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Abstract

Motivated by Carleman’s proof of the isoperimetric inequality in the plane, we study the problem of finding a metric with zero
scalar curvature maximizing the isoperimetric ratio among all zero scalar curvature metrics in a fixed conformal class on a compact
manifold with boundary. We derive a criterion for the existence and make a related conjecture.
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1. Introduction

Among the many proofs of two dimensional isoperimetric inequalities, the one due to Carleman [3] is particularly
interesting. Indeed by an application of Riemann mapping theorem we only need to show∫

D

e2udx � 1

4π

( ∫
S1

eu dθ

)2

(1.1)

for every harmonic function u on D. Here D is the unit disk in the plane. Carleman deduced (1.1) by showing∫
D

|f |2 dx � 1

4π

( ∫
S1

|f |dθ

)2

for every holomorphic function f on D. Along this line, in [8] Jacobs showed that for every bounded open subset Ω

of R
2 with smooth boundary, there exists a positive constant cΩ such that for every holomorphic function f on Ω ,∫
Ω

|f |2 dx � cΩ

( ∫
∂Ω

|f |ds

)2

.

Moreover when Ω is not simply connected, the best constant cΩ > 1
4π

and it is achieved by some particular holomor-
phic function f . Here we formulate a higher dimensional generalization of these statements.
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Assume n � 3, (Mn,g) is a smooth compact Riemannian manifold with nonempty boundary Σ = ∂M , we write
the isoperimetric ratio

I (M,g) = |M| 1
n

|Σ | 1
n−1

. (1.2)

Here |M| is the volume of M with respect to g and |Σ | is the area of Σ . Let [g] = {ρ2g: ρ ∈ C∞(M),ρ > 0} be the
conformal class of g. The set{

g̃ ∈ [g]: the scalar curvature R̃ = 0
}

is nonempty if and only if the first eigenvalue of the conformal Laplacian operator Lg = − 4(n−1)
n−2 � + R with respect

to Dirichlet boundary condition, λ1(Lg) is strictly positive (see Section 2).
Assume λ1(Lg) > 0, we denote

ΘM,g = sup
{
I (M, g̃): g̃ ∈ [g] with R̃ = 0

}
. (1.3)

Standard technique from harmonic analysis gives us ΘM,g < ∞ (see Proposition 2.1). But is ΘM,g achieved? In
another word, can we find a conformal metric with zero scalar curvature maximizing the isoperimetric ratio?

It follows from [7, Theorem 1.1] or Theorem 3.1 that

ΘB1,gRn
= I (B1, gRn) = n− 1

n−1 ω
− 1

n(n−1)
n ,

here ωn is the volume of the unit ball in R
n and gRn is the Euclidean metric on R

n. This just says that ΘB1,gRn
is

achieved by the standard metric. In general we have the following

Theorem 1.1. Assume n � 3, (Mn,g) is a smooth compact Riemannian manifold with nonempty boundary and
λ1(Lg) > 0, then

n− 1
n−1 ω

− 1
n(n−1)

n = ΘB1,gRn
� ΘM,g < ∞.

If in addition ΘB1,gRn
< ΘM,g , then ΘM,g is achieved by some conformal metrics with zero scalar curvature.

The problem illustrates very similar behavior as the Yamabe problem of finding constant scalar curvature metrics in
a fixed conformal class (cf. [9]) and its boundary versions (cf. [4,5]). On the other hand, it has more nonlocal features
(e.g. the Euler–Lagrange equation is a nonlinear integral equation) than the two well studied problems. In analogy
with the solution of the Yamabe problem, we make the following conjecture.

Conjecture 1.1. Assume n � 3, (Mn,g) is a smooth compact Riemannian manifold with nonempty boundary and
λ1(Lg) > 0. If (M,g) is not conformally diffeomorphic to (B1, gRn), then ΘM,g > ΘB1,gRn

.

In Section 2 below, we will describe some basics related to the above problem and reformulate it as a maximization
problem for harmonic extensions. We will also discuss some elementary estimates of the Poisson kernels and show
ΘM,g is always finite. In Section 3 we will show ΘB1,gRn

is achieved by the standard metric itself and deduce some
corollaries. This is a consequence of [7, Theorem 1.1]. However the approach we present here is different and of
independent interest. In Section 4 we will prove the regularity of the solutions to the Euler–Lagrange equations of the
maximization problem for harmonic extensions. In Section 5 we derive some asymptotic expansion formulas for the
standard Poisson kernel and the Poisson kernel for the conformal Laplacian operators. These expansion formulas will
be useful in the future study of Conjecture 1.1. In Section 6, we will derive the concentration compactness principle
for the maximization problem and this will be used in the last section to deduce Theorem 1.1.

2. Some preparations

Assume n � 3, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M . The conformal Lapla-
cian operator is given by

Lg = −4(n − 1)
� + R.
n − 2
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It satisfies the transformation law

L
ρ

4
n−2 g

ϕ = ρ− n+2
n−2 Lg(ρϕ) for ρ,ϕ ∈ C∞(M), ρ > 0.

Let

Eg(ϕ,ψ) =
∫
M

[
4(n − 1)

n − 2
∇ϕ · ∇ψ + Rϕψ

]
dμ, Eg(ϕ) = Eg(ϕ,ϕ),

here dμ is the measure generated by g, then it follows from the transformation law that

E
ρ

4
n−2 g

(ϕ) = Eg(ρϕ) for ρ,ϕ ∈ C∞(M), ρ > 0, ϕ|Σ = 0. (2.1)

Let λ1(Lg) be the first eigenvalue of Lg with respect to the Dirichlet boundary condition, then

λ1(Lg) = inf
ϕ∈H 1

0 (M)\{0}
Eg(ϕ)∫

M
ϕ2 dμg

.

Assume ρ ∈ C∞(M), ρ > 0. It follows from (2.1) that λ1(Lg) < 0 implies λ1(L
ρ

4
n−2 g

) < 0. On the other hand,

if λ1(Lg) � 0, then λ1(L
ρ

4
n−2 g

) � (maxM ρ)−
4

n−2 λ1(Lg). Hence the sign of the first eigenvalue of the conformal

Laplacian operator does not depend on the choice of particular metric in a conformal class. This sign is useful because
of the following fact: λ1(Lg) > 0 if and only if we may find a scalar flat metric in the conformal class of g. The only
thing we need to verify is we can find a scalar flat conformal metric when λ1(Lg) > 0. To see this we may solve the
Dirichlet problem{

Lgρ = 0 on M,

ρ|Σ = 1.

We claim ρ > 0 on M . To see this, we let ϕ be the first eigenfunction of Lg with ϕ > 0 on M\Σ and ϕ|Σ = 0. Let
w = ρ

ϕ
, then

−4(n − 1)

n − 2
�w − 8(n − 1)

n − 2

∇ϕ

ϕ
· ∇w + λ1w = 0 on M\Σ.

Since w(x) → ∞ as x → Σ , it follows from strong maximum principle that w > 0 on M\Σ , hence ρ > 0 on M .

Note that R
ρ

4
n−2 g

= ρ− n+2
n−2 Lgρ = 0, we find the needed metric.

