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Abstract

The large-time behavior of solutions to the derivative nonlinear Schrödinger equation is established for initial conditions in some 
weighted Sobolev spaces under the assumption that the initial conditions do not support solitons. Our approach uses the inverse 
scattering setting and the nonlinear steepest descent method of Deift and Zhou as recast by Dieng and McLaughlin.
© 2017 Elsevier Masson SAS. All rights reserved.

Résumé

On établit le comportement au temps long des solutions de l’équation de Schrödinger nonlinéraire avec dérivée dans des espaces 
de Sobolev à poids, sous l’hypothèse que les conditions initiales ne supportent pas de solitons. Notre approche utilise l’inverse 
scattering et la méthode de la plus grande pente (“steepest descent”) nonlinéaire de Deift et Zhou revisitée par Dieng et McLaughlin.
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Keywords: Riemann–Hilbert problem; Inverse scattering method; Nonlinear steepest descent method

✩ P. Perry supported in part by a Simons Research and Travel Grant 359431. C. Sulem supported in part by NSERC Grant 46179-13.
* Corresponding author.

E-mail addresses: Jiaqi.Liu@uky.edu (J. Liu), Peter.Perry@uky.edu (P.A. Perry), sulem@math.utoronto.ca (C. Sulem).
http://dx.doi.org/10.1016/j.anihpc.2017.04.002
0294-1449/© 2017 Elsevier Masson SAS. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2017.04.002
http://www.elsevier.com/locate/anihpc
mailto:Jiaqi.Liu@uky.edu
mailto:Peter.Perry@uky.edu
mailto:sulem@math.utoronto.ca
http://dx.doi.org/10.1016/j.anihpc.2017.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2017.04.002&domain=pdf


218 J. Liu et al. / Ann. I. H. Poincaré – AN 35 (2018) 217–265
1. Introduction

This paper is devoted to the large-time asymptotic behavior of solutions to the Derivative Nonlinear Schrödinger 
Equation (DNLS)

iut + uxx = iε(|u|2u)x x ∈R (1.1)

where ε = ±1. It follows our recent work [1] (referred to hereafter as Paper I) where we established global existence 
of solutions for initial conditions in weighted Sobolev spaces satisfying some additional spectral constraints. To make 
these assumptions more precise, let us first fix ε = 1 (since solutions of (1.1) with ε = 1 are mapped to solutions 
of (1.1) with ε = −1 by u �→ u(−x, t)). It is convenient to consider a gauge-equivalent form of (1.1). Under the 
transformation

q(x, t) = u(x, t) exp

⎛
⎝−iε

x∫
−∞

|u(y, t)|2dy

⎞
⎠ , (1.2)

solutions of (1.1) are mapped into solutions of

iqt + qxx + iq2q̄x + 1

2
|q|4q = 0. (1.3)

This equation is sometimes referred to as the Gerjikov–Ivanov equation [2].
It is well-known since the seminal article of Kaup and Newell [3] that the DNLS equation is solvable by the inverse 

scattering method. In his doctoral thesis, Lee [4] studied in detail the spectral problem posed by Kaup and Newell, 
and the direct and inverse scattering maps for generic Schwartz class data.

In Paper I, we develop a rigorous analysis of the direct and inverse scattering transform for a class of initial 
conditions q0(x) = q(x, t = 0) belonging to the space H 2,2(R) and obeying additional spectral constraints that rule 
out “bright” and algebraic solitons that led us to a global existence result in this setting. Here, H 2,2(R) denotes the 
completion of C∞

0 (R) in the norm

‖u‖H 2,2(R) =
(∥∥∥(1 + |x|2)u

∥∥∥2

2
+ ∥∥u′′∥∥2

2

)1/2

.

A recent work by Pelinovsky–Shimabukuro [5] addresses these questions in somewhat different spaces. In the present 
paper, we give a full description of the large-time behavior of solutions. Before stating our assumptions and results 
more precisely, we recall known results concerning the long-time behavior of DNLS solutions. The first results go back 
to the work of Hayashi, Naumkin and Uchida [6] where the authors consider a class of one-dimensional nonlinear 
Schrödinger equations with general nonlinearities containing first-order derivatives. They prove a global existence 
result for smooth initial conditions that are small in some weighted Sobolev spaces, as well as a time-decay rate. Their 
analysis gives the existence of asymptotic states and a logarithmic correction to the phase.

In the context of inverse scattering, the first work to provide explicit formulas (i.e., depending only on initial 
conditions) for large-time asymptotics of solutions is due to Zakharov and Manakov [7] in the context of the NLS 
equation. In this setting, the inverse scattering map and the reconstruction of the solution (potential) is formulated 
through an oscillatory Riemann Hilbert problem (RHP). The latter (in our case, Problem 1.1) consists of an oriented 
contour specifying the discontinuities of a piecewise analytic function, and jump matrices relating their limits from 
above and below. The solution to the original PDE is recovered from the asymptotics of solutions to the RHP (for our 
case, see the reconstruction formula (1.9)).

The now well-known steepest descent method of Deift and Zhou [8] provides a systematic method to reduce the 
original RHP to a canonical model RHP whose solution is calculated in terms of parabolic cylinder functions. This 
reduction is done through a sequence of transformations whose effects do not change the large-time behavior of the 
recovered solution at leading order. In this way, one obtains the asymptotic behavior of the solution in terms of the 
spectral data (thus in terms of the initial conditions) with a degree of precision that is not currently obtainable through 
direct PDE methods. This approach has been applied to a number of integrable systems including mKdV [9,8] and 
defocusing NLS [10].
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A formal analysis of general oscillatory RHP with Schwartz class scattering data is presented in Varzugin [11]. 
More recently, Do [12] developed a version of the Deift–Zhou steepest descent method that emphasizes real-variable 
methods and extends to a much larger class of RHPs. A key step in the nonlinear steepest descent method consists 
in deforming the contour associated to the RHP in a way adapted to the structure of the phase function that defines 
the oscillatory dependence on parameters (for our case, see (1.7) for the jump matrix, (1.8) for the phase function, 
and Fig. 4.1 for the deformation). When the entries of the jump matrix are not analytic, they must be approximated 
by rational functions so that the deformation can be carried out, and the error in the recovered solution due to the 
approximation must be estimated.

Dieng and McLaughlin [13] proposed a variant of Deift–Zhou method combining steepest descent and ∂̄-problem 
asymptotics. This approach allows a certain amount of non-analyticity in the RHP reductions, leading to a ∂̄-problem 
to be solved in some sectors of the complex plane where analyticity of the jump matrix (and hence the solution to the 
RHP) fails. The new ∂̄-problem can be recast into an integral equation and solved by Neumann series. These ideas 
were implemented by Miller and McLaughlin [14] to the study of asymptotic stability of orthogonal polynomials. In 
the context of NLS with soliton solutions, they were successfully applied to prove asymptotic stability of N -soliton 
solutions to defocusing NLS [15] and address the soliton resolution problem for focusing NLS [16].

In this paper, we adapt this analysis to the DNLS equation for initial conditions excluding solitons, building on our 
Paper I where we proved the Lipschitz continuity of the direct and inverse scattering map from H 2,2(R) to itself. The 
presence of solitons will be addressed in a forthcoming article.

To describe our approach, we recall that (1.3) generates an isospectral flow for the problem

d

dx
� = −iζ 2σ3� + ζQ(x)� + P(x)� (1.4)

where

σ3 =
(

1 0
0 −1

)
,

and

Q(x) =
(

0 q(x)

q(x) 0

)
, P (x) = i

2

(−|q(x)|2 0
0 |q(x)|2

)
.

If q ∈ L1(R) ∩ L2(R), equation (1.4) admits bounded solutions for ζ ∈ � where

� =
{
ζ ∈ C : Im(ζ 2) = 0

}
.

For ζ ∈ � and q ∈ L1(R) ∩ L2(R), there exist unique solutions �± of (1.4), obeying the respective asymptotic 
conditions

lim
x→±∞�±(x, ζ )eixζ 2σ3 =

(
1 0
0 1

)
,

and there is a matrix T (ζ ), the transition matrix, with �+(x, ζ ) = �−(x, ζ )T (ζ ). The functions �± are called Jost 
functions. The matrix T (ζ ) takes the form

T (ζ ) =
(

a(ζ ) b̆(ζ )

b(ζ ) ă(ζ )

)
(1.5)

where a, b, ă, b̆ obey the determinant relation

a(ζ )ă(ζ ) − b(ζ )b̆(ζ ) = 1

and the symmetry relations (see Paper I, eq. (1.20))

a(−ζ ) = a(ζ ), b(−ζ ) = −b(ζ ), ă(ζ ) = a(ζ ), b̆(ζ ) = b(ζ ). (1.6)

In order to rule out algebraic and bright solitons, we assume that q0 is so chosen that a(ζ ) is nonvanishing on �
(which rules out algebraic solitons) and admits a zero-free analytic continuation to Im(ζ 2) < 0 (which rules out bright 
solitons).
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Fig. 1.1. The Contours � and R.

As shown in Section 1.2 of Paper I, the scattering data and Jost solutions, which are naturally functions of ζ ∈ �, 
may be transformed to functions on R, with consequent simplifications of the direct and inverse scattering problems. 
Even functions f on � define functions g on the real line R via g(ζ 2) = f (ζ ) and the map ζ → ζ 2 maps the contour 
� onto the contour R. This fact, together with the symmetry relations (1.6), implies that, letting z = ζ 2, the functions

ρ(z) = ζ−1b̆(ζ )/a(ζ ), ρ̆(z) = ζ−1b̆(ζ )/ă(ζ )

are defined on the real line, and, under an appropriate change of variable (see Section 1.2 of Paper I), the Jost solutions 
may be regarded as functions of z = ζ 2. The functions ρ and ρ̆ are called the scattering data for q0.

Fig. 1.1 displays the contours � and R with their orientation as well as the sectors 	± = {ζ ∈ C : ± Im(ζ 2) > 0}
and C± = {z ∈ C : ± Im(z) > 0}. The map ζ �→ ζ 2 preserves the orientations shown there.

We note the important identity

a(ζ )ă(ζ ) = (1 − z|ρ(z)|2)−1 = (1 − z|ρ̆(z)|2)−1, z = ζ 2.

Hence, 1 − z|ρ(z)|2 > c > 0 if |a(ζ )| is bounded from above. The latter is true when in particular q ∈ H 2,2(R) (see 
Propositions 3.1 and 3.2 of Paper I).

In Paper I, we showed that the maps q0 �→ ρ and q0 �→ ρ̆ are Lipschitz continuous from the soliton-free H 2,2(R)

potentials q0 into H 2,2(R). We assume that the Cauchy data are soliton-free, thus only the reflection coefficient ρ is 
needed for the reconstruction of the solution.

The scattering data ρ and ρ̆ are not independent; as showed in Section 6 of Paper I (see the remarks at the beginning 
of Section 6 and Lemma 6.14), ρ̆ can be recovered from ρ by solving a scalar RHP. We proved in turn that, given 
ρ corresponding to the Cauchy data q(x, 0), we may recover the solution q(x, t) of (1.3) through RHPs. There are 
two versions of the RHP, one to recover the solution for x ≥ 0 and one for x ≤ 0. For example, the following RHP 
provides the reconstruction formula when x ≥ 0.

Problem 1.1. Given ρ ∈ H 2,2(R) with 1 − z|ρ(z)|2 > 0 for all z ∈ R, find a row vector-valued function N(z; x, t) on 
C \R with the following properties:

1. N(z; x, t) → (1, 0) +O(1/z) as |z| → ∞,
2. N(z; , x, t) is analytic for z ∈ C \R with continuous boundary values

N±(z;x, t) = lim
ε↓0

N(z ± iε;x, t),

3. The jump relation N+(z; x, t) = N−(z; x, t)V (z) holds, where

V (z) =
(

1 − z|ρ(z)|2 ρ(z)e2itθ

−zρ(z)e−2itθ 1

)
(1.7)

and the real phase function θ is given by
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θ(z;x, t) = −
(
z
x

t
+ 2z2

)
. (1.8)

From the solution of Problem 1.1, we recover

q(x, t) = lim
z→∞ 2izN12(z;x, t) (1.9)

for x ≥ 0, where the limit is taken in C \R along any direction not tangent to R.

Remark 1.2. The jump matrix (1.7) satisfies V ∈ L∞(R) and detV (z) = 1. It follows from a standard result in RHP 
theory (see, for example, [10, Theorem 2.10]) that Problem 1.1 may have at most one solution.

Remark 1.3. The symmetry reduction from the contour � to the contour R significantly simplifies the analysis of the 
RHP because in this setting, the phase factor θ has only one stationary point (instead of two as is the case in [17]). 
The reason why we seek a row vector-valued solution rather than a matrix-valued solution is that the matrix-valued 
solution is not properly normalized; see Paper I, Section 1.2 for further discussion.

The central results of this paper are the following theorems that give the long-time behavior of the solutions q of 
(1.3) and u of (1.1) respectively.

Theorem 1.4. Suppose that q0 ∈ H 2,2(R) is a soliton-free potential. In particular, its reflection coefficient ρ ∈
H 2,2(R) and c = infz∈R

(
1 − z|ρ(z)|2) > 0. Denote by ξ = −x/4t the stationary phase point of the phase function 

(1.8).

(i) As t → +∞,

q(x, t) ∼

⎧⎪⎪⎨
⎪⎪⎩

1√
t
α1(ξ)e−iκ(ξ) log(8t)+ix2/(4t) +O

(
t−3/4

)
, x > 0

1√
t
α2(ξ)e−iκ(ξ) log(8t)+ix2/(4t) +O

(
t−3/4

)
, x < 0

(1.10)

(ii) As t → −∞,

q(x, t) ∼

⎧⎪⎪⎨
⎪⎪⎩

1√−t
α2(ξ)eiκ(ξ) log(−8t)+ix2/(4t) +O

(
(−t)3/4

)
, x > 0

1√−t
α1(ξ)eiκ(ξ) log(−8t)+ix2/(4t) +O

(
(−t)3/4

)
, x < 0.

(1.11)

Here

κ(z) = − 1

2π
log(1 − z|ρ(z)|2), (1.12)

|α1(ξ)|2 = |α2(ξ)|2 = κ(ξ)

2ξ
. (1.13)

For t > 0,

argα1(ξ) = π

4
+ arg�(iκ(ξ)) + argρ(ξ)

+ 1

π

ξ∫
−∞

log |s − ξ |d log
(

1 − s|ρ(s)|2
)

,

argα2(ξ) = argα1(ξ) − π

while for t < 0,
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argα1(ξ) = −π

4
− arg�(iκ(ξ)) + argρ(ξ)

+ 1

π

∞∫
ξ

log |s − ξ |d log
(

1 − s|ρ(s)|2
)

,

argα2(ξ) = argα1(ξ) + π.

In (1.10) and (1.11), the implied constants in the remainder terms depend only on ‖ρ‖H 2,2(R) and c > 0.

As a consequence, we get the long-time behavior of the solution u to the original DNLS equation (1.1).

Theorem 1.5. Suppose that u0 ∈ H 2,2(R) and let

q0(x) = u0(x) exp

⎛
⎝−i

x∫
−∞

|u0(y)|2 dy

⎞
⎠ .

