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Abstract

Under certain regularity conditions, we establish quasi-invariance of Gaussian measures on periodic functions under the flow of 
cubic fractional nonlinear Schrödinger equations on the one-dimensional torus.
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1. Introduction

1.1. Cubic fractional nonlinear Schrödinger equations

We consider the cubic fractional nonlinear Schrödinger equation (FNLS) on the one-dimensional torus T =
R/(2πZ):{

i∂tu + (−∂2
x )αu = ±|u|2u,

u|t=0 = u0,
(1.1)

where u :R ×T �−→C is the unknown function. For α > 0, let (−∂2
x )α be the Fourier multiplier operator defined by 

((−∂2
x )αf ) ̂ (n) := |n|2αf̂ (n), n ∈ Z, where f̂ denotes the Fourier transform of f . We say (1.1) is defocusing when 

the sign on the nonlinearity is positive and focusing when the sign on the nonlinearity is negative.
The equation FNLS (1.1) arises in various physical settings. When α = 1, the equation (1.1) is the cubic nonlinear 

Schrödinger equation (NLS) which appears as a model in the study of nonlinear optics, fluids and plasma physics; see 
[40] for a general survey. For α = 2, (1.1) corresponds to the cubic fourth order NLS (4NLS) and has applications to 
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the study of solitons in magnetic materials [22,42]. FNLS with non-local dispersion 1
2 < α < 1 arises in continuum 

limits of long-range lattice interactions [23]. When α ≤ 1
2 , the equation FNLS (1.1) is no longer dispersive. However, 

the cubic nonlinear half-wave equation, corresponding to α = 1
2 , emerges in the study of wave turbulence [26,6], 

gravitational collapse [12,14] and has been well-studied analytically [17,25,16]. We also refer to [41] for a study of 
(1.1) when 1

3 < α < 1
2 . In the following, we focus on studying FNLS (1.1) for α > 1

2 where dispersion is present.
The well-posedness theory of (1.1) in the L2-based Sobolev spaces Hσ(T ) crucially depends upon the strength of 

the dispersion; namely, if α ≥ 1 or 1
2 < α < 1. In [1], Bourgain proved local well-posedness of NLS in L2(T ), which 

immediately extends to global well-posedness in L2(T ) as a consequence of mass conservation:

M(u)(t) =
ˆ

T

|u(t, x)|2 dx = M(u)(0) for all t ∈R. (1.2)

A persistence-of-regularity argument then implies global well-posedness of NLS in Hσ(T ) for any σ ≥ 0. This result 
is sharp in the sense that NLS is ill-posed if σ < 0. More precisely, the solution map1 � : u0 ∈ Hσ (T ) �→ u ∈
C([−T , T ]; Hσ (T )), if it even exists in view of the non-existence of solutions in [20], is discontinuous [27] (see also 
[5,37,9,30,24]). In [33, Appendix A], the 4NLS was shown to be globally well-posed in Hσ(T ) for any σ ≥ 0. In 
Appendix B of this paper, we extend this global well-posedness result to FNLS (1.1) for any α > 1.

The well-posedness situation for FNLS (1.1) is somewhat less complete in the setting 1
2 < α < 1. In [8], Cho, 

Hwang, Kwon and Lee proved local well-posedness of FNLS (1.1) in Hσ (T ) for σ ≥ 1−α
2 by a contraction mapping 

argument; see also [11]. Following the argument in [33, Appendix A], we can show the solution map for FNLS (1.1)
fails to be locally uniformly continuous in Hσ(T ) for any σ < 0. Thus we can not construct solutions below L2(T )

using a contraction mapping argument. See also [9].
As for global well-posedness, the flow of FNLS (1.1) conserves the energy H(u); that is,

H(u)(t) = 1

2

ˆ

T

∣∣∣(−∂2
x )

α
2 u(t, x)

∣∣∣2
dx ± 1

4

ˆ

T

|u(t, x)|4 dx = H(u)(0). (1.3)

In the defocusing case, the energy controls the Hα-norm and hence energy conservation can be used to globalise (in 
time) all solutions with regularity at or above the energy space, that is, for when σ ≥ α. This result also holds in the 
focusing case, as the Hα-norm can be controlled in terms of both the energy and the mass by using the Gagliardo-
Nirenberg inequality

‖u‖4
L4 � ‖(−∂2

x )
α
2 u‖

1
α

L2‖u‖4− 1
α

L2 (1.4)

for α ≥ 1
4 . Below the energy space Hα(T ), global well-posedness of FNLS (1.1) (for both defocusing and focus-

ing nonlinearities) in Hσ(T ) was obtained for σ > 10α+1
12 [11] by using the high-low frequency decomposition of 

Bourgain [4].
In summary, the flow of FNLS (1.1) is well-defined under the following conditions:

Proposition 1.1 (Well-posedness of the cubic FNLS (1.1) in Hσ (T ) [1,8,11,33]).

(i) Let α ≥ 1. Then, the cubic FNLS (1.1) is globally well-posed in Hσ(T ) for σ ≥ 0.

(ii) Let 1
2 < α < 1. Then, the cubic FNLS (1.1) is locally well-posed in Hσ (T ) for σ ≥ 1−α

2 . Moreover, the cubic 
FNLS (1.1) is globally well-posed for σ > 10α+1

12 .

In the following, we make no distinction between the defocusing or focusing nature of (1.1) and henceforth we 
assume that (1.1) is defocusing. For future use, we define �(t) : u0 ∈ Hσ (T ) �→ u(t) ∈ Hσ (T ) to be the solution map 
of FNLS (1.1) (when it exists) at time t .

1 For clarity of presentation, we neglect to explicitly show the dependence of the solution map � on α. Unless otherwise stated, the precise value 
of α will be clear from the context.
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1.2. Main result

Our goal in this paper is to study the transport property of Gaussian measures on periodic functions under the flow 
of FNLS (1.1). Given s ∈ R, we define the Gaussian measure μs to be the induced probability measure under the 
map2:

ω ∈ � �−→ uω(x) =
∑
n∈Z

gn(ω)

〈n〉s einx, (1.5)

where 〈 · 〉 := (1 + | · |2) 1
2 and {gn}n∈Z is a sequence of independent standard complex-valued Gaussian random 

variables, i.e. Var(gn) = 2, on a probability space (�, F, P ). Formally, μs has density

dμs = Z−1
s e− 1

2 ‖u‖2
Hs du = Z−1

s

∏
n∈Z

e− 1
2 〈n〉2s |̂un|2dûn.

A computation shows that the random distribution (1.5) belongs to Hs− 1
2 −ε(T ) and not to Hs− 1

2 (T ) almost surely. It 
follows that the Gaussian measure μs is supported on Hs− 1

2 −ε(T ) \Hs− 1
2 (T ) for any ε > 0. Thus, in order to discuss 

the transport property of these measures under the flow of (1.1), Proposition 1.1 restricts us to the range:

s > max

(
1

2
,1 − α

2

)
, (1.6)

which ensures there exist well-defined dynamics within the support of μs . We now state the definition of quasi-
invariant measures: given a measure space (X, μ), we say that μ is quasi-invariant under a transformation T : X → X

if the push-forward measure T∗μ = μ ◦ T −1 and μ are mutually absolutely continuous with respect to each other.
The quasi-invariance of Gaussian measures supported on periodic functions under the flow of 4NLS was recently 

studied by Oh and Tzvetkov [33] and Oh, Sosoe and Tzvetkov [31]. See also Remark 1.5 and the recent work [32]
on Schrödinger-type equations. Our main goal is to extend these quasi-invariance results to more general values of 
dispersion α. Thus, in this direction we establish the following:

Theorem 1.2. Let s ∈R and α > 1
2 be such that

(i) s > max
( 2

3 , 11
6 − α

)
if α ≥ 1, or

(ii) s > 10α+7
12 if 1

2 < α < 1.

Then, the Gaussian measure μs is quasi-invariant under the flow of the cubic FNLS (1.1). More precisely, given any 
measurable set A ⊂ Hs− 1

2 −ε(T ) satisfying μs(A) = 0, we have μs(�(−t)(A)) = 0 for every t ∈R.

Our proof of quasi-invariance of μs in the case 1
2 < α < 1 also holds for any

min

(
1,

11

6
− α

)
< s ≤ 10α + 7

12
. (1.7)

The restriction in Theorem 1.2 (ii) is due to a lack of globally well-defined dynamics within the support of μs for 
s satisfying (1.7) (see Proposition 1.1 (ii)). However, our arguments in this paper allow us to recover the following 
local-in-time quasi-invariance result:

Theorem 1.3 (Local-in-time quasi-invariance). Let 1
2 < α < 1 and s satisfy (1.7). Then, for every R > 0, there exists 

T > 0 such that for every measurable

A ⊂ {u ∈ Hs− 1
2 −ε(T ) : ‖u‖

H
s− 1

2 −ε
(T )

< R}
satisfying μs(A) = 0, we have μs(�(−t)(A)) = 0 for every t ∈ [−T , T ].

2 From now on, we drop the factor 2π as it plays no role in our analysis.
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We conclude this subsection with a few remarks.

Remark 1.4. We note that any lowering of the global well-posedness regularity threshold, to say σ0, for the FNLS (1.1)
as stated in Proposition 1.1 (ii), will immediately imply a corresponding improvement to Theorem 1.2 (ii) and Theo-
rem 1.3. That is, we can ‘upgrade’ from local-in-time quasi-invariance to quasi-invariance as in Theorem 1.2, provided

σ0 − 1

2
> min

(
1,

11

6
− α

)
.

This should be contrasted with the local-in-time quasi-invariance result in [38, Theorem 1.5] for the focusing quintic 
NLS on T . In that setting, a global flow does not exist in view of the presence of finite-time blow-up solutions (see 
for example [29]). Thus, it is impossible to remove the ‘local-in-time’ restriction.

Remark 1.5. In the works of Bourgain [3] and Zhidkov [44], it was proven that for each k ∈ N , the NLS has an 
invariant weighted Gaussian measure ρk which is mutually absolutely continuous with the Gaussian measure μk. 
Thus, the invariance of the measures ρk imply the quasi-invariance of the Gaussian measures μk for each k ∈ N . See 
also [34] for further discussion. Theorem 1.2 extends these results to quasi-invariance of Gaussian measures μs under 
the flow of NLS to (not necessarily integer) regularities s > 5

6 .

1.3. Methodology and discussion

Theorem 1.2 is an addition to a recent program initiated by Tzvetkov [43] based on understanding the role disper-
sion has on the transport properties of Gaussian measures under the flow of nonlinear Hamiltonian PDEs; see also [33,
35,31,32,38,19]. Within the context of abstract Wiener space, the classical work of Ramer [39] (see also [7]) studied 
the quasi-invariance of Gaussian measures under general nonlinear transformations. In the setting of d-dimensional 
nonlinear Hamiltonian PDEs, Ramer’s result can be interpreted as requiring a (d + ε)-degree of smoothing on the 
nonlinear part of the flow generated by a given PDE [43]. Recently, Tzvetkov [43] introduced a general methodol-
ogy for proving quasi-invariance of Gaussian measures under the flow of nonlinear Hamiltonian PDE which does not 
appeal to Ramer’s result. In that paper, Tzvetkov studied the generalised BBM equation and crucially made use of 
the explicit smoothing present on the nonlinearity to prove quasi-invariance of Gaussian measures μs . However, in 
our case of FNLS (1.1), there is no explicit smoothing on the nonlinearity. To overcome this and reveal the necessary 
smoothing, we employ gauge transformations and normal form reductions on (1.1) (see Section 3).

Our proof of Theorem 1.2 and Theorem 1.3 is split into two parts. In the first, we employ the recent argument 
in [38] (see Method 3 below) to obtain quasi-invariance for all α > 1

2 , for some range of regularities s. We then apply 
the argument in [19] (see Method 4 below) to improve upon the previous regularity restriction for α > 5

6 . We now 
go over the recent developments in the study of quasi-invariance of Gaussian measures under the flow of nonlinear 
Hamiltonian PDEs. Note that, in order to rigorously justify the methods below, it is necessary to consider a suitably 
truncated version of (1.1) (see for example (3.2) and (3.6)). Furthermore, for the sake of discussion, we restrict to the 
one-dimensional case.

• Method 1: (‘Ramer’s argument’) The first method is to directly verify the hypothesis of Ramer’s result [39] on 
quasi-invariance of Gaussian measures under general nonlinear transformations. In the one-dimensional context, this 
essentially reduces to demonstrating a (1 + ε)-degree of smoothing for the nonlinear part of the flow. This approach 
was applied in [43,33,32].

‘Energy methods:’

• Method 2: Introduced by Tzvetkov [43], the second method involves both nonlinear PDE techniques and stochastic 
analysis. We give an overview of the method here; see also [34]. Let � be the flow of a given PDE. Given a measurable 
set A ⊂ Hs− 1

2 −ε(T ) satisfying μs(A) = 0, we aim to show

μs(�(t)(A)) = Z−1
s

ˆ

�(t)(A)

e− 1
2 ‖u‖2

Hs du = 0 for all t ∈R, (1.8)

by obtaining a differential inequality of the form
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d

dt
μs(�(t)(A)) ≤ Cpβ{μs(�(t)(A))}1− 1

p , (1.9)

where 0 ≤ β ≤ 1 and p < ∞. Then, applying Yudovich’s argument (or a variant of, see [43,35]) to (1.9) implies 
(1.8) for small times. The argument can then be iterated to give (1.8) for all times. Thus, matters reduce to obtaining 
(1.9). By Liouville’s theorem and the bijectivity of the flow �, we have the following ‘change of variables’ formula 
(Lemma 5.6):

μs(�(t)(A)) = Z−1
s

ˆ

A

e− 1
2 ‖�(t)u‖2

Hs du for all t ∈R.

