1)] is invertible, the function ϑ is represented as

ϑ(x, r)= G−1 ◦w(x, r). (3.57)

For such a function ϑ , W given by
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W(x, r)=Wen(ϑ(x, r)) (3.58)

solves (3.51) provided that ϑ is C1 in �. It follows from (3.54) and (3.56) that

D(x,r)ϑ(x, r)= D(x,r)w(x, r)

∂rw(0, ϑ(x, r))
= r(−Mr,Mx)(x, r)
ϑ(x, r)Mx(0, ϑ(x, r))

(3.59)

unless ϑ(x, r) = 0. By the method of characteristics, ϑ(x, r) is represented as

ϑ(x, r)− r = −
x∫

0

(
Mr

Mx

)
(s, κ(s;x, r))ds, (3.60)

where (s, κ(s; x, r)) solves⎧⎨
⎩
d
ds
κ(s;x, r)=

(
Mr
Mx

)
(s, κ(s;x, r)) for 0 ≤ s < x

κ(x;x, r)= r.
(3.61)

for each (x, r) ∈ [0, L] × [0, 1]. Note that ϑ(x, r) = κ(0; x, r). By (3.60), one can choose ε0 > 0 small depending 
only on (K0, L) so that if r ≥ 1

2 , then ϑ(x, r) ≥ 1
4 holds, and this implies that

‖ϑ‖1,α,[0,L]×[1/2,1] ≤ C‖M‖α,�. (3.62)

To achieve C1,α estimate of ϑ(x, r) on [0, L] × [0, 1/2], we differentiate (3.61) with respect to (x, r) to get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
ds
∂xκ(s;x, r)= ∂r

(
Mr
Mx

)
(s, κ(s;x, r))∂xκ(s;x, r),

d
ds
∂rκ(s;x, r)= ∂r

(
Mr
Mx

)
(s, κ(s;x, r))∂rκ(s;x, r),

(∂xκ, ∂rκ)(x;x, r)=
(

−
(
Mr
Mx

)
(x, r),1

)
.

(3.63)

Then we apply Gronwall’s inequality to obtain that

‖ϑ‖1,α,[0,L]×[0,1/2] ≤ C‖M‖α,�. (3.64)

Finally (3.52) is obtained from combining (3.62) and (3.64) with (3.58). The uniqueness of a solution can be directly 
checked by the method of characteristics. �
Remark 3.6. By (3.47) and (3.58), we have

∂rW(x,0)=W ′
en(ϑ(x,0))∂rϑ(x,0)=W ′

en(0)∂rϑ(x,0).

This implies that if W ′
en(0) = 0, then ∂rW(x, 0) = 0 for all x ∈ [0, L]. Therefore W is a C1 axisymmetric function 

in N . From this we conclude that if Wen satisfies the compatibility condition W ′
en(0) = 0, then the problem (3.18)

with the vector field M =Mxex +Mrer satisfying (3.19) has a unique C1 axisymmetric solution W ∈ C1,α(N ) with 
satisfying the estimate

‖W‖1,α,N ≤ C∗‖Wen‖1,α,∂N∩{x=0},

for the constant C∗ > 0 depending only on (L, ν∗, K0, ε0, α).

4. Proof of the main theorems

In this section, we first prove Theorem 2.3, then prove Theorem 1.5.
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4.1. Proof of Theorem 2.3

4.1.1. Step 1: Iteration sets
Fix α ∈ (0, 1).
(i) Iteration set for (S, K, 
): For a constant δ1 > 0 to be determined later, we define

P(δ1) := Ppot(δ1)×Pvort(δ1) (4.1)

for

Ppot(δ1) := {η = (S,K)(x, r) ∈ [C1,α/2(N )]2 : ‖(S − S0,K −K0)‖1,α,N ≤ δ1},
Pvort(δ1) := {
= rV(x, r) ∈C1,α/2(N ) : ‖V‖1,α,� ≤ δ1, V(x,0)= 0 for all x ∈ [0,L]}.