Assume λ1(Lg) > 0, the Green’s function GL of Lg satisfies{
(Lg)xGL(x, y) = δy on M,

GL(x, y) = 0 for x ∈ Σ.

The Poisson kernel of Lg is given by

PL(x, ξ) = −4(n − 1)

n − 2

∂GL(x, y)

∂yν

∣∣∣∣
y=ξ

,

here ν is the unit outer normal direction. The solution of{
Lgu = 0 on M,

u|Σ = f

is given by

u(x) = (PLf )(x) =
∫
Σ

PL(x, ξ)f (ξ) dS(ξ),

here dS is the measure generated by g on Σ . If ρ is a positive smooth function, then we have the following transfor-
mation laws,

G
L,ρ

4
n−2 g

(x, y) = GL,g(x, y)

ρ(x)ρ(y)
, P

L,ρ
4

n−2 g
(x, ξ) = PL,g(x, ξ)

n
n−2

,

ρ(x)ρ(ξ)
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and

P
L,ρ

4
n−2 g

f = ρ−1PL,g(ρf ).

If g̃ ∈ [g] has zero scalar curvature, then g̃ = u
4

n−2 g for some positive smooth function u on M with Lgu = 0. Let
f = u|Σ , then u = PLf and

I (M, g̃) =
|PLf |

2
n−2

L
2n

n−2 (M)

|f |
2

n−2

L
2(n−1)
n−2 (Σ)

.

Hence

ΘM,g = sup

{ |PLf |
2

n−2

L
2n

n−2 (M)

|f |
2

n−2

L
2(n−1)
n−2 (Σ)

: f ∈ C∞(Σ), f > 0

}

= sup

{ |PLf |
2

n−2

L
2n

n−2 (M)

|f |
2

n−2

L
2(n−1)
n−2 (Σ)

: f ∈ L
2(n−1)
n−2 (Σ), f �= 0

}

=
[
sup

{
|PLf |

L
2n

n−2 (M)
: f ∈ L

2(n−1)
n−2 (Σ), |f |

L
2(n−1)
n−2 (Σ)

= 1
}] 2

n−2
. (2.2)

The second equality above follows from the fact PL is positive and an approximation procedure.
It follows easily from the definition of ΘM,g (see (1.3)) that ΘM,g depends only on [g]. As a consequence we may

choose the background metric g with zero scalar curvature. Under this assumption the conformal Laplacian operator
reduces to the constant multiple of the Laplacian operator. To continue we will need some estimates of the Poisson
kernels.

2.1. Basic estimates for Poisson kernel and harmonic extensions

Let us fix some notations. Throughout this subsection, we always assume n � 2, (Mn,g) is a smooth compact
Riemannian manifold with boundary Σ = ∂M . For convenience we fix a smooth compact Riemannian manifold
without boundary, (Mn,g) such that (M,g) is a smooth domain in (M,g). Denote d as the distance on M generated
by g and dΣ as the distance on Σ (when Σ is not connected and ξ1, ξ2 ∈ Σ lie in different components, we set
dΣ(ξ1, ξ2) equal to the maximal diameter of all the components of Σ ). We write t = t (x) = d(x,Σ) for x ∈ M .
Assume δ0 > 0 is small enough such that V = {x ∈ M: t (x) < 2δ0} is a tubular neighborhood of Σ and for ξ, ζ ∈ Σ

with d(ξ, ζ ) < 2δ0, we have dΣ(ξ, ζ ) � 2d(ξ, ζ ). For x ∈ V , let π(x) ∈ Σ be the unique nearest point on Σ to x. For
δ > 0, we write Mδ = {x ∈ M: t (x) � δ}. For x ∈ M , δ > 0, we use Bδ(x) to denote the ball with center at x, radius δ

in (M,g).
The Green’s function of the Laplace operator satisfies{−�xG(x, y) = δy on M,

G(x, y) = 0 for x ∈ Σ.

Note that G(x1, x2) = G(x2, x1) for x1, x2 ∈ M .

• The solution of{−�u = h on M,

u| = 0
Σ
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is given by

u(x) =
∫
M

G(x,y)h(y) dμ(y).

• The solution of{−�u = 0 on M,

u|Σ = f

is given by

u(x) = −
∫
Σ

∂G(x, y)

∂yν

∣∣∣∣
y=ξ

f (ξ) dS(ξ).

Here ν is the unit outer normal direction on Σ . In particular the Poisson kernel is given by

P(x, ξ) = −∂G(x, y)

∂yν

∣∣∣∣
y=ξ

.

• If {−�u = h on M,

u|Σ = 0,

then ∂u
∂ν

(ξ) = − ∫
M

P(x, ξ)h(x) dμ(x). In the future we will denote

(T h)(ξ) =
∫
M

P(x, ξ)h(x) dμ(x).

Hence ∂u
∂ν

= −T h.

For f defined on Σ , we write

(Pf )(x) =
∫
Σ

P (x, ξ)f (ξ) dS(ξ).

Pf is the harmonic extension of f .

Lemma 2.1. For 0 � δ < δ0, denote Σδ = {x ∈ M: d(x,Σ) = δ}. If u ∈ C∞(M) is a nonnegative harmonic function,
then ∫

Σδ

udS � c(M,g)

∫
Σ

udS.

Proof. Denote ν as the unit outer normal direction. Since δ0 is small, for 0 � δ < δ0, the map ψδ :Σ → Σδ given by
ψδ(ξ) = expξ (−δν(ξ)) is a diffeomorphism and

∫
Σδ

udS = ∫
Σ

u ◦ ψδ · Jψδ dS. Hence

d

dδ

∫
Σδ

udS =
∫
Σδ

∂u

∂t
dS +

∫
Σ

u ◦ ψδ · dJψδ

dδ
dS

� c(M,g)

∫
Σ

u ◦ ψδ · Jψδ dS

= c(M,g)

∫
udS.
Σδ
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Here we have used the equation
∫
Σδ

∂u
∂t

dS = 0 which follows from the divergence theorem and the fact u is harmonic.
It follows that

∫
Σδ

udS � c(M,g)
∫
Σ

udS. �
To avoid confusion we emphasize that the constants c(M,g)’s are different in different formulas. This convention

applies throughout the article. We will need the following classical estimate for Poisson kernels.

Lemma 2.2. The Poisson kernel P(x, ξ) satisfies

0 � P(x, ξ) � c(M,g)
t (x)

[t (x)2 + dΣ(π(x), ξ)2] n
2

for x ∈ Mδ0 and ξ ∈ Σ .

Proof. It follows from Lemma 2.1 and an approximation procedure that for 0 < δ � δ0,∫
Mδ

P (x, ξ) dμ(x) � c(M,g)δ.

Since P(x, ξ) is nonnegative, harmonic in x and P(x, ξ) = 0 for x ∈ Σ\{ξ}, it follows from the elliptic estimates of
harmonic function that we only need to consider the case t (x) + dΣ(π(x), ξ) is small. Let t (x) + dΣ(π(x), ξ) = δ. If
t (x) � δ

7 , by mean value inequality

P(x, ξ) � c(M,g)

δn

∫
B δ

7
(x)

P (y, ξ) dμ(y) � c(M,g)

δn−1

� c(M,g)
t (x)

[t (x)2 + dΣ(π(x), ξ)2] n
2
.