Taking a time derivative, evaluating at a fixed t0 ∈R and using the group property of the flow, �(t + t0) = �(t)�(t0), 
we obtain

d

dt
μs(�(t)(A))

∣∣∣∣
t=t0

= −1

2
Z−1

s

ˆ

�(t0)(A)

d

dt

(
‖�(t)(u)‖2

Hs

)
e− 1

2 ‖�(t)u‖2
Hs

∣∣∣∣
t=0

du

≤ C

∥∥∥∥ d

dt

(
‖�(t)(u)‖2

Hs

)∣∣∣∣
t=0

∥∥∥∥
Lp(μs)

{μs(�(t0)(A))}1− 1
p . (1.10)

Thus, we lead to the following energy estimate (with smoothing):

d

dt

(
‖�(t)(u)‖2

Hs

)∣∣∣∣
t=0

≤ C(‖u‖B)‖u‖θ
X, (1.11)

where θ ≤ 2. Here, we have the freedom to choose the X-norm above provided it captures the regularity of the random 
distribution (1.5) almost surely; for example, we may take X = Hs− 1

2 −ε(T ), the Bessel potential space Ws− 1
2 −ε,∞(T )

or the Fourier-Lebesgue space FLs−ε,∞(T ) (see (1.18)). On the other hand, we must choose the weaker B-norm 
so that it can be controlled in terms of conserved quantities of the given PDE. The inequality (1.9) then follows 
from (1.10), (1.11) and estimates on higher moments of Gaussian random variables (see (5.17)). Indeed, the reduction 
to time t = 0 in the above analysis allows us to use stochastic tools on the explicit random distribution (1.5).

For the generalised BBM equation, Tzvetkov [43] was able to obtain a suitable energy estimate of the form (1.11). 
Unfortunately, for general dispersive PDE such an estimate does not always hold. The key modification is to instead 
consider a ‘modified energy’ E of the form

E(u) = ‖u‖2
Hs + correction terms

and obtain the following estimate (with smoothing):∣∣∣∣ d

dt
E(�(t)(u))

∣∣∣
t=0

∣∣∣∣ ≤ C(‖u‖B)‖u‖θ
X. (1.12)

Now, provided we show the measure ρs with density

dρs = Z−1
s e−E(u)du (1.13)

can be normalised into a probability measure, we can repeat the above argument for ρs and conclude the quasi-
invariance of ρs under the flow �. Finally, we appeal to the mutual absolute continuity of ρs and μs to conclude the 
quasi-invariance for μs under the flow �. To summarise, Method 2 requires two crucial ingredients: (i) a modified 
energy estimate of the form (1.12) and (ii) the construction of the weighted Gaussian measure ρs in (1.13).

• Method 3: Introduced by Planchon, Tzvetkov and Visciglia [38], where they studied the quasi-invariance of Gaus-
sian measures under the flow of the (super-)quintic NLS on T , the third approach is similar in spirit to Method 2. The 
fundamental feature of this method is the use of deterministic growth bounds on the Hs− 1

2 −ε-norm of solutions (see 
Proposition 4.6), so that the analysis can be restricted to a closed ball BR ⊂ Hs− 1

2 −ε(T ). The benefit of this idea over 
Method 2 is that we require a softer energy estimate:∣∣∣∣ d

E(�(t)(u))

∣∣∣∣ ≤ C
(
1 + ‖�(t)(u)‖k

s− 1 −ε

)
(1.14)
dt H 2



1992 J. Forlano, W.J. Trenberth / Ann. I. H. Poincaré – AN 36 (2019) 1987–2025
for some k ≥ 0. We then use (1.14) and the growth bound on solutions to show, for any A ⊂ BR with μs(A) = 0, we 
have

d

dt
ρ̃s(�(t)(A)) ≤ C(R,T )kρ̃s(�(t)(A)) for all t ∈ [0, T ],

where ρ̃s is the measure with density

dρ̃s = e−E(u)du.

Gronwall’s inequality and soft arguments then imply ρ̃s(�(t)(A)) = 0 and hence μs(�(t)(A)) = 0 for every A ⊂ BR . 
We then take R → ∞ to obtain the quasi-invariance of μs under the flow �. Two further differences to Method 2 are: 
(i) there is no need to reduce to time t = 0 to access stochastic tools and (ii) we do not need to normalise the measure 
ρ̃s . Notice that the above argument works even when the flow is only locally-in-time well-defined, which leads to a 
local-in-time quasi-invariance result as in Theorem 1.3 (see also [2, p. 28]).

• Method 4: This approach combines aspects of Methods 2 and 3 and was introduced by Gunaratnam, Oh, Tzvetkov 
and Weber [19] for handling the cubic nonlinear wave equation (NLW) on T 3. Namely, by arguing locally within 
Hs− 1

2 −ε(T ) and returning the analysis to time t = 0, one needs an even softer energy estimate taking the following 
form: ∣∣∣∣ d

dt
E(�(t)(u))

∣∣∣
t=0

∣∣∣∣ ≤ C(‖u‖
H

s− 1
2 −ε

)‖u‖θ
X, (1.15)

for θ ≤ 2 and where the X-norm may be chosen as in Method 2. Analogously to Method 2, we must also construct a 
suitable auxiliary probability measure adapted to the modified energy.

In the following, we survey how each of the above methods may be implemented within the context of FNLS (1.1).
In practice, Method 1 is often less applicable than Methods 2, 3 and 4 as it requires a (1 + ε)-amount of smoothing 

on the nonlinear part of the flow. In our situation of FNLS (1.1) with α ≥ 1, we could demonstrate (2α − 1)-degrees 
of nonlinear smoothing, provided s > 1. Hence, Method 1 yields quasi-invariance of Gaussian measures μs under the 
flow of (1.1), provided that α > 1 and s > 1. For FNLS (1.1) with 1

2 < α ≤ 1, a (1 + ε)-degree of nonlinear smoothing 
is not expected [13] and thus we do not know at this point if Ramer’s argument can be applied in this case. In addition, 
Methods 2, 3 and 4 usually give lower regularity restrictions compared to using Ramer’s argument (e.g. [31]). We 
found this to indeed be the case for FNLS (1.1). For this reason, we do not present Method 1 here.

For application to FNLS (1.1), it turns out that Method 3 gives an improved result in terms of regularity over Method 
2. Indeed, in terms of the energy estimate itself, the rigidity in the choice of the B-norm in (1.12) leads to far less 
flexibility compared to the energy estimate (1.14) in Method 3. In the regime 1

2 < α < 1, we established an energy 

estimate of the form (1.12) with B = Hα(T ) and X = Hs− 1
2 −ε(T ). Thus, energy conservation (1.3) immediately 

places the regularity restriction s > α + 1
2 , in this use of Method 2. This restriction is unnatural since it goes against 

our intuition that greater dispersion gives a lower regularity threshold. In this paper, we use Method 3 which allows 
us to remove the restrictions coming from using conservation laws and thus lower the regularity threshold.

We now describe our application of Method 3. The main goals are to establish (i) a suitable modified energy (see 
(4.5)) and (ii) a corresponding energy estimate of the form (1.14) (see Proposition 4.1). For this purpose, we apply 
gauge transformations to convert (1.1) into a form more amenable to apply the normal form reductions used to define 
the modified energy (see Sections 3 and 4). In this approach, the phase function

φ(n) = |n1|2α − |n2|2α + |n3|2α − |n|2α (1.16)

naturally arises as the source of dispersion. In order to exploit this for a smoothing benefit, which is required to achieve 
(ii), we crucially rely on the following lower bound: for α > 1

2 , we have

|φ(n)| � |n − n1||n − n3|n2α−2
max when n = n1 − n2 + n3.

Here, nmax := max(|n1|, |n2|, |n3|, |n|). This lower bound first appeared in the setting 1
2 < α ≤ 1 in [11]. With minor 

modifications, its proof extends easily to the case α > 1; see Lemma 2.3 and Appendix A. It can be viewed as a 
replacement of the explicit factorisations available for the phase function (1.16) of NLS

φ(n) = n2
1 − n2

2 + n2
3 − n2 = −2(n − n1)(n − n3) when n = n1 − n2 + n3,
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and 4NLS (see [33, Lemma 3.1]). Following the argument in [38], we obtain quasi-invariance of Gaussian measures 
μs under the flow of (1.1) for

(i) s > 1, when
1

2
< α ≤ 1, and (ii) s > sα, for some sα ≤ 1, when α > 1. (1.17)

See (4.7) for a precise statement of sα .
Our next goal is to attempt to lower the regularity restriction from Method 3 by using Method 4. This requires us 

to construct a suitable weighted Gaussian measure (Subsection 5.2) and establish an effective energy estimate of the 
form (1.15). In establishing the energy estimate, we have some freedom in the choice of the X-norm. One choice is 
the Hölder-Besov norm as used in [19]. Since we work intimately on the Fourier side, we use the Fourier-Lebesgue
X =FLσ, ∞(T )-norm for σ < s. Here, given q ≥ 1 and s ∈R, the Fourier-Lebesgue FLs,q(T )-norm is defined by:

‖f ‖FLs,q (T ) := ‖〈n〉s f̂ (n)‖�q (Z). (1.18)

It is easy to check that the random distribution in (1.5) belongs almost surely to FLσ, ∞(T ) for any σ < s

(Lemma 5.5). Moreover, Hölder’s inequality implies the embedding

Hs− 1
2 −ε(T ) ⊃FLσ,∞(T ) (1.19)

for σ sufficiently close to s. This fact allows us to further relax the energy estimate we obtained in Method 3 (see 
Proposition 5.1). We then follow the argument in [19] to conclude quasi-invariance of Gaussian measures μs under 
the flow of FNLS (1.1) for the following regularities:

(i) max

(
2

3
,

11

6
− α

)
< s ≤ 1, when α ≥ 1 and

(ii)
11

6
− α < s ≤ 1, when

5

6
< α < 1.

(1.20)

Notice that in (1.20), we improve the regularity restriction (1.17) we obtained using Method 3 only when α > 5
6 . The 

reason for this is that our use of the stronger FLσ,∞-norm in the energy estimate for Method 4 (Proposition 5.1) 
yields a regularity gain over the energy estimate in Method 3 (Proposition 4.1) provided α > 5

6 . Furthermore, the 
upper bound s ≤ 1 in (1.20) is necessary for our construction of the weighted Gaussian measure.

Remark 1.6. When α ≥ 7
6 , the regularity restriction in Theorem 1.2 (i) achieves the largest range of s > 2

3 . In par-
ticular, when α = 2, this improves upon the result in [33] of s > 3

4 . However, as remarked in [32], this same result 
of s > 2

3 for 4NLS could be obtained by using Method 1 and an additional novel gauge transformation introduced in 
that same paper. For FNLS (1.1) with α > 1 (and large enough), we expect the optimal result s > 1

2 could be obtained 
by using a finer modified energy arising from an infinite sequence of normal form reductions. See [31] where this 
approach led to the optimal result for 4NLS.

Recently, Oh, Tzvetkov and Wang [36] established the invariance of the (Gibbs-type) measure μ0 under the flow 
of the (renormalised) 4NLS; namely, (3.1) for α = 2. Their analysis seems to also extend to the (renormalised) 
FNLS (3.1) for some 1 < α < 2. Thus, in the presence of naturally associated invariant measures, quasi-invariance 
may persist for some regularities below what (1.6) suggests.

Remark 1.7. In Theorem 1.2 and Theorem 1.3, we studied the quasi-invariance of Gaussian measures under the flow 
of FNLS (1.1) for α > 1

2 . A natural question would be to study the transport property of Gaussian measures under the 
flow of FNLS (1.1) with α = 1

2 . We recall this corresponds to the non-dispersive half-wave equation

i∂tu + |∂x |u = |u|2u. (1.21)

In this case, we expect the Gaussian measures to not be quasi-invariant under the flow of (1.21). To give some credence 
to this, we observe that it was shown in [31] that Gaussian measures μs are not quasi-invariant under the flow of the 
dispersionless equation

i∂tu = |u|2u. (1.22)
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Given a solution u to (1.22), the change of variables

u(t, x) �−→ u(t, x − t)

implies μs is not quasi-invariant under the flow of

i∂tu + i∂xu = |u|2u
which closely resembles (1.21). The proof of the non quasi-invariance under (1.22) in [31] heavily makes use of the 
explicit solution formula

u(t, x) = e−it |u(0,x)|2u(0, x).

Unfortunately, there is no such solution formula for the half-wave equation (1.21). Hence, at this point, we do not know 
how to conclude non quasi-invariance of Gaussian measures under the flow of (1.21). It would also be of interest to 
consider the transport properties of Gaussian measures under the flow of other dispersionless PDE, such as the cubic 
Szëgo equation:

i∂tu = P≥0(|u|2u),

where P≥0 is the projection onto non-negative frequencies {n : n ≥ 0}. See [15] and the references therein for more 
on the cubic Szëgo equation.

Remark 1.8. It would be of interest to study how our approach in this paper may extend to higher order nonlinearities, 
say, for the quintic nonlinearity |u|4u. For instance, the relevant phase function is now

|n1|2α − |n2|2α + |n3|2α − |n4|2α + |n5|2α − |n|2α, (1.23)

which is restricted to the hyperplane n1 − n2 + n3 − n4 + n5 = n. When α = 1, there is no factorisation for (1.23). 
Therefore, an appropriate analogue of Lemma 2.3 is not clear (and likewise for Lemma 2.2). However, even if such 
results were proved, the formulation of the modified energies and the appropriate nonlinear estimates would still have 
to be verified. We note that the method in [38] introduces a modified energy functional which is not derivable from 
differentiation by parts, and hence their analysis is not based on factorisations of the phase function (1.23).

2. Preliminary estimates

In this section we record some elementary estimates that will be useful in the coming analysis. The first result we 
need is the double mean value theorem (DMVT) from [10, Lemma 2.3].

Lemma 2.1 (DMVT). Let ξ, η, λ ∈R and f ∈ C2(R). Then, we have

f (ξ + η + λ) − f (ξ + η) − f (ξ + λ) + f (ξ) = λη

1ˆ

0

1ˆ

0

f ′′(ξ + sλ + tη) dsdt.

We have the following consequence of DMVT:

Lemma 2.2. Fix s > 1 and let n1, n2, n3, n ∈Z be such that n = n1 − n2 + n3. Then, we have∣∣∣〈n1〉2s − 〈n2〉2s + 〈n3〉2s − 〈n〉2s
∣∣∣� |n − n1||n − n3|〈nmax〉2s−2,

where nmax = max(|n1|, |n2|, |n3|, |n|) and the implicit constant depends only on s.