Let ρ be the reflection coefficient associated to q0 by the direct scattering map and κ defined by (1.12). Assume also 
that c = infz∈R

(
1 − z|ρ(z)|2)> 0. Denote by ξ = −x/4t the stationary phase point of the phase function (1.8) and 

fix ξ �= 0. Then:

(i) As t → +∞,

u(x, t) ∼

⎧⎪⎪⎨
⎪⎪⎩

1√
t
α3(ξ)e−iκ(ξ) log(8t)+ix2/(4t) +Oξ

(
t−3/4

)
, x > 0

1√
t
α4(ξ)e−iκ(ξ) log(8t)+ix2/(4t) +Oξ

(
t−3/4

)
, x < 0

(1.14)

(ii) As t → −∞,

u(x, t) ∼

⎧⎪⎪⎨
⎪⎪⎩

1√−t
α4(ξ)eiκ(ξ) log(−8t)+ix2/(4t) +Oξ

(
(−t)−3/4

)
x > 0

1√−t
α3(ξ)eiκ(ξ) log(−8t)+ix2/(4t) +Oξ

(
(−t)−3/4

)
x < 0

(1.15)

Here,

|α3(ξ)|2 = |α4(ξ)|2 = κ(ξ)

2ξ
(1.16)

For t > 0,

argα3(ξ) = argα1(ξ) − 1

π

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds (1.17)

argα4(ξ) = argα2(ξ) − 1

π

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds, (1.18)

while for t < 0,

argα3(ξ) = argα1(ξ) − 1

π

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds (1.19)

argα4(ξ) = argα2(ξ) − 1

π

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds. (1.20)
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Theorem 1.5 is a direct consequence of Theorem 1.4 and Proposition 8.1.

Remark 1.6. Here we examine the continuity of our asymptotic formulas for q(x, t) at x = 0 by computing left- and 
right-hand limits as x → 0 for the two cases in (1.10). A similar analysis can be made for the two cases in (1.11). 
First, notice that the Gamma function has the property that

lim
x→0+ arg�(ix) = −π

2
, lim

x→0− arg�(ix) = π

2
.

Recalling that

κ(ξ) = − 1

2π
log

(
1 − ξ |ρ(ξ)|2

)
,

we see that κ(ξ) < 0 for ξ < 0 while κ(ξ) > 0 for ξ > 0. Since ξ = −x/4t , for x > 0 and t > 0, ξ < 0, and therefore

lim
x→0+ arg (�(iκ(ξ))) = π

2
,

while for x < 0 and t > 0, ξ < 0 and therefore

lim
x→0− arg (�(iκ(ξ))) = −π

2
.

This observation, and the fact that argα1(ξ) and argα2(ξ) differ by π , shows that the asymptotic formulas for q(x, t)
in (1.10) agree in the respective limits x → 0− and x → 0+. A similar argument shows that the asymptotic formulas 
for q(x, t) when t < 0 and x → 0+ and x → 0− also agree.

Remark 1.7. In contrast to Theorem 1.4, the remainder estimates in Theorem 1.5 depend on ξ as well as on ‖ρ‖H 2,2

and c > 0. This dependence arises from Proposition 8.1. The error estimate is well-behaved for |ξ | > 1 but poorly 
behaved as |ξ | → 0.

Remark 1.8. Although we do not make any explicit “small data” assumption, we are have so far been unable to 
construct large initial data satisfying our hypotheses.

Kitaev and Vartanian [17] as well as more recently Xu and Fan [18], considered the same problem for Schwartz 
class initial data in the soliton-free sector and obtain in the asymptotic formula (1.10) an error term of order (log t)/t . 
Our results apply to a larger class of initial data and, thanks to the ∂-approach, arguably entail a simpler proof than 
earlier studies of the problem.

The proof of Theorem 1.4 addresses separately the four cases x ≶ 0, t → ±∞. Indeed, to reconstruct the solution 
q(x, t), we need to solve two different RHPs, one for x > 0 and one for x < 0. The sign of t is important in the phase 
factors of the entries of the jump matrix V of (1.7). Depending on the sign of t , one performs different factorizations 
of the jump matrix V in order to have the correct exponential decay on the deformed contour. Finally, a large-time 
estimate of the phase factor exp (−i

∫ x

−∞ |q(y, t)|2dy) of (1.2) in terms of the scattering data, obtained in Section 8, 
is needed to obtain Theorem 1.5.

As discussed earlier, the proof of Theorem 1.4, following [16,13], consists of several steps corresponding to trans-
formations of the initial RHP 1.1 implemented successively. For sake of clarity, we present in Section 2 a summary 
of the analysis of the various steps in each of the four cases, x ≶ 0, t → ±∞ and we show how the RHPs and the 
respective factorizations are modified to take into account the signs of x and t . In the next Sections (Sections 3 to 7), 
we provide the details of each step in one case x > 0, t → ∞ as follows.

The first step, carried out in Section 3, is the conjugation of the row vector N with a scalar function δ(z) that solves 
the scalar model RHP Problem 3.1 (see equation (3.1)). This operation is standard when performing the factorization 
of the jump matrix (3.3) as a product of a lower triangular and upper triangular matrix. The phase factors e±itθ have 
to be placed so that they have the correct exponential decay when the contour deformation described in Section 4 is 
carried out. The conjugation with δ(z) allows us to remove the diagonal matrix (1 − z|ρ(z)|2)±1 that would otherwise 
appear in between the two terms of one of the factorizations (in the case of (3.3) it would be for z < ξ ).

The second step (Section 4) is a deformation of contour from R to a new contour �(2) defined in (4.1) (see 
Fig. 4.1), in such a way that the exponential factors e±itθ have strong decay (in time) along the rays of the contour. 
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The solution has no jump along the real axis (this is important because there is no decay of the phase for large z ∈R). 
This transformation induces some ‘small’ deviation from analyticity in the sectors 	1 ∪ 	3 ∪ 	4 ∪ 	6, and leads to a 
mixed ∂-RHP-problem, Problem 4.3, for a new row-vector valued function denoted N(2). This is where the approach 
of Dieng–McLaughlin [13] differs from the steepest descent of [10] which in contrast only deals with piecewise 
analytic solutions. In the approach of [10], the contour deformation is carried out by approximating the entries of the 
jump matrix by rational functions which admit a direct, analytic continuation.

The third step (Section 5) is a ‘factorization’ of N(2) in the form N(2) = N(3)NPC where NPC is solution of a model 
RHP, Problem 5.2, and N(3) a solution of a ∂̄-problem, Problem 6.1.

The fourth step is the derivation of the explicit solution of the RHP for NPC by parabolic cylinder functions (Sec-
tion 5); this procedure is standard but we give the key steps for the reader’s convenience.

The fifth step is the solution of the ∂-problem for N(3) using integral equation methods. The ∂ problem may be 
written as an integral equation (equation (6.2)) whose integral operator has small norm at large times (see equation 
(6.5)) allowing the use of Neumann series (Section 6).

At each step of the analysis, one needs to estimate how the reductions modify the long-time asymptotics of the 
solution and carefully keep track of the dependency of the constants (as functions of the stationary phase point ξ ).

The sixth step, carried out in Section 7, consists in regrouping the transformations to find the behavior of the 
solution of DNLS for x > 0 as t → ∞, using the large-z behavior of the RHP solutions.

Finally, the long-time behavior of the phase factor appearing in (1.2) necessary to obtain Theorem 1.5, is given in 
Section 8.

The paper ends with some technical appendices. Appendix A gives the asymptotics of the functions δ� and δr

which solve scalar model RHPs and are used in the first step of the reduction. Appendix B outlines the solution of 
the appropriate RHP’s for all four cases ±t > 0, ±x > 0. Appendix C records solution formulae important for the 
four model RHP’s. Appendix D proves L∞-bounds on the solution to the model RHP. Appendix E contains figures 
illustrating how the different jump matrices in the sequence of transformations of RHPs are modified according to the 
four cases ±t > 0, ±x > 0.

2. Summary of the proof

As discussed above, the large-time behavior of the solution to DNLS is obtained through a sequence of transfor-
mations of RHP’s. Special attention has to be given to the signs of x and t as slightly different RHP’s are involved 
depending on the signs under consideration. In Sections 3 to 7, we present the full calculations of the derivation in one 
case x > 0, t > 0. In this Section, we summarize the computations without details in the four cases ±t > 0, ±x > 0
as they are needed to get the final expressions of Theorems 1.4 and 1.5.

The initial normalized RHPs that provide the reconstruction formula for the potential have contour R and phase 
function

θ(z;x, t) = −
(
z
x

t
+ 2z2

)
.

If x > 0, the initial RHP is

N+(z;x, t) = N−(z;x, t)eitθ ad σ3V0(z) (2.1a)

V0(z) =
(

1 − z|ρ(z)|2 ρ(z)

−zρ(z) 1

)
(2.1b)

N(z;x, t) = (1,0) +O
(

1

z

)
(2.1c)

while if x < 0, the initial RHP is

N+(z;x, t) = N−(z;x, t)eitθ ad σ3 V̆0(z) (2.2a)

V̆0(z) =
(

1 ρ̆(z)

−zρ̆(z) 1 − z|ρ̆(z)|2

)
(2.2b)
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N(z;x, t) = (1,0) +O
(

1

z

)
(2.2c)

where ρ̆(z) = ρ(z)/�(z) and

�(λ) = exp

⎛
⎝ 1

πi
p.v.

∞∫
−∞

κ(s)

λ − s
ds

⎞
⎠ .

In both of these cases, the solution q(x, t) of (1.2) is recovered from the reconstruction formula

q(x, t) = lim
z→∞

[
2iz (N(z;x, t))12

]
. (2.3)

The derivation of the large-time behavior is obtained through several steps. The first steps

(1) Preparation for steepest descent
(2) Contour deformation from R to �(2) (see Fig. 4.1)
(3) Reduction to a model RHP
(4) Solution to the model RHP

have to be performed successively for each case ±t > 0, ±x > 0 as the calculations, although similar, are specific to 
each situation. They are followed by

(5) Analysis of ∂̄ problem
(6) Regrouping of the transformations.

The latter are common to all cases and detailed in Sections 6 and 7 for x > 0, t > 0.
We now summarize steps 1–4.

Step 1: We change variables in the initial RHP using the analytic functions (with branch cut either on the left or 
right half-line with endpoint ξ )

δ�(z; ξ) := exp

⎛
⎝i

ξ∫
−∞

κ(s)

s − z
ds

⎞
⎠ , z ∈C \ (−∞, ξ ] (2.4)

and

δr (z; ξ) := exp

⎛
⎜⎝−i

∞∫
ξ

κ(s)

s − z
ds

⎞
⎟⎠ , z ∈C \ [ξ,∞). (2.5)

Here

κ(s) = − 1

2π
log

(
1 − s|ρ(s)|2

)
= − 1

2π
log

(
1 − s|ρ̆(s)|2

)
.

The functions δ� and δr are solutions of scalar model RHPs: δ� satisfies Problem 3.1 and δr satisfies a similar one with 
its branch cut at the right of the endpoint ξ . Their properties are recalled in Appendix A. In particular, they obey the 
bounds

e−‖κ‖∞/2 ≤ ∣∣δ∗(z)
∣∣≤ e‖κ‖∞/2

where δ∗ is δ±1
� or δ±1

r , as easily follows from∣∣∣∣∣∣Im
⎛
⎝ ξ∫

κ(s)

s − z
ds

⎞
⎠
∣∣∣∣∣∣≤

‖κ‖∞
2

.

±∞
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By defining

N(1)(z;x, t) = N(z;x, t) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ
−σ3
� t > 0, x > 0

δ
−σ3
r t > 0, x < 0

δ
σ3
r t < 0, x > 0

δ
σ3
� t < 0, x < 0

(2.6)

we obtain a RHP for N(1) with a new jump matrix e2itθ ad σ3V (1). We give expressions for V (1) for each of the four 
cases ±t > 0, ±x > 0 in (B.2), (B.6), (B.10), and (B.14) respectively. The new RHP’s are ‘prepared’ for the steepest 
descent method in the sense that contours can be deformed so that the exponential functions e±itθ have maximum 
decay in |z − ξ |.

Step 2: We introduce a new unknown

N(2) = N(1)R (2.7)

where R is a piecewise continuous matrix-valued function taking the form shown in Fig. E.1 if t > 0, and in Fig. E.2 if 
t < 0. The purpose of the deformation is to remove the jumps along the real axis and introduce jumps on the contours 
�1, �2, �3, and �4 corresponding to the model problem. Thus the values of the Ri along (−∞, ξ) and (ξ, ∞) are 
determined by the jump matrix V (1), while their values along the �i are determined as follows:

(1) Scattering data are replaced by their values at z = ξ (‘freezing coefficients’)
(2) Powers of δ are replaced by their asymptotic forms near z = ξ (see Appendix A, equations (A.2), (A.3), (A.4), 

(A.5)).

The expressions of the matrix R in each of the four cases are given respectively in (B.3), (B.7), (B.11), and (B.15), 
noting that the symbols δ, δ0, and δ± are defined at the beginning of each subsection and have different meanings in 
each of them as indicated in (B.1), (B.5), (B.9), and (B.13).

The new unknown N(2) has a jump matrix which is most easily described by introducing the scaled variable

ζ(z) =√
8|t |(z − ξ). (2.8)

We then have

V (2) =
{

ζ iκ ad σ3e− i
4 ζ 2 ad σ3V

(2)
0 (ζ ; ξ) ±x > 0, t > 0,

ζ−iκ ad σ3e
i
4 ζ 2 ad σ3V

(2)
0 (ζ ; ξ) ±x > 0, t < 0.

(2.9)

In the above expression, the complex powers are defined by choosing the branch of the logarithm with −π < arg ζ < π

in the cases t > 0, x > 0 and t < 0, x < 0, and the branch of the logarithm with 0 < arg ζ < 2π in the cases t > 0, 
x < 0 and t < 0, x > 0. The matrices V (2)

0 (ζ ; ξ) for each of the four cases are shown in Figs. E.3, E.4, E.5, and E.6. 
The branch cut for the logarithm is also indicated. Because R is not a holomorphic function, the new unknown N(2)

obeys a mixed ∂-RHP.

Step 3: Suppose that NPC solves the pure RHP with jump matrix V (2). By factoring

N(2) = N(3)NPC, (2.10)

we see that N(3) solves the ∂ problem (in the z-variable)

∂N(3)(z;x, t) = N(3)(z;x, t)W(z;x, t)

W(z;x, t) = NPC(ζ ; ξ)(∂R)(z;x, t)NPC(ζ ; ξ)−1

N(3) = (1,0) +O
(

1

z

)
which is equivalent to the integral equation
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N(3)(z;x, t) = (1,0) + 1

π

∫
C

1

z − z′ N(3)(z′;x, t)W(z′, x, t) dz′.

It can be shown (see Proposition 6.3) that

N(3)(z;x, t) = (1,0) + 1

z
N(3)

1 (x, t) + oξ,t

(
1

z

)

where∣∣∣N(3)
1 (x, t)

∣∣∣� t−3/4.

This estimate shows that the leading asymptotics of q(x, t), as computed from (2.3), will be determined by the solution 
NPC of the model Riemann–Hilbert problem.

Step 4: It remains to solve the model RHP for NPC. It has contour �(2)
0 (centered at ζ = 0 in the new variables) 

and the solution has the form

NPC+ (ζ ; ξ) = NPC− (ζ ; ξ)V (2)(ζ ; ξ)

NPC(z; ξ) ∼ I + m(0)

ζ
+ o

(
1

ζ

)
in C \ �

(2)
0

where V (2) is given by (2.9). This problem can be solved in a standard way using parabolic cylinder functions (see, 
for example, [9,8,19,20]). We factor

NPC(ζ ; ξ) =
{

�(ζ ; ξ)P (ξ)e
i
4 ζ 2σ3ζ−iκσ3 t > 0

�(ζ ; ξ)P (ξ)e− i
4 ζ 2σ3ζ iκσ3 t < 0.