Assume t (x) < δ
7 , then d(π(x), ξ) > 3δ

7 . By the gradient estimate of harmonic functions we know∣∣∇P(·, ξ)
∣∣
L∞(B2δ/7(π(x))∩M)

� c(M,g)

δn+1

∫
B3δ/7(π(x))∩M

P(y, ξ) dμ(y) � c(M,g)

δn
,

hence P(x, ξ) � c(M,g)
t(x)
δn . The lemma follows. �

As an application of Lemma 2.2 we may derive the following inequality for harmonic extensions. Recall if X is a
measure space, p > 0 and u is a measurable function on X, then

|u|Lp
W (X) = sup

t>0
t
∣∣|u| > t

∣∣ 1
p .

Here ||u| > t | is the measure of the set {|u| > t}.
Proposition 2.1. The harmonic extension operator P satisfies

|Pf |
L

n
n−1
W (M)

� c(M,g)|f |L1(Σ)

and

|Pf |
L

np
n−1 (M)

� c(M,g,p)|f |Lp(Σ)

for 1 < p � ∞.

Proof. We only need to prove the weak type estimate. The strong estimate follows from Marcinkiewicz interpolation
theorem [11, p. 197] and the basic fact |Pf |L∞(M) � |f |L∞(Σ). To prove the weak type estimate we may assume
f � 0 and |f |L1(Σ) = 1. It follows from Lemma 2.2 that

0 � (Pf )(x) � c(M,g)

n−1
.

t (x)
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For δ0 = δ0(M,g) > 0 small, it follows from Lemma 2.1 that∫
Mδ

P (x, ξ) dμ(x) � c(M,g)δ for ξ ∈ Σ and 0 < δ < δ0.

Hence for δ ∈ (0, δ0),∫
Mδ

(Pf )(x) dμ(x) =
∫
Σ

dS(ξ)

[
f (ξ)

∫
Mδ

P (x, ξ) dμ(x)

]
� c(M,g)δ.

For λ � c(M,g), we have

|Pf > λ| = ∣∣{x ∈ M: t (x) < c(M,g)λ− 1
n−1 , (Pf )(x) > λ

}∣∣
� 1

λ

∫
M

c(M,g)λ
− 1

n−1

(Pf )(x) dμ(x)

� c(M,g)λ− n
n−1 .

The proposition follows. �
For 1 < p < ∞, if we write

cM,g,p = sup
{|Pf |

L
np

n−1 (M)
: f ∈ Lp(Σ), |f |Lp(Σ) = 1

}
, (2.3)

then cM,g,p < ∞. In view of (2.2), when the background metric g has zero scalar curvature,

ΘM,g = c
2

n−2

M,g,
2(n−1)
n−2

< ∞. (2.4)

In the future we will also need the following compactness property.

Corollary 2.1. For 1 � p < ∞, 1 � q <
np

n−1 , the operator P :Lp(Σ) → Lq(M) is compact.

Proof. First assume 1 < p < ∞. If fi ∈ Lp(Σ) such that |fi |Lp(Σ) � 1, it follows from Lemma 2.2 that∣∣(Pfi)(x)
∣∣ � c(M,g)

t (x)n−1
for x ∈ M\Σ.

Using elliptic estimates of harmonic functions we know after passing to a subsequence we may find a u ∈ C∞(M\Σ)

such that Pfi → u in C∞
loc(M\Σ). For δ > 0 small, we have

|Pfi − Pfj |Lq(M) � |Pfi − Pfj |Lq(M\Mδ) + |Pfi − Pfj |Lq(Mδ)

� |Pfi − Pfj |Lq(M\Mδ) + |Pfi − Pfj |
L

np
n−1 (Mδ)

|Mδ|
1
q
− n−1

np

� |Pfi − Pfj |Lq(M\Mδ) + c(M,g,p)|Mδ|
1
q
− n−1

np .

Hence

lim sup
i,j→∞

|Pfi − Pfj |Lq(M) � c(M,g,p)|Mδ|
1
q
− n−1

np .

Letting δ → 0+, we see Pfi is a Cauchy sequence in Lq(M). In another word, P :Lp(Σ) → Lq(M) is compact.
When p = 1, the argument is similar. We only need to observe that for any 1 � q < q̃ < n

n−1 , P :L1(Σ) → Lq̃(M)

is bounded. �
Let h be a function on M , recall (T h)(ξ) = ∫

M
P(x, ξ)h(x) dμ(x). We have the following dual statement to

Proposition 2.1.
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Proposition 2.2. For 1 � p < n and h ∈ Lp(M),

|T h|
L

(n−1)p
n−p (Σ)

� c(M,g,p)|h|Lp(M).

Proof. We may prove the inequality by a duality argument. Indeed for any nonnegative functions h on M and f on Σ ,
we have

0 �
∫
Σ

(T h)(ξ)f (ξ) dS(ξ) =
∫
Σ

dS(ξ)

∫
M

P(x, ξ)h(x)f (ξ) dμ(x)

=
∫
M

(Pf )(x)h(x) dμ(x) � |Pf |
L

p
p−1 (M)

|h|Lp(M)

� c(M,g,p)|h|Lp(M)|f |
L

(n−1)p
n(p−1) (Σ)

,

the proposition follows. One may also prove the inequality directly. Indeed it follows from Lemma 2.2 that
|P(·, ξ)|

L
n

n−1 ,∞
(M)

� c(M,g) < ∞ for ξ ∈ Σ . Hence T :Ln,1(M) → L∞(Σ) is a bounded linear map. On the other

hand for h ∈ L1(M),∫
Σ

∣∣(T h)(ξ)
∣∣dS(ξ) �

∫
Σ

dS(ξ)

∫
M

P(x, ξ)
∣∣h(x)

∣∣dμ(x) =
∫
M

∣∣h(x)
∣∣dμ(x).

Hence T :L1(M) → L1(Σ) is also bounded. The proposition follows from the Marcinkiewicz interpolation theorem.
Finally we point out for 1 < p < n, we may solve{−�u = h on M,

u|Σ = 0

and (T h)(ξ) = − ∂u
∂ν

(ξ). By the Lp theory we know |u|W 2,p(M) � c(M,g,p)|h|Lp(M). It follows from boundary trace
embedding theorem [1, p. 164] that

|T h|
L

(n−1)p
n−p (Σ)

=
∣∣∣∣∂u

∂ν

∣∣∣∣
L

(n−1)p
n−p (Σ)

� c(M,g,p)|u|W 2,p(M) � c(M,g,p)|h|Lp(M). �

2.2. Miscellaneous

Later on we will need the following Hausdorff–Young type inequality to estimate some nonmajor terms.

Lemma 2.3. Let X and Y be measure spaces, 1 � p,q0, q1, r � ∞, p � r , q0 � r and

1

p
+ 1

q1
= q0

q1r
+ 1.