Proof. This is a simple application of DMVT upon setting n1 = ξ + η + λ, n2 = ξ + η, n = ξ + λ and n3 = ξ . �
The next lemma states a crucial lower bound on the phase function φ(n) of (1.16) which we use repeatedly through-

out. It was proved for the case 1 < α ≤ 1 in [11]. Their proof easily extends to the case α > 1; see Appendix A.
2
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Lemma 2.3. Fix α > 1
2 and let n1, n2, n3, n ∈Z be such that n = n1 − n2 + n3. Then, we have

|φ(n)| � |n − n1||n − n3| (|n − n1| + |n − n3| + |n|)2α−2

� |n − n1||n − n3|n2α−2
max

where nmax = max(|n1|, |n2|, |n3|, |n|) and the implicit constant depends only on α.

We next state a useful summing estimate, a proof of which can be found in, for example, [18, Lemma 4.2].

Lemma 2.4. If β ≥ γ ≥ 0 and β + γ > 1, then we have∑
n

1

〈n − k1〉β〈n − k2〉γ � ϕβ(k1 − k2)

〈k1 − k2〉γ ,

ˆ

R

1

〈x − k1〉β〈x − k2〉γ dx � ϕβ(k1 − k2)

〈k1 − k2〉γ ,

where

ϕβ(k) :=
∑

1≤|n|≤|k|

1

|n|β ∼

⎧⎪⎨⎪⎩
1, if β > 1,

log(1 + 〈k〉), if β = 1,

〈k〉1−β, if β < 1.

Finally, we will require the following fact from elementary number theory [21]: Given n ∈N and any δ > 0, there 
exists a constant Cδ > 0 such that the number of divisors d(n) of n satisfies

d(n) ≤ Cδn
δ. (2.1)

3. Reformulation of FNLS

In this section, we reformulate FNLS (1.1) into a more amenable form for the normal form reductions in the next 
section. Given t ∈R, we consider the gauge transform Gt on L2(T ) defined by

Gt [f ] = e2it
ffl |f |2dxf,

where 
ffl
T f (x) dx := 1

2π

´
T f (x) dx. Furthermore, given u ∈ C(R; L2(T )), we define G by

G[u](t) := Gt [u(t)].
It is easy to check that G is invertible with inverse

G−1[u](t) = G−t [u(t)].
Now, let u ∈ C(R; L2(T )) be a solution to (1.1) and define v by

v(t) = G[u](t).
Then it follows from mass conservation (1.2) that v satisfies

i∂t v + (−∂2
x )αv =

⎛⎝|v|2 − 2
 

T

|v|2 dx

⎞⎠v. (3.1)

Namely, v satisfies (1.1) but with a more favourable nonlinearity. We define �(t) : u0 ∈ Hσ (T ) �→ v(t) ∈ Hσ (T ) to 
be the solution map of (3.1) (when it exists) at time t .

In order to make the following calculations secure, we consider the following truncated equation:

i∂t v + (−∂2
x )αv = P≤N

⎡⎣⎛⎝|P≤Nv|2 − 2
 

|P≤Nv|2 dx

⎞⎠P≤Nv

⎤⎦ . (3.2)
T
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Here, P≤N is the projection onto frequencies {n : |n| ≤ N} for N ∈N . We let �N(t) denote the solution map of (3.2)
at time t (when it exists).

To exploit the dispersive nature of (3.1), we will need another gauge transform. We define the interaction repre-
sentation of v as

w(t) = S(−t)v(t), (3.3)

where S(t) = eit (−∂2
x )α . On the Fourier side, we have3

ŵn(t) = e−it |n|2α

v̂n(t).

Then, the equation (3.1) becomes the following equation for the Fourier coefficients {ŵn}n∈Z:

∂t ŵn = −i
∑
�(n)

eitφ(n̄)ŵn1ŵn2ŵn3 + i|ŵn|2ŵn, (3.4)

where the phase function φ(n) and the plane �(n) are given by

φ(n) = φ(n1, n2, n3, n) = |n1|2α − |n2|2α + |n3|2α − |n|2α

and

�(n) = {(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3 and n1, n3 �= n}. (3.5)

Similarly, the truncated equation (3.2) becomes the following equation for the Fourier coefficients {ŵn}n∈Z:

∂t ŵn = 1|n|≤N

⎡⎣−i
∑

�N(n)

eitφ(n̄)ŵn1ŵn2ŵn3 + i|ŵn|2ŵn

⎤⎦ , (3.6)

where the plane �N(n) is given by

�N(n) = �(n) ∩ {(n1, n2, n3) : |nj | ≤ N, j = 1,2,3}.
From now on, for ease of notation, we will typically ignore the ‘hats’ on the Fourier coefficients.

The following lemma shows that it suffices to prove the quasi-invariance of μs under the flow of (3.1).

Lemma 3.1. The following is true:

(i) Let s > 1
2 . Then, for any t ∈ R, the Gaussian measure μs is invariant under the map Gt .

(ii) Let (X, μ) be a measure space and suppose that T1 and T2 are maps from X to itself such that μ is quasi-invariant 
under T1 and is quasi-invariant under T2. Then, μ is quasi-invariant under the composition T1 ◦ T2.

For a proof of these, see [33, Lemmas 4.4 and 4.5]. We note in the particular case s = 1, (i) follows from the results 
in [28].

4. Quasi-invariance for α > 1
2

In this section, we present part of the proof of Theorem 1.2 and Theorem 1.3 by applying the argument in [38]
(Method 3). Namely, we establish quasi-invariance of Gaussian measures μs under the flow of FNLS (1.1) for regular-
ities s given in (1.17). We begin in Subsection 4.1 by deriving a suitable modified energy and obtaining the key energy 
estimate of the form (1.14). Then, in Subsection 4.2, we use this energy estimate to conclude the quasi-invariance of 
μs .

3 For clarity, we will sometimes write f̂ (n) as f̂n .
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4.1. Energy estimate

Given a smooth solution v to (3.1), let w be as in (3.3). Then from (3.4), we have

d

dt
‖v(t)‖2

Hs = d

dt
‖w(t)‖2

Hs

= −2 Re i
∑
n∈Z

∑
�(n)

〈n〉2seitφ(n)wn1wn2wn3wn

= 1

2
Re i

∑
�(n)

ψs(n)eitφ(n)wn1wn2wn3wn,

(4.1)

where n = (n1, n2, n3, n),

�(n) := {(n1, n2, n3, n) ∈ Z4 : n1 − n2 + n3 = n and n1, n3 �= n}
and

ψs(n) = 〈n1〉2s − 〈n2〉2s + 〈n3〉2s − 〈n〉2s . (4.2)

The second equality in (4.1) follows by a symmetrisation argument. Indeed, a relabelling of the sum implies

Re i
∑
�(n)

〈n〉2seitφ(n)wn1wn2wn3wn = Re i
∑
�(n)

〈n2〉2seiφ(n)twn1wn2wn3wn.

Using the fact that Re ia = − Re ia for all a ∈C, a relabelling also shows

Re i
∑
�(n)

〈n〉2seitφ(n)wn1wn2wn3wn = −Re i
∑
�(n)

〈n1〉2seitφ(n)wn1wn2wn3wn.

This symmetrization puts us in a position to apply Lemma 2.2 later. Writing

d

dt

(
eitφ(n)

iφ(n)

)
= eitφ(n),

and applying the product rule in reverse, (4.1) implies

d

dt
‖w(t)‖2

Hs =1

2
Re

d

dt

⎡⎣∑
�(n)

ψs(n)

φ(n)
eitφ(n)wn1wn2wn3wn

⎤⎦
− 1

2
Re

∑
�(n)

ψs(n)

φ(n)
eitφ(n)∂t (wn1wn2wn3wn).

(4.3)

We now define the modified energy:

Es,t (z) = ‖z‖2
Hs − 1

2
Re

∑
�(n)

ψs(n)

φ(n)
eitφ(n)zn1zn2zn3zn

=: ‖z‖2
Hs + Rs,t (z).

Then, it follows from (4.3) that for any solution w to (3.4), we have

d

dt
Es,t (w) = −1

2
Re

∑
�(n)

ψs(n)

φ(n)
eitφ(n)∂t (wn1wn2wn3wn). (4.4)

At first glance it seems like the modified energy (4.5) is non-autonomous in time. However, this time dependence 
is only superficial. Writing the modified energy in terms of y := S(t)z, we have

Es(y) := Es,t (S(−t)y) = ‖y‖2
Hs + Rs(y), (4.5)
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where

Rs(y) := −1

2
Re

∑
�(n)

ψs(n)

φ(n)
yn1yn2yn3yn. (4.6)

Now, the nonlinear functionals Es and Rs are clearly autonomous in time.
We now state the following key energy estimate which is of the form (1.14).

Proposition 4.1. Let (s, α) belong to one of the following regions:

(i) s > 1, when α >
1

2
,

(ii) max

(
2

3
,

25

12
− α

)
< s ≤ 1, when α ≥ 5

4
,

(iii)
3 − α

2
< s ≤ 1, when 1 < α <

5

4
.

(4.7)

Then, for sufficiently small ε > 0, there exists C > 0 such that∣∣∣∣ d

dt
Es(P≤Nv(t))

∣∣∣∣ ≤ C‖v(t)‖6

H
s− 1

2 −ε
, (4.8)

for all N ∈N and any solution v to (3.2), uniformly in t ∈ R.

Proof. Using (4.5) and the unitarity of S(t) on Hs− 1
2 −ε(T ), it suffices to prove, that for small ε > 0, there exists 

C > 0 such that∣∣∣∣ d

dt
Es,t (P≤Nw(t))

∣∣∣∣ ≤ C‖w(t)‖6

H
s− 1

2 −ε
(4.9)

for all N ∈N and any solution w to (3.6), uniformly in t ∈R.
Using (4.5), (3.6) and the symmetry between n1 and n3 and between n2 and n in (the appropriate version of) (4.4), 

we have
d

dt
Es,t (P≤Nw) =N1(w) +R1(w) +N2(w) +R2(w), (4.10)

where

N1(w) := −Re i
∑

�N(n)

ψs(n)

φ(n)
eitφ(n)

⎛⎝ ∑
�N(n1)

eitφ(m,n1)wm1wm2wm3

⎞⎠wn2wn3wn, (4.11)

R1(w) := −Re i
∑

�N(n)

ψs(n)

φ(n)
eitφ(n)|wn1 |2wn1wn2wn3wn, (4.12)

N2(w) := −Re i
∑

�N(n)

ψs(n)

φ(n)
eitφ(n)wn1

⎛⎝ ∑
�N(n2)

e−itφ(m,n2)wm1wm2wm3

⎞⎠wn3wn, (4.13)

R2(w) := −Re i
∑

�N(n)

ψs(n)

φ(n)
eitφ(n)wn1 |wn2 |2wn2wn3wn. (4.14)

Here,

φ(m,n1) := |m1|2α − |m2|2α + |m3|2α − |n1|2α

and

�N(n) := {(n1, n2, n3, n) ∈ �(n) : |nj |, |n| ≤ N, j = 1,2,3}.
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From now on, we will simply write �(n) instead of �N(n) as N plays no further role. In the following, we heavily 
make use of the Fourier lattice property of Hs(T ); namely, that the Hs -norm depends only on the absolute value of 
the Fourier coefficients. In particular, we assume all the Fourier coefficients wn are real and non-negative. Moreover, 
as we never make use of the oscillatory factors such as eitφ(n), we will neglect explicitly writing them.

Consider the first scenario (i). For s > 1, Lemma 2.3 and Lemma 2.2 imply we have

|ψs(n)|
|φ(n)| ≤ 〈nmax〉2s−2α. (4.15)

We first estimate N1(w) by decomposing the sum into two cases depending on which frequency attains nmax.

• Case 1: nmax = |n1|
From the conditions n = n1 − n2 + n3 and n1 = m1 − m2 + m3 we have max(|n2|, |n3|, |n|) � |n1| and 

maxj=1,2,3 |mj | � |n1|, respectively. We assume |n2| � |n1| and |m1| � |n1| as the other cases are similar. Hence, 
we have

〈nmax〉2s−2α � 〈m1〉s− 1
2 −ε〈n2〉s− 1

2 −ε〈nmax〉−2α+1+2ε � 〈m1〉s− 1
2 −ε〈n2〉s− 1

2 −ε. (4.16)

Using (4.15), (4.16) and Young’s inequality for the convolution of sequences we have

|N1(w)| �
∑
�(n)

⎛⎝ ∑
�(n1)

〈m1〉s− 1
2 −εwm1wm2wm3

⎞⎠ 〈n2〉s− 1
2 −εwn2wn3wn

�

∥∥∥∥∥∥
∑
�(n1)

〈m1〉s− 1
2 −εwm1wm2wm3

∥∥∥∥∥∥
�2
n1

∥∥∥〈n〉s− 1
2 −εwn

∥∥∥
�2
n

‖wn‖2
�1
n
.

A further application of Young’s inequality gives∥∥∥∥∥∥
∑
�(n1)

〈m1〉s− 1
2 −εwm1wm2wm3

∥∥∥∥∥∥
�2
n1

�
∥∥∥〈n〉s− 1

2 −εwn

∥∥∥
�2
n

‖wn‖2
�1
n
.

By Hölder’s inequality and choosing ε small enough so that 1
2 + ε ≤ s − 1

2 − ε, we have

‖wn‖�1
n
� ‖w‖

H
1
2 +ε

� ‖w‖
H

s− 1
2 −ε

.

Putting this together we get

|N1(w)| � ‖v‖6

H
s− 1

2 −ε
,

which is the desired estimate for N1(w).

• Case 2: nmax ∈ {|n2|, |n3|, |n|}
It suffices to assume nmax = |n2| as the remaining cases follow analogously as below. Similar to Case 1, we have 

max(|n1|, |n3|, |n|) � |n2|. If |n1| � |n2|, we proceed in exactly the same way as Case 1. If instead |n3| � |n2| or 
|n| � |n2|, say the former as both subcases are similar, we use Young’s inequality

|N1(w)| �
∑
�(n)

⎛⎝ ∑
�(n1)

wm1wm2wm3

⎞⎠ 〈n2〉s− 1
2 −εwn2〈n3〉s− 1

2 −εwn3wn

�

∥∥∥∥∥∥
∑
�(n1)

wm1wm2wm3

∥∥∥∥∥∥
�1
n1

∥∥∥〈n〉s− 1
2 −εwn

∥∥∥2

�2
n

‖wn‖�2
n
.