(2.11)

The constant matrix P(ξ) is derived from V (2)
0 as shown in Fig. E.7; for i = 1, 2, 3, 4, Vi denotes the restriction of 

V (2) to �i . This factorization introduces a new unknown, �(ζ ; ξ), which obeys an RHP with contour R and constant 
jump matrix. In case x > 0, we have

�+(ζ ; ξ) = �−(ζ ; ξ)V (0)

V (0) =
(

1 − ξ |rξ |2 rξ

−ξrξ 1

)

�(ζ ; ξ) ∼ e− i
4 ζ 2σ3ζ iκσ3

(
I + m(1)

ζ
+ o

(
ζ−1

))
,

(2.12)

while for x < 0, we have

�+(ζ ; ξ) = �−(ζ ; ξ)V̆ (0)

V̆ (0) =
(

1 r̆ξ

−ξ r̆ξ 1 − ξ |r̆ξ |2

)

�(ζ ; ξ) ∼ e
i
4 ζ 2σ3ζ−iκσ3

(
I + m(0)

ζ
+ o

(
ζ−1

))
.

(2.13)

Note that the meaning of rξ or r̆ξ is different depending on which of the four cases is under consideration (see equations 
(B.4), (B.8), (B.12), (B.16)).

The matrix function � is obtained as a solution of an ODE. Differentiating the jump relation in (2.12) or (2.13)
with respect to ζ , one can show that

d� ± i
iζ

σ3� = β�, ±t > 0 (2.14)

dζ 2
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where

β = i

2

[
σ3,m

(0)
]

(2.15)

or equivalently

β12 = i
(
m(0)

)
12

, β21 = −i
(
m(0)

)
21

is unknown at this stage of the calculation. The difference in sign between the t > 0 and t < 0 cases comes from the 
difference in the prescribed factorization (2.11). The goal is to compute m(0) which will determine leading asymptotics 
of q(x, t).

The solution of (2.14) is expressed explicitly in terms parabolic cylinder functions, treating β12 and β21 as (un-
known) constants. The solution formulas are given in Appendix C. One then substitutes these solutions into the 
appropriate jump relation (2.12) or (2.13) in order to compute β12 and hence, by (2.15), m(0)

12 . Indeed, one may easily 
deduce from the jump relation (2.12) that

V
(0)
21 = −ξrξ = �−

11�
+
21 − �−

21�
+
11 (2.16)

for t > 0, and similarly from the jump relation (2.13), that

V̆
(0)
21 = −ξ r̆ξ = �−

11�
+
21 − �−

21�
+
11 (2.17)

for t < 0. These Wronskians are evaluated for each of the four cases ±t > 0, ±x > 0 in Appendix C, equations (C.7)
and (C.8). Using these results in (2.16) and (2.17), we find

β12 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2πe−πκ/2eiπ/4

−ξrξ �(−iκ)
t > 0, x > 0

√
2πe−πκ/2eiπ/4

−ξ r̆ξ �(−iκ)
e−2πκ t > 0, x < 0

(2.18)

and

β12 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2πe−πκ/2e3πi/4

−ξrξ �(iκ)
e2πκ , t < 0, x > 0

√
2πe−πκ/2e3πi/4

−ξ r̆ξ �(iκ)
, t < 0, x < 0

(2.19)

We recall that the values of rξ and r̆ξ differ from case to case.
We can now deduce the leading asymptotic behavior of q(x, t) from the reconstruction formula

qas(x, t) = lim
z→∞ 2iz

(
m(0)

)
12

ζ
= 2

β12√
8|t |

where we used (2.8) and (2.15). For ±t > 0 we find

qas(x, t) = 1√|t |α(ξ)e±iκ(ξ) log(8|t |)e−i x2
4t (2.20)

with

|α(ξ)|2 = 1

2
|β12|2 (2.21)

argα(ξ) = argβ12 ∓ κ(ξ) log(8|t |) + x2/4t (2.22)

From (2.21)–(2.22), (2.18), (2.19), and (2.20), we can compute qas(x, t) in each of the four cases. In Appendix B we 
summarize the key formulae leading to qas(x, t).

In the next five sections, we present the details of the proof of Theorem 1.4 in the case x > 0, t > 0.
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3. Preparation for steepest descent

In this section, we provide the detailed analysis of Step 1 (as described in Section 2), for the case x > 0, t > 0. In 
order to apply the method of steepest descent, we introduce a new unknown

N(1)(z;x, t) = N(z;x, t)δ(z)−σ3 (3.1)

where δ(z) = δ�(z) as defined in (2.4) and solves the scalar RHP Problem 3.1 below. To state the scalar RHP, recall 
that the phase function (1.8) satisfies

θz(x, t, z) = −
(x

t
+ 4z

)
and has a single critical point at

ξ = − x

4t
.

Problem 3.1. Given ξ ∈ R and ρ ∈ H 2,2(R) with 1 − s|ρ(s)|2 > 0 for all s ∈R, find a scalar function δ(z) = δ(z; ξ), 
analytic for z ∈C \ (−∞, ξ ] with the following properties:

1. δ(z) → 1 as z → ∞,
2. δ(z) has continuous boundary values δ±(z) = limε↓0 δ(z ± iε) for z ∈ (−∞, ξ),
3. δ± obey the jump relation

δ+(z) =
{

δ−(z)
(
1 − z |ρ(z)|2) , z ∈ (−∞, ξ)

δ−(z), z ∈ (ξ,∞)

The following lemma is “standard” (see, for example, [10, Proposition 2.12] or [12, Proposition 6.1 and 
Lemma 6.2]). Recall the definition (1.12) of κ .

Lemma 3.2. Suppose ρ ∈ H 2,2(R) and that κ(s) is real for all s ∈R.

(i) (Existence, Uniqueness) Problem 3.1 has the unique solution

δ(z) = exp

⎛
⎝i

ξ∫
−∞

1

s − z
κ(s) ds

⎞
⎠ . (3.2)

Moreover,

δ(z)δ(z) = 1

holds.
(ii) The function δ(z) satisfies the estimate

e−‖κ‖∞/2 ≤ |δ(z)| ≤ e‖κ‖∞/2.

(iii) (Large-z asymptotics) It admits a large-|z| asymptotic expansion

δ(z) = 1 + i

z

ξ∫
−∞

κ(s) ds +O
(

1

z2

)
.

(iv) (Asymptotics as z → ξ along a ray in C \R) Along any ray of the form ξ +eiφ
R

+ with 0 < φ < π or π < φ < 2π ,∣∣∣δ(z) − δ0(ξ)(z − ξ)iκ(ξ)
∣∣∣� ρ,φ −|z − ξ | log |z − ξ |.
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The implied constant depends on ρ through its H 2,2(R)-norm and is independent of ξ ∈ R. Here δ0(ξ) = eiβ(ξ,ξ)

and

β(z, ξ) = −κ(ξ) log(z − ξ + 1) +
ξ∫

−∞

κ(s) − χ(s)κ(ξ)

s − z
ds,

where χ is the characteristic function of the interval (ξ − 1, ξ). We choose the branch of the logarithm with 
−π < arg(z) < π .

Proof. The proofs of these properties are similar, for example, to proofs given in [10, Section 2]. We provide some 
details for the reader’s convenience.

(i) Existence follows from the explicit formula (3.2). Since ρ is C1, uniqueness follows from Liouville’s theorem.
(ii) These estimates are obtained from the observation that

∣∣∣∣∣∣Re

⎛
⎝i

ξ∫
−∞

κ(s)

s − z
ds

⎞
⎠
∣∣∣∣∣∣≤

‖κ‖∞
2

.

(iii) and (iv) are proved in Appendix A. �
If N(z; x, t) solves Problem 1.1 and δ(z) solves Problem 3.1, then the row vector-valued function N(1)(z; x, t)

defined in (3.1) solves the following RHP.

Problem 3.3. Given ρ ∈ H 2,2(R) with 1 − z|ρ(z)|2 > 0 for all z ∈ R, find a row vector-valued function N(1)(z; x, t)
on C \R with the following properties:

1. N(1)(z; x, t) → (1, 0) as |z| → ∞,
2. N(1)(z; x, t) is analytic for z ∈C \R with continuous boundary values

N(1)
± (z;x, t) = lim

ε↓0
N(1)(z + iε;x, t)

3. The jump relation

N(1)
+ (z;x, t) = N(1)

− (z;x, t)V (1)(z)

holds, where

V (1)(z) = δ−(z)σ3V (z)δ+(z)−σ3 .

The jump matrix V (1) is factorized as

V (1)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1 0

− δ−2− zρ

1 − z|ρ|2 e−2itθ 1

⎞
⎟⎟⎠
⎛
⎜⎝ 1

δ2+ρ

1 − z|ρ|2 e2itθ

0 1

⎞
⎟⎠ , z ∈ (−∞, ξ),

⎛
⎝ 1 ρδ2e2itθ

0 1

⎞
⎠
⎛
⎝ 1 0

−zρδ−2e−2itθ 1

⎞
⎠ , z ∈ (ξ,∞).

(3.3)

Remark 3.4. The uniqueness of solutions to Problem 3.3 follows from the unique of solutions to the original RHP for 
N and the invertibility of the transformation N → N(1).
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Fig. 4.1. Deformation from R to �(2) .

4. Deformation to a mixed ∂-Riemann–Hilbert problem

We now seek to deform Problem 3.3 by exploiting the method of Dieng and McLaughlin [13] and Borghese, 
Jenkins and McLaughlin [16]. The phase function (1.8) has a single critical point at ξ = −x/4t . The new contour

�(2) = �1 ∪ �2 ∪ �3 ∪ �4 (4.1)

is shown in Fig. 4.1 and consists of oriented half-lines ξ + eiφ
R

+ where φ = π/4, 3π/4, 5π/4, 7π/4.
In order to deform the contour R to the contour �(2), we introduce a new unknown N(2) obtained from N(1) as

N(2)(z) = N(1)(z)R(2)(z).

We choose R(2) to remove the jump on the real axis and provide analytic jump matrices with the correct decay 
properties on the contour �(2). We have

N(2)
+ = N(1)

+ R(2)
+ = N(1)

− V (1)R(2)
+ = N(2)

−
(
R(2)

−
)−1

V (1)R(2)
+

so the jump matrix will be the identity matrix on R provided

(R(2)
− )−1V (1)R(2)

+ = I

where R(2)
± are the boundary values of R(2)(z) as ± Im(z) ↓ 0. On the other hand, the function e2itθ is exponentially 

increasing on �1 and �3, and decreasing on �2 and �4, while the reverse is true of e−2itθ . Hence, we choose R(2) as 
shown in Fig. E.1, where, letting

η(z; ξ) = (z − ξ)iκ(ξ), (4.2)

the functions R1, R3, R4, and R6 satisfy

R1(z) =
⎧⎨
⎩

zρ(z)δ−2, z ∈ (ξ,∞)

ξρ(ξ)δ0(ξ)−2η(z; ξ)−2, z ∈ �1

(4.3)

R3(z) =

⎧⎪⎪⎨
⎪⎪⎩

− δ2+(z)ρ(z)

1 − z|ρ(z)|2 , z ∈ (−∞, ξ)

−δ2
0η(z; ξ)2ρ(ξ)

1 − ξ |ρ(ξ)|2 , z ∈ �2

(4.4)

R4(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− zρ(z)δ−2−
1 − z|ρ(z)|2 , z ∈ (−∞, ξ)

−δ−2
0 η(z; ξ)−2ξρ(ξ)

2
, z ∈ �3

(4.5)
1 − ξ |ρ(ξ)|
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R6(z) =
⎧⎨
⎩

ρ(z)δ(z)2 z ∈ (ξ,∞)

ρ(ξ)δ0(ξ)2η(z; ξ)2, z ∈ �4

(4.6)

The idea is to construct Ri(z) in 	i to have the prescribed boundary values and ∂Ri(z) small in the sector. This will 
allow us to reformulate Problem 3.3 as a mixed RHP-∂ problem. We will show how to remove the RHP component 
through an explicit model problem and then formulate a ∂ problem for which the large-time contribution to the 
asymptotics of q(x, t) is negligible. Note that the values of Ri(z) on the contours �i localize the scattering data to 
the stationary phase point ξ . This localization corresponds to the localization of the weights in the steepest descent 
method [10]. The latter requires a delicate analysis of modified Beals–Coifman resolvents that is greatly simplified in 
the current approach.

The following lemma and its proof are almost identical to [16, Lemma 4.1] or [13, Proposition 2.1]. It is useful in 
the estimates of the contribution of the solution of the ∂̄-problem for large time (Section 6). To state it, we introduce 
the factors

p1(z) = zρ(z), p3(z) = − ρ(z)

1 − z|ρ(z)|2 ,

p4(z) = − zρ(z)

1 − z|ρ(z)|2 , p6(z) = ρ(z),

that appear in (4.3)–(4.6).

Lemma 4.1. Suppose ρ ∈ H 2,2(R). There exist functions Ri on 	i , i = 1, 3, 4, 6 satisfying (4.3)–(4.6), so that

|∂Ri(z)| �
{(|p′

i (Re(z))| − log |z − ξ |) , z ∈ 	i, |z − ξ | ≤ 1(|p′
i (Re(z)) + |z − ξ |−1

)
, z ∈ 	i, |z − ξ | > 1,

where the implied constants are uniform in ξ ∈R and ρ in a fixed bounded subset of H 2,2(R) with 1 −z|ρ(z)|2 ≥ c > 0
for a fixed constant c.

Remark 4.2. By adjusting numerical constants, we can rewrite the estimate on ∂Ri for |z − ξ | > 1 as∣∣∂Ri

∣∣� |p′
i (Re(z))| + (1 + |z − ξ |2)−1/2.

Proof. We give the construction for R1. Define f1(z) on 	1 by

f1(z) = p1(ξ)δ−2
0 (ξ)η(z; ξ)−2δ(z)2

and let

R1(z) = (
f1(z) + [

p1(Re(z)) − f1(z)
]

cos 2φ
)
δ(z)−2

where φ = arg(z − ξ). It is easy to see that R1 as constructed has the boundary values (4.3). Writing z − ξ = reiφ we 
have

∂ = 1

2

(
∂

∂x
+ i

∂

∂y

)
= 1

2
eiφ

(
∂

∂r
+ i

r

∂

∂φ

)
.

We therefore have

∂R1(z) = 1

2
p′

1(Re z) cos 2φ δ(z)−2 − [
p1(Re z) − f1(z)

]
δ(z)−2 ieiφ

|z − ξ | sin 2φ.

It follows from Lemma 3.2(iv) that

∣∣(∂R1
)
(z)
∣∣� ρ

⎧⎨
⎩

|p′
1(Re z)| − log |z − ξ |, |z − ξ | ≤ 1,

|p′
1(Re z)| + 1

|z − ξ | , |z − ξ | > 1,

where the implied constants depend on infz∈R(1 −z|ρ(z)|2) and ‖ρ‖H 2,2 . The remaining constructions are similar. �
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Fig. 4.2. Jump Matrices V (2) for N(2) .

The unknown N(2) satisfies a mixed ∂-RHP. We first compute the jumps of N(2) along the contour �(2) with the 
given orientation, remembering that N(1) is analytic there so that the jumps are determined entirely by the change of 
variables. Diagrammatically, the jump matrices are as in Fig. 4.2. Away from �(2) we have

∂N(2) = N(2)
(
R(2)

)−1
∂R(2) = N(2)∂R(2) (4.7)

where the last step follows by triangularity.

Problem 4.3. Given ρ ∈ H 2,2(R) with 1 − z|ρ(z)|2 > 0 for all z ∈ R, find a row vector-valued function N(2)(z; x, t)
on C \R with the following properties:

1. N(2)(z; x, t) → (1, 0) as |z| → ∞ in C \ �(2),
2. N(2)(z; x, t) is continuous for z ∈ C \ �(2) with continuous boundary values N(2)

± (z; x, t) (where ± is defined by 
the orientation in Fig. 4.1),

3. The jump relation N(2)
+ (z; x, t) = N(2)

− (z; x, t)V (2)(z) holds, where V (2)(z) is given in Fig. 4.2,
4. The equation

∂N(2) = N(2) ∂R(2)

holds in C \ �(2), where

∂R(2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0 0

(∂R1)e
−2itθ 0

)
, z ∈ 	1

(
0 (∂R3)e

2itθ

0 0

)
, z ∈ 	3(

0 0

(∂R4)e
−2itθ 0

)
, z ∈ 	4

(
0 (∂R6)e

2itθ

0 0

)
, z ∈ 	6

0 otherwise.