Assume K is defined on X × Y such that( ∫
X

∣∣K(x,y)
∣∣q0 dx

) 1
q0 � A,

( ∫
Y

∣∣K(x,y)
∣∣q1 dy

) 1
q1 � A.

For a function f defined on Y , we let (Kf )(x) = ∫
Y

K(x, y)f (y) dy, then

|Kf |Lr(X) � A|f |Lp(Y ).

Proof. Without losing of generality we may assume K � 0 and f � 0, then



F. Hang et al. / Ann. I. H. Poincaré – AN 26 (2009) 1–21 9
(Kf )(x) =
∫
Y

K(x, y)
q0
r f (y)

p
r K(x, y)

r−q0
r f (y)

r−p
r dy

�
( ∫

Y

K(x, y)q0f (y)p dy

) 1
r
( ∫

Y

K(x, y)q1 dy

) r−q0
q1r

( ∫
Y

f (y)p dy

) r−p
pr

� A
r−q0

r |f |
r−p

r

Lp(Y )

( ∫
Y

K(x, y)q0f (y)p dy

) 1
r

.

Here we have used the Holder’s inequality and the fact 1
r

+ 1
q1r/(r−q0)

+ 1
pr/(r−p)

= 1. Hence

(Kf )(x)r � Ar−q0 |f |r−p

Lp(Y )

∫
Y

K(x, y)q0f (y)p dy.

Integrating both sides, we get the needed inequality. �
3. Sharp inequalities on the unit ball

The aim of this section is to show ΘB1,gRn
= c

2
n−2

B1,gRn ,
2(n−1)
n−2

= I (B1, gRn) = n− 1
n−1 ω

− 1
n(n−1)

n (see (2.3), (2.4)).

Theorem 3.1. Assume n � 3, then for every f ∈ L
2(n−1)
n−2 (∂Bn

1 ),

|Pf |
L

2n
n−2 (B1)

� n
− n−2

2(n−1) ω
− n−2

2n(n−1)
n |f |

L
2(n−1)
n−2 (∂B1)

.

Here Pf is the harmonic extension of f , ωn is the volume of the unit ball in R
n. Equality holds if and only if

f (ξ) = c(1 + λξ · ζ )− n−2
2 for some constant c, ζ ∈ ∂B1 and 0 � λ < 1.

Note that this theorem is a consequence of [7, Theorem 1.1] (see the discussions before [7, Theorem 1.1]). Below
we will present a different argument which has its own interest. Before discussing the approach, we describe some
corollaries of the theorem. Note that in Proposition 2.1 the strong inequality is not true for p = 1. Instead we have the
following

Corollary 3.1. Assume n � 3, then for f ∈ L∞(∂Bn
1 ),∣∣ePf

∣∣
L

n
n−1 (Bn

1 )
� n−1ω

− 1
n

n

∣∣ef
∣∣
L1(∂B1)

.

Moreover equality holds if and only if f is constant.

Proof. If u is a harmonic function, then �eu = eu|∇u|2. Hence eu is subharmonic and not harmonic except when u

is a constant function. It follows from Theorem 3.1 that∣∣e n−2
2(n−1)

Pf
∣∣
L

2n
n−2 (B1)

�
∣∣P (

e
n−2

2(n−1)
f )∣∣

L
2n

n−2 (B1)

� n
− n−2

2(n−1) ω
− n−2

2n(n−1)
n

∣∣e n−2
2(n−1)

f
∣∣
L

2(n−1)
n−2 (∂B1)

.

Hence∣∣ePf
∣∣
L

n
n−1 (B1)

� n−1ω
− 1

n
n

∣∣ef
∣∣
L1(∂B1)

.

If equality holds, then e
n−2

2(n−1)
Pf = P(e

n−2
2(n−1)

f
) and e

n−2
2(n−1)

Pf must be a harmonic function, hence Pf is equal to
constant and so is f . �
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Corollary 3.2. Assume n � 3, then for 2(n−1)
n−2 < p < ∞, f ∈ Lp(∂Bn

1 ),

|Pf |
L

np
n−1 (B1)

� n
− 1

p ω
− 1

np
n |f |Lp(∂B1).

Equality holds if and only if f is constant.

Proof. Denote r = p
2(n−1)/(n−2)

> 1. If u is a harmonic function on B1, then |u|r is a subharmonic function and it is
not harmonic except when u is a constant function. If f ∈ Lp(∂B1), then by Theorem 3.1,∣∣|Pf |r ∣∣

L
2n

n−2 (B1)
�

∣∣P (|f |r)∣∣
L

2n
n−2 (B1)

� n
− n−2

2(n−1) ω
− n−2

2n(n−1)
n

∣∣|f |r ∣∣
L

2(n−1)
n−2 (∂B1)

.

Hence

|Pf |
L

np
n−1 (B1)

� n
− 1

p ω
− 1

np
n |f |Lp(∂B1).

If equality holds then |Pf |r = P(|f |r ). In particular |Pf |r is a harmonic function and hence Pf is a constant function,
so is f . �

Remark 3.1. For 1 < p <
2(n−1)
n−2 , 1 is still a critical point for the functional

|Pf |
L

np
n−1 (B1)

|f |Lp(∂B1)
, but calculation shows for

fε(ξ) = 1 + εξ1,

|Pfε|
L

np
n−1 (B1)

|fε|Lp(∂B1)

= n
− 1

p ω
− 1

np
n

[
1 + n − 2

2n(n − 1)(n + 2)

(
2(n − 1)

n − 2
− p

)
ε2 + O

(
ε4)].

Hence 1 is not a local maximizer. It remains an interesting question to calculate

sup
{|Pf |

L
np

n−1 (B1)
: f ∈ Lp(∂B1), |f |Lp(∂B1) = 1

}
for these p’s.

The new approach to Theorem 3.1 needs an interesting Kazdan–Warner type condition. To formulate the condition,
we introduce the weighted isoperimetric ratio.

Assume n � 2, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M . Let K be a positive
smooth function on Σ , then we write the weighted isoperimetric ratio

I (M,g,K) = μ(M)
1
n

(
∫
Σ

K dS)
1

n−1

.

Here dμ is the measure associated with g and dS is the measure on Σ . If n � 3 and (Mn,g) satisfies λ1(Lg) > 0, for

g̃ ∈ [g] with zero scalar curvature, we write g̃ = u
4

n−2 g, u|Σ = f , then

I (M, g̃,K) = (
∫
M

(PLf )
2n

n−2 dμ)
1
n

(
∫
Σ

Kf
2(n−1)
n−2 dS)

1
n−1

.

The Euler–Lagrange equation of this functional reads as∫
M

PL(x, ξ)(PLf )(x)
n+2
n−2 dμ(x) = const ·K(ξ)f (ξ)

n
n−2 .

Lemma 3.1 (Kazdan–Warner type condition). Assume n � 3, (Mn,g) is a smooth compact Riemannian manifold with
boundary and λ1(Lg) > 0, K and f are positive smooth functions on Σ such that∫

PL(x, ξ)(PLf )(x)
n+2
n−2 dμ(x) = K(ξ)f (ξ)

n
n−2 .
M
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Let X be a conformal vector field on M (note X must be tangent to Σ ), then∫
Σ

XK · f 2(n−1)
n−2 dS = 0.