(ii) Iteration set for (�, φ, ψ): For two constants δ2, δ3 > 0 to be determined later, we define

I(δ2, δ3) := Ipot(δ2)× Ivort(δ3) (4.2)

for

Ipot(δ2) := {(�,φ)(x, r) ∈ [C2,α
(−1−α,�w)(N )]2 : ‖�‖(−1−α,�w)

2,α,N + ‖φ‖(−1−α,�w)
2,α,N ≤ δ2},

Ivort(δ3) := {ψ(x, r) ∈C2,α(�) : ‖ψ‖2,α,� ≤ δ3, ψ(x,0)=ψrr(x,0)= 0 for all x ∈ [0,L]}.
By an argument similar to Remark 3.4, the following lemma is obtained.

Lemma 4.1. For each (
, ψ) ∈Pvort(δ1) ×Ivort(δ3), let t1(r, ψ, Dψ) and t2(r, 
) be given by (3.6). Then there exists 
a constant C > 0 depending only on (L, α) such that

‖t1(r,ψ,Dψ)‖1,α,N ≤ C‖ψ‖2,α,�, ‖t2(r,
)‖1,α,N ≤ C‖
‖1,α,N .

A direct computation with using Lemma 4.1 yields the following result.

Lemma 4.2. For each (η, 
) ∈ P(δ1) and (�, φ, ψ) ∈ I(δ2, δ3), let (F, f1)(x, Q), g(r, K−K0, Dφ, t(r, ψ, Dψ, 
))
and f2(x, Q, ∂rη, ∂r
) be given by (3.9), (3.10), (3.12) and (3.16), respectively, with Q = (η−η0, �, Dφ, t(r, ψ, Dψ,

)) for η0 = (S0, K0). Then there exists a constant ε1 > 0 small depending only on the data so that if δ1 +δ2 +δ3 ≤ ε1, 
then we have

‖F‖(−α,�w)1,α,N ≤ C(δ1 + δ3 + δ2
2),

‖f1‖α,N ≤ C(δ1 + δ3 +ω1(b)+ δ2
2),

‖g‖(−α,∂�L)1,α,�L
≤ C(δ1 + δ3 +ω3(�bd,pex)+ δ2

2),

‖f2‖α,N ≤ Cδ1

(4.3)

for ω1(b) and ω3(�bd, pex) given by (1.25), where the estimate constant C depends only on the data and α. In 
addition, f2 satisfies the compatibility condition

f2(x,0)= 0 for all x ∈ [0,L].
Fix (η, 
) ∈ P(δ1). For each j = 1, 2, let F(j), f (j)1 , g(j) and f (j)2 be defined as above for the fixed (η, 
), and for 
a fixed (�(j), φ(j), ψ(j)) ∈ I(δ2, δ3). There exists a constant ε2 ∈ (0, ε1] depending only on the data and α so that if 
δ1 + δ2 + δ3 ≤ ε2, then we have

‖F(1) − F(2)‖α,N + ‖f (1)1 − f (2)1 ‖α,N + ‖g(1) − g(2)‖α,�L
≤ C

(
‖ψ(1) −ψ(2)‖1,α,� + (δ1 + δ2 + δ3)‖(�(1), φ(1))− (�(2), φ(2))‖1,α,N

)
,

(4.4)

‖F(1) − F(2)‖(−α,�w)1,α,N + ‖f (1)1 − f (2)1 ‖α,N + ‖g(1) − g(2)‖(−α,∂�L)1,α,�L

≤ C
(
‖ψ(1) −ψ(2)‖2,α,� + (δ1 + δ2 + δ3)‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)

2,α,N

)
,

(4.5)
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and

‖f (1)2 − f (2)2 ‖α,N ≤Cδ1(‖ψ(1) −ψ(2)‖2,α,� + ‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)
2,α,N ) (4.6)

for a constant C > 0 depending only on the data and α.