5. The model Riemann–Hilbert problem

The next step is to extract from N(2) a contribution that is a pure RHP. We write

N(2) = N(3)NPC

and we request that N(3) has no jump. Thus we look for NPC solution of the model RHP 5.1 below with the jump 
matrix V PC = V (2). Unlike the previous RHP’s, we seek a matrix-valued solution.

In the following RHPs (Problems 5.1, 5.2, 5.3), ξ is fixed, and we assume that 1 − ξ |ρ(ξ)|2 > 0. This is a spectral 
condition, automatically satisfied if ξ > 0 (i.e. if x and t have the same sign), but imposed on the spectral data ρ, to 
address the cases where x and t have opposite signs.
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Problem 5.1. Find a 2 × 2 matrix-valued function NPC(z; ξ), analytic on C \ �(2), with the following properties:

1. NPC(z; ξ) → I as |z| → ∞ in C \ �(2), where I is the 2 × 2 identity matrix,
2. NPC(z; ξ) is analytic for z ∈ C \ �(2) with continuous boundary values NPC± on �(2),
3. The jump relation NPC+ (z; ξ) = NPC− (z; ξ)V PC(z) holds on �(2), where

V PC(z) = V (2)(z).

Now set

ζ(z) = √
8t(z − ξ) (5.1)

and

rξ = ρ(ξ)δ2
0e−2iκ(ξ) log

√
8t e4itξ2

. (5.2)

Under the change of variables (5.1), the phase e2itθ identifies to e−iζ 2/2eix2/4t . The factor e−iζ 2/2 will be later impor-
tant in the identification of parabolic cylinder functions.

By abuse of notation, set NPC(ζ(z); ξ) = NPC(z; ξ) where ζ is given by (5.1). We can then recast Problem 5.1 as 
follows.

Problem 5.2. Find a 2 × 2 matrix-valued function NPC(ζ(z); ξ), analytic on C \ �(2), with the following properties:

1. NPC(ζ(z); ξ) → I as |z| → ∞ in C \ �(2), where I is the 2 × 2 identity matrix,
2. NPC(ζ(z); ξ) is analytic for z ∈ C \ �(2) with continuous boundary values NPC± on �(2),
3. The jump relation NPC+ (ζ(z); ξ) = NPC− (ζ(z); ξ)V PC(ζ(z); ξ) holds on �(2), where

V PC(ζ(z); ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1 0

−ξrξ ζ−2iκ(ξ)eiζ 2/2 1

⎞
⎠ , z ∈ �1,

⎛
⎝ 1

rξ

1 − ξ |rξ |2 ζ 2iκ(ξ)e−iζ 2/2

0 1

⎞
⎠ , z ∈ �2

⎛
⎜⎝

1 0

−ξrξ

1 − ξ |rξ |2 ζ−2iκ(ξ)eiζ 2/2 1

⎞
⎟⎠ , z ∈ �3,

⎛
⎝ 1 rξ ζ 2iκ(ξ)e−iζ 2/2

0 1

⎞
⎠ , z ∈ �4.

It is possible to further reduce the RHP for NPC(ζ ; ξ) to a model RHP whose 2 × 2 matrix solution is piecewise 
analytic in the upper and lower complex plane. In each half-plane, the entries of the matrix satisfy ODEs that are 
obtained from analyticity properties as well as the large-ζ behavior. The solutions of the ODEs are explicitly calculated 
in terms of parabolic cylinder functions. This transformation is standard and has been performed for NLS and mKdV 
(see, for example, [9,8,19,20]). Let

NPC(ζ ; ξ) = �(ζ ; ξ)P(ξ)e
i
4 ζ 2σ3ζ−iκσ3, (5.3)

where
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P(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

ξ rξ 1

)
, z ∈ 	1

⎛
⎝ 1

−rξ

1 − ξ |rξ |2
0 1

⎞
⎠ , z ∈ 	3,⎛

⎜⎝
1 0

−ξrξ

1 − ξ |rξ |2 1

⎞
⎟⎠ , z ∈ 	4,

(
1 rξ

0 1

)
, z ∈ 	6,

(
1 0

0 1

)
, z ∈ 	2 ∪ 	5.

(5.4)

By construction, the matrix � is continuous along the rays of �(2). Let us set up the RHP it satisfies and compute its 
jumps along the real axis. We have along the real axis

�+ = �−
(
P eiσ3ζ

2/4ζ−iκ(ξ)σ3
)

−

(
e−iσ3ζ

2/4ζ iκ(ξ)σ3P−1
)

+. (5.5)

Due to the branch cut of the logarithmic function along R−, we have along the negative real axis,

(ζ−iκ(ξ)σ3)−(ζ iκ(ξ)σ3)+ = e−2πκ(ξ)σ3 = elog(1−ξ |rξ |2)σ3

while along the positive real axis,

(ζ−iκ(ξ)σ3)−(ζ iκ(ξ)σ3)+ = I.

This implies that the matrix � has the same (constant) jump matrix along the negative and positive real axis:

V (0) =
(

1 − ξ |rξ |2 rξ

−ξ rξ 1

)
. (5.6)

Note that the matrix V 0 is similar to the jump matrix V (1) of the original RHP 1.1 (see (1.7)). The effect of our 
sequence of transformations is that, in the large t limit, the entries have been replaced by their localized version at the 
stationary phase point ξ .

The 2 × 2 matrix � satisfies the following model RHP.

Problem 5.3. Find a 2 × 2 matrix-valued function �(z; ξ), analytic on C \R, with the following properties:

1. �(ζ ; ξ) ∼ e− i
4 ζ 2σ3ζ iκσ3 as |ζ | → ∞ in C \R.

2. �(ζ ; ξ) is analytic for z ∈C \R with continuous boundary values �± on R.
3. The jump relation along the real axis is

�+(ζ ; ξ) = �−(ζ ; ξ)V (0). (5.7)

To solve this problem, we need to be more precise about the behavior of �(z) as ζ → ∞. We write the large-ζ
behavior of � in the form

�(ζ) ∼
(

1 + m0

ζ

)
ζ iκσ3e−iσ3ζ

2/4, ζ → ∞. (5.8)

At this step of the calculation, m0 is unknown. It will be determined later when enforcing the jump conditions of the 
matrix � along the real axis.

We now compute the solution � in terms of parabolic cylinder functions by deriving differential equations for the 
entries of � and exploiting the required asymptotics.

Lemma 5.4. The entries of � obey the differential equations
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�11
′′ +

(
ζ 2

4
− β12β21 + i

2

)
�11 = 0 (5.9)

�21
′′ +

(
ζ 2

4
− β12β21 − i

2

)
�21 = 0 (5.10)

�12
′′ +

(
ζ 2

4
− β12β21 + i

2

)
�12 = 0 (5.11)

�22
′′ +

(
ζ 2

4
− β12β21 − i

2

)
�22 = 0 (5.12)

The proof of this lemma is given in Appendix C, Section C.1.
The next step is to complement the ODEs with additional conditions taking into account the conditions at infinity 

as well as the jump conditions of �. This will determine � uniquely and will identify the coefficients β12, β21.
The parabolic cylinder equation is

y′′ +
(

−z2

4
+ a + 1

2

)
y = 0 (5.13)

The parabolic cylinder functions Da(z), Da(−z), D−a−1(iz), D−a−1(−iz) all satisfy (5.13) and are entire for any 
value a.

The large-z behavior of Da(z) is given by the following formulas.1

Da(z) ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zae−z2/4 , | arg(z)| < 3π

4

zae−z2/4 −
√

2π

�(−a)
eiaπz−a−1ez2/4 ,

π

4
< arg(z) <

5π

4

zae−z2/4 −
√

2π

�(−a)
e−iaπ z−a−1ez2/4 , −5π

4
< arg(z) < −π

4
.

(5.14)

Proposition 5.5. The unique solution to Problem 5.3 is given by

�(ζ ; ξ) =

⎛
⎜⎜⎜⎝

e− 3π
4 κDiκ(ζ e−3iπ/4)

e
π
4 (κ−i)

β21
(−iκ)D−iκ−1(ζ e−πi/4)

e− 3π
4 (κ+i)

β12
iκDiκ−1(ζ e−3iπ/4) eπκ/4D−iκ (ζ e−iπ/4)

⎞
⎟⎟⎟⎠ (5.15)

for Im(ζ ) > 0 and

�(ζ ; ξ) =

⎛
⎜⎜⎝

eπκ/4Diκ(ζ eπi/4) − iκ

β21
e− 3π

4 (κ−i)D−iκ−1(ζ e3iπ/4)

(iκ)

β12
e

π
4 (κ+i)Diκ−1(ζ eπi/4) e−3πκ/4D−iκ (ζ e3iπ/4)

⎞
⎟⎟⎠ (5.16)

if Im(ζ ) < 0.

Proof. We set ν = β12β21. For �11, we introduce the new variable ζ1 = ζ e−3iπ/4, and equation (5.9) becomes

�11
′′ +

(
−ζ 2

1

4
+ iν + 1

2

)
�11 = 0.

In the upper half plane, 0 < Arg ζ < π , thus −3π/4 < Arg ζ1 < π/4. Choosing ν = κ (by comparing (5.8) and (5.14)) 
and identifying the large-ζ behavior gives

1 Writing Da(z) = U−a−1/2(z) (see http :/ /dlmf .nist .gov /12 .1), these formulae follow from http :/ /dlmf .nist .gov /12 .9 .E1 and http :/ /dlmf .nist .gov /
12 .9 .E3.

http://dlmf.nist.gov/12.1
http://dlmf.nist.gov/12.9.E1
http://dlmf.nist.gov/12.9.E3
http://dlmf.nist.gov/12.9.E3
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�11(ζ ) = e− 3π
4 κDiκ(ζ e−3iπ/4), ζ ∈C

+. (5.17)

Using equation (C.3), we calculate

�21 = 1

β12
e− 3π

4 κ

(
∂ζ (Diκ(ζ e−3iπ/4)) + iζ

2
Diκ(ζ e−3iπ/4)

)
. (5.18)

We proceed in the same way for �12 and �22. In term of ζ1 = e−πi/4ζ , equation (5.12) is

�′′
22 +

(
−ζ 2

1

4
− iν + 1

2

)
�22 = 0.

To correctly match the large-ζ behavior �22(ζ ) ∼ ζ−iκeiζ 2/4, we choose the solution

�22(ζ ) = e
πκ
4 D−iκ (e−iπ/4ζ ) ζ ∈C

+. (5.19)

Finally, using equation (C.4)

�12(ζ ) = 1

β21
e

π
4 κ

(
∂ζ (D−iκ (ζ e−iπ/4)) − iζ

2
D−iκ (ζ e−iπ/4)

)
. (5.20)

We repeat this calculation to compute �(ζ) in the lower complex plane.
Let ζ2 = ζeiπ/4. In terms of ζ2, �11 satisfies

�′′
11 +

(
−ζ 2

2

4
+ iν + 1

2

)
�11 = 0. (5.21)

For −π < Arg ζ < 0, −3π/4 < Arg (ζ2) < π/4, thus we choose to identify �11 to a multiple of Diν(ζ2). We find that 
for ζ ∈ C

−

�11(ζ ) = e
π
4 κDiκ(eiπ/4ζ ).

Similarly,

�21(ζ ) = 1

β12
e

π
4 κ

(
∂ζ (Diκ(ζ eiπ/4)) + iζ

2
Diκ(ζ eiπ/4)

)
(5.22)

We now turn to �22 and �12. To match the large-ζ behavior �22(ζ ) ∼ ζ−iκeiζ 2/4 we choose to identify �22 as

�22(ζ ) = e−3πκ/4D−iκ (e3iπ/4ζ ) (5.23)

and

�12(ζ ) = 1

β21
e− 3π

4 κ

(
∂ζ (Diκ(ζ e3iπ/4)) − iζ

2
Diκ(ζ e3iπ/4)

)
. (5.24)

Using (5.17), (5.18), (5.19), and (5.20) together with the identity

D′
a(z) + z

2
Da(z) = aDa−1(z), (5.25)

we can now write �(ζ ; ξ) for Im(ζ ) > 0 in the form (5.15). Similarly, it follows from (5.21), (5.22), (5.23), and (5.24)
that �(ζ ; ξ) is given by (5.16) for Im(ζ ) < 0. �

We now impose the jump conditions to find the coefficients β12 and β21. We will later use this computation of β12
to compute the asymptotic behavior of q(x, t).

Lemma 5.6. Suppose that ρ ∈ H 2,2(R) with infz∈R(1 − z|ρ(z)|2) > 0. Then:

|β12|2 = κ = − 1
log

(
1 − ξ |ρ(ξ)|2

)
(5.26)
ξ 2πξ
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and

argβ12 = π

4
− κ log(8t) + 4tξ2 + arg(�(iκ)) + argρ(ξ) + 1

π

ξ∫
−∞

log |s − ξ |d log(1 − s|ρ(s)|2). (5.27)

Remark 5.7. Note that the amplitude (5.26) has a removable discontinuity at ξ = 0 as

lim
ξ→0

log
(
1 − ξ |ρ(ξ)|2)

ξ
= − lim

ξ→0
−

|ρ(ξ)|2 + ξ
[
ρ′(ξ)ρ(ξ) + ρ(ξ)ρ′(ξ)

]
1 − ξ |ρ(ξ)|2

= −|ρ(0)|2.

The proof of this lemma is given in Appendix C, Section C.2.

6. The ∂-problem

We now define the row vector-valued matrix

N(3)(z;x, t) = N(2)(z;x, t)NPC(z; ξ)−1. (6.1)

It is clear that NPC needs to be an invertible matrix-valued function in order to carry out this reduction. An argument 
similar to that given in [16] shows that N(3) satisfies a pure ∂-problem; we will use this fact to prove that N(3) is close 
to (1, 0) as t → ∞ with an explicit rate of decay.

Since NPC(z; ξ) is holomorphic in C \ �(2), we may compute

∂N(3)(z;x, t) = ∂N(2)(z;x, t)NPC(z; ξ)−1

= N(2)(z;x, t) ∂R(2)(z)NPC(z; ξ)−1 (by (4.7))

= N(3)(z;x, t)NPC(z; ξ) ∂R(2)(z)NPC(z; ξ)−1 (by (6.1))

= N(3)(z;x, t)W(z;x, t)

where

W(z;x, t) = NPC(z; ξ) ∂R(2)(z)NPC(z; ξ)−1.

We thus arrive at the following pure ∂-problem.

Problem 6.1. Given x, t ∈R and ρ ∈ H 2,2(R) with 1 −z|ρ(z)|2 > 0 for all z ∈ R, find a continuous, row vector-valued 
function N(3)(z; x, t) on C with the following properties:

1. N(3)(z; x, t) → (1, 0) as |z| → ∞,
2. ∂N(3)(z; x, t) = N(3)(z; x, t)W(z; x, t).

We can recast this problem as a Fredholm-type integral equation using the solid Cauchy transform

(Pf )(z) = 1

π

∫
C

1

z − ζ
f (ζ ) dm(ζ )

where dm denotes Lebesgue measure on C. The following lemma is standard.

Lemma 6.2. A continuous, bounded row vector-valued function N(3)(z; x, t) solves Problem 6.1 if and only if

N(3)(z;x, t) = (1,0) + 1

π

∫
C

1

z − ζ
N(3)(ζ ;x, t)W(ζ ;x, t) dm(ζ ). (6.2)
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Using the formulation (6.2), we will prove:

Proposition 6.3. Suppose that ρ ∈ H 2,2(R) and c := infz∈R
(
1 − z|ρ(z)|2) > 0 strictly. Then, for sufficiently large 

times t > 0, there exists a unique solution N(3)(z; x, t) for Problem 6.1 with the property that

N(3)(z;x, t) = I + 1

z
N(3)

1 (x, t) + oξ,t

(
1

z

)
(6.3)

for z = iσ with σ → +∞. Here∣∣∣N(3)
1 (x, t)

∣∣∣� t−3/4 (6.4)

where the implied constant in (6.4) is independent of ξ and t and uniform for ρ in a bounded subset of H 2,2(R) with 
infz∈R(1 − z|ρ(z)|2) ≥ c > 0 for a fixed c > 0.