Proof. Denote u = PLf . Let φt be the smooth 1-parameter group generated by X, then

d

dt

∣∣∣∣
t=0

I
(
M,φ∗

t

(
u

4
n−2 g

)
,K

) = 0.

On the other hand,

d

dt

∣∣∣∣
t=0

I
(
M,φ∗

t

(
u

4
n−2 g

)
,K

) = d

dt

∣∣∣∣
t=0

I
(
M,u

4
n−2 g,K ◦ φ−t

) = I (M,u
4

n−2 g,K)

n − 1

∫
Σ

XK · f 2(n−1)
n−2 dS∫

Σ
Kf

2(n−1)
n−2 dS

.

This implies
∫
Σ

XK · f 2(n−1)
n−2 dS = 0. �

Corollary 3.3. Assume n � 3, K and f are positive smooth functions on ∂Bn
1 such that∫

B1

P(x, ξ)(Pf )(x)
n+2
n−2 dx = K(ξ)f (ξ)

n
n−2 ,

then
∫
∂B1

〈∇K(ξ),∇ξi〉f (ξ)
2(n−1)
n−2 dS(ξ) = 0 for 1 � i � n.

This is because ∇ξi is the restriction to ∂B1 of a conformal vector field on (B1, gRn).
We will also need some rearrangement inequality on ∂B1 which was proven in [2]. We say a function f on ∂B1

is radially symmetric if f (ξ) is a function of ξn. Let f be a measurable function on ∂B1, then the symmetric rear-
rangement of f is a radial decreasing function f ∗ which has the same distribution as f . The following rearrangement
inequality was proven in [2, Theorem 2]. Namely, if K is a nondecreasing bounded function on [−1,1], then for all
f,g ∈ L1(∂B1),∫

∂B1×∂B1

f (ξ)g(η)K(ξ · η)dS(ξ) dS(η) �
∫

∂B1×∂B1

f ∗(ξ)g∗(η)K(ξ · η)dS(ξ) dS(η).

It follows that if K is a bounded nonnegative nondecreasing function on [−1,1], f is nonnegative function on ∂B1
and

(K ∗ f )(ξ) =
∫

∂B1

K(ξ · η)f (η)dS(η),

then for 1 � p < ∞, |K ∗ f |Lp(∂B1) � |K ∗ f ∗|Lp(∂B1).
Recall the Poisson kernel on (B1, gRn) is given by

P(x, ξ) = 1 − |x|2
nωn|x − ξ |n .

For 0 < r < 1, ξ, ζ ∈ ∂B1,

P(rζ, ξ) = 1 − r2

nωn(r2 + 1 − 2rζ · ξ)
n
2

= Kr(ζ · ξ).

Hence for 1 � p < ∞ and f � 0,

|Pf |pLp(B1)
=

1∫
|Kr ∗ f |pLp(∂B1)

rn−1 dr �
1∫
|Kr ∗ f ∗|pLp(∂B1)

rn−1 dr = |Pf ∗|pLp(B1)
.

0 0



12 F. Hang et al. / Ann. I. H. Poincaré – AN 26 (2009) 1–21
It follows that |Pf |Lp(B1) � |Pf ∗|Lp(B1).

Proof of Theorem 3.1. For p >
2(n−1)
n−2 , we consider the variational problem

sup
{|Pf |

L
2n

n−2 (B1)
: f ∈ Lp(∂B1), |f |Lp(∂B1) = 1

}
. (3.1)

By Corollary 2.1 the operator P :Lp(∂B1) → L
2n

n−2 (B1) is compact, hence the supreme is achieved at some fp � 0.
Replacing fp by f ∗

p we may assume fp is radial symmetric and decreasing. After scaling fp satisfies

fp(ξ)p−1 =
∫
B1

P(x, ξ)(Pfp)(x)
n+2
n−2 dx.

Standard bootstrap using Propositions 2.1 and 2.2 shows fp ∈ C∞(∂B1) and fp > 0. Rewrite the equation as∫
B1

P(x, ξ)(Pfp)(x)
n+2
n−2 dx = fp(ξ)

n
n−2 fp(ξ)p− 2(n−1)

n−2 .

It follows from Corollary 3.3 that∫
∂B1

〈∇fp(ξ)p− 2(n−1)
n−2 ,∇ξn

〉
fp(ξ)

2(n−1)
n−2 dS(ξ) = 0.

We may write gp(r) = fp(0, . . . ,0, sin r, cos r) for 0 � r � π . Then the equality becomes

π∫
0

g′
p(r)gp(r)p−1 sinn−1 r dr = 0.

Since g′
p � 0 and gp > 0, we get g′

p = 0 and hence fp ≡ const. This implies

|Pf |
L

2n
n−2 (B1)

� ω
n−2
2n

n

(nωn)
1
p

|f |Lp(∂B1).

Let p → 2(n−1)
n−2 , we get the needed inequality. At last we may apply [7, Theorem 1.2] to identify all the functions

which achieves the equality. �
4. Regularity of solutions to some nonlinear integral equations

Assume 1 < p < ∞. If f ∈ Lp(Σ) is a maximizer for the variational problem

cM,g,p = sup
{|Pf |

L
np

n−1 (M)
: f ∈ Lp(Σ), |f |Lp(Σ) = 1

}
,

then we may assume f � 0, moreover after suitable scaling it satisfies the nonlinear integral equation

f (ξ)p−1 =
∫
M

P(x, ξ)(Pf )(x)
np

n−1 −1 dμ(x).

This section is aiming at proving all these solutions are in fact smooth.

Proposition 4.1. Assume n � 2, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M . If
1 < p < ∞, f ∈ Lp(Σ) is nonnegative, not identically zero and it satisfies

f (ξ)p−1 =
∫
M

P(x, ξ)(Pf )(x)
np

n−1 −1 dμ(x),

then f ∈ C∞(Σ).
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Proof. Let p0 = 1
p−1 , f0(ξ) = f (ξ)p−1, u0(x) = (Pf )(x), then 0 < p0 < ∞, f0 ∈ Lp0+1(Σ), u0 ∈ L

n(p0+1)

(n−1)p0 (M) and

u0(x) =
∫
Σ

P (x, ξ)f0(ξ)p0 dS(ξ), f0(ξ) =
∫
M

P(x, ξ)u0(x)
p0+n

(n−1)p0 dμ(x).

Let (M,g) be the same as in Section 2.1. Given ξ0 ∈ Σ , by choosing a local coordinate φ :U(ξ0) → {x ∈ R
n: |x| < 2}

with φ(ξ0) = 0 and φ(U(ξ0) ∩ M) = {x ∈ R
n: |x| < 2, xn � 0}, we may identify U(ξ0) with {x ∈ R

n: |x| < 2}. For
0 < R < 1, we write

B+
R = {

x ∈ R
n: |x| < R,xn > 0

}
,

BR = Bn−1
R = {

ξ ∈ R
n−1: |ξ | < R

}
and

uR(x) =
∫

Σ\BR

P (x, ξ)f0(ξ)p0 dS(ξ),

fR(ξ) =
∫

M\B+
R

P (x, ξ)u0(x)
p0+n

(n−1)p0 dμ(x).