A further application of Young’s inequality and Hölder’s inequality gives
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∥∥∥∥∥∥
∑
�(n1)

wm1wm2wm3

∥∥∥∥∥∥
�1
n1

� ‖wn‖3
�1
n
� ‖w‖3

H
1
2 +ε

.

This completes the case nmax = |n2| and hence the estimate for N1(w). The estimate for N2(w) follows from similar 
arguments. Now we estimate R1(w).

• Case 1: nmax = |n1|
As before, max(|n2|, |n3|, |n|) � |n1|. It suffices to assume |n2| � |n1|, as the subcases |n3| � |n1| and |n| � |n1|

are similar. We have,

|R1(w)| �
∑
�(n)

〈n1〉s− 1
2 −εw3

n1
〈n2〉s− 1

2 −εwn2wn3wn

� ‖〈n〉s− 1
2 −εw3

n‖�2
n
‖〈n〉s− 1

2 −εwn‖�2
n
‖wn‖2

�1
n
.

Using Hölders inequality and then the embedding �∞
n ⊂ �2

n we have

‖〈n〉s− 1
2 −εw3

n‖�2
n
� ‖〈n〉s− 1

2 −εwn‖�2
n
‖wn‖2

�∞
n
� ‖〈n〉s− 1

2 −εwn‖�2
n
‖wn‖2

�2
n
.

Putting everything together, we have shown

|R1(w)| � ‖w‖4

H
s− 1

2 −ε
‖w‖2

L2 .

• Case 2: nmax ∈ {|n2|, |n3|, |n|}
It suffices to assume nmax = |n2| as the remaining cases follow analogously as below. As before, max(|n1|, |n3|, |n|) �

|n2|. We apply the argument of Case 1 if |n1| � |n2|. Instead, if |n3| � |n2|, the remaining case being similar, Young’s 
inequality, the embedding �2

n ⊂ �3
n and Hölder’s inequality yield

|R1(w)| �
∑
�(n)

w3
n1

〈n2〉s− 1
2 −εwn2〈n3〉s− 1

2 −εwn3wn

� ‖wn‖3
�3
n
‖〈n〉s− 1

2 −εwn‖2
�2
n
‖wn‖�1

n

� ‖w‖3
L2‖w‖3

H
s− 1

2 −ε
.

This completes the estimate for R1(w) and the estimate for R2(w) is similar. Thus, we have established (4.8) in the 
region (i).

We now move onto establishing (4.8) when 1
2 < s ≤ 1. This regime is responsible for the regions (ii) and (iii) 

in (4.7). As before, we begin with N1(w). Notice that since s ≤ 1, we can no longer apply Lemma 2.2. We set 
σ = s − 1

2 − ε and define w̃n = 〈n〉σ wn. Without loss of generality, we suppose |n1| � |m1|. The regularity restriction 
of s > 2

3 arises from the following estimate:∥∥∥∥ ∑
�(n1)

〈m1〉σ− 1
6 wm1wm2wm3

∥∥∥∥
�∞
n1

� ‖w‖2

H
1
6
‖w‖Hσ � ‖w‖3

Hσ , (4.17)

where the second inequality holds provided s > 2
3 . We decompose the sum in N1(w) into a few cases depending on 

which frequency attains nmax.

• Case 1: |n| ∼ |n1| � |n2|, |n3|
In this case, it is clear from (1.16) and Lemma 2.3 that

|φ(n)| � n2α−1
max |n − n1| (4.18)

and from (4.2) and the mean value theorem,

|ψs(n)| � n2s−1
max |n − n1|. (4.19)
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Hence with (4.17), we have

RHS of (4.11) �
∑
�(n)

n2s−1
max

n2α−1
max

w̃n2w̃n3w̃n

〈n〉σ 〈n1〉σ− 1
6 〈n2〉σ 〈n3〉σ

∥∥∥∥ ∑
�(n1)

〈m1〉σ− 1
6 wm1wm2wm3

∥∥∥∥
�∞
n1

� ‖w‖3
Hσ

∑
�(n)

w̃n2w̃n3w̃n

nν
max〈n2〉σ 〈n3〉σ ,

where

ν = 2α − 2s + 2σ − 1

6
= 2α − 7

6
− 2ε > 0.

By the Cauchy-Schwarz inequality, we bound this by

‖w‖6
Hσ

( ∑
�(n)

1

n2ν
max〈n2〉2σ 〈n3〉2σ

) 1
2

and we are done, provided we show∑
�(n)

1

n2ν
max〈n2〉2σ 〈n3〉2σ

� 1. (4.20)

For δ > 0 sufficiently small, we have∑
�(n)

1

n2ν
max〈n2〉2σ 〈n3〉2σ

∼
∑

n1, n2, n3|n2|,|n3|�|n1|

1

〈n1〉1+δ〈n2〉1+δ〈n3〉1+δ

〈n2〉1+δ−2σ 〈n3〉1+δ−2σ

〈n1〉2ν−1−δ
.

Thus, provided

2ν > 1 and 4σ + 2ν > 3, (4.21)

we have

〈n2〉1+δ−2σ 〈n3〉1+δ−2σ

〈n1〉2ν−1−δ
� 1

〈n1〉2ν+4σ−3−3δ
� 1,

and hence (4.20) follows. The first condition in (4.21) requires α > 5
6 , while the last condition requires s > 11

6 − α.

• Case 2: |n| ∼ |n2| � |n1|, |n3|
We have

|φ(n)| � n2α
max, (4.22)

and using (4.17) leads to

RHS of (4.11) � ‖w‖3
Hσ

∑
�(n)

w̃n2w̃n3w̃n

nν
max〈n1〉σ− 1

6 〈n3〉σ
,

where

ν = 2α − 2s + 2σ = 2α − 1 − 2ε > 0.

Using Cauchy-Schwarz as in the previous case, we sum over n1, n3 and n2 provided

2ν > 1 and 2ν + 4σ − 1

3
> 3

and hence s > 11 − α. Notice the first condition above requires α > 3 .
6 4
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• Case 3: |n| ∼ |n3| � |n1|, |n2|
We have

|φ(n)| � n2α−1
max |n − n3| and |ψs(n)| � n2s−1

max |n − n3|.
Thus

RHS of (4.11) � ‖w‖3
Hσ

∑
�(n)

w̃n2w̃n3w̃n

nν
max〈n1〉σ− 1

6 〈n2〉σ
,

where

ν = 2α − 2s + 2σ = 2α − 1 − 2ε > 0.

Using Cauchy-Schwarz as in the previous cases, we sum over n1, n2 and n3 provided

2ν > 1 and 2ν + 4σ − 1

3
> 3,

and hence s > 11
6 − α. The first condition above requires α > 3

4 .

• Case 4: |n1| ∼ |n2| � |n3|, |n|
We have

|φ(n)| � n2α−1
max |n − n3| and |ψs(n)| � n2s−1

max |n − n3|
and we proceed as in Case 1 as long as s > 11

6 − α and α > 5
6 .

• Case 5: |n1| ∼ |n3| � |n2|, |n|
We have

|φ(n)| � n2α
max,

and hence

RHS of (4.11) � ‖w‖3
Hσ

∑
�(n)

w̃n2w̃n3w̃n

nν
max〈n〉σ 〈n2〉σ ,

where

ν = 2α − 2s + 2σ − 1

6
= 2α − 7

6
− 2ε > 0.

By Cauchy-Schwarz and summing in n, n2 and n1 as long as

2ν > 1 and 2ν + 4σ > 3,

and hence s > 11
6 − α. The first condition above is satisfied provided α > 5

6 .

• Case 6: |n2| ∼ |n3| � |n1|, |n|
We have

|φ(n)| � n2α−1
max |n − n1| and |ψs(n)| � n2s−1

max |n − n1|,
and we proceed as in Case 4 as long as s > 11

6 − α and α > 3
4 .

• Case 7: |n1| ∼ |n2| ∼ |n3| � |n|
From Lemma 2.3, we have |φ(n)| � n2α

max and hence

RHS of (4.11) � ‖w‖3
Hσ

∑
�(n)

n2s
maxw̃n2w̃n3w̃n

n2α
maxn

3σ− 1
6

max 〈n〉σ
.

Applying Cauchy-Schwarz in n2, n3 and n, we sum provided
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2

(
2α + 3σ − 1

6
− 2s

)
> 2 and 2α − 2s + 3σ − 1

6
+ σ >

3

2
,

which requires α + s > 11
6 and 2α + s > 8

3 . Notice that when α > 5
6 , this latter condition is superseded by the former. 

The remaining cases of the form |nj1 | ∼ |nj2 | ∼ |nj3 | � |nj4 | with distinct jk ∈ {1, 2, 3, 4} (nj4 := n) are similar and 
are thus omitted.

• Case 8: |n| ∼ |n1| ∼ |n2| ∼ |n3|
We distinguish when α is ‘close too’ or ‘far from’ 1.

• Subcase 8.1: 1 < α < 5
4

By Lemma 2.3, we have

∑
�(n)

n2s
max

|n − n1||n − n3|n2α−2
max 〈n〉σ

( 3∏
j=1

1

〈nj 〉σ
)( ∑

�(n1)

w̃m1wm2wm3

)
w̃n2w̃n3w̃n

�
∑
�(n)

1

|n − n1||n − n3|nν
max

( ∑
�(n1)

w̃m1wm2wm3

)
w̃n2w̃n3w̃n,

where

ν = 2α − 2 − 2s + 4σ = 2(α + s − 2 − 2ε) > 0, (4.23)

provided

α + s > 2. (4.24)

By Cauchy-Schwarz in n, n1 and n3, followed by summing in n and n3, we get

� ‖w‖3
Hσ

∥∥∥∥ 1

〈n − n1〉〈n − n3〉〈nmax〉ν
( ∑

�(n1)

w̃m1wm2wm3

)∥∥∥∥
�2
n,n1,n3

� ‖w‖3
Hσ

∥∥∥∥ 1

〈n1〉ν
∑
�(n1)

w̃m1wm2wm3

∥∥∥∥
�2
n1

.

Imposing

α + s < 2 + 1

4
(4.25)

implies ν < 1
2 so that we can apply Hölder’s inequality and then Young’s inequality, with exponents4

1 − 2ν+
2

+ 2 = 1

2
+ 2

2
2−ν+

,

to obtain

� ‖w‖3
Hσ

∥∥∥∥ ∑
�(n1)

w̃m1wm2wm3

∥∥∥∥
�

2
1−2ν+
n1

� ‖w‖4
Hσ ‖wn‖2

�

2
2−ν+
n

.

Once more with Hölder’s inequality, we have

� ‖w‖6
Hσ ‖〈n〉−σ ‖2

�

2
1−ν+
n

� ‖w‖6
Hσ ,

provided

4 Here, we use the notation a− (respectively, a+) to denote a − δ (respectively, a + δ), where 0 < δ � 1 is extremely small.
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2σ

1 − ν+ > 1.

Using (4.23), this last condition requires

s >
3 − α

2
. (4.26)

Putting the conditions (4.24), (4.25) and (4.26) together implies we must enforce in this subcase

max

(
1

2
,

3 − α

2
,2 − α

)
< s ≤ min

(
1,

9

4
− α

)
,

where the upper bound is strict if the minimum is 9
4 − α. Now as α ≤ 5

4 , min
(
1, 94 − α

) = 1 and this implies the range

3 − α

2
< s ≤ 1.

• Subcase 8.2: α ≥ 5
4

Given n ∈Z, let

�(n,ρ) = �(n) ∩ {(n1, n2, n3) ∈Z3 : ρ = (n − n1)(n − n3) ∈Z}.
From (2.1) we have, for any δ > 0, there exists a Cδ > 0 such that

|#�(n,ρ)| � Cδ|ρ|δ. (4.27)

By Lemma 2.3 and (4.17), we have

|N1(w)| �
∑
n

∑
ρ �=0

∑
�(n,ρ)

n2s
max

|ρ|n2α−2
max

w̃n2w̃n3w̃n

〈n〉σ 〈n1〉σ− 1
6 〈n2〉σ 〈n3〉σ

∥∥∥∥∑
�(n)

〈m1〉σ− 1
6 wm1wm2wm3

∥∥∥∥
�∞
n1

� ‖w‖3
Hσ

∑
n

∑
ρ �=0

∑
�(n,ρ)

1

|ρ|nν
max

w̃n2w̃n3w̃n,

where

ν = 2α − 2 − 2s + 4σ − 1

6
= 2α + 2s − 25

6
− 2ε,

which is positive provided

α + s >
25

12
. (4.28)

To continue, we follow the argument in [33, Proposition 6.1] and for completeness we detail it here. By Cauchy-
Schwarz, (4.27) and Lemma 2.4, we have

� ‖w‖4
Hσ

[∑
n

(∑
ρ �=0

∑
�(n,ρ)

1

|ρ|nν
max

w̃n2w̃n3

)2 ] 1
2

� ‖w‖4
Hσ

[∑
n

(∑
ρ �=0

1

|ρ|1+2δ

∑
�(n,ρ)

1

)∑
ρ �=0

∑
�(n,ρ)

1

|ρ|1−2δn2ν
max

w̃2
n2

w̃2
n3

] 1
2

� ‖w‖4
Hσ

( ∑
n2,n3

w̃2
n2

w̃2
n3

∑
n1 �=n2

1

|n1 − n2|1−2δ〈n1〉2ν

) 1
2

� ‖w‖6
Hσ ,

where from (4.28) we choose δ > 0 small enough so that δ < ν.
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The required range for s in this subcase is

max

(
2

3
,

25

12
− α

)
< s ≤ 1.

This completes the estimates for N1(w). The estimate for N2(w) follows analogously.
We now move onto bounding R1(w). Writing

m(n) := |ψs(n)|
|φ(n)|〈n1〉3σ 〈n2〉σ 〈n3〉σ 〈n〉σ ,

it suffices to show∑
�(n)

m(n)|w̃n1 |3w̃n2w̃n3w̃n � ‖w̃‖6
L2 . (4.29)

As above, we divide into a few cases.