Remark 6.4. The remainder estimate in (6.3) need not be (and is not) uniform in ξ and t ; what matters for the proof 
of Theorem 1.4 is that the implied constant in the estimate (6.4) for N(3)

1 (x, t) is independent of ξ and t .

Proof of Proposition 6.3, given Lemmas 6.5–6.9. As in [16] and [13], we first show that, for large times, the integral 
operator KW defined by

(KWf ) (z) = 1

π

∫
C

1

z − ζ
f (ζ )W(ζ ) dm(ζ )

(suppressing the parameters x and t ) obeys the estimate

‖KW‖L∞→L∞ � t−1/4 (6.5)

where the implied constants depend only on ‖ρ‖H 2.2 and c := infz∈R
(
1 − z|ρ(z)|2) and, in particular, are independent 

of ξ and t . This is the object of Lemma 6.7. It shows in particular that the solution formula

N(3) = (I − KW)−1(1,0) (6.6)

makes sense and defines an L∞ solution of (6.2) bounded uniformly in ξ ∈ R and ρ in a bounded subset of H 2,2(R)

with c > 0.
We then prove that the solution N(3)(z; x, t) has a large-z asymptotic expansion of the form (6.3) where z → ∞

along the positive imaginary axis (Lemma 6.8). Note that, for such z, we can bound |z− ζ | below by a constant times 
|z| + |ζ |. The remainder need not be bounded uniformly in ξ . Finally, we prove estimate (6.4) where the constants are 
uniform in ξ and in ρ belonging to a bounded subset of H 2,2(R) with inf

(
1 − z|ρ(z)|2) bounded below by a strictly 

positive fixed constant (Lemma 6.9). �
Estimates (6.3), (6.4), and (6.5) rest on the bounds stated in the next four lemmas.

Lemma 6.5. Let z = (u + ξ) + iv. We have

∣∣∣∂R(2)(z; ξ)

∣∣∣�
⎧⎪⎨
⎪⎩
(|p′

i (Re(z))| − log |z − ξ |) e−8t |u||v|, |z − ξ | ≤ 1,(
|p′

i (Re(z))| + 1(
1 + |z − ξ |2)

)
e−8t |v||u|, |z − ξ | > 1,

(6.7)

where all implied constants are uniform in ξ ∈R and t > 1.

Proof. Estimate (6.7) follows from Lemma 4.1 and Remark 4.2. The quantities p′
i (Re z) are all bounded uniformly 

for ρ in a bounded subset of H 2,2(R) and infz∈R
(
1 − z|ρ(z)|2)≥ c > 0 for a fixed c. �
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Lemma 6.6.∥∥∥NPC( · ; ξ)

∥∥∥∞ � 1 (6.8)∥∥∥NPC( · ; ξ)−1
∥∥∥∞ � 1 (6.9)

Again, all implied constants are uniform in ξ ∈R and t > 1.

The proof of this Lemma is given in Appendix D.

Lemma 6.7. Suppose that ρ ∈ H 2,2(R) and c : infz∈R
(
1 − z|ρ(z)|2)> 0 strictly. Then, the estimate (6.5) holds, where 

the implied constants depend on ‖ρ‖H 2,2 and c.

Proof. To prove (6.5), first note that

‖KWf ‖∞ ≤ ‖f ‖∞
∫
C

1

|z − ζ | |W(ζ)|dm(ζ ) (6.10)

so that we need only estimate the right-hand integral. We will prove the estimate in the region z ∈ 	1 since estimates 
for 	3, 	4, and 	6 are similar. In the region 	1, we may estimate

|W(ζ)| ≤
∥∥∥NPC

∥∥∥∞

∥∥∥(NPC)−1
∥∥∥∞

∣∣∂R1
∣∣ |e2itθ |.

Setting z = α + iβ and ζ = (u + ξ) + iv, the region 	1 corresponds to v ≥ 0, u ≥ v. We then have from (6.7), (6.8), 
and (6.9) that∫

	1

1

|z − ζ | |W(ζ)|dm(ζ ) � I1 + I2 + I3

where

I1 =
∞∫

0

∞∫
v

1

|z − ζ | |p
′
1(u)|e−8tuv dudv

I2 =
1∫

0

1∫
v

1

|z − ζ |
∣∣∣log(u2 + v2)

∣∣∣ e−8tuv dudv

I3 =
∞∫

0

∞∫
v

1

|z − ζ |
1

1 + |ζ − ξ |e
−8tuv dudv.

We recall from [16, proof of Proposition C.1] the bound∥∥∥∥ 1

|z − ζ |
∥∥∥∥

L2(v,∞)

≤ π1/2

|v − β|1/2

where ζ = u + ξ + iv and z = α + iβ (our parameterization of ζ differs slightly from theirs). Using this bound and 
Schwarz’s inequality on the u-integration we may bound I1 by constants times

(1 + ∥∥p′
1

∥∥
2)

∞∫
0

1

|v − β|1/2
e−tv2

dv � t−1/4

(see for example [16, proof of Proposition C.1] for the estimate). For I2, we remark that | log(u2 +v2)| � 1 +| log(u2)|
and that 1 + | log(u2)| is square-integrable on [0, 1]. We can then argue as before to conclude that I2 � t−1/4. Finally, 
the inequality
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1

1 + |ζ − ξ | ≤ 1

1 + u

shows that we can bound I3 in a similar way. It now follows that∫
	1

1

|z − ζ | |W(ζ)|dm(ζ ) � t−1/4

which, together with similar estimates for the integrations over 	3, 	4, and 	6, proves (6.5). �
Lemma 6.8. For z = iσ with σ → +∞, the expansion (6.3) holds with

N(3)
1 (x, t) = 1

π

∫
C

N(3)(ζ ;x, t)W(ζ ;x, t) dm(ζ ). (6.11)

Proof. We write (6.2) as

N(3)(z;x, t) = (1,0) + 1

z
N(3)

1 (x, t) + 1

πz

∫
C

ζ

z − ζ
N(3)(ζ ;x, t)W(ζ ;x, t) dm(ζ )

where N(3)
1 is given by (6.11). If z = iσ and ζ ∈ 	1 ∪ 	3 ∪ 	4 ∪ 	6, it is easy to see that |ζ |/|z − ζ | is bounded 

above by a fixed constant independent of z, while |N(3)(ζ ; x, t)| � 1 by the remarks following (6.6). If we can show 
that 

∫
C

|W(ζ ; x, t)| dm(ζ ) is finite, it will follow from the Dominated Convergence Theorem that

lim
σ→∞

∫
C

ζ

iσ − ζ
N(3)(ζ ;x, t)W(ζ ;x, t) dm(ζ ) = 0

which implies the required asymptotic estimate. We will estimate the integral 
∫

	1

|W(ζ)| dm(ζ ) since the other 

estimates are similar. We have

	1 = {(u + ξ, v) : v ≥ 0, v ≤ u < ∞} .

Using (6.7), (6.8), and (6.9), we may then estimate∫
	1

|W(ζ ;x, t)|dm(ζ ) � I1 + I2 + I3

where

I1 =
∞∫

0

∞∫
v

∣∣p′
1(ξ + u)

∣∣ e−8tuv dudv

I2 =
1∫

0

1∫
v

∣∣∣log(u2 + v2)

∣∣∣ e−8tuv dudv

I3 =
∞∫

0

∞∫
v

1√
1 + u2 + v2

e−8tuv dudv.

To estimate I1, we use the Schwarz inequality on the u-integration to obtain

I1 ≤ ∥∥p′
1

∥∥
2

1

4
√

t

∞∫
1√
v
e−8tv2

dv = ∥∥p′
1

∥∥
2

�(1/4)

85/4t3/4
.

0
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Similarly, since log(u2 + v2) ≤ log(2u2) for v ≤ u ≤ 1, we may similarly bound

I2 ≤
∥∥∥log(2u2)

∥∥∥
L2(0,1)

�(1/4)

85/4t3/4
.

Finally, to estimate I3, we note that 1 + u2 + v2 ≥ 1 + u2 and (1 + u2)−1/2 ∈ L2(R+), so we may similarly conclude 
that

I3 ≤
∥∥∥(1 + u2)−1/2

∥∥∥
2

�(1/4)

85/4t3/4
.

These estimates together show that∫
	1

|W(ζ ;x, t)|dm(ζ )� t−3/4 (6.12)

and that the implied constant depends only on ‖ρ‖H 2,2 . In particular, the integral (6.12) is bounded uniformly as 
t → ∞. �

The estimate (6.12) is also strong enough to prove (6.4).

Lemma 6.9. The estimate (6.4) holds with constants uniform in ρ in a bounded subset of H 2,2(R) and
infz∈R

(
1 − z|ρ(z)|2)> 0 strictly.

Proof. From the representation formula (6.11), Lemma 6.7, and the remarks following, we have∣∣∣N(3)
1 (x, t)

∣∣∣� ∫
C

|W(ζ ;x, t)|dm(ζ ).

In the proof of Lemma 6.8, we bounded this integral by t−3/4 modulo constants with the required uniformities. �
7. Large-time asymptotics

We now use estimates on the RHPs to compute q(x, t) via the reconstruction formula (1.9) in the case x > 0, and 
t → +∞. Working through the various changes of variables, we have

N(z;x, t) = N(3)(z;x, t)NPC(z; ξ)R(2)(z)−1δ(z)σ3 (7.1)

Recalling (1.9), we need to compute the coefficient of z−1 in the large-z expansion for N(z; x, t).

Lemma 7.1. For z = iσ and σ → +∞, the asymptotic relations

N(z;x, t) = (1,0) + 1

z
N1(x, t) + o

(
1

z

)
(7.2)

NPC(z;x, t) = I + 1

z
NPC

1 (x, t) + o

(
1

z

)
(7.3)

hold. Moreover,

(N1(x, t))12 =
(

NPC
1 (x, t)

)
12

+O
(
t−3/4

)
(7.4)

and the implied constants are uniform in ξ and t > 0.

Proof. By Lemma 3.2(iii), the expansion

δ(z)σ3 =
(

1 0
0 1

)
+ 1

z

(
δ1 0
0 δ−1

)
+O

(
z−2

)
(7.5)
1



J. Liu et al. / Ann. I. H. Poincaré – AN 35 (2018) 217–265 243
holds, with the remainder in (7.5) uniform in ρ in a bounded subset of H 2,2. The form of the asymptotic expansion 
(7.3) follows by construction, while (7.2) follows from (7.1), (7.3), the fact that R(2) ≡ I in 	2, and (7.5).

To prove (7.4), we notice that the diagonal matrix in (7.5) does not affect the 12-component of N. Hence, for 
z = iσ ,

(N(z;x, t))12 = 1

z

(
N(3)

1 (x, t)
)

12
+ 1

z

(
NPC

1 (x, t)
)

12
+ o

(
1

z

)
and result now follows from (6.4). �

We now evaluate the leading asymptotic term using large-z asymptotics of the model RHP.

Proposition 7.2. The function

q(x, t) = 2i lim
z→∞ zN12(z;x, t) (7.6)

takes the form

q(x, t) = qas(x, t) +O
(
t−3/4

)
where qas(x, t) is given by (1.10) and the remainder is uniform in ξ ∈ R.

Proof. By Lemma 7.1 and (7.6),

qas(x, t) = lim
z→∞

2izm
(0)
12

ζ
.

Recalling that m(0)
12 = −iβ12, with β12 given in (5.26)–(5.27) of Lemma 5.6, and that z and ζ are related through (5.1), 

we get

qas(x, t) = lim
z→∞

2zβ12√
8t(z − ξ)

= 1√
t
α1(ξ)e−iκ(ξ) log 8t+ix2/(4t)

where

κ(z) = − 1

2π
log(1 − z|ρ(z)|2), |α1(ξ)|2 = |κ(ξ)|

2|ξ |
and

argα1(ξ) = π

4
+ arg�(iκ) + argρ(ξ) + 1

π

ξ∫
−∞

log |s − ξ |d log(1 − s|ρ(s)|2). �

Theorem 1.4 in the case x > 0, t > 0 is an immediate consequence of Proposition 7.2. We discuss the remaining 
three cases in Appendix B.

8. Gauge transformation

Given initial data u0 for (1.1), we define gauge-transformed initial data for (1.3)

q0(x) = u0(x) exp

⎛
⎝−i

x∫
−∞

|u0(y)|2 dy

⎞
⎠

and the associated scattering data ρ for q0. From these scattering data, we compute the solution to (1.3), and thus 
obtain the solution to the Cauchy problem for (1.1) with Cauchy data u0 by the inverse gauge transformation
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u(x, t) = q(x, t) exp

⎛
⎝i

x∫
−∞

|q(y, t)|2 dy

⎞
⎠ . (8.1)

To find the large-time behavior for u(x, t) purely in terms of spectral data, it suffices to evaluate large-time asymptotics 
for the expression

exp

⎛
⎝i

x∫
−∞

|q(y, t)|2 dy

⎞
⎠ .

We will prove:

Proposition 8.1. Suppose that q0 ∈ H 2,2(R) and that q(x, t) solves the Cauchy problem (1.3) with initial data q0. 
Let ρ be the right-hand scattering data associated to q0 and fix ξ = −x/(4t) with ξ �= 0. We have the asymptotic 
formulae:

(i) For t > 0,

exp
(
i

x∫
−∞

|q(y, t)|2 dy
)

= exp
(

− i

π

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds
)

+Oξ

(
1√
t

)
.

(ii) Similarly, for t < 0,

exp
(
i

x∫
−∞

|q(y, t)|2 dy
)

= exp
(

− i

π

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds
)

+Oξ

(
1√
t

)
.

8.1. Beals–Coifman solutions

Our analysis uses the Beals–Coifman solutions discussed in Paper I, Section 4. We recall a few key facts and refer 
the reader to Sections 1.2 and 4 of that paper for further details. Our Beals–Coifman solutions also depend on t since 
the potential q(x, t) and its scattering data evolve in time.

In the ζ variables, the Beals–Coifman solutions M�(ζ ; x, t) and Mr(ζ ; x, t)2 are 2 × 2 matrix-valued functions 
defined for ζ ∈C \ �, are analytic in ζ and have the respective spatial normalizations

lim
x→+∞Mr(ζ ;x, t) =

(
1 0
0 1

)
, lim

x→−∞M�(ζ ;x, t) =
(

1 0
0 1

)
. (8.2)

The functions M�(ζ ; x, t)e−ixζ 2σ3 and Mr(ζ ; x, t)e−ixζ 2σ3 solve (1.4).
By exploiting the symmetry reduction described in Section 1.2 of Paper I, we can form Beals–Coifman solutions 

N�(z; x, t) and Nr(z; x, t) with the same respective spatial normalizations but analytic for z ∈ C \ R. The function 
N(z; x, t) that solves Problem 1.1 (the “right” Riemann–Hilbert problem) is the first row of Nr(z; x, t). Analogously, 
the first row of N�(z; x, t) solves the corresponding “left” Riemann–Hilbert problem.