Then uR ∈ C∞({x ∈ R
n: |x| < R,xn � 0}), fR ∈ C∞(BR). To prove the regularity of f , we discuss two cases.

Case 4.1. 0 < p0 � n
n−1 .

In this case, we have p0+n
(n−1)p0

> 1. Fix a number r such that

1 � r <
p0 + n

(n − 1)p0
and r >

1

p0
,

then

f0(ξ)1/r �
[ ∫

B+
R

P (x, ξ)u0(x)
p0+n

(n−1)p0 dμ(x)

]1/r

+ fR(ξ)1/r .

Hence using Lemma 2.2 we have

u0(x) =
∫
BR

P (x, ξ)f0(ξ)p0−r−1
f0(ξ)1/r dS(ξ) + uR(x)

�
∫
BR

P (x, ξ)f0(ξ)p0−r−1
[ ∫

B+
R

P (y, ξ)u0(y)
p0+n

(n−1)p0
−r

u0(y)r dμ(y)

]1/r

dS(ξ) + vR(x)

� c(M,g,p, r)

∫
BR

xn

(|x′ − ξ |2 + x2
n)n/2

f0(ξ)p0−r−1

×
[ ∫

B+
R

yn

(|y′ − ξ |2 + y2
n)n/2

u0(y)
p0+n

(n−1)p0
−r

u0(y)r dy

]1/r

dξ + vR(x)

here dx and dξ means the standard Lebesgue measure and

vR(x) =
∫

P(x, ξ)f0(ξ)p0−r−1
fR(ξ)1/r dS(ξ) + uR(x).
BR
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We have vR ∈ L
n(p0+1)

(n−1)p0 (B+
R ) ∩ L

n(p0+1)

(n−1)(p0−r−1)

loc (B+
R ∪ Bn−1

R ). Let

a = n(p0 + 1)

p0 + n − (n − 1)p0r
, b = (p0 + 1)r

p0r − 1
.

Then n
ra

+ n−1
b

= 1
r

and

r

n(p0 + 1)/((n − 1)p0)
+ 1

a
= p0 + n

n(p0 + 1)
< 1.

For n(p0+1)
(n−1)p0

< q <
n(p0+1)

(n−1)(p0−r−1)
, we have r

q
+ 1

a
> 1

n
. It follows from [7, Proposition 5.2] that when R is small

enough, u0|B+
R/4

∈ Lq(B+
R/4). This implies

f0(ξ) =
∫

B+
R/4

P(x, ξ)u0(x)
p0+n

(n−1)p0 dμ(x) + fR/4(ξ)

� c(M,g, q)|u0|
p0+n

(n−1)p0

Lq(B+
R/4)

+ fR/4(ξ)

when q >
n(p0+n)
(n−1)p0

. Such a choice of q is possible since n(p0+1)

(n−1)(p0−r−1)
>

n(p0+n)
(n−1)p0

. In particular, we see f0|BR/8 ∈

L∞(BR/8). Since ξ0 is arbitrary, we see f0 ∈ L∞(Σ) and hence u0 ∈ L∞(M). Observing that f0 = T (u

p0+n

(n−1)p0
0 ),

here T is defined in Section 2.1, it follows from Lp theory [6, Chapter 9] and the Sobolev embedding theorem that
f0 ∈ Cα(Σ) for 0 < α < 1. In particular, f0(ξ) > 0 for any ξ ∈ Σ . This implies u0 ∈ Cβ(M) for some 0 < β < 1
[6, Chapter 8]. It follows from Schauder theory [6, Chapter 6] that f0 ∈ C1,β(Σ). Iterating this procedure we see
f0 ∈ C∞(Σ) and so is f .

Case 4.2. n
n−1 � p0 < ∞.

In this case, we fix a number r such that

1 � r � p0 and r � (n − 1)p0

p0 + n
,

then

u0(x)1/r �
[ ∫

BR

P (x, ξ)f0(ξ)p0 dS(ξ)

]1/r

+ uR(x)1/r .

Hence

f0(ξ) �
∫

B+
R

P (x, ξ)u0(x)
p0+n

(n−1)p0
−r−1

[ ∫
BR

P (x, ζ )f0(ζ )p0−rf0(ζ )r dS(ζ )

]1/r

dμ(x) + gR(ξ)

� c(M,g,p, r)

∫
B+

R

xn

(|x′ − ξ |2 + x2
n)n/2

u0(x)
p0+n

(n−1)p0
−r−1

×
[ ∫

BR

xn

(|x′ − ζ |2 + x2
n)n/2

f0(ζ )p0−rf0(ζ )r dζ

]1/r

dx + gR(ξ),

here

gR(ξ) =
∫

B+
P(x, ξ)u0(x)

p0+n

(n−1)p0
−r−1

uR(x)1/r dμ(x) + fR(ξ).
R
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We have gR ∈ Lp0+1(BR) ∩ L
q

loc(BR) for any q < ∞. Let

a = p0 + 1

p0 − r
, b = n(p0 + 1)r

(p0 + n)r − (n − 1)p0
,

then n−1
ra

+ n
b

= 1, r
p0+1 + 1

a
= p0

p0+1 ∈ (0,1). For any p0 +1 < q < ∞, it follows from [7, Proposition 5.3] that when R

is small enough, we have f0 ∈ Lq(BR/4). Since ξ0 is arbitrary, we see f0 ∈ Lq(Σ) and hence u0 ∈ L
nq

(n−1)p0 (M). Using
the equations of f0 and u0, we see f0 ∈ L∞(Σ) and u0 ∈ L∞(M). The arguments in Case 4.1 tell us f ∈ C∞(Σ). �
5. An asymptotic expansion formula of the Poisson kernel

Later on we will need more accurate information about the Poisson kernel than Lemma 2.2. For that purpose we
need an asymptotic expansion formula for this kernel.

Assume n � 2, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M , δ > 0 is a small
number such that Mδ = {x ∈ M: d(x,Σ) � δ} is a tubular neighborhood of Σ and π :Mδ → Σ denotes the near-
est point projection. For ξ ∈ Σ , choose a normal coordinate for Σ at ξ , namely τ1, . . . , τn−1. Let Cδ = {x ∈ Mδ:
dΣ(π(x), ξ) � δ}. For δ small, we have a coordinate near ξ for M as

φ :Cδ → Bn−1
δ × [0, δ] :x �→ (

τ
(
π(x)

)
, t (x)

)
.

It is usually called the Fermi coordinate at ξ . We will identify Cδ with Bn−1
δ × [0, δ] through φ. Denote r = |x| and

θ = x
|x| .

Theorem 5.1. Under the above set up, we may find ai ∈ C∞(Sn−1+ ) with ai |∂Sn−1+
= 0 for 0 � i � n − 1 and a

ψ ∈ C1,1−ε(M) ( for all ε > 0) such that

P(x,0) = 2

nωn

r1−n

n−1∑
i=0

riai(θ) + ψ(x) for x near 0.