• Case 1: |n| ∼ |n1| � |n2|, |n3|
Using (4.18) and (4.19) we have

m(n) � 1

nν
max〈n2〉σ 〈n3〉σ ,

where ν = 2α − 2s + 4σ = 2α + 2s − 2 − 4ε. By Cauchy-Schwarz in n2, n3 and n and the embedding �2
n ⊂ �6

n, we 
have

LHS of (4.29) � ‖w̃‖5
L2

(∑
n

w̃2
n

∑
n2,n3

1

n2ν
max〈n2〉2σ 〈n3〉2σ

) 1
2

� ‖w̃‖6
L2,

where we can sum provided 4σ + 2ν > 2 which requires s > 1 − 1
2α.

• Case 2: |n| ∼ |n3| � |n1|, |n2|
Using (4.22), we have

m(n) � 1

nν
max〈n1〉3σ 〈n2〉σ ,

where ν = 2α − 2s + 2σ = 2α − 1 − 2ε. By Cauchy-Schwarz in n1, n2 and n3 and the embedding �2
n ⊂ �6

n, we have

LHS of (4.29) � ‖w̃‖5
L2

(∑
n3

w̃2
n3

∑
n1,n2

1

n2ν
max〈n1〉6σ 〈n2〉2σ

) 1
2

� ‖w̃‖6
L2,

where we can sum provided s > max( 2
3 , 2 − 2α).

• Case 3: |n1| ∼ |n2| ∼ |n3| ∼ |n|
From (1.16), we have

m(n) � n2s
max

|n − n1||n − n3|n2α−2
max

1

〈n1〉3σ 〈n2〉σ 〈n3〉σ 〈n〉σ ∼ 1

|n − n1||n − n3|nν
max

,

where

ν = 2α − 2 − 2s + 6σ > 0,

provided s > 5
4 − 1

2α. An application of Cauchy-Schwarz then implies

LHS of (4.29) � ‖w̃‖5
L2

(∑
n

w̃2
n

∑
n1,n3 �=n

1

|n − n1|2|n − n3|2
) 1

2

� ‖w̃‖6
L2 .
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All remaining cases follow analogously from the methods in either Case 1 or Case 2 above and are thus omitted. 
This completes the bound for R1. Notice the condition from Case 3 supersedes the conditions from Cases 1 and 2. 
Furthermore, at least for every α ≥ 7

6 , we have

2

3
≥ 5

4
− 1

2
α

and hence we obtain the final conditions on s and α of (4.7).
Finally, this completes the proof of (4.9). �
We also have the following difference estimate for Rs(v). It will be convenient to view Rs as a multi-linear func-

tional

Rs(u
(1), u(2), u(3), u(4)) := 1

2
Re

∑
�(n)

ψs(n)

φ(n)
u(1)

n1
u

(2)
n2 u(3)

n3
u

(4)
n ,

where Rs(v, v, v, v) = Rs(v).

Proposition 4.2. Suppose

(i) s > 1, when α >
1

2
, or

(ii) s > max

(
2 − α,

1

2

)
, when α ≥ 1.

(4.30)

Then, for sufficiently small ε > 0 there exists C > 0 such that

|Rs(u) − Rs(v)| ≤ C‖u − v‖
H

s− 1
2 −ε

(‖u‖3

H
s− 1

2 −ε
+ ‖v‖3

H
s− 1

2 −ε
)

for all u, v ∈ Hs− 1
2 −ε(T ).

Proof. By the multi-linearity of Rs(u), it suffices to show

|Rs({u(j)}4
j=1)| �

4∏
j=1

‖u(j)‖Hσ , (4.31)

where σ := s − 1
2 − ε.

We first consider case (i) in (4.30). Using (4.6) and Lemmas 2.3 and 2.2 we have

|Rs({u(j)}4
j=1)| �

∑
�(n)

〈nmax〉2s−2α|u(1)
n1

||u(2)
n2

||u(3)
n3

||u4)
n |.

Similar to the proof of (4.1), it suffices to consider the following case when nmax = |n1| and |n2| � |n1|. Using Young’s 
and Hölder’s inequality, we get

|Rs({u(j)}4
j=1)| � ‖〈n1〉σ u(1)

n1
‖�2

n1
‖〈n2〉σ u(2)

n2
‖�2

n2
‖u(3)

n3
‖�1

n3
‖u(4)

n ‖�1
n
�

4∏
j=1

‖u(j)‖Hσ .

We now consider case (ii) in (4.30). As it is already contained within the case s > 1 and α > 1
2 proved above, we now 

bound |Rs({u(j)}4
j=1)| when s ≤ 1 for α ≥ 1. Given such an s, let σ = s − 1

2 − ε. We have

|Rs({u(j)}4
j=1)| �

∑
�(n)

m(n)|ũ(1)
n1

||ũ(2)
n2

||ũ(3)
n3

|ũ(4)
n |, (4.32)

where
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m(n) = |ψs(n)|
|φ(n)|〈n〉σ

3∏
j=1

1

〈nj 〉σ .

As in the proof of Proposition 4.1, we consider a few cases depending on nmax.

• Case 1: |n| ∼ |n1| � |n2|, |n3|
In this case, we have

|φ(n)| � n2α−1
max |n − n1| and |ψ(n)| � n2s−1

max |n − n1|,
and thus

m(n) � 1

nν
max

1

〈n2〉σ 〈n3〉σ ,

where ν = 2α − 1 − 2ε > 0. By Cauchy-Schwarz inequality,

RHS of (4.32) �
3∏

j=1

‖u(j)‖3
Hσ

( ∑
n,n2,n3∈Z

1

n2ν
max〈n2〉2σ 〈n3〉2σ

(ũ(4)
n )2

) 1
2

�
4∏

j=1

‖u(j)‖4
Hσ ,

where we can sum in n2 and n3 provided ν + 2σ > 1, which requires

α + s >
3

2
.

• Case 2: |n| ∼ |n2| � |n1|, |n3|
Here we use |φ(n)| � n2α

max which implies

m(n) � 1

nν
max〈n1〉σ 〈n3〉σ ,

where ν = 2α − 1 − 2ε > 0. We proceed as in Case 1 by using Cauchy-Schwarz and summing in n1 and n3 with ṽ2
n2

absorbing the remaining n2 summation.
It is easy to check that all remaining Cases 3 through 7 as explicated in the proof of Proposition 4.1 follow analo-

gously to the two cases above.

• Case 3: |n| ∼ |n1| ∼ |n2| ∼ |n3|
We can only use the lower bound of Lemma 2.3 and this implies

m(n) � 1

|n − n1||n − n3|nν
max

,

where ν = 2α − 2 − 2s + 4σ which is non-negative provided

α + s > 2.

Then Cauchy-Schwarz over �(n) gives

RHS of (4.32) �
3∏

j=1

‖u(j)‖3
Hσ

( ∑
n∈Z

(ũ(4)
n )2

∑
n1,n3∈Z

1

|n − n1|2|n − n3|2
) 1

2

�
4∏

j=1

‖u(j)‖4
Hσ .

This completes the proof of (4.31). �
Remark 4.3. Since 2 −α ≤ 25

12 −α and 2 −α ≤ 3−α
2 for α ≥ 1, the restriction (4.7) for the energy estimate supersedes 

(4.30) (ii), which is the condition for the correction term Rs(u).
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4.2. Proof of Theorem 1.2 (ii)

In this subsection, we follow the argument introduced in [38] to conclude quasi-invariance of Gaussian measures 
μs for α > 1

2 and those s given in Proposition 4.1. In particular, we conclude Theorem 1.2 (ii) and the s > 1 portion 
of Theorem 1.3.

We define the following measures:

dρs = Fs(u)dμs and dρs,N = Fs,N(u)dμs,

where

Fs(u) = exp
(
− 1

2Es(u) + 1
2‖u‖2

Hs

)
= exp

(− 1
2Rs(u)

)
and Fs,N(u) = Fs(P≤Nu).

The measure ρs,N can also be expressed as

dρs,N = Z−1
s,N exp

(− 1
2Es(P≤Nu)

)
du≤N × dμ⊥

s,N , (4.33)

where du≤N denotes the Lebesgue measure on C2N+1. The constant Z−1
s,N is the normalisation constant associated to 

the measure μs,N which is given by

dμs,N = Z−1
s,Ne− 1

2 ‖P≤Nu‖2
Hs duN .

In particular, μs,N is the probability measure induced under the map

ω ∈ � �−→ uω≤N(x) =
∑

|n|≤N

gn(ω)

〈n〉s einx.

Likewise, μ⊥
s,N is the probability measure induced under the map

ω ∈ � �−→ uω
>N(x) =

∑
|n|>N

gn(ω)

〈n〉s einx.

Note that we do not require Fs and Fs,N to be integrable with respect to μs . Hence ρs and ρs,N are not necessarily 
probability measures. However, as the quasi-invariance argument is purely local (see the proof of Theorem 1.2 (i) 
below), it suffices to have Fs,N ∈ L1

loc(μs) and with convergence to Fs . This is the content of the next proposition, 
whose proof can be found in [38, Proposition 2.1].

Proposition 4.4. Let s be as in (4.30). Then, for every bounded set A ⊂ Hs− 1
2 −ε(T ), we have

lim
N→∞

ˆ

A

|Fs,N(u) − Fs(u)|dμs(u) = 0

and in particular

lim
N→∞|ρs,N (A) − ρs(A)| = 0

The next result states important properties of the truncated flow �N .

Proposition 4.5. Let s be as in Proposition 1.1 be such that the flow � of FNLS (1.1) is globally well-defined. Then, 
the following statements hold:

(i) For every R > 0 and T > 0, there exists C(R, T ) > 0 such that

�N(t) (BR) ⊂ BC(R,T )

for all t ∈ [0, T ] and for all N ∈N ∪ {∞}. Here, �∞ := � denotes the untruncated flow.
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(ii) Let A ⊂ Hs− 1
2 −ε(T ) be a compact set and t ∈ R. Then, for every δ > 0, there exists N0 ∈N such that

‖�(t)(u) − �N(t)(u)‖Hs < δ,

for any u ∈ A and any N ≥ N0. Furthermore, we have

�(t) (A) ⊂ �N(t) (A + Bδ)

for all N ≥ N0.

We also have the following local-in-time version of Proposition 4.5.

Proposition 4.6. Let s be as in Proposition 1.1 (ii) be such that the flow � of FNLS (1.1) is only locally well-defined. 
Then, the following statements hold:

(i) Then, for every R > 0, there exist T (R) > 0 and C(R) > 0 such that

�N(t) (BR) ⊂ BC(R)

for all t ∈ [0, T (R)] and for all N ∈N ∪ {∞}.
(ii) Let A ⊂ BR ⊂ Hs− 1

2 −ε(T ) be a compact set and denote by T (R) > 0 the local existence time of the solution map 
� defined on BR . Then, for every δ > 0, there exists N0 ∈N , such that

‖�(t)(u) − �N(t)(u)‖Hs < δ,

for any u ∈ A, N ≥ N0 and t ∈ [0, T (R)]. Furthermore, we have

�(t) (A) ⊂ �N(t) (A + Bδ)

for all t ∈ [0, T (R)] and for all N ≥ N0.

The proof of Proposition 4.5 (i) follows from the global well-posedness of FNLS (1.1) when α > 10α+1
12 , while the 

proof of Proposition 4.6 (i) follows by the local existence theory (for short times) when 1
2 < α ≤ 10α+1

12 . The proof 
of Proposition 4.5 (ii) follows from the arguments in [33, Appendix B] using the existence theory in Appendix B, [1]
and [8].

Proof of Theorem 1.2 (i). In the following we fix s and α satisfying the conditions of Propositions 4.1 and 4.2. As 
long as the conclusions of these propositions are satisfied, the following general argument due to [38] implies the 
quasi-invariance of μs (either globally or locally in time). For clarity, we will only detail the following arguments 
in the case when FNLS (1.1) admits a globally well-defined flow � (see Proposition 1.1). We obtain local-in-time 
quasi-invariance from the same arguments by suitably restricting to the local well-posedness lifetime where necessary.

Given t > 0, by the inner regularity of the measure μs , it is enough to show that

A ⊂ Hs− 1
2 −ε compact and μs(A) = 0 =⇒ μs(�(−t)A) = 0. (4.34)

From Proposition 4.2 with u = 0, we have 0 < exp (Rs(v)) < ∞ for almost all v ∈ A. Hence the implication (4.34) is 
equivalent to the following implication:

A ⊂ Hs− 1
2 −ε compact and ρs(A) = 0 =⇒ ρs(�(−t)A) = 0.

As A is compact, there exists R > 0 such that A ⊂ BR . Then, by Proposition 4.5, there exists a constant C(R) > 0
such that

�(τ) (B2R) ∪ �N(τ) (B2R) ⊂ BC(R) (4.35)

for all τ ∈ [0, t]. For a measurable D ⊂ B2R , it follows from (4.33), Liouville’s theorem and the invariance of complex 
Gaussians under rotations, that
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∣∣∣∣ d

dτ
ρs,N (�N(τ)(D))

∣∣∣∣ =

∣∣∣∣∣∣∣
d

dτ
Z−1

s,N

ˆ

�N(τ)(D)

exp
(− 1

2Es(P≤Nu)
)
du≤N × dμ⊥

s,N

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣Z−1
s,N

ˆ

D

d

dτ
exp

(− 1
2Es(�(τ)(P≤Nu))

)
du≤N × dμ⊥

s,N

∣∣∣∣∣∣ .
Using the energy estimate of Proposition 4.1 along with (4.35) we have∣∣∣∣ d

dτ
exp

(− 1
2Es(�(τ)(P≤Nu))

)∣∣∣∣ ≤ C(R) exp
(− 1

2Es(�(τ)(P≤Nu))
)

for all τ ∈ [0, t] and for all u ∈ D. Combining the above we have∣∣∣∣ d

dτ
ρs,N (�N(τ)(D))

∣∣∣∣ ≤ Z−1
s,NC(R)

ˆ

D

d

dτ
exp

(− 1
2Es(�(τ)(P≤Nu))

)
du≤N × dμ⊥

s,N

= C(R)ρs,N (�N(τ)(D)).