For a fixed (η∗, 
∗) ∈ P(δ1), set

Q∗ := (η∗ − η0,�,∇φ, t(r,ψ,Dψ,
∗))

we first solve the following nonlinear boundary value problem for (�, φ, ψ):{
L1(�,φ)= div F(x,Q∗)
L2(�,φ)= f1(x,Q∗)

in N , (4.7)

−�(ψeθ )= f2(x,Q∗, ∂r (η∗,
∗))eθ in N (4.8)

with boundary conditions (2.20)–(2.22), (3.13), (1.25) and

∂xφ = g(r,K∗ −K0,∇φ, t(r,ψ,Dψ,
∗)) on �L. (4.9)

4.1.2. Step 2: Well-posedness of the nonlinear boundary value problem for (�, φ, ψ)

Lemma 4.3. Let ω1(b), ω2(Sen, Ben, ven), ω3(�bd, pex) and σ be given by (1.25). Then, there exists a constant σ5 > 0
depending on the data and α so that if

σ ≤ σ5, (4.10)

then the boundary value problem (4.7)–(4.8) with boundary conditions (2.20)–(2.22), (3.13), (1.25) and (4.9) has a 
unique solution (�, φ, ψeθ ) ∈ [C2,α

(−1−α,�w)(N )]2 ×C2,α(N , R3) with satisfying

‖�‖(−1−α,�w)
2,α,N + ‖φ‖(−1−α,�w)

2,α,N + ‖ψeθ‖2,α,N ≤ Cσ (4.11)

where the constant C depends only on the data and α.

Proof. For a fixed (�̃, φ̃, ψ̃) ∈ I(δ2, δ3), we set

Q̃∗ := (η∗ − η0, �̃,∇φ̃, t(r, ψ̃,Dψ̃,
∗)),

and solve the following associated linear boundary value problem⎧⎪⎨
⎪⎩
L1(�,φ)= div F(x, Q̃∗)
L2(�,φ)= f1(x, Q̃∗)
−�(ψeθ )= f2(x, Q̃∗, ∂r (η∗,
∗))eθ

in N ,

∂xφ = g(r,K∗ −K0,∇φ̃, t(r,ψ,Dψ̃,
∗)) on �L,

with boundary conditions (2.20)–(2.22), (3.13), (3.14).

(4.12)

By (1.25), Lemma 2.14, Proposition 3.3 and Lemma 4.2, the linear boundary value problem (4.12) has a unique 
solution (�, φ, ψeθ ) ∈ [C2,α

(−1−α,�w)(N )]2 ×C2,α(N , R3) with satisfying the estimates

‖�‖(−1−α,�w)
2,α,N + ‖φ‖(−1−α,�w)

2,α,N ≤ C1(δ1 + δ3 + δ2
2 + σ),

‖ψeθ‖2,α,N ≤ C1δ1

(4.13)

for a constant C1 > 0 depending only on the data and α.
We choose δ3 as

δ3 = 2C1δ1. (4.14)
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Under such a choice of δ3, if it holds that

C1

(
(1 + 2C1)

δ1

δ2
+ δ2 + σ

δ2

)
≤ 1

2
, (4.15)

then we have (�, φ, ψ) ∈ I(δ2, δ3). We define a mapping I(η
∗,
∗) by

I
(η∗,
∗)
1 (�̃, φ̃, ψ̃) := (�,φ,ψ) for each (�̃, φ̃, ψ̃) ∈ I(δ2, δ3),

where (�, φ, ψeθ ) ∈ C2,α
(−1−α,�w)(N )]2 × C2,α(N , R3) is the unique axisymmetric solution to (4.12). Then I(η

∗,
∗)
1

maps I(δ2, δ3) into itself. We regard I(δ2, δ3) as a compact and convex subset of [C1,α/2(N )]2 × C2,α/2(�). Since 
I
(η∗,
∗)
1 : I(δ2, δ3) → I(δ2, δ3) is continuous in [C1,α/2(N )]2 ×C2,α/2(�), the Schauder fixed point theorem implies 

that I(η
∗,
∗)

1 has a fixed point (�, φ, ψ) ∈ I(δ2, δ3).

Let (�(1), φ(1), ψ(1)) and (�(2), φ(2), ψ(2)) be two fixed points of I(η
∗,
∗)

1 . Then it follows from Lemma 3.2, 
Proposition 3.3, Lemma 4.2 and (4.14) that

‖ψ(1) −ψ(2)‖2,α,� ≤ C2δ1(‖ψ(1) −ψ(2)‖2,α,� + ‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)
2,α,N ),

and

‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)
2,α,N

≤ C2

(
‖ψ(1) −ψ(2)‖2,α,� + (δ1 + δ2)‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)