If ζ = 0, (1.4) becomes d�/dx = P(x)� and we can use the normalizations (8.2) to compute

M±
11(0;x, t)r = exp

⎛
⎝− i

2

x∫
+∞

|q(y)|2 dy

⎞
⎠ (8.3)

and

2 The ordering of the variables for the Beals–Coifman solutions as defined in Paper I has been changed to be consistent with the notations of the 
present paper.
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M±
11(0;x, t)� = exp

⎛
⎝− i

2

x∫
−∞

|q(y)|2 dy

⎞
⎠ . (8.4)

According to Proposition 2.9, Proposition 5.7 and equation (2.13) of Paper I, if Nr is the solution to the RHP 
Problem 5.2 of Paper I, then M±

11(0; x, t)r = N±
11(0; x, t)r . Following a similar argument, we have M±

11(0; x, t)� =
N±

11(0; x, t)�. One can also directly read off from (6.1) and (6.2) of Paper I that

N+
11(0;x, t)r = N−

11(0;x, t)r , N+
11(0;x, t)� = N−

11(0;x, t)�.

We conclude that

N±
11(0;x, t)r = exp

⎛
⎝− i

2

x∫
+∞

|q(y, t)|2 dy

⎞
⎠ (8.5)

N±
11(0 : x, t)� = exp

⎛
⎝− i

2

x∫
−∞

|q(y, t)|2 dy

⎞
⎠ . (8.6)

As we will see, we can also compute the large-ξ asymptotics of N±
11(0; x, t)� and N±

11(0; x, t)r since these func-
tions are the first entry in the respective solutions of the “left” and “right” Riemann–Hilbert problems for N(z; x, t)
evaluated at z = 0. We will obtain asymptotic formulas in terms of scattering data alone which prove Proposition 8.1.

8.2. A weak Plancherel identity

The following lemma that can be seen as a weak version of a nonlinear Plancherel identity.

Lemma 8.2. Suppose that q0 ∈ H 2,2(R) and let ρ be the scattering data. Then, the identity

exp
(
i

+∞∫
−∞

|q0(y)|2 dy
)

= exp
(

− i

π

∞∫
−∞

log
(
1 − s|ρ(s)|2)

s
ds
)

holds.

Proof. The proof consists in computing the scattering coefficient a(0) (defined in (1.5)) in two ways using the con-
struction of left and right Beals–Coifman solutions M�, Mr , at ζ = 0 and t = 0.

First, it follows from Lemma 5.6 of Paper I and the identity α(ζ 2) = a(ζ ) that, for z ∈C \R,

α(z) = exp

⎛
⎝∫

R

log(1 − λ|ρ(λ)|2)
λ − z

dλ

2πi

⎞
⎠ .

Since ρ ∈ H 2,2(R), the function log(1 − λ|ρ(λ)|2) has a first-order zero at λ = 0, so that α(0) = limz→0,z∈C− α(z) is 
given by

α(0) = exp

⎛
⎝∫

R

log(1 − λ|ρ(λ)|2)
λ

dλ

2πi

⎞
⎠

(although these identities are proved in Section 5 of Paper I for ρ ∈ S(R), their proof readily extends to ρ ∈ H 2,2(R)). 
On the other hand, from eq. (4.20) of Paper I, we have

α(0) = lim
x→−∞(M−

11(0;x,0))r .

It follows from (8.3) that



246 J. Liu et al. / Ann. I. H. Poincaré – AN 35 (2018) 217–265
lim
x→−∞(M−

11(0;x,0))r = exp

⎛
⎝ i

2

+∞∫
−∞

|q(y)|2 dy

⎞
⎠ .

This concludes the proof of the lemma. �
Remark 8.3. When x < 0 we reconstruct q(x, t) using the left RHP, which, as shown in Proposition 6.2 of Paper I, 
gives a Lipschitz continuous map from soliton-free H 2,2 scattering data to H 2,2(−∞, a) for any fixed a ∈ R. When 
we use the right RHP to recover q for x > 0, the reconstruction map is only continuous into H 2,2(a, ∞) (see Propo-
sition 6.1 of Paper I) but need not be stable as x → −∞. In this case, the gauge transformation (8.1) is still valid for 
the following reason:

exp
(
i

x∫
−∞

|q(y, t)|2 dy
)

= exp
(
i

+∞∫
−∞

|q(y, t)|2 dy − i

+∞∫
x

|q(y, t)|2 dy
)

(8.7)

= exp
(
i

+∞∫
−∞

|q0(y)|2 dy
)

exp
(

− i

+∞∫
x

|q(y, t)|2 dy
)

= exp
(

− i

π

+∞∫
−∞

log(1 − s|ρ(s)|2)
s

ds
)

exp
(
i

x∫
+∞

|q(y, t)|2 dy
)
.

The first term of (8.7) only depends on the initial data and the second term is stable.

8.3. Proof of Proposition 8.1

Proof. The proof is a consequence of (8.13), (8.15), (8.19) and (8.17) below. It suffices to evaluate N±
11(0; x, t) for 

large t from the spectral data via the RHP. We compute an asymptotic expression for the first row of N±(0; x, t) using 
the solution formula

N(z;x, t) = N(3)(z;x, t)NPC(ζ(z); ξ)R(2)(z)−1δ�(z; ξ)σ3 (8.8)

using equations (2.6), (2.7), (2.10) of Section 2, where (see (2.4) and (2.5) for the definitions of δ� and δr )

δ�(z; ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ�(z; ξ) t > 0, x > 0

δr (z; ξ) t > 0, x < 0

δr (z; ξ)−1 t < 0, x > 0

δ�(z; ξ)−1 t < 0, x < 0

(8.9)

and the respective formulas

N(0;x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limz→0,z∈	1 N(z;x, t) t > 0, x > 0

limz→0,z∈	4 N(z;x, t) t > 0, x < 0

limz→0,z∈	3 N(z;x, t) t < 0, x > 0

limz→0,z∈	6 N(z;x, t) t < 0, x < 0.

(8.10)

Let us examine each right-hand factor of (8.8) in turn. Since

N(3)(z;x, t) = (1,0) +O
(
t−3/4

)
,

we need to consider only the last three factors.
Since NPC(z; x, t) is continuous at z = 0 (if ξ �= 0), we may evaluate

lim
z→0

NPC(ζ(z); ξ) = NPC(
√

8|t |ξ ; ξ)

=
(

1 0
0 1

)
+O

(
1√

8|t |ξ
)
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We show that, in each case of (8.10), limz→0 R(2)(z; x, t)−1 is the identity matrix when the limit is taken in the 
prescribed sector.

• t > 0, x > 0: The function R1(z) is continuous near z = 0 and R1(0) = 0 (Fig. E.1 and equation (B.3)).
• t > 0, x < 0: The function R4(z) is continuous near z = 0 and R4(0) = 0 (Fig. E.1 and equation (B.7)).
• t < 0, x > 0: The function R3(z) is continuous near z = 0 and R3(0) = 0 (Fig. E.2 and equation (B.11)).
• t < 0, x < 0: The function R6(z) is continuous near z = 0 and R6(0) = 0 (Fig. E.2 and equation (B.15)).

Finally, we evaluate limz→0 δ(z, ξ) for the appropriate choice of δ.

• t > 0, x > 0: ξ < 0 and z = 0 lies to the right of the branch cut (Fig. E.3).
• t > 0, x < 0: ξ > 0 and z = 0 lies to the left of the branch cut (Fig. E.4).
• t < 0, x > 0: ξ > 0 and z = 0 lies to the left of the branch cut (Fig. E.5).
• t < 0, x < 0: ξ < 0 and z = 0 lies to the right of the branch cut (Fig. E.6).

In all cases, δ is continuous at z = 0 and limz→0 δ(z; ξ)σ3 = δ�(0; ξ)σ3 . Finally we arrive at

N(0;x, t) = (δ�(0; ξ),0) +Oξ

(
t−1/2

)
(8.11)

where δ� is given by (8.9). We now use (8.6) and (8.5) together with (8.11) to prove Proposition 8.1 in four cases.
In the following, we assume ξ is fixed, thus letting x and t to infinity.

The case t > 0, x > 0: We solve the right RHP (see (2.1) and the summary in Appendix B.1). Using (8.11), we 
have

N+
11(0;x, t)r = δ�(0) +Oξ

(
1√
t

)
.

On the other hand,

δ�(z) = exp

⎛
⎝ ξ∫

−∞

log(1 − s|ρ(s)|2)
s − z

ds

2πi

⎞
⎠

Hence,

δ(0) = lim
z→0, z∈C+ exp

⎛
⎝ ξ∫

−∞

log(1 − s|ρ(s)|2)
s − z

ds

2πi

⎞
⎠

= exp

⎛
⎝ ξ∫

−∞

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎠

and

N+
11(0;x, t)r = exp

⎛
⎝ ξ∫

−∞

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎠+Oξ

(
1√
t

)
. (8.12)

Using (8.3) and (8.12) we conclude that

exp
(

− i

2

x∫
+∞

|q(y, t)|2 dy
)

= exp
( ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds

2πi

)
+Oξ

(
1√
t

)
,

which leads to
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exp
(
i

x∫
−∞

|q(y, t)|2 dy
)

= exp
(

− i

+∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

π

)
+Oξ

(
1√
t

)
. (8.13)

The case t > 0, x < 0: We use the left-hand RHP (see (2.2) and the summary in Appendix B.2). From (8.11) we 
conclude that

N−
11(0;x, t)� = δr(0) +Oξ

(
t−1/2

)
Now

δr (0) = lim
z→0, z∈	4

exp

⎛
⎜⎝−

∞∫
ξ

log(1 − s|ρ(s)|2)
s − z

ds

2πi

⎞
⎟⎠

= exp

⎛
⎜⎝−

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎟⎠

This gives

N−
11(0;x, t)� = exp

⎛
⎜⎝−

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎟⎠+Oξ

(
1√
t

)
. (8.14)

We deduce from (8.14) and (8.4) that

exp
(
i

x∫
−∞

|q(y, t)|2 dy
)

= exp
(

− i

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

π

)
+Oξ

(
1√
t

)
. (8.15)

The case t < 0, x > 0: We use the asymptotic formulas for the right-hand RHP (2.1) of Appendix B.3. From (8.11)
we conclude that

N+
11(0;x, t)r = δr (0)−1 +Oξ

(
t−1/2

)
.

Now

δr (0)−1 = exp

⎛
⎜⎝

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎟⎠ .

This gives

N+
11(0;x, t)r = exp

⎛
⎜⎝

∞∫
ξ

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎟⎠+Oξ

(
1√
t

)
. (8.16)

From (8.16) and (8.3), we get

exp
(

− i

2

x∫
+∞

|q(y, t)|2 dy
)

= exp
( ∞∫

ξ

log(1 − s|ρ(s)|2)
s

ds

2πi

)
+Oξ

(
1√
t

)

which leads to

exp
(
i

x∫
|q(y, t)|2 dy

)
= exp

(
− i

ξ∫
log(1 − s|ρ(s)|2)

s

ds

π

)
+Oξ

(
1√
t

)
. (8.17)
−∞ −∞
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The case t < 0, x < 0: Using the asymptotic formula for the left-hand RHP of Appendix B.4 and (8.11) we have

N−
11(0;x, t)� = δr (0)−1 +Oξ

(
t−1/2

)
From

δr (0)−1 = exp

⎛
⎝−

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎠ ,

we have

N−
11(0;x, t)� = exp

⎛
⎝−

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds

2πi

⎞
⎠+Oξ

(
1√
t

)
. (8.18)

Finally from (8.18) and (8.4),

exp
( x∫
−∞

|q(y, t)|2 dy
)

= exp
(

− i

ξ∫
−∞

log(1 − s|ρ(s)|2)
s

ds

π

)
+Oξ

(
1√
t

)
. � (8.19)
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Appendix A. Solutions to model scalar RHPs

A.1. Large-z asymptotics

Since κ ∈ H 2,2(R), it follows that sκ(s) ∈ L1(R) and we may expand
ξ∫

−∞

κ(s)

s − z
ds = −1

z

ξ∫
−∞

κ(s) ds − 1

z

ξ∫
−∞

s

s − z
κ(s) ds (A.1)

= −1

z

ξ∫
−∞

κ(s) ds +O
(

1

z2

)
,

where the implied constant is uniform in z with −π + ε < arg(z − ξ) < π − ε for a fixed ε > 0. Using (A.1) in (2.4)
we conclude that

δ�(z) ∼ 1 − i

z

ξ∫
−∞

κ(s) ds +O
(

1

z2

)
,

and, by a similar argument

δr (z) ∼ 1 + i

z

∞∫
ξ

κ(s) ds +O
(

1

z2

)
.
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A.2. Asymptotics near the stationary phase point

The following asymptotic relations for δ�, δr , δ−1
r , and δ−1

� are used to compute leading asymptotics near the 
critical point ξ and determine the model RHPs. Define complex powers of (z− ξ) using the appropriate branch of the 
logarithm (−π < arg(ζ − ξ) < π for δ±1

� , and 0 < arg(ζ − ξ) < 2π for δ±1
r ). As z → ξ in the respective domains of 

δ� and δr , ∣∣∣δ�(ζ ) − δ0�(z − ξ)iκ(ξ)
∣∣∣� −|z − ξ | log |z − ξ | (A.2)∣∣∣δr (ζ ) − δ0r (z − ξ)iκ(ξ)
∣∣∣� −|z − ξ | log |z − ξ | (A.3)∣∣∣δr (ζ )−1 − δ−1

0r (z − ξ)−iκ(ξ)
∣∣∣� −|z − ξ | log |z − ξ | (A.4)∣∣∣δ�(ζ )−1 − δ−1

0� (z − ξ)−iκ(ξ)
∣∣∣� −|z − ξ | log |z − ξ |, (A.5)

where the implied constants depend on ‖κ‖H 2,2 and a fixed ε > 0. The constants are uniform in z with −π + ε <

arg(z − ξ) < π − ε (for δ±1
� ) or ε < arg(z − ξ) < 2π − ε (for δ±1

r ).
The constants δ0� and δ0r are defined as follows. Let χ− be the characteristic function of (ξ − 1, ξ), and let χ+ be 

the characteristic function of (ξ, ξ + 1). Then:

δ0� = exp

⎛
⎝i

ξ∫
−∞

κ(s) − χ−(s)κ(ξ)

s − ξ
ds

⎞
⎠ ,

δ0r = eπκ(ξ) exp

⎛
⎜⎝−i

∞∫
ξ

κ(s) − χ+(s)κ(ξ)

s − ξ
ds

⎞
⎟⎠ .

These asymptotics are easily deduced from the integral formulas (2.4) and (2.5). We illustrate the ideas for δ�; these 
computations are standard but we include them for the reader’s convenience.

Using (2.4), we compute, for z ∈C \ (−∞, ξ ],

δ�(z) = exp

⎛
⎜⎝i

ξ∫
ξ−1

κ(ξ)

s − z
ds

⎞
⎟⎠ · exp

⎛
⎝i

ξ∫
−∞

κ(s) − χ−(s)κ(ξ)

s − z
ds

⎞
⎠

= (z − ξ)iκ(ξ)eiβ(z;ξ)

where

β(z; ξ) = −κ(ξ) log(z − ξ + 1) +
ξ∫

−∞

κ(s) − χ−(s)κ(ξ)

s − z
ds.