From Gronwall’s inequality, we get

ρs,N (�N(τ)(D)) ≤ eC(R)τ ρs,N (D) (4.36)

for all N ∈ N and for all τ ∈ [0, t]. By Proposition 4.5 (ii), we have

ρs(�N(τ)(A)) ≤ ρs (�N(τ)(A + Bδ))

for any fixed δ > 0 and N large enough. Further, from Proposition 4.4 for N large enough, we have

ρs (�N(τ)(A + Bδ)) ≤ ρs,N (�N(τ)(A + Bδ)) + δ

and so

ρs(�N(τ)(A)) ≤ ρs,N (�N(τ)(A + Bδ)) + δ.

Choosing δ < R so that A + Bδ ⊂ B2R and (4.36), can be applied we get

ρs(�N(τ)(A)) ≤ eC(R)τ ρs,N (A + Bδ) + δ.

Using Proposition 4.4 to go from ρs,N back to ρs , we have

ρs(�N(t)(A)) ≤ eC(R)tρs(A + Bδ) + 2δ. (4.37)

Letting δ approach 0 and using regularity properties of the measure μs , we finally obtain

ρs(�N(τ)(A)) ≤ eC(R)τ lim
δ→0

ρs(A + Bδ) = eC(R)τ ρs(A) = 0

for any τ ∈ [0, t]. This completes the proof. �
5. Improvement for α > 5

6

In this section, we employ the hybrid argument (Method 4) from [19] in order to lower the regularity threshold we 
previously obtained using Method 3. Namely, we complete the proofs of Theorem 1.2 (i) and Theorem 1.3 by proving 
the quasi-invariance of Gaussian measures μs under the flow of FNLS (1.1) for regularities satisfying (1.20).
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5.1. Alternative energy estimate

Our first port of call is to obtain an energy estimate where we place two factors into the Fourier-Lebesgue space 
FLσ,∞(T ), where σ < s. By placing these two factors into this stronger norm, we can lower the regularity restriction; 
compare (4.7) and (5.1).

Proposition 5.1. Let α > 5
6 and

max

(
2

3
,

11

6
− α

)
< s ≤ 1. (5.1)

Then, for sufficiently small ε > 0, there exists C > 0 such that∣∣∣∣ d

dt
Es(P≤Nv(t))

∣∣∣
t=0

∣∣∣∣ ≤ C‖P≤Nv(0)‖2
FLs−ε̃,∞‖P≤Nv(0)‖4

H
s− 1

2 −ε
, (5.2)

for any N ∈ N , any solution v to (3.2) and for any 0 < ε̃ < ε, uniformly in t ∈R.

Proof. Using (4.5), the estimate (5.2) reduces to proving that for small ε > 0, there exists C > 0 such that∣∣∣∣ d

dt
Es,t (P≤Nw(t))

∣∣∣
t=0

∣∣∣∣ ≤ C‖P≤Nw(0)‖2
FLs−ε̃,∞‖P≤Nw(0)‖4

H
s− 1

2 −ε
. (5.3)

From (4.10), (4.11), (4.12), (4.13) and (4.14), (5.3) further reduces to showing∣∣∣∣ 2∑
j=1

Nj (P≤Nw(0)) +
2∑

j=1

Rj (P≤Nw(0))

∣∣∣∣ ≤ C‖P≤Nw(0)‖2
FLs−ε̃,∞‖P≤Nw(0)‖4

H
s− 1

2 −ε
(5.4)

for all N ∈N and uniformly in t ∈R. Recalling the decomposition (4.10), we estimate N1 and R1, with estimates for 
N2 and R2 following analogously. In the following, we simply replace w(0) by w. We consider N1 first. Recall that 
in Cases 1 through 7 of the proof of Proposition 4.1 (ii) and (iii), we obtained

|N1(w)| � ‖w‖6

H
s− 1

2 −ε
(5.5)

for any α > 5
6 and for any s satisfying

1 ≥ s > max

(
2

3
,

11

6
− α

)
. (5.6)

Then in these cases, we obtain (5.4) by using the embedding (1.19) to put two factors of (5.5) into the required 
Fourier-Lebesgue space. Note that we could certainly improve upon the regularity lower bound on s in these cases 
by proving (5.4) ‘directly.’ However, we find that consideration of the remaining case |n| ∼ |n1| ∼ |n2| ∼ |n3| yields 
a restriction on s given by (5.1). We now describe this remaining case. To simplify notation, we drop the frequency 
projections P≤N . Furthermore, we let σ = s − 1

2 − ε and we set w̃n = 〈n〉σ wn and wn = 〈n〉s−ε̃wn. We employ the 
argument (and the notation) from subcase 8.2 in the proof of Proposition 4.1. We have

|N1(w)| �
∑
n

∑
ρ �=0

∑
�(n,ρ)

n2s
max

|ρ|n2α−2
max

wn2wn3w̃n

〈n〉σ 〈n1〉σ− 1
6 〈n2〉s−ε̃〈n3〉s−ε̃

∥∥∥∥∑
�(n)

〈m1〉σ− 1
6 wm1wm2wm3

∥∥∥∥
�∞
n1

� ‖w‖3
Hσ ‖w‖2

FLs−ε̃,∞
∑
n

∑
ρ �=0

∑
�(n,ρ)

1

|ρ|nν
max

w̃n,

where

ν = 2α + 2s − 19

6
> 0,

provided α + s > 19 . Then, by Cauchy-Schwarz and the divisor counting lemma (4.27), we bound the above by
12
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‖w‖4
Hσ ‖w‖2

FLs−ε̃,∞

(∑
n

∑
�(n)

1

|n − n1|1−2δ|n − n3|1−2δn2ν
max

) 1
2

� ‖w‖4
Hσ ‖w‖2

FLs−ε̃,∞

(∑
n

1

〈n〉2ν−6δ

) 1
2

.

Summing this requires ν > 1
2 which restricts us further to enforcing

α + s >
11

6
,

completing the proof for N1.
Now, recall from the proof of Proposition 4.1 that we obtained the estimate

|R1(w)| � ‖P≤Nw‖6

H
s− 1

2 −ε
, (5.7)

for s > max
(

5
4 − 1

2α, 23

)
and α > 1

2 . Since

max

(
2

3
,

11

6
− α,

5

4
− 1

2
α

)
= max

(
2

3
,

11

6
− α

)
for any α ∈ R, then we may simply use (1.19) on two factors of (5.7) to obtain (5.4) for R1. This completes the proof 
of (5.4). �
5.2. Construction of weighted Gaussian measures

In this section, we construct weighted Gaussian measures which are adapted to the modified energy Es(v). Our 
attention is only on the low regularity setting 1

2 < s ≤ 1 and high enough dispersion (α ≥ 5
6 ), since the results in 

Section 4 established quasi-invariance when s > 1 for any α > 1
2 .

Given r > 0 and N ≥ 1, we first wish to construct the measure

dρs,N,r (v) = Z−1
s,N,r1{‖v‖

L2 ≤r}e− 1
2 Rs,N (P≤Nv)dμs(v)

and then, by taking N → ∞, construct the measure

dρs,r (v) = Z−1
s,r 1{‖v‖

L2 ≤r}e− 1
2 Rs(v)dμs(v),

where we recall

Rs(v) = −1

2
Re

∑
�(n)

ψs(n)

φ(n)
vn1vn2vn3vn4 ,

and we define

Rs,N(v) := −1

2
Re

∑
�N(n)

ψs(n)

φ(n)
vn1vn2vn3vn4 .

We set

FN,r(v) = 1{‖v‖
L2 ≤r}e− 1

2 Rs,N (P≤Nv) and Fr(v) = 1{‖v‖
L2≤r}e− 1

2 Rs(v).

The main result of this subsection is the following proposition which states, not only that the probability measure 
ρs,r exists, but that we have ‘good’ uniform Lp bounds on the density for ρs,N,r (see (5.8) below). Such higher Lp

bounds are crucial for the hybrid argument in [19] (see Lemma 5.5 and Proposition 5.7).

Proposition 5.2. Let r > 0, α ≥ 3
4 and max( 5−4α

2 , 12 ) < s ≤ 1. Then, given p < ∞, there exists C > 0 such that

‖Fr(v)‖Lp(μs), ‖FN,r(v)‖Lp(μs) ≤ Cp,r,s,α, (5.8)
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uniformly in N ∈ N . Furthermore, there exists Rs(v) ∈ Lp(μs) such that

lim
N→∞Rs,N(P≤Nv) = Rs(v) in Lp(μs) (5.9)

and

lim
N→∞FN,r(v) = Fr(v) in Lp(μs). (5.10)

In order to prove Proposition 5.2 by employing the argument in [33, Proposition 6.2], we need the following bound. 
Note that we define Rs,∞(v) = Rs(v).

Lemma 5.3. Let α > 1
2 and 1

2 < s ≤ 1. Then for any

γ > max

(
0,

2s + 1 − 2α

3
,

1

4
+ s − α

)
,

we have

|Rs,N(P≤Nv)| � ‖P≤Nv‖L2‖P≤Nv‖3
Hγ , (5.11)

uniformly in N ∈ N ∪ {∞}. In particular, if α > 3
2 , we may take γ ≡ 0 in (5.11).

Proof. Notice that we have a symmetry with respect to the interchange of n1 and n3 and the interchange of n2 and 
n. We split the proof of (5.11) into a few cases with the remaining cases following analogously by exploiting this 
symmetry. Below we prove (5.11) for N = ∞ as it is clear how to adjust the argument when N ∈ N . We write 
ṽn := 〈n〉γ vn.

• Case 1: |n1| ∼ |n| � |n2|, |n3|
In this case, it is clear from Lemma 2.3 that

|φ(n)| � n2α−1
max |n − n1|,

and from the mean value theorem,

|ψ(n)| � n2s−1
max |n − n1|.

Hence by Cauchy-Schwarz,

|Rs(v)| �
(∑

�(n)

ṽ2
n1

n
2(2α−2s+2γ )
max 〈n3〉2γ

) 1
2 ‖v‖2

Hγ ‖v‖L2 � ‖v‖L2‖v‖3
Hγ ,

provided

2(2α − 2s + 2γ ) > 1 and 2α − 2s + 3γ > 1. (5.12)

• Case 2: |n2| ∼ |n| � |n1|, |n3|
Using |φ(n)| � n2α

max and applying Cauchy-Schwarz as in the previous case, we obtain (5.11) provided γ satisfies 
(5.12).

• Case 3: |n1| ∼ |n2| ∼ |n3| ∼ |n|
On �(n), we have

|ψs(n)| � |n − n3|n2s−1
max and |φ(n)| � |n − n3||n − n1|n2α−2

max .

With γ ≥ 0 to be determined, we have

|Rs(v)| �
∑
�(n)

n2s−1
max

|n − n1|n2α−2
max

ṽn1vn2 ṽn3 ṽn

〈n1〉γ 〈n3〉γ 〈n〉γ

�
∑
�(n)

1

|n − n1|nν
max

ṽn1vn2vn3 ṽn,
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where ν = 2α − 1 − 2s + 3γ > 0 provided

γ > max

(
0,

2s + 1 − 2α

3

)
.

By the Cauchy-Schwarz inequality and Lemma 2.4, we have

�
( ∑

n,n1,n3

ṽ2
nṽ

2
n3

〈n − n1〉1+δ

) 1
2
( ∑

n2,n1,n

v2
n2

ṽ2
n1

〈n − n3〉1−δ〈n〉2δ

) 1
2

� ‖v‖L2‖v‖3
Hγ .

Notice from the condition 2α − 1 − 2s + 2γ > 0, that if α > 3
2 , we can take γ = 0. This completes the proof. �

We also require the following probabilistic estimate, see [33, Lemma 6.4].

Lemma 5.4. Let {gn}n∈Z be independent standard complex-valued Gaussian random variables. Then, there exist 
c, C > 0 such that, for any M ≥ 1, we have

P

[( M∑
n=1

|gn|2
) 1

2 ≥ K

]
≤ e−cK2

,

provided K ≥ CM
1
2 .

We now give the proof of Proposition 5.2.

Proof of Proposition 5.2. For α > 3
2 , Lemma 5.3 implies we may take γ ≡ 0 in (5.11) and hence

1{‖v‖
L2≤r}|Rs,N(P≤Nv)| � 1{‖v‖

L2≤r}‖P≤Nv‖4
L2 � r4,

at which point, the bound (5.8) follows trivially. We make up the remaining case 3
4 ≤ α ≤ 3

2 in the following. Given 
1
2 < s ≤ 1, let γ be as in Lemma 5.3 whose precise value will be specified later. On {‖v‖L2 ≤ r}, (5.11) implies

|Rs(P≤M0v)| ≤ C0r‖P≤M0v‖3
Hγ ≤ C0M

3γ

0 r4.

We have

‖Fr(v)‖p

Lp(dμs)
≤ Cp + p

∞̂

max(e,e2
3
2 C0r )

λp−1μs(|Rs(v)| ≥ logλ, ‖v‖L2 < r)dλ. (5.13)

We choose M0 > 0 such that

logλ = 2
3
2 C0M

3γ

0 r4. (5.14)

For j ∈ N , let Mj = 2jM0 and σj = Cε2−εj = CMε
0M−ε

j for some small ε > 0 such that 
∑∞

j=1 σj = 1
2 . Then we 

have

μs(|Rs(v)| ≥ logλ, ‖v‖L2 < r) ≤ μs(‖v‖2
Hγ ≥ (C−1

0 r−1 logλ)
2
3 )

≤
∞∑

j=1

μs(‖PMj
v‖2

Hγ ≥ σj (C
−1
0 r−1 logλ)

2
3 )

�
∞∑

j=1

P

(( ∑
|n|∼Mj

|gn|2
) 1

2

� Lj

)
,
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where Lj := (C−1
0 r−1 logλ)

1
3 σ

1
2
j M

s−γ

j � M
1
2 ε

0 M
s−γ− 1

2 ε

j � M
1
2
j , provided s − γ > 1

2 . We used here that λ > e2
3
2 C0r

implies, from (5.14), Mγ

0 r ≥ 1 and hence (C−1
0 r−1 logλ)2/3 ∼ M

4γ

0 r4 � 1. Therefore, by Lemma 5.4, we have

μs(|Rs(v)| ≥ logλ, ‖v‖L2 < r) �
∞∑

j=1

e−cr 2j (2s−2γ− 2
3 ε)

(log λ)
2
3 + 2

3
s−γ
γ

� e−c′′
r (log λ)

2s
3γ

.