2,α,N

)
,

for a constant C2 > 0 depending only on the data and α. If it holds that

C2δ1 ≤ 1

2
, (4.16)

then we obtain from the previous two estimates that

‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)
2,α,N ≤ C3(δ1 + δ2)‖(�(1), φ(1))− (�(2), φ(2))‖(−1−α,�w)

2,α,N
for a constant C3 > 0 depending only on the data and α. We conclude that the fixed point is unique provided that

C3(δ1 + δ2)≤ 1

2
. (4.17)

We now make choices of δ1 and δ2. For σ5 > 0 to be specified later, we choose (δ1, δ2) as

δ1 = δ2

10C1(1 + 2C1)
, δ2 = 10

C1
σ5 (4.18)

for the constant C1 from (4.13). Then, (4.15) holds whenever σ ∈ (0, σ5]. Finally, we choose σ5 as

σ5 = C2
1(1 + 2C1)min{ 1

2C2
,

1

2C3 (1 + 10C1(1 + 2C1))
}, (4.19)

so that (4.16) and (4.17) hold. The proof is completed. �
4.1.3. Step 3: Existence of a solution to the problem (2.13)–(2.18) with (2.22)–(2.27)

In the proof of Proposition 4.3, we have shown that there exist constants σ5 > 0 and C > 0 depending only on 
the data and α so that if σ ≤ σ5, then for each W∗ = (η∗, 
∗) ∈ P(δ1), there exists a unique axisymmetric weak 
solution (�, φ, ψ) ∈ [C2,α

(−1−α,�w)(N )]2 × [C0,1(N ) ∩ C2,α(N ) ∩ C2,α(�)] to (4.7)–(4.8) with boundary conditions 
(2.20)–(2.22), (3.13), (1.25) and (4.9). For such functions (�, φ, ψ), define a vector field

MW∗ :=H(S∗,K∗ +�0 +� − 1

2
|q(r,ψ,Dψ,Dϕ0 +Dφ,
∗)|2)|q(r,ψ,Dψ,Dϕ0 +Dφ,
∗), (4.20)

for q and H defined by (2.6) and (2.12), respectively. Here, D denotes D = (∂x, ∂r). By (4.11) and (4.18), M = MW∗

satisfies (3.47), and the estimate
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‖MW∗ − J0ex‖(−α,{r=1})
1,α,� ≤ C(σ + σ5) (4.21)

for a constant C > 0 depending only on the data and α, where J0 is the momentum density in x-direction of the 
background solution. One can reduce σ5 from (4.19) depending only on the data and α so that whenever σ ≤ σ5, it 
follows from Proposition 3.5 and Remark 3.6 that the problem (3.18) with M = MW∗

has a unique solution W =
(S, K, 
) ∈ [C1,α(N )]3 with satisfying

‖W − (S0,K0,0)‖1,α,N ≤ C(1)T (ω2(Sen,Ben, ven)+ω3(�bd),pex)≤ C(1)T σ (4.22)

for a constant C(1)T > 0 depending only on the data and α.
By (2.27) and (3.58), 
 is represented as


(x, r)=
en(ϑ(x, r))= ϑ(x, r)ven(ϑ(x, r)),
where ϑ(x, r) is given by (3.57) associated with M = MW∗

. Set V as

V(x, r)=
{
ϑ(x,r)
r
ven(ϑ(x, r)), for (x, r) ∈ [0,L] × (0,1],

0, for (x, r) ∈ {(x,0) : x ∈ [0,L]}.
By Lemma 3.5, we have ϑ(x, 0) ≡ 0 for all x ∈ [0, L] and ‖ϑ‖1,α,N ≤ C‖MW∗‖α,N . By using (1.23) and the repre-

sentation ∂rV(x, r) = ϑ
r
v′
en(ϑ)∂rϑ + ∂rϑ ven(ϑ)r

− ϑ
r

· ven(ϑ)
r

, we get limr→0+ ∂rV(x, r) = ϑ2
r (x, 0)ν

′
en(0). From this, 

it can be directly checked that V ∈C1,α(�), and

‖V‖1,α,N ≤C(2)T σ (4.23)

for a constant C(2)T > 0 depending only on the data and α. For the constant C1 from (4.13), we choose σ6 ∈ (0, σ5] as

σ6 = σ5 min

{
1,

1

C2
1(1 + 2C1)max{C(1)T ,C(2)T }

}
. (4.24)