We will show that β(z, ξ) is continuous at z = ξ and we set δ0�(ξ) = exp(iβ(ξ, ξ)). We wish to prove that∣∣∣δ(z) − δ0(ξ)(ξ − z)−iκ(ξ)
∣∣∣� ρ,φ −|z − ξ | log |z − ξ | (A.6)

as z → ξ for z − ξ = reiφ with −π < φ < π and implied constants independent of ξ ∈ R. To do this, it suffices to 
show that∣∣∣β(ξ + reiφ; ξ) − β(ξ ; ξ)

∣∣∣� ρ,φ −r log r

where the implied constants have the same uniformity. But
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β(ξ + reiφ; ξ) − β(ξ ; ξ) = κ(ξ) log(1 + reiφ) (A.7)

+
ξ∫

−∞

(
1

s − z
− 1

s − ξ

)
(κ(s) − χ(s)κ(ξ)) ds

=
ξ∫

ξ−1

(
1

s − z
− 1

s − ξ

)
(κ(s) − κ(ξ)) ds +O (r)

where the implied constants in O (r) depend on ‖κ‖∞ and are independent of ξ ∈ R. The first right-hand integral in 
the last line of (A.7) may be written

I (r; ξ) = reiφ

ξ∫
ξ−1

1

s − ξ − reiφ

κ(s) − κ(ξ)

s − ξ
ds

= reiφ

ξ∫
ξ−1

1

s − ξ − reiφ
κ ′(ξ) ds

+ reiφ

ξ∫
ξ−1

1

s − ξ − reiφ

∫ s

ξ
(s − y)κ ′′(y) dy

s − ξ
ds

= I1(r; ξ) + I2(r; ξ)

By explicit computation,

I1(r; ξ) = reiφκ ′(ξ)
(

log(−reiφ) − log(−1 − reiφ)
)
� −r log r (A.8)

with constants depending on κ through 
∥∥κ ′∥∥∞ and otherwise independent of ξ . On the other hand, since |s − y|/|s −

ξ | ≤ 1 we may estimate

|I2(r; ξ)| ≤ r
∥∥κ ′′∥∥

2

ξ∫
ξ−1

1

|s − ξ − reiφ | ds

The right-hand integral is easily seen to equal

− cot φ∫
− 1

r
−cot φ

1√
μ2 + 1

dμ

which is O (log r) as r ↓ 0 with constants depending on φ. These constants are bounded if ε < φ < π −ε or −π +ε <

φ < −ε for some fixed ε > 0. For such φ we have

|I2(r; ξ)| � ρ,φ −r log r (A.9)

with constants independent of ξ ∈ R and depending on ρ through ‖ρ‖H 2,2 since ‖ρ‖H 2,2 controls 
∥∥κ ′′∥∥

2.
Since ‖ρ‖H 2,2 also controls ‖κ‖∞ and 

∥∥κ ′∥∥∞, we conclude from (A.7), (A.8), and (A.9) that (A.6) holds.

Appendix B. Four model RHPs

We summarize the key formulas leading to qas(x, t). We will write κ for κ(ξ) when it appears in formulas. We 
denote by η(z; ξ) or simply η the function

η(ζ ; ξ) = (z − ξ).
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Thus η±iκ is shorthand for (z − ξ)±iκ(ξ), etc. We will make use of the identities

�(z) = �(z), |�(iκ)|2 = π

κ sinh(πκ)

as well as

e−2πκ = 1 − ξ |ρ(ξ)|2 = 1 − ξ |ρ̆(ξ)|2
in the computations. Recall that the symbols δ, δ0, and δ± are defined at the beginning of each subsection and have 
different meanings in each of them as indicated in (B.1), (B.5), (B.9), and (B.13).

B.1. The case t > 0, x > 0

To prepare the initial RHP for steepest descent we set N(1) = Nδ
−σ3
� . Throughout this subsection,

δ = δ�, δ± = (δ�)±, δ0 = δ0�. (B.1)

From (2.1) we get a new RHP for N(1) with jump matrix V (1) where

V (1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1 0

− δ−2− zρ

1 − z|ρ|2 e−2itθ 1

⎞
⎟⎟⎠
⎛
⎜⎝ 1

δ2+ρ

1 − z|ρ|2 e2itθ

0 1

⎞
⎟⎠, z ∈ (−∞, ξ)

⎛
⎝ 1 ρδ2e2itθ

0 1

⎞
⎠
⎛
⎝ 1 0

−zρδ−2e−2itθ 1

⎞
⎠, z ∈ (ξ,∞)

(B.2)

N(1) is then ready for steepest descent. We reduce to a mixed ∂-RHP in the new variable N(2) = N(1)R where R is 
a piecewise continuous matrix-valued as shown in Fig. E.1. Here

R1|(ξ,∞) = zρ(z)δ(z)−2 R1|�1
= ξρ(ξ)δ−2

0 η−2iκ

R3|(−∞,ξ) = − ρ(z)δ2+(z)

1 − z|ρ(z)|2 R3|�2
= − ρ(ξ)δ2

0

1 − ξ |ρ(ξ)|2 η2iκ

R4|(−∞,ξ) = − zρ(z)δ−2−
1 − z|ρ(z)|2 R4|�3

= − ξρ(ξ)δ−2
0

1 − ξ |ρ(ξ)|2 η−2iκ

R6|(ξ,∞) = ρ(z)δ(z)2 R6|�4
= ρ(ξ)δ0η

2iκ

(B.3)

The resulting unknown N(2) satisfies a mixed ∂-RHP with jump matrix V (2) defined on the oriented contours of 
�

(2)
ξ .

As discussed above we reduce to a model RHP with contour � and jump matrix (2.9) where V (2)
0 is shown in 

Fig. E.3 and

rξ = ρ(ξ)δ2
0e−2iκe−2iκ log(

√
8t)e4itξ2

(B.4)

Using (2.18), (2.21), (2.22), and (B.4), we conclude that

|α(ξ)|2 = κ(ξ)

2ξ
,

argα(ξ) = π

4
+ arg�(iκ) + argρ(ξ)

+ 1

π

ξ∫
−∞

log |s − ξ |d log(1 − s|ρ(s)|2).
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B.2. The case t > 0, x < 0

To prepare for steepest descent we set N(1) = Nδ
−σ3
r . Throughout this subsection,

δ = δr , δ± = (δr )±, δ0 = δ0r . (B.5)

The new RHP for N(1) has jump matrix V̆ (1) where

V̆ (1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1 0

−zρ̆δ−2e−2itθ 1

⎞
⎠
⎛
⎝ 1 ρ̆δ2e2itθ

0 1

⎞
⎠, z ∈ (−∞, ξ)

⎛
⎜⎝ 1

ρ̆δ2−
1 − z|ρ̆|2 e2itθ

0 1

⎞
⎟⎠
⎛
⎜⎜⎝

1 0

−zρ̆δ−2+
1 − z|ρ̆|2 e−2itθ 1

⎞
⎟⎟⎠, z ∈ (ξ,∞)

(B.6)

N(1) is then ready for steepest descent. As before we reduce to a mixed ∂-RHP problem n the new variable N(2) =
N(1)R, where R is the piecewise continuous matrix-valued function as shown in Fig. E.1. We have the following 
formulas for R1, R3, R4, and R6:

R1|(ξ,∞) = zρ̆(z)δ+(z)−2

1 − z|ρ(z)|2 R1|�1
= ξ ρ̆(ξ)δ−2

0

1 − ξ |ρ(ξ)|2 η−2iκ

R3|(−∞,ξ) = −ρ̆(z)δ+(z)2 R3|�2
= −ρ̆(ξ)δ2

0η2iκ

R4|(−∞,ξ) = −zρ̆(z)δ−(z)−2 R4|�3
= −ξ ρ̆(ξ)δ−2

0 η−2iκ

R6|(ξ,∞) = ρ̆(z)

1 − z|ρ̆(z)|2 δ−(z)2 R6|�4
= ρ̆(ξ)

1 − ξ |ρ̆(ξ)|2 δ2
0η2iκ

(B.7)

The new unknown N(2) satisfies a mixed ∂-RHP in N(2) with jump matrix V (2) on �(2)
ξ .

Following the procedure outlined at the beginning of this section we arrive at a model RHP with contour �(2)
0 and 

jump matrix (2.9) where V (2)
0 is shown in Fig. E.4 and

r̆ξ = ρ̆(ξ)δ2
0e−2iκ(ξ) log

√
8t e4itξ2

. (B.8)

= ρ̆(ξ)e2κπ exp

⎛
⎜⎝−2i

∞∫
ξ

κ(s) − χ(s)κ(ξ)

s − ξ
ds

⎞
⎟⎠ e−2iκ(ξ) log

√
8t e4itξ2

From (2.18), (2.21), (2.22), and (B.8), we conclude that

|α(ξ)|2 = κ(ξ)

2ξ

argα(ξ) = −3π

4
+ arg�(iκ) + argρ(ξ)

+ 1

π

ξ∫
−∞

log(ξ − s)d log(1 − s|ρ(s)|2).

B.3. The case t < 0, x > 0

In what follows we will set t ′ = −t so that |t | = t ′ and

θ(z;x, t) = −
(
−z

x

t ′
+ 2z2

)
.

To prepare the initial RHP for steepest descent we take N(1) = Nδ
σ3
r . Throughout this subsection
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δ = δ−1
r , δ± =

(
δ−1
r

)
± , δ0 = δ−1

0r . (B.9)

The resulting RHP for N(1) has jump matrix V (1) where

V (1)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1 ρδ2e−2it ′θ

0 1

⎞
⎠
⎛
⎝ 1 0

−zρe2it ′θ 1

⎞
⎠, z ∈ (−∞, ξ)

⎛
⎜⎜⎝

1 0

−zρδ−2−
1 − z|ρ|2 e2it ′θ 1

⎞
⎟⎟⎠
⎛
⎜⎝ 1

ρδ2+
1 − z|ρ|2 e−2it ′θ

0 1

⎞
⎟⎠, z ∈ (ξ,∞)

(B.10)

We write N(1) = N(2)R where the piecewise continuous matrix-valued function R is shown in Fig. E.2, and the 
functions Ri are described as follows:

R1|(ξ,∞) = − ρ(z)δ+(z)2

1 − z|ρ(z)|2 R1|�1
= − ρ(ξ)δ2

0

1 − ξ |ρ(ξ)|2 η2iκ

R3|(−∞,ξ) = zρ(z)δ+(z)−2 R3|�2
= ξρ(ξ)δ−2

0 η−2iκ

R4|(−∞,ξ) = ρ(z)δ−(z)2 R4|�3
= ρ(ξ)δ2

0η2iκ

R6|(ξ,∞) = −zρ(z)δ−(z)−2

1 − z|ρ(z)|2 R6|�4
= −ξρ(ξ)δ−2

0

1 − ξ |ρ(ξ)|2 η−2iκ

(B.11)

The function N(2) obeys a mixed ∂-RHP with jump matrix V (2) that we describe below.
Following the standard procedure we arrive at a model RHP with contour �(2)

0 and jump matrix (2.9) where V (2)
0

is shown in Fig. E.5 and

rξ = ρ(ξ)δ−2
0r e2iκ(ξ) log

√
8t ′e−4it ′ξ2

(B.12)

= ρ(ξ)e−2κπ exp

⎛
⎜⎝2i

∞∫
ξ

κ(s) − χ(s)κ(ξ)

s − ξ
ds

⎞
⎟⎠ e2iκ(ξ) log

√
8t ′e−4it ′ξ2

.

From (2.19), (2.21), and (2.22), and (B.12), we conclude that

|α(ξ)|2 = κ(ξ)

2ξ

argα(ξ) = 3π

4
− arg�(iκ) + argρ(ξ)

+ 1

π

∞∫
ξ

log |s − ξ |d log(1 − s|ρ(s)|2).

B.4. The case t < 0, x < 0

To prepare for steepest descent we set N(1) = Nδ
σ3
� . Throughout this subsection,

δ = δ−1
� , δ± = (δ−1

� )±, δ0 = δ−1
0� . (B.13)

The resulting RHP for N(1) has jump matrix V̆ (1) where
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V̆ (1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1

ρ̆(z)

1 − z|ρ̆(z)|2 δ̆2−e−2it ′θ

0 1

⎞
⎠
⎛
⎜⎜⎝

1 0

−zρ̆(z)δ̆−2+
1 − z|ρ̆(z)|2 e2it ′θ 1

⎞
⎟⎟⎠, z ∈ (−∞, ξ)

⎛
⎝ 1 0

−zρ̆(z)δ̆−2e2it ′θ 1

⎞
⎠
⎛
⎝ 1 ρ̆(z)δ̆2e−2it ′θ

0 1

⎞
⎠, z ∈ (ξ,∞)

(B.14)

We can now deform to a mixed ∂-RHP by passing to N(2) = N(1)R where R is the piecewise continuous matrix-valued 
function shown in Fig. E.2, and the functions Ri have the boundary values:

R1|(ξ,∞) = −ρ̆(z)δ+(z)2 R1|�1
= −ρ̆(ξ)δ2

0η2ik

R3|(−∞,ξ) = zρ̆(z)

1 − z|ρ(z)|2 δ−2+ R3|�2
= ξ ρ̆(ξ)

1 − ξ |ρ(ξ)|2 δ−2
0 η−2iκ

R4|(−∞,ξ) = ρ̆(z)

1 − z|ρ̆(z)|2 δ2− R4|�3
= ρ̆(ξ)

1 − ξ |ρ̆(ξ)|2 δ2
0η2iκ

R6|(ξ,∞) = −zρ̆(z)δ(z)−2 R6|�4
= −ξ ρ̆(ξ)δ−2

0 η−2iκ

(B.15)

The new unknown N(2) satisfies a mixed ∂-RHP with jump matrix V̆ (2) on �(2)
ξ .

Following the procedure outlined at the beginning of the section we arrive at a model RHP with contour �(2)
0 and 

jump matrix (2.9), where V (2)
0 is shown in Fig. E.6 and

r̆ξ = ρ̆(ξ)δ2
0�e

2iκ(ξ) log
√

8t ′e−4it ′ξ2
. (B.16)

From (2.19), (2.21), (2.22), and (B.16), we conclude that

|α(ξ)|2 = κ(ξ)

2ξ

argα(ξ) = −π

4
− arg�(iκ) + argρ(ξ)

+ 1

π

∞∫
ξ

log |s − ξ |d log(1 − s|ρ(s)|2).

Appendix C. Formulae and Wronskian for parabolic cylinder functions

For sake of completeness, we provide in this appendix details of proofs of various results used in Section 5 about 
parabolic cylinder functions.

C.1. Proof of Lemma 5.4

Differentiating (5.7) with respect to ζ , we obtain

(d�

dζ
+ 1

2
iζσ3�

)
+ =

(d�

dζ
+ 1

2
iσ3ζ�

)
−V (0).

We know that det V (0) = 1, thus det �+ = det �− and det � is analytic in the whole complex plane. It is equal 
to one at infinity, thus by Liouville theorem, det � = 1. It follows that (�)−1 exists and is bounded. The matrix (d�

dζ
+ i

2
σ3ζ�

)
�−1 has no jump along the real line and is therefore an entire function of ζ . Let us compute its 

behavior at infinity. Returning to (5.3), we have that
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(d�

dζ
+ iζ

2
σ3�

)
�−1 =

(dNPC

dζ
+ NPC iκσ3

ζ

)
(NPC)−1 (C.1)

+ iζ

2

[
σ3,NPC

]
(NPC)−1.

The first term in the right-hand side of (C.1) tends to 0 as ζ → ∞, while the second term behaves like O(1/ζ ). For 
the last term in the right-hand side of (C.1), we use that

NPC(ζ ) ∼
(

1 + m(0)

ζ

)
.

Defining

β ≡ i

2
[σ3,NPC

(1)] =
⎛
⎝ 0 im

(0)
12

−im
(0)
21 0

⎞
⎠

Equivalently, β12 = im
(0)
12 and β21 = −im

(0)
21 . Again applying Liouville’s theorem, the 2 × 2 matrix � satisfies the 

ODE:

d�

dζ
+ iζ

2
σ3� = β� (C.2)

where β is an off-diagonal matrix.
The system (C.2) decouples into two first-order systems for (�11, �21) and (�12, �22),⎧⎪⎨
⎪⎩

d�11

dζ
+ 1

2 iζ�11 = β12�21

d�21

dζ
− 1

2 iζ�21 = β21�11

(C.3)

and ⎧⎪⎨
⎪⎩

d�12

dζ
+ 1

2 iζ�12 = β12�22

d�22

dζ
− 1

2 iζ�22 = β21�12.

(C.4)

Combining the above equations, one obtains that the entries of � satisfy (5.9)–(5.12).