Thus, from (5.13), we have

‖Fr(v)‖p

Lp(dμs)
� Cp + p

∞̂

C

epλe−c′′
r λ

2s
3γ

dλ < C < ∞,

provided 2
3s > γ . It is clear that the above arguments also apply to obtain the uniform bound (5.8) when N ∈N .

Thus we can construct the measure ρs,r provided we can choose γ ∈R satisfying

max

(
0,

2s + 1 − 2α

3
,

1

4
+ s − α

)
< γ < min

(
s − 1

2
,

2

3
s

)
= s − 1

2
.

As we wish to consider s close to 1, we must impose α > 3
4 to rule out the maximum on the left hand side being 

1
4 + s − α. Now, if s + 1

2 − α ≤ 0, it is clear we can pick a γ > 0. Otherwise, if s + 1
2 − α ≥ 0, we can choose γ > 0

as long as

2s + 1 − 2α

3
< s − 1

2
,

which upon rearranging yields the condition max( 5−4α
2 , 12 ) < s ≤ 1.

As for the Lp(μs) convergence of Rs,N(P≤Nv) and FN,r(v), we note that when α > 3
2 , we have

|Rs,N(P≤N(v)) − Rs(v)| � ‖P>Nv‖L2‖v‖3
L2 . (5.15)

By a slight modification of (5.11), when 1
2 < α < 3

2 , we also have

|Rs,N(P≤N(v)) − Rs(v)| � ‖P>Nv‖L2‖v‖3
Hγ + ‖v‖L2‖v‖2

Hγ ‖P>Nv‖Hγ . (5.16)

Taking N → ∞ in (5.15) and (5.16) and noting that s − γ > 1
2 shows Rs,N(P≤Nv) converges almost surely with 

respect to μs to Rs(v). Then because of the uniform in N bounds

‖Rs,N(P≤Nv)‖Lp(μs),‖Rs(v)‖Lp(μs) ≤ Cp,s < ∞,

which follow from Lemma 5.3, a standard argument using Egoroff’s theorem implies (5.9) (see [33, Proposition 6.2]).
From (5.15) and (5.16), we have almost sure convergence of Fr,N(v) to Fr(v) with respect to μs . Using (5.8), 

the above standard argument implies convergence in Lp(μs); namely (5.10). This completes the proof of Proposi-
tion 5.2. �

The next lemma shows that the two factors lying in FLσ,∞ for σ < s in the modified energy estimate (5.4) have 
moments indeed contributing a factor of p

1
2 . Notice that as a consequence of Proposition 5.2 (namely, Zs,N,r → Zs,r

as N → ∞), Z−1
s,N,r is bounded uniformly in N ∈ N .

Lemma 5.5. Given ε > 0 and r > 0, there exists C = C(ε, r) > 0 such that∥∥‖f ‖FLs−ε,∞
∥∥

Lp(ρs,N,r )
≤ Cp

1
2

for any p ≥ 1 and N ∈N .
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Proof. Applying the uniform bound (5.8), the uniform bound on Z−1
s,N,r and Minkowski’s integral inequality, for any 

q > 1
ε

, we have∥∥‖f ‖FLs−ε,∞
∥∥

Lp(ρs,N,r )
≤ ∥∥‖f ‖FLs−ε,q

∥∥
Lp(ρs,N,r )

≤ Z
− 1

p

s,N,r‖FN,r‖
1
p

Lq′
(μs)

∥∥‖f ‖FLs−ε,q

∥∥ 1
p

Lpq(μs)

�q

∥∥〈n〉−ε‖gn‖Lpq(�)

∥∥
�
q
n

�q q
1
2 p

1
2 ,

where we have used the following well-known estimate on higher moments of Gaussian random variables in the last 
inequality:

‖gn‖Lp(�) � p
1
2 (5.17)

for any p ≥ 2. �
5.3. Transport of the truncated weighted Gaussian measures

In this subsection, we study how the measures ρs,N,r evolve under the flow of the truncated equation (3.2). We 
follow the method of [19] in which we use a ‘change of variables formula’ (see Lemma 5.6) to make the modified en-
ergy Es along the truncated flow appear. Taking a time derivative and using the estimate (5.4) then gives a differential 
inequality for the evolution of ρs,N,r under �N (see Proposition 5.7).

Lemma 5.6 (Change of variables formula). Let α ≥ 5
6 , s be as in (5.1) and r > 0. Then for any N ∈ N , t ∈ R and 

measurable set A ⊂ Hs− 1
2 −ε(T ), we have

ρs,N,r (�N(t)(A)) = Ẑ−1
s,N

ˆ

A

1{‖v‖
L2 ≤r} e−Es,N (P≤N�N(t)(v))du≤N × dμ⊥

s,N . (5.18)

We omit the proof of Lemma 5.6 as it is identical to those in [19,33,35]. The core ingredients are the invariance of 
the Lebesgue measure LN under the truncated flow �N (because of Liouville’s theorem), the invariance of �N in the 
L2-norm (mass conservation) and the bijectivity of the flow �N . When α ≥ 1, (5.18) also holds for any measurable 
A ⊂ L2(T ).

Proposition 5.7. Let α ≥ 5
6 and s be as in (5.1). Then, given r, R > 0 and T > 0, there exists Cr,R,T > 0 such that

d

dt
ρs,N,r (�N(t)(A)) ≤ Cr,R,T · p {ρs,N,r (�N(t)(A))}1− 1

p (5.19)

for any p ≥ 2, any N ∈N , any t ∈ [0, T ] and any measurable set A ⊂ BR ⊂ Hσ (T ).

Proof. Fix r, R > 0 and T > 0. As a preliminary step, we first note the following key estimate on the growth of the 
modified energy Es,N : for α and s as in Proposition 5.7, we have∥∥∥∥1BR

∂tEs,N (P≤N�N(t)(v))

∣∣∣
t=0

∥∥∥∥
Lp(ρs,N,r )

≤ Cr,R · p (5.20)

for any p ≥ 2 and for any N ∈ N . This follows from (5.4), Lemma 5.5, the uniform bound (5.8) on FN,r , the uniform 
bound on Z−1

s,N,r and Cauchy-Schwarz inequality, since

LHS of (5.20) ≤ Z
− 1

p

s,N,r‖FN,r(v)‖
1
p

L2(μs)
‖1BR

∂tEs,N (P≤N�N(t)(v))|t=0‖L2p(μs)

≤ C
∥∥1BR

‖P≤Nv‖2
s− ε ,∞‖P≤Nv‖4

Hσ

∥∥
2p
FL 2 L (μs)
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≤ CR4
∥∥‖P≤Nv‖FL

s− ε
2 ,∞

∥∥2
L4p(μs)

≤ CR4p.

Now fix a measurable set A ⊂ BR ⊂ Hσ (T ) and t0 ∈ [0, T ]. By the semigroup property of �N(t) and the change 
of variables formula (Lemma 5.6), we have

d

dt
ρs,N,r (�N(t)(A))

∣∣∣∣
t=t0

= Z−1
s,N,r

d

dt

ˆ

�N(t)(A)

1{‖v‖
L2≤r}e−Rs,N (P≤Nv)dμs(v)

∣∣∣∣
t=t0

= Z−1
s,N,r

d

dt

ˆ

�N(t)(�N(t0)(A))

1{‖v‖
L2 ≤r}e−Rs,N (P≤Nv)dμs(v)

∣∣∣∣
t=0

= Ẑ−1
s,N,r

d

dt

ˆ

�N(t0)(A)

1{‖v‖
L2≤r}e−Es,N (P≤N�N(t)(v))du≤N × dμ⊥

s,N

∣∣∣∣
t=0

= −Z−1
s,N,r

ˆ

�N(t0)(A)

1{‖v‖
L2≤r}∂tEs,N (P≤N�N(t)(v))|t=0 e−Rs,N (P≤Nv)dμs(v).

Now recall from Proposition 4.5 (i) that for any t ∈ [0, T ] and N ∈ N , there exists C(R, T ) > 0 such that 
�N(t)(BR) ⊂ BC(R,T ). Note that when the flow � is only well-defined locally-in-time, we use Proposition 4.5 (i). 
Hence, by Hölder’s inequality we obtain

d

dt
ρs,N,r (�N(t)(A))

∣∣∣∣
t=t0

≤ Z−1
s,N,r

ˆ

�N(t0)(A)

∣∣∂tEs,N (P≤N�N(t)(u))|t=0
∣∣1{‖v‖

L2≤r}e−Rs,N (P≤Nv)dμs(v)

≤
∥∥∥∥1BC(R,T )

∂tEs,N (P≤N�N(t)(v))

∣∣∣
t=0

∥∥∥∥
Lp(ρs,N,r )

{ρs,N,r (�N(t0)(A))}1− 1
p .

Applying (5.20) yields (5.19). �
5.4. Proof of Theorem 1.2 (i)

In this section, we apply the argument in [35] to deduce from Proposition 5.7, the quasi-invariance of μs under 
the untruncated flow �(t). In what follows, we fix α ≥ 5

6 and consider s satisfying (5.1). We show that for each fixed 
R > 0,

if μs(A) = 0, then μs(�(t)(A)) = 0 (5.21)

for any t ∈ [0, T (R)] and for any measurable set A ⊂ BR . This implies local-in-time quasi-invariance of μs under 
(1.1) for any

s >
11

6
− α.

When α ≥ 1, (5.21) is true for any t ∈ R. As R is arbitrary, this implies quasi-invariance of μs under the dynamics 
of FNLS (1.1). For the rest of this section, we fix R > 0 and α ≥ 1 since the arguments below are easily modified to 
imply local-in-time quasi-invariance when 5

6 < α < 1.
For the first step, we use Proposition 5.7 to show that ρs,N,r is quasi-invariant under �N(t); see Lemma 5.8. The 

proof of Lemma 5.8 follows exactly as in [35, Proposition 5.3].

Lemma 5.8. Given r > 0, there exists 0 < tr,R < T such that given ε > 0, there exists δ > 0 such that if, for a 
measurable set A ⊂ BR ⊂ Hσ (T ), there exists N0 ∈ N such that
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ρs,N,r (A) < δ

for any N ≥ N0, then we have

ρs,N,r (�N(t)(A)) < ε

for any t ∈ [0, tr,R] and any N ≥ N0.

Then a careful argument allows the previous statement to hold when N = ∞; that is, we have that ρs,r is quasi-
invariant under the untruncated flow �(t) (Lemma 5.9). The proof of Lemma 5.9 makes use of the approximation 
property of the dynamics of FNLS (1.1) as in Proposition 4.5 (ii) and follows the arguments in [35, Lemma 5.5].

Lemma 5.9. Given r > 0, there exists 0 < tr,R < T such that given ε > 0, there exists δ > 0 such that if

ρs,r (A) < δ,

then we have

ρs,r (�N(t)(A)) < ε

for any t ∈ [0, tr,R].

Now, invoking the mutual absolute continuity of ρs,r and μs,r implies μs,r is quasi-invariant under �(t). We then 
take r → ∞ (as in [35, Theorem 1.2]) and iterate in time to obtain (5.21) for every t ∈ R, for a fixed R > 0. This 
concludes the proof of Theorem 1.2 (i).
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Appendix A. Proof of Lemma 2.3 for α > 1

Setting k = n1 − n and j = n3 − n, it is equivalent to prove

g(j, k, n) := ||n + k|2α − |n + k + j |2α + |n + j |2α − |n|2α| � |k||j |(|k| + |j | + |n|)2α−2.

Since 2α > 2, the function f (x) = |x|2α ∈ C2(R) and satisfies

f ′(x) = 2α|x|2α−2x, f ′′(x) = 2α(2α − 1)|x|2α−2.

We follow a similar argument to the case 1
2 < α < 1 in [11]. Without loss of generality we can assume that 

max(|j |, |k|) = |j | and j �= 0. For any c ∈ R, define fc(x) := |x + c|2α − |x − c|2α . Then, we have

g(j, k, n) = |fj/2(n + j/2) − fj/2(n + k + j/2)|.
The mean value theorem implies

g(j, k, n) � |k|min |f ′
j/2(x)|,
x∈I
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where I is either the interval (n + j/2, n + j/2 + k) or the interval (n + j/2 + k, n + j/2). It suffices to show

|f ′
c(x)| � |c|max(|x|, |c|)2α−2 for |c| ≥ 1

2
. (A.1)

To see this, we first suppose |n| � |j |. Then, for any x ∈ I , we have

|f ′
j/2(x)| � |j |2α−1 � |j |(|k| + |j | + |n|)2α−2.

Now suppose |n| � |j |. Then x ∈ I implies |x| ∼ |n| and hence

min
x∈I

|f ′
j/2(x)| � |j ||n|2α−2 � |j |(|k| + |j | + |n|)2α−2.

In order to verify (A.1), we may assume that x ≥ 0 as fc is odd and similarly, we assume c ≥ 1
2 as f ′

c is odd in c. We 
have

f ′
c(x) = 2α|x + c|2α−2(x + c) − 2α|x − c|2α−2(x − c),

and we consider three cases.

•Subcase 2.1: 0 ≤ x ≤ c

Here we have

f ′
c(x) = 2α

[
|x + c|2α−1 + |x − c|2α−1

]
� c2α−1.

•Subcase 2.2: c < x ≤ 2c

We have

f ′
c(x) = 2α

[
(x + c)2α−1 − (x − c)2α−1

]
= 2αc2α−1

[(x

c
+ 1

)2α−1 −
(x

c
− 1

)2α−1
]
� c2α−1

(x

c

)2α−2 ∼ cx2α−2.

• Subcase 2.3: x > 2c

Using the mean value theorem, we have

f ′
c(x) = 2αx2α−1

[(
1 + c

x

)2α−1 −
(

1 − c

x

)2α−1
]
� x2α−1 c

x
∼ cx2α−2.