Here ωn is the volume of the unit ball in R
n. Moreover a0(θ) = θn = xn|x| and a1 is determined by{

−�Sn−1a1 = −H(0) − nH(0)θ2
n + 2n(n + 2)hij (0)θiθj θ

2
n on Sn−1+ ,

a1|∂Sn−1+
= 0.

Here i, j runs from 1 to n− 1, hij is the second fundamental form with respect to inner normal direction and H is the
mean curvature.

To derive the asymptotic formula, we note that g = gij dxi ⊗ dxj + dxn ⊗ dxn. We will use i, j, k, l etc. to denote
indices running from 1 to n − 1. Calculation shows

gij = δij − 2hij (0)xn − 1

3
(RΣ)ikj l(0)xkxl − 2hij,k(0)xkxn + (−Rinjn(0) + hik(0)hjk(0)

)
x2
n + O

(
r3); (5.1)

gij = δij + 2hij (0)xn + 1

3
(RΣ)ikj l(0)xkxl + 2hij,k(0)xkxn + (

Rinjn(0) + 3hik(0)hjk(0)
)
x2
n + O

(
r3); (5.2)

and
√

G = 1 − H(0)xn − 1

6
(RcΣ)ij (0)xixj − Hi(0)xixn + 1

2

(
H(0)2 − ∣∣h(0)

∣∣2 − Rcnn(0)
)
x2
n + O

(
r3). (5.3)

Note that

�gu = 1√
G

∂i

(
gij

√
G∂ju

) + 1√
G

∂n

(√
G∂nu

)
= gij ∂ij u + ∂nnu + 1√ ∂i

(
gij

√
G

)
∂ju + 1√ ∂n

(√
G

)
∂nu.
G G
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This and (5.2), (5.3) imply that for α ∈ R and b ∈ C∞(Sn−1+ ),

�g

(
rαb(θ)

) = rα−2[�Sn−1b(θ) + α(α + n − 2)b(θ)
] + O

(
rα−1).

Let a0(θ) = θn, then using (5.2), (5.3) we get

�g

(
r1−na0(θ)

) = r−n
[−H(0) − nH(0)θ2

n + 2n(n + 2)hij (0)θiθj θ
2
n

] + O
(
r−n+1).

Assume for 1 � k � n − 1, we have found ai ∈ C∞(Sn−1+ ), vanishing on ∂Sn−1+ for 0 � i � k − 1 with

�g

(
r1−n

k−1∑
i=0

ai(θ)ri

)
= rk−1−nbk−1(θ) + O

(
rk−n

)
,

then may solve the Dirichlet problem{
−�Sn−1ak + (k − 1)(n − k − 1)ak(θ) = bk−1(θ) on Sn−1+ ,

ak|∂Sn−1+
= 0.

This is possible because (k − 1)(n − k − 1) � 0. Then

�g

(
r1−n

k∑
i=0

ai(θ)ri

)
= O

(
rk−n

) = rk−nbk(θ) + O
(
rk+1−n

)
.

Hence by induction we may find ai for 0 � i � n − 1 such that

�g

(
r1−n

n−1∑
i=0

ai(θ)ri

)
= O

(
r−1).

Fix a η ∈ C∞(Rn) such that η(x) = 1 for |x| � δ
4 and η(x) = 0 for |x| � δ

2 . Let u = 2
nωn

η · r1−n
∑n−1

i=0 ai(θ)ri , then

�gu = O(r−1). We solve{−�gψ = �gu on M,

ψ |∂M = 0

to find ψ ∈ W 2,n−ε(M) for all ε > 0. In particular, ψ ∈ C1,1−ε(M) for all ε > 0 and the Poisson kernel P(x,0) =
2

nωn
η · r1−n

∑n−1
i=0 ai(θ)ri + ψ(x).

An almost identical argument gives us similar results for the Poisson kernel of the conformal Laplacian operator.

Proposition 5.1. Under the same set up as in Theorem 5.1. If n � 3 and λ1(Lg) > 0, we may find ai ∈ C∞(Sn−1+ ) with
ai |∂Sn−1+

= 0 for 0 � i � n − 1 and a ψ ∈ C1,1−ε(M) ( for all ε > 0) such that

PL(x,0) = 2

nωn

r1−n

n−1∑
i=0

riai(θ) + ψ(x) for x near 0.

Moreover a0(θ) = θn and a1 is determined by{
−�Sn−1a1 = −H(0) − nH(0)θ2

n + 2n(n + 2)hij (0)θiθj θ
2
n on Sn−1+ ,

a1|∂Sn−1+
= 0.

6. A criterion for the existence of maximizers

We first recall some notations from [7]. For x ∈ R
n+, ξ ∈ R

n−1, the Poisson kernel of the upper half space is

P(x, ξ) = 2

nω

xn

(|x′ − ξ |2 + x2)n/2
.

n n
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Here x = (x′, xn). For a function f defined on R
n−1, (Pf )(x) = ∫

Rn−1 P(x, ξ)f (ξ) dξ . For 1 < p < ∞,
|Pf |

L
np

n−1 (Rn+)
� cn,p|f |Lp(Rn−1), here

cn,p = sup
{|Pf |

L
np

n−1 (Rn+)
: f ∈ Lp(Rn−1), |f |Lp(Rn−1) = 1

}
.

Theorem 6.1. Assume n � 2, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M ,
1 < p < ∞. Denote

cM,g,p = sup
{|Pf |

L
np

n−1 (M)
: f ∈ Lp(Σ), |f |Lp(Σ) = 1

}
.

Then cM,g,p � cn,p . Any maximizer of the problem must be smooth and either strictly positive or strictly negative.
Strictly positive maximizers satisfy the equation∫

M

P(x, ξ)(Pf )(x)
np

n−1 −1 dμ(x) = c
np

n−1
M,g,pf (ξ)p−1.

Moreover if cM,g,p > cn,p , then cM,g,p is achieved. Indeed any maximizing sequence has a convergent subsequence
in Lp(Σ).

We use the same notations as in Section 2.1. An ingredient in proving Theorem 6.1 is the following ε-version
inequality.

Lemma 6.1. Assume n � 2, (Mn,g) is a smooth compact Riemannian manifold with boundary Σ = ∂M , 1 < p < ∞.
Then for any ε > 0 small, there exists a δ = δ(M,g,p, ε) > 0 such that for every f ∈ Lp(Σ),

|Pf |
L

np
n−1 (Mδ)

� (cn,p + ε)|f |Lp(Σ).

To prove the lemma, we will need the following estimates.

Lemma 6.2. Assume 0 � α < n − 1, 1 < p < ∞, then∣∣∣∣ ∫
Σ

f (ξ)

d(x, ξ)α
dS(ξ)

∣∣∣∣
L

np
α (M)

� c(M,g,α,p)|f |Lp(Σ).

Proof. We may assume α > 0. For ε > 0 small enough, we let q0 = n
α
(1−ε), q1 = 1+ ε

p−1 , then 1
p

+ 1
q1

= q0
q1·np/α

+1.
The needed inequality follows from Lemma 2.3. �
Corollary 6.1. Assume η ∈ Lip(Σ), 1 < p < ∞, then∣∣η ◦ π · Pf − P(ηf )

∣∣
L

np
n−2 (Mδ0 )

� c(M,g,p)|∇Ση|L∞(Σ)|f |Lp(Σ).