It follows from (4.18), (4.22) and (4.23) that if σ ≤ σ6, then we have W ∈ P(δ1).
For each σ ∈ (0, σ6], we define an iteration mapping J :P(δ1) → P(δ1) by

JW∗ =W, (4.25)

where W is the solution to the problem (3.18) with M = MW∗
. From using Lemma 4.3 and the facts that P(δ1) ×

I(δ2, δ3) is compact in [C1,α/2(N )]3 ×[C2,α/2
(−1−α/2,�w)(N )]2 ×C2,α/2(�) and that the problem (3.18) with M = MW∗

has a unique solution for each W∗ ∈ P(δ1), we obtain that J : P(δ1) → P(δ1) is continuous in [C1,α/2(N )]3. Since 
P(δ1) is convex and compact in [C1,α/2(N )]3, we conclude from Schauder fixed point theorem that J has a fixed 
point W = (S, K, 
) ∈ P(δ1). For such W , let (�, φ, ψ) be the unique fixed point of IW1 in I(δ2, δ3). Let us set 
(�, ϕ) = (�0, ϕ0) + (�, φ). Then, (S, K, 
, �, ϕ, ψ) solves the problem (2.13)–(2.18) with (2.22)–(2.27) provided 
that σ ≤ σ6.

4.1.4. Step 4: Uniqueness of a solution to the problem (2.13)–(2.18) with (2.22)–(2.27)
For each j = 1, 2, set

U (j) := (�(j), φ(j),ψ(j)), W(j) := (S(j),K(j),
(j)).
Let (U (j), W(j))(j = 1, 2) be two solutions to the problem (2.13)–(2.18) with (2.22)–(2.27), and set

del := ‖(�(1) −�(2), φ(1) − φ(2))‖1,α,N + ‖ψ(1) −ψ(2)‖1,α,�,

dtrans := ‖W(1) −W(2)‖α,N
Assume that ω4 = ω4(Sen, Ben, νen, �bd) given by (1.28) is finite.

For each j = 1, 2, let F(j), f (j)1 , f (j)2 and g(j) be given by (3.9), (3.10), (3.12) and (3.16) with

Q= ((S(j) − S0,K(j) −B0),�
(j),∇φ(j), t(r,ψ(j),D(x,r)ψ(j),
(j))), ∂rW(j)).
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It follows from (3.9), (3.10), (3.12), (3.24) and (4.4) that

‖(φ(1) − φ(2),�(1) −�(2))‖1,α,N

≤ C
(
‖ψ(1) −ψ(2)‖1,α,� + σ (‖(φ(1) − φ(2),�(1) −�(2))‖1,α,N + dtrans

))
,

(4.26)

where the constant C depends only on the data and α. In the following estimates, each estimate constant C may vary 
from line to line, but it is regarded to be depending only on the data and α unless otherwise specified.

By (3.31) and (3.35), we have

‖ψ(1) −ψ(2)‖1,α,� ≤ C‖f (1)2 − f (2)2 ‖α,N , (4.27)

and a straightforward calculation with using (2.29) and (3.16) yields

‖f (1)2 − f (2)2 ‖α,N ) ≤ C
(
σ(del + dtrans)+ ‖∂rW(1) − ∂rW(2)‖α,�

)
. (4.28)

By Lemma 3.5, we have

W(j) =
(
Sen(ϑ

(j)), Ben(ϑ(j))−�bd(0, ϑ(j)), ϑ(j)νen(ϑ(j))
)
, (4.29)

where ϑ(j) is given by (3.57) associated with the vector field

M(j) :=
(
∇ϕ0 + ∇φ(j) + t(r,ψ(j),Dψ(j),
(j))

)
H(j)

with H(j) :=H(S(j), K(j) +�0 +�(j) − 1
2 |∇ϕ0 + ∇φ(j) + t(r, ψ(j), Dψ(j), 
(j))|2) for H given by (2.12). Then 

we get

‖W(1) −W(2)‖α,N ≤ Cσ‖ϑ(1) − ϑ(2)‖α,�. (4.30)

Furthermore it can be directly checked from (3.54) and (3.56) that

‖ϑ(1) − ϑ(2)‖α,N ≤ C(del + dtrans). (4.31)

We differentiate (4.29) with respect to r , then apply (3.62), (3.64) and (4.31) to get

‖∂rW(1) − ∂rW(2)‖α,� ≤ C
(
ω4(Sen,Ben, νen,�bd)(del + dtrans)+ σ‖∂rϑ(1) − ∂rϑ(2)‖α,�

)
.