C.2. Proof of Lemma 5.6

We know that β12β21 = κ(ξ) and

(�−)−1�+ = V (0) =
(

1 − ξ |rξ |2 rξ

−ξ rξ 1

)
.

Combining (5.17), (5.18), (5.21), and (5.22), we obtain

−ξ rξ = �−
11�

+
21 − �−

21�
+
11

= e
π
4 κDiκ(eiπ/4ζ )

1

β12
e− 3π

4 κ

(
∂ζ (Diκ(ζ e−3iπ/4)) + iζ

2
Diκ(ζ e−3iπ/4)

)

− 1

β12
e

π
4 κ

(
∂ζ (Diκ(ζ eiπ/4)) + iζ

2
Diκ(ζ eiπ/4)

)
e− 3π

4 κDiκ(ζ e−3iπ/4)

= e− πκ
2

β12
W
(
Diκ(eiπ/4ζ ), Diκ(ζ e−3iπ/4)

)

=
√

2πe− πκ
2 eiπ/4

β12�(−iκ)
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where we have used the Wronskian (C.6) in the last equality. It follows from the above computations that

β12 =
√

2πe−πκ/2eπi/4

−ξ rξ �(−iκ)
.

From the identities

�(z) = �(z), |�(iκ)|2 = π

κ sinhπκ

we see that

|β12|2 =
∣∣∣∣√2π

e−πκ/2

ξ rξ �(iκ)

∣∣∣∣
2

= 2
κe−πκ sinhπκ

ξ2|rξ |2 = κ
1

ξ2|rξ |2
(

1 − e−2πκ
)

.

Recalling that

κ(ξ) = − 1

2π
log

(
1 − ξ |ρ(ξ)|2

)
we compute

1 − e−2πκ = ξ |ρ(ξ)|2
so that (5.26) holds.

On the other hand, since ξ < 0

argβ12 = π

4
+ arg rξ + arg(�(iκ)).

Substituting the definition of rξ given in (5.2)

arg rξ = argρ(ξ) + arg δ2
0 − κ(ξ) log(8t) + 4tξ2.

We also have, by integration by parts

δ2
0(ξ) = exp

⎛
⎝2i

ξ∫
−∞

κ(s) − χ(s)κ(ξ)

s − ξ
ds

⎞
⎠

= exp

⎛
⎝−2i

ξ∫
−∞

log |s − ξ |dκ(s)

⎞
⎠

= exp

⎛
⎝ i

π

ξ∫
−∞

log |s − ξ |d log(1 − s|ρ(s)|2)
⎞
⎠

thus (5.27) holds.

C.3. Wronskians

We record the solution formulae for �(ζ, ξ) arising in the factorization of the model RHP in each of the four cases 
±t > 0, ±x > 0; see Step 4 of Section 2 and especially (2.11) for the set-up; see also (2.14) and the comments fol-
lowing for the solution method. These formulae together with the Wronskian identity for parabolic cylinder functions, 
allow the evaluations of (2.16) and (2.17) that in turn provide β12 in terms of frozen-coefficient scattering data.

We give explicit formulae for the solutions of the equations (2.14) with asymptotic behavior

�(ζ ; ξ) ∼ e∓ i
4 ζ 2σ3ζ±iκσ3

(
I + m(1)

ζ
+ o

(
ζ−1

))
.

We denote by Da(z) the usual parabolic cylinder function, i.e., the solution to (5.13) with asymptotics prescribed in 
(5.14). The identity (5.25) is easily be derived from the relation
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U(a, z) = D−a− 1
2
(z) (C.5)

(see [21, §12.1]3) and [21, 12.8.2].4 We also record the Wronskian identity

W(Da(z),Da(−z)) =
√

2π

�(−a)
(C.6)

which is a consequence of (C.5) and [21, eq. (12.2.11)].5 We use this identity to compute β12 (see proof of Lemma 5.6).
For the + case of (2.14), taking −π < arg ζ < π corresponding to t > 0, x > 0, the solution �(ζ ; ξ) is given by 

expressions (5.15) and (5.16) of Proposition 5.5.
For the + case of (2.14), taking 0 < arg ζ < 2π corresponding to t > 0, x < 0, the solution �(ζ ; ξ) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

e− 3π
4 κDiκ(ζ e− 3iπ

4 ) − iκ

β21
e

π
4 (κ−i)D−iκ−1(ζ e− πi

4 )

iκ

β12
e− 3π

4 (κ+i)Diκ−1(ζ e− 3iπ
4 ) e

πκ
4 D−iκ (e−iπ/4ζ )

⎞
⎟⎟⎠ ζ ∈ C

+,

⎛
⎜⎜⎝

e− 7πκ
4 Diκ(ζ e− 7πi

4 )
−iκ

β21
e

5π
4 (κ−i)D−iκ−1(ζ e− 5πi

4 )

iκ

β12
e− 7π

4 (κ+i)Diκ−1(ζ e− 7πi
4 ) e

5πκ
4 D−iκ (ζ e− 5πi

4 )

⎞
⎟⎟⎠ ζ ∈ C

−

For the − case of (2.14), taking 0 < arg ζ < 2π corresponding to t < 0, x > 0, the solution �(ζ ; ξ) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

e
π
4 κD−iκ (ζ e− πi

4 )
iκ

β21
e− 3π

4 (κ+i)Diκ−1(ζ e− 3πi
4 )

−iκ

β12
e

π
4 (κ−i)D−iκ−1(ζ e− πi

4 ) e− 3πκ
4 Diκ(ζ e− 3πi

4 )

⎞
⎟⎟⎠ ζ ∈C

+,

⎛
⎜⎜⎝

e
5π
4 κD−iκ (e− 5πi

4 ζ )
iκ

β21
e− 7π

4 (κ+i)Diκ−1(ζ e− 7πi
4 )

−iκ

β12
e

5π
4 (κ−i)D−iκ−1(ζ e−5πi/4) e− 7π

4 κDiκ(e− 7πi
4 ζ )

⎞
⎟⎟⎠ ζ ∈C

−.

Finally, for the − case of (2.14), taking −π < arg ζ < π corresponding to t < 0, x < 0, the solution �(ζ ; ξ) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

e
πκ
4 D−iκ (ζ e− πi

4 )
iκ

β21
e− 3π

4 (κ+i)Diκ−1(ζ e− 3πi
4 )

−iκ

β12
e

π
4 (κ−i)D−iκ−1(ζ e− πi

4 ) e
−3πκ

4 Diκ(ζ e− 3πi
4 )

⎞
⎟⎟⎠ ζ ∈ C

+,

⎛
⎜⎜⎝

e− 3πκ
4 D−iκ (ζ e

3πi
4 )

iκ

β21
e

π
4 (κ+i)Diκ−1(ζ e

πi
4 )

−iκ

β12
e− 3π

4 (κ−i)D−iκ−1(ζ e
3πi

4 ) e
πκ
4 Diκ(ζ e

iπ
4 )

⎞
⎟⎟⎠ ζ ∈ C

−

From these formulae and the identities (5.25) and (C.6), we can compute (cf. (2.16)–(2.17))

�−
11�

+
21 − �−

21�
+
11 =

⎧⎪⎪⎨
⎪⎪⎩

1

β12
e−πκ/2eπi/4

√
2π

�(−iκ)
t > 0, x > 0

1

β12
e−πκ/2eiπ/4

√
2π

�(−iκ)
e−2πκ t > 0, x < 0

(C.7)

and

3 http :/ /dlmf .nist .gov /12 .1.
4 http :/ /dlmf .nist .gov /12 .8 .E2.
5 http :/ /dlmf .nist .gov /12 .2 .E11.

http://dlmf.nist.gov/12.1
http://dlmf.nist.gov/12.8.E2
http://dlmf.nist.gov/12.2.E11
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�−
11�

+
21 − �−

21�
+
11 =

⎧⎪⎪⎨
⎪⎪⎩

1

β12
e−πκ/2e3iπ/4

√
2π

�(iκ)
e2πκ , t < 0, x > 0

1

β12
e−πκ/2e3πi/4

√
2π

�(iκ)
, t < 0, x < 0

(C.8)

Appendix D. L∞-bounds for the model RHP

We prove the bounds (6.8) and (6.9). It suffices to prove (6.8) since the bound (6.9) follows from (6.8) and the fact 
that NPC(ζ ; ξ) takes values in SL(2, C). Together with explicit estimates on the parabolic cylinder functions Da(ζ ), 
following a similar discussion in [22, §3.1.1, Lemma 3.5].

Lemma D.1. Let c1 and c2 be strictly positive constants, and suppose that ρ ∈ H 2,2(R) with ρ with ‖ρ‖H 2,2 ≤ c1, 
infz∈R(1 − z|ρ(z)|2) ≥ c2. Then, the estimate∣∣∣NPC(ζ ; ξ)

∣∣∣� 1

holds, where the implied constant depend only on c1 and c2.

Proof. We give the bound for the region 	1 since estimates for the other regions are similar. Using (5.3), (5.4), (5.15), 
(5.16) and writing

p1(ξ) = rξ /(1 − ξ |rξ |2),
we have that, for ζ with 0 < arg(ζ ) < π/4, the entries Nij of NPC are given by

N11(ζ ; ξ) = eπκ/4e− i
4 ζ 2

ζ iκD−iκ (ζ e−iπ/4)

N12(ζ ; ξ) = p1(ξ)e
i
4 ζ 2

ζ−iκeπκ/4D−iκ (ζ e−iπ/4)

+ 1

β21
e−3πκ/4e−3πi/4(iκ)e

i
4 ζ 2

ζ−iκDiκ−1(ζ e−3πi/4)

N21(ζ ; ξ) = eπκ/4e−πi/4(−iκ)e− i
4 ζ 2

ζ iκD−iκ−1(ζ e−iπ/4)

N22(ζ ; ξ) = 1

β12
p1(ξ)e

i
4 ζ 2

ζ−iκe
π
4 κe−iπ/4(−iκ)D−iκ−1(ζ e−iπ/4)

+ e−3πκ/4e
i
4 ζ 2

ζ−iκDiκ(ζ e−3iπ/4).

Since

D−iκ (ζ e−iπ/4) ∼ e−πκ/4ζ−iκe
i
4 ζ 2

, Diκ(ζ e−3iπ/4) ∼ e3πκ/4e
i
4 ζ 2

it is clear that NPC(ζ ; ξ) → I as ζ → ∞ in 	1. To prove the uniform L∞-estimate, we need a quantitative version of 
the asymptotics. We claim that, uniformly in a, in compacts of C and z with |z| ≥ 1 and | arg(z)| < 3π/4, the estimate∣∣∣ez2/4z−aDa(z)

∣∣∣� 1 (D.1)

holds. The uniform L∞-estimate will follow from the boundedness of κ , the fact that 
∣∣∣e i

4 ζ 2
∣∣∣≤ 1 for ζ ∈ 	1, and the 

estimates∣∣∣e− i
4 ζ 2

ζ iκD−iκ (ζ e−i/π/4)

∣∣∣� 1∣∣∣e− i
4 ζ 2

ζ−iκDiκ(ζ e−3iπ/4)

∣∣∣� 1∣∣∣e− i
4 ζ 2

ζ−iκD−iκ−1(ζ e−iπ/4)

∣∣∣� 1∣∣∣e− i
4 ζ 2

ζ−iκDiκ−1(ζ e−3πi/4)

∣∣∣� 1

which are a consequence of (D.1).
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To complete the proof, we recall from [22] the proof of (D.1). The parabolic cylinder function Da(z) can be 
expressed in terms of the Whittaker function Wk,μ(z) [23] (see Lemma D.2 below) via the formula

Da(ζ ) = 2
1
4 + a

2 ζ−1/2W 1
4 + a

2 ,−1/4(ζ
2/2) (D.2)

while, for | arg(z)| < 3π/2, the Whittaker function admits the integral representation

W 1
4 + a

2 ,−1/4(z) = e−z/2z
1
4 + a

2

[
1 − �( 3

2 − a)�(1 − a
2 )

�( 1
2 − a

2 )�(− a
2 )

1

z
+ R(a, z)

]
(D.3)

where

R(a, z) = 1

�( 1
2 − a

2 )�(− a
2 )

+i∞− 3
2∫

−i∞− 3
2

zζ �(ζ )�(−ζ + 1

2
− a

2
)�(−ζ − a

2
) dζ (D.4)

The computations in [22, proof of Lemma 3.5] show that

|R(a, z)| � |z|−3/2
(

3

2
π − | arg(z)|

)−3/2

, (D.5)

where the implied constant depends only on c1 and c2, if a = ±iκ or a = ±iκ − 1. This estimate, (D.2), (D.3), and 
(D.5) imply (D.1). �
Lemma D.2. The integral representation (D.3) holds.

Proof. We begin with the following representation formula [21, (13.16.11)]6:

Wk,μ(z) = e− 1
2 z

2πi

+i∞∫
−i∞

�( 1
2 + μ + t)�( 1

2 − μ + t)�(−k − t)

�( 1
2 + μ − k)�( 1

2 − μ − k)
z−t dt

where the contour separates the poles of �( 1
2 + μ + t)�( 1

2 − μ + t) from those of �(−k − t), and | arg(z)| < 3π/2. 
Thus, taking k = 1

2 + a
2 and μ = − 1

4 , we obtain

Wa
2 + 1

4 ,− 1
4
(z) = e− 1

2 z

2πi

+i∞∫
−i∞

�( 1
4 + t)�( 3

4 + t)�(− a
2 − 1

4 − t)

�(− a
2 )�( 1

2 − a
2 )

z−t dt

We wish to set t = ζ −
(

1
4 + a

2

)
. If a = ±iκ this contour shift can be made without picking up contributions from 

poles. We recover

Wa
2 + 1

4 ,− 1
4
(z) = e− 1

2 zz
1
4 + a

2

2πi
× 1

�(− a
2 )�( 1

2 − a
2 )

+i∞∫
−i∞

�
(
ζ − a

2

)
�

(
1

2
+ ζ − a

2

)
�(−ζ )z−ζ dζ

We can now obtain a large-z expansion by shifting the contour to the right. We will pick up poles at ζ = 0, 1, · · ·
depending on how far we shift. It is easy to compute the residues of the integrand at ζ = 0 and ζ = 1 using the 
facts that �(−ζ ) = �(1 − ζ )/(−ζ ) = �(2 − ζ )/(−ζ(1 − ζ )). Note that the residues get multiplied by −1 in the 
computations since we shift the contour to the right. We then obtain

6 http :/ /dlmf .nist .gov /13 .16 .E11.

http://dlmf.nist.gov/13.16.E11
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Wa
2 + 1

4 ,− 1
4
(z) = e− 1

2 zz
1
4 + a

2

2πi

×
(

1 − �(1 − a
2 )�( 3

2 − a
2 )

�(− a
2 )�( 1

2 − a
2 )

1

z

− 1

�(− a
2 )�( 1

2 − a
2 )

+i∞+ 3
2∫

−i∞+ 3
2

�
(
ζ − a

2

)
�

(
1

2
+ ζ − a

2

)
�(−ζ )z−ζ dζ

⎞
⎟⎟⎠

A trivial change of variable gives (D.4). �
Appendix E. Figures

Fig. E.1. The Matrix R(2) for t > 0, ±x > 0.

Fig. E.2. The Matrix R(2) for t < 0, ±x > 0 (note that t ′ = −t ).
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Fig. E.3. The Jump Matrix V
(2)
0 for t > 0, x > 0.

Fig. E.4. The Jump Matrix V
(2)
0 for t > 0, x < 0.



J. Liu et al. / Ann. I. H. Poincaré – AN 35 (2018) 217–265 263
Fig. E.5. The Jump Matrix V
(2)
0 for t < 0, x > 0.

Fig. E.6. The Jump Matrix V
(2)
0 for t < 0, x < 0.
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Fig. E.7. The Matrix P in terms of the Jump Matrix V
(2)
0 , where Vi = V

(2)
0 |�i

.
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