This completes the proof of (A.1).

Appendix B. Well-posedness theory for FNLS with α > 1 in L2(T )

In this appendix, we detail the global well-posedness of the Cauchy problem:{
i∂tu + (−∂2

x )αu = ±|u|2u
u|t=0 = u0 ∈ Hs(T ),

(B.1)

with α > 1 and for any s ≥ 0. We say u ∈ C([0, T ]; Hs(T )) is a solution to (B.1) if it satisfies the following integral 
(Duhamel) formulation

u(t) = S(t)u0 ∓ i

tˆ

0

S(t − t ′)|u(t ′)|2u(t ′)dt ′,

where S(t) = e−it (−∂2
x )α . The main result is the following:

Proposition B.1. Let s ≥ 0 and α > 1. Then, given u0 ∈ Hs(T ), there exist T = T (‖u0‖L2) > 0 and a unique solution 
u ∈ C([−T , T ]; Hs(T )) to (B.1) with u|t=0 = u0. Furthermore, we have

sup
t∈[−T ,T ]

‖u(t)‖Hs ≤ C‖u0‖Hs .
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While the overall arguments presented here are standard, to our knowledge, they have not been fully explicated in 
the literature for (B.1) apart from when α = 2, see [33, Appendix A]. We follow the ideas presented in [11], which 
considered 1

2 < α < 1. The crucial ingredient is the lower bound on the phase function φ(n) given in Lemma 2.3. 
As the global well-posedness for s > 0 will follow by iterating the local argument using the mass conservation (see 
(1.2)), and the local argument is independent of the defocusing or focusing nature of (B.1), we may assume (B.1) is 
defocusing (that is, the sign on the nonlinearity in (B.1) is positive).

We will show the well-posedness of the gauged equation

i∂t v + (−∂2
x )αv =

(
|v|2 − 2

ˆ

T

|v|2dx

)
v, (B.2)

in Hs(T ) for s ≥ 0. This suffices from the fact that given the solution v ∈ C(R; L2(T )) satisfying v|t=0 = u0 to (B.2), 
the function

u(t) = G−1[v](t) = e−2it
ffl |v|2dxv

is the solution to (B.1) with u|t=0 = u0 (see Section 3). We define the non-resonant and resonant operators (respec-
tively) by

N (v1, v2, v3) =
∑
n∈Z

einx
∑
�(n)

v̂1(n1)v̂2(n2)v̂3(n3) and

R(v1, v2, v3) = −
∑
n∈Z

einx v̂1(n)v̂2(n)v̂3(n),
(B.3)

where for fixed n ∈ Z, the set �(n) is the non-resonant hyperplane given in (3.5). We will write N (v, v, v) = N (v)

and the same for R. Then, the integral formulation of (B.2) becomes

v(t) = S(t)u0 − i

tˆ

0

S(t − t ′)(N (v)(t ′) +R(v)(t ′))dt ′ =: �(v)(t). (B.4)

Our goal is to prove local well-posedness of (B.2) via a contraction mapping argument for the operator � in 
the Fourier-restriction spaces Xs,b(R × T ). We now state some basic properties of the spaces Xs,b(R × T ). Given 
s, b ∈ R, we define the space Xs,b(R ×T ) via the norm

‖v‖Xs,b(R×T ) = ‖〈n〉s〈τ − |n|2α〉b v̂(τ, n)‖L2
τ �2

n(R×Z),

where v̂(τ, n) denotes the space-time Fourier transform of v(t, x). Given T > 0, we also define the local-in-time 
version Xs,b([0, T ] ×T ) of Xs,b(R ×T ) as

Xs,b([0, T ] ×T ) = inf{‖v‖Xs,b(R×T ) : v|[0,T ] = u}.
We will denote by Xs,b and Xs,b

T the spaces Xs,b(R ×T ) and Xs,b([0, T ] ×T ), respectively. We have the following 
embedding: for any s ∈R and b > 1

2 , we have

X
s,b
T ↪→ C([0, T ];Hs(T )). (B.5)

Given any function F on [0, T ] ×T , we denote by F̃ any extension of F onto R ×T .
The following linear estimates hold in Xs,b

T . Their proofs are standard and can be found in, for example, [18].

Lemma B.2. The following are true:

(i) [Homogeneous linear estimate] Given s, b ∈R, we have

‖S(t)v‖
X

s,b
T

� ‖v‖Hs , (B.6)

for any 0 < T ≤ 1.
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(ii) [Nonhomogeneous linear estimate] Let s ∈ R and − 1
2 < b′ ≤ 0 ≤ b ≤ 1 + b′. Then we have∥∥∥∥

tˆ

0

S(t − t ′)F (t ′)dt ′
∥∥∥∥

X
s,b
T

� T 1+b′−b‖F‖
X

s,b′
T

, (B.7)

for any 0 < T ≤ 1.

We now state the crucial nonlinear estimate for the operators of (B.3).

Proposition B.3. Let α > 1 and s ≥ 0. Then for b > 1
2 , there exists b′ < 1

2 , sufficiently close to 1
2 , such that we have

‖R(v1, v2, v3)‖
X

s,−b′
T

+ ‖N (v1, v2, v3)‖
X

s,−b′
T

� min
k∈{1,2,3}

(
‖vk‖X

s,b
T

3∏
j=1
j �=k

‖vj‖X
0,b
T

)
(B.8)

for any 0 < T ≤ 1.

Proof. We follow the proof in [11, Proposition 5], but since α > 1, the proof here is simpler. Let ṽj be extensions of 
vj , for j = 1, 2, 3. Then it suffices to prove

‖N (ṽ1, ṽ2, ṽ3)‖Xs,−b′ + ‖R(ṽ1, ṽ2, ṽ3)‖Xs,−b′ � min

(
‖ṽk‖Xs,b

3∏
j=1
j �=k

‖ṽj‖X0,b

)
, (B.9)

since (B.8) follows from (B.9) by taking an infimum over all extensions ṽj of vj . For simplicity, we write ṽj as vj . 
We begin with the estimate for N . By Plancherel, we have

‖N (v1, v2, v3)‖Xs,−b′ =
∥∥∥∥ ˆ

τ=τ1−τ2+τ3

∑
�(n)

〈n〉s v̂1(τ1, n1)̂v2(τ2, n2)̂v3(τ3, n3)

〈τ − |n|2α〉b′ dτ1dτ2

∥∥∥∥
L2

τ �2
n

.

Notice |n| � maxj=1,2,3 |nj | and thus we may suppose, without loss of generality, |n| � |n1|. We define

f1(τ, n) = 〈n〉s〈τ − |n|2α〉b |̂v1(τ, n)| and gj (τ, n) = 〈τ − |n|2α〉b |̂vj (τ, n)| for j = 2,3.

Then we see that (B.9) follows if we prove∥∥∥∥ ˆ

τ=τ1−τ2+τ3

∑
�(n)

f1(τ1, n1)g2(τ2, n2)g3(τ3, n3)

〈τ − |n|2α〉b′

3∏
j=1

1

〈τj − |nj |2α〉b dτ1dτ2

∥∥∥∥
L2

τ �2
n

� ‖g2‖L2
τ �2

n
‖g3‖L2

τ �2
n
‖f1‖L2

τ �2
n
.

(B.10)

By duality, we have

LHS of (B.10) � sup
‖h‖

L2
τ �2

n
=1

ˆ

τ−τ1+τ2−τ3=0

∑
n−n1+n2−n3=0

n1,n3 �=n

f1(τ1, n1)g2(τ2, n2)g3(τ3, n3)h(τ,n)

〈τ − |n|2α〉b′

×
3∏

j=1

1

〈τj − |nj |2α〉b dτ1dτ2dτ.

Applying Cauchy-Schwarz, we bound this by

‖h‖L2
τ �2

n
‖g2‖L2

τ �2
n
‖g3‖L2

τ �2
n
‖f1‖L2

τ �2
n

sup
n,τ

M
1
2
n,τ ,

where
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Mn,τ =
∑

n1−n2+n3=n
n1,n3 �=n

ˆ

τ=τ1−τ2+τ3

1

〈τ − |n|2α〉2b′

3∏
j=1

1

〈τj − |nj |2α〉2b
dτ1dτ2.

It is then clear that we have proved the thesis if we show

sup
n,τ

Mn,τ < ∞.

Fix n ∈Z and τ ∈R. As 2b > 1, integrating in τ2 and τ1 (by using Lemma 2.4 twice) gives

Mn,τ �
∑

n1−n2+n3=n
n1,n3 �=n

1

〈τ − |n|2α〉2b′
1

〈τ − |n|2α − φ(n)〉2b
�

∑
n1−n2+n3=n

n1,n3 �=n

1

〈φ(n)〉2b′ .

The last inequality above follows from the triangle inequality. Recalling that n1, n3 �= n, Lemma 2.3 implies |φ(n)| � 1
and hence by Lemma 2.4, we have

Mn,τ �
∑

n1−n2+n3=n
n1,n3 �=n

1

〈n − n1〉2b′ 〈n − n3〉2b′
n

4b′(α−1)
max

�
(∑

n1

1

〈n − n1〉2b′ 〈n1〉2b′(α−1)

)2

< C < ∞,

independently of n provided we choose b′ < 1
2 such that

2b′α > 1.

The above condition is satisfied since α > 1. This completes the proof of (B.9) for the non-resonant operator N . The 
case for the resonant operator R is simpler. Indeed, by Young’s inequality and Hölder’s inequality, we have

‖R(v1, v2, v3)‖Xs,−b′ ≤ ‖R(v1, v2, v3)‖Xs,0 = ∥∥〈n〉s (̂v1 ∗τ v̂2 ∗τ v̂3)(τ, n)
∥∥

L2
τ �2

n

�
∥∥〈n〉s ‖̂v1(τ, n)‖L2

τ

3∏
j=2

‖̂vj (τ, n)‖L1
τ

∥∥
�2
n

�
∥∥〈n〉s ‖̂v1(τ, n)‖L2

τ

∥∥
�2
n

3∏
j=2

∥∥‖〈τ − |n|2α〉bv̂j (τ, n)‖L2
τ

∥∥2
�2
n

∼ ‖v1‖Xs,0

3∏
j=2

‖vj‖X0,b � ‖v1‖Xs,b

3∏
j=2

‖vj‖X0,b .

It is clear that the right hand side of (B.8) follows analogously. This completes the proof. �
We now prove Proposition B.1.

Proof of Proposition B.1. Fix α > 1 and let u0 ∈ L2(T ). For 0 < T ≤ 1, from (B.4), we have

�(v)(t) = �(v)u0(t) := S(t)u0 − i

tˆ

0

S(t − t ′)(N (v)(t ′) +R(v)(t ′))dt ′.

Now let b′ be given by Proposition B.3 and write b′ = 1
2−δ

for some small δ > 0 and then set b = 1
2 + δ

2 . Then by 
(B.6), (B.7) and (B.8), we have

‖�(v)‖
X

0,b
T

� ‖u0‖L2 + T
δ
2 ‖v‖3

X
0,b
T

. (B.11)
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Similarly,

‖�(v1) − �(v2)‖X
0,b
T

� T
δ
2 (‖v1‖2

X
0,b
T

+ ‖v2‖2
X

0,b
T

)‖v1 − v2‖X
0,b
T

. (B.12)

With R ∼ 2‖u0‖L2 , we let BR be the closed ball of radius R in X0,b
T . It follows by the contraction mapping theorem 

using (B.11) and (B.12) and choosing T = T (‖u0‖L2) > 0 that � is a contraction over BR and hence we have a unique 
fixed point v ∈ X

0,b
T .

Now for s > 0, let u0 ∈ Hs(T ). Then by (B.6), (B.7) and (B.8), we obtain

‖�(v)‖
X

s,b
T

� ‖u0‖Hs + T
δ
2 ‖v‖2

X
0,b
T

‖v‖
X

s,b
T

� ‖u0‖Hs + T
δ
2 ‖u0‖2

L2‖v‖
X

s,b
T

,

(B.13)

and

‖�(v1) − �(v2)‖X
s,b
T

� T
δ
2 ‖u0‖2

L2‖v1 − v2‖X
s,b
T

. (B.14)

It is clear from (B.13) and (B.14) that we then obtain a unique solution v ∈ X
s,b
T for the same T = T (‖u0‖L2) > 0. 

Continuity of v in time follows from (B.5). This completes the local well-posedness proof. �
We now move onto the proof of the global well-posedness of (1.1) for any α > 1 as stated in Proposition 1.1 (i).

Proof of Proposition 1.1 (i) for α > 1. When s ≥ α, we have for smooth solutions to (B.1) the growth bound

‖u(t)‖Hs ≤ eCt‖u0‖Hs ,

with C = C(‖u0‖H 1). This follows from the coercivity of the energy,5 the inequality

‖|u|2u‖Hs � ‖u‖2
Hα‖u‖Hs , (s ≥ α)

and Gronwall’s inequality.
For s = 0, we have the mass conservation ‖v(t)‖L2 = ‖u0‖L2 for any t ∈ R, immediately yielding global-in-time 

existence. For 0 < s < α, we iterate the mass conservation. The L2 local theory (Proposition B.1) implies there is a 
T0 depending on ‖u0‖L2 such that

‖v‖
X

0,b
T0

� ‖u0‖L2, (B.15)

for, say, b = 1
2+. We have from (B.13) and (B.15), that for any T1 ≤ T0,

‖v‖
X

s,b
T1

� ‖u0‖Hs + T θ
1 ‖u0‖2

L2‖v‖
X

s,b
T1

.

Therefore, there is a T2(‖u0‖L2) ≤ T such that

‖v‖
X

s,b
T2

� ‖u0‖Hs .

From (B.5), we get the a priori bound

sup
t∈[0,T2]

‖u(t)‖Hs � ‖u0‖Hs ,

which can be iterated to yield

sup
t∈[0,T ]

‖u(t)‖Hs � eK
2
θ T ‖u0‖Hs ,

for any T > 0 and any u0 ∈ Hs(T ) with ‖u0‖L2 ≤ K . �
5 In the focusing case, one uses the Gagliardo-Nirenberg inequality (1.4), as discussed in the introduction.
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