Finally, straightforward computations with using (2.29), (3.59), (3.63) and Gronwall’s inequality yields that

‖∂r(ϑ(1) − ϑ(2))‖α,� ≤ C(del + dtrans). (4.32)

From the estimates (4.26)–(4.32), it is obtained that

(del + dtrans)≤ C∗ (σ +ω4(Sen,Ben, νen,�bd)) (del + dtrans) (4.33)

for a constant C∗ > 0 depending only on the data and α. For σ6 from (4.24), if

σ +ω4(Sen,Ben, νen,�bd)≤ min{σ6,
4

5C∗
},

then (4.33) implies that (U (1), W(1)) ≡ (U (2), W(2)) in N . The proof of Theorem 2.3 is completed by choosing σ3

and σ4 as

σ3 = σ6, σ4 = min{σ6,
4

5C∗
}. �
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4.2. Proof of Theorem 1.5

Let σ3 be from Theorem 2.3. We choose σ1 from (1.26) as

σ1 = σ3.

Given (b, Sen, Ben, νen, �bd, pex)(r) satisfying (1.26) and (1.23), let  = (ϕ, ψ, �, S, K, 
) be a solution to the 
problem (2.13)–(2.18) with boundary conditions (2.22)–(2.27). By Theorem 2.3, such a solution  exists, and it 
satisfies the estimate (2.29). We define u and ρ by (2.4) and (2.11), respectively. Then (ρ, u, S, �) solve Problem 1.2. 
We particularly emphasize that Remarks 3.4 and 3.6 imply that the vector field u given by (2.4) is a C1 axisymmetric 
vector field in N . Therefore, (2.29) implies that (ρ, u, S, �) satisfy the estimate (1.27). Furthermore, the choice of 
σ1 = σ3(= σ6) ensures that ux := u · ex > 0 and ρ > 0 hold in N .

For each j = 1, 2, let (ρ(j), u(j), p(j), �(j)) be a solution to Problem 1.2 with satisfying the estimate (1.27). For 
each j = 1, 2, we write u(j) as u(j) = u

(j)
x ex + u

(j)
r · er + u

(j)
θ eθ , and solve the following linear boundary value 

problem:

−�(ψ(j)eθ )= (∂xu(j)r − ∂ru(j)x )eθ (4.34)

with the boundary conditions

∂xψ
(j) = 0 on �0 ∪ �L, ψ(j) = 0 on �w ∪ {(x,0) : 0 ≤ x ≤ L}. (4.35)

By Proposition 3.3, the boundary value problem (4.34)–(4.35) has a unique axisymmetric solution ψ(j)eθ ∈
C2,α(N , R3). We define functions ϕ(j) and 
(j) by

ϕ(j)(x, r)=
x∫

0

u
(j)
x (y, r)− 1

r
∂r (rψ

(j)(y, r)) dy, 
(j)(x, r)= ru(j)θ (x, r) in N . (4.36)

By using (4.34), one can directly check that

∂rϕ
(j)(x, r)= ur(x, r)+ ∂xψ(j)(x, r) in N .

For each j = 1, 2, we also define

S(j) = cv log

(
p(j)

Aρ(j)

)
, K(j) = 1

2
|u(j)|2 + γp(j)

(γ − 1)ρ(j)
−�(j) in N .

Then each (ϕ(j), ψ(j), �(j), S(j), �(j), 
(j)) solves the problem (2.13)–(2.18) with (2.22)–(2.27). Furthermore, it fol-
lows from (1.27) that each (ϕ(j), ψ(j), �(j), S(j), �(j), 
(j)) satisfies the estimate (2.29). Finally, we choose σ2 from 
(1.29) as σ2 = σ4 for σ4 from (2.30) so that Theorem 1.5 implies that  (1) =  (2). Hence (ρ(1), u(1), p(1), �(1)) =
(ρ(2), u(2), p(2), �(2)) in N . This completes the proof of Theorem 1.5. �
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