Proof. It follows from Lemma 2.2 that∣∣η(
π(x)

)
(Pf )(x) − P(ηf )(x)

∣∣ =
∣∣∣∣ ∫

Σ

(
η
(
π(x)

) − η(ξ)
)
P(x, ξ)f (ξ) dS(ξ)

∣∣∣∣
� c(M,g)|∇Ση|L∞(Σ)

∫
Σ

|f (ξ)|
d(x, ξ)n−2

dS(ξ).

Then the conclusion follows from Lemma 6.2. �
Corollary 6.2. Let K(x, ξ) = 2

nωn

t (x)

[t (x)2+dΣ(π(x),ξ)2] n
2

for x ∈ Mδ0 and ξ ∈ Σ , (Kf )(x) = ∫
Σ

K(x, ξ)f (ξ) dS(ξ),

1 < p < ∞, then

|Pf − Kf |
L

np
n−2 (Mδ0 )

� c(M,g,p)|f |Lp(Σ).
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This follows from Theorem 5.1 and Lemma 6.2.

Proof of Lemma 6.1. Without losing of generality we may assume f � 0. For δ1 > 0 small, we may find ηi ∈
C∞(Σ,R) for 1 � i � m such that 0 � ηi � 1,

∑m
i=1 ηi = 1, η

1/p
i ∈ C∞(Σ,R) and for each i, there exists a point

ξi ∈ Σ such that ηi(ξ) = 0 for ξ ∈ Σ with dΣ(ξ, ξi) � δ1. For 0 < δ < δ1, we denote

Ci,δ = {
x ∈ Mδ: dΣ

(
π(x), ξi

)
� δ1

}
.

Then

|Pf |p
L

np
n−1 (Mδ)

= ∣∣(Pf )p
∣∣
L

n
n−1 (Mδ)

=
∣∣∣∣∣

m∑
i=1

ηi ◦ π · (Pf )p

∣∣∣∣∣
L

n
n−1 (Mδ)

�
m∑

i=1

∣∣ηi ◦ π · (Pf )p
∣∣
L

n
n−1 (Ci,δ)

=
m∑

i=1

∣∣η1/p
i ◦ π · Pf

∣∣p
L

np
n−1 (Ci,δ)

.

On the other hand, using Corollary 6.1 we see∣∣η1/p
i ◦ π · Pf

∣∣
L

np
n−1 (Ci,δ)

�
∣∣P (

η
1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

+ ∣∣η1/p
i ◦ π · Pf − P

(
η

1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

�
∣∣P (

η
1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

+ ∣∣η1/p
i ◦ π · Pf − P

(
η

1/p
i f

)∣∣
L

np
n−2 (Ci,δ)

|Ci,δ|
1
np

�
∣∣P (

η
1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

+ c(M,g,p, δ1)δ
1
np |f |Lp(Σ).

Similarly, by Corollary 6.2 we have∣∣P (
η

1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

�
∣∣K(

η
1/p
i f

)∣∣
L

np
n−1 (Ci,δ)

+ c(M,g,p)δ
1
np |f |Lp(Σ)

� cn,p(1 + ε1)
∣∣η1/p

i f
∣∣
Lp(Σ)

+ c(M,g,p)δ
1
np |f |Lp(Σ).

Here ε1 = ε1(M,g,p, δ1) is a small number which tends to 0 when δ1 tends to 0. Hence

|Pf |p
L

np
n−1 (Mδ)

�
m∑

i=1

[
cn,p(1 + ε1)

∣∣η1/p
i f

∣∣
Lp(Σ)

+ c(M,g,p, δ1)δ
1
np |f |Lp(Σ)

]p
�

m∑
i=1

c
p
n,p(1 + 2ε1)

p

∫
Σ

ηif
p dS + c(M,g,p, δ1)δ

1/n|f |p
Lp(Σ)

� c
p
n,p

(
1 + ε

2

)p

|f |p
Lp(Σ)

+ c(M,g,p, ε)δ1/n|f |p
Lp(Σ)

� c
p
n,p(1 + ε)p|f |pLp(Σ)

if we first fix δ1 = δ1(M,g,p, ε) small enough and then δ = δ(M,g,p, ε) small enough. This implies |Pf |
L

np
n−1 (Mδ)

�
cn,p(1 + ε)|f |Lp(Σ). �

Next we prove the following concentration compactness lemma (compare with [10, Lemma 2.1] and [7, Proposi-
tion 3.1]).

Proposition 6.1 (Concentration compactness lemma). Assume n � 2, (Mn,g) is a smooth compact Riemannian man-
ifold with boundary Σ = ∂M , 1 < p < ∞, fi ∈ Lp(Σ) such that fi ⇀ f in Lp(Σ). After passing to a subsequence
assume

|fi |p dS ⇀ σ in M(Σ), |Pfi |
np

n−1 dμ ⇀ ν in M(M).

Here M(Σ) is the space of all Radon measures on Σ . Then we have
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• ν|M\Σ = |Pf | np
n−1 dμ. Moreover for every Borel set E ⊂ Σ , ν(E)

n−1
np � cn,pσ (E)

1
p .

• There exists a countable set of points ζj ∈ Σ such that ν = |Pf | np
n−1 dμ + ∑

j νj δζj
, σ � |f |p dS + ∑

j σj δζj
,

here σj = σ({ζj }) and ν
n−1
np

j � cn,pσ
1
p

j .

Proof. Without losing of generality we may assume |fi |Lp(Σ) � 1. Since |(Pfi)(x)| � c(M,g,p)t (x)
− n−1

p for
x ∈ M\Σ , it follows from the elliptic estimates of harmonic functions that Pfi → Pf in C∞

loc(M\Σ). In particu-

lar, ν|M\Σ = |Pf | np
n−1 dμ. For ε > 0 small, it follows from Lemma 6.1 and Corollary 6.1 that for ϕ ∈ C∞(Σ) and

δ > 0 small enough,

|ϕ ◦ π · Pfi |
L

np
n−1 (Mδ)

�
∣∣P(ϕfi)

∣∣
L

np
n−1 (Mδ)

+ ∣∣ϕ ◦ π · Pfi − P(ϕfi)
∣∣
L

np
n−1 (Mδ)

� (cn,p + ε)|ϕfi |Lp(Σ) + c(M,g,p)δ
1
np |∇Σϕ|L∞(Σ).

Let i → ∞ we see(∫
Σ

|ϕ| np
n−1 dν

) n−1
np

� (cn,p + ε)

( ∫
Σ

|ϕ|p dσ

) 1
p + c(M,g,p)δ

1
np |∇Σϕ|L∞(Σ).

Let δ → 0+ and then ε → 0+, we get( ∫
Σ

|ϕ| np
n−1 dν

) n−1
np

� cn,p

( ∫
Σ

|ϕ|p dσ

) 1
p

.

A limit process shows for every nonnegative Borel function h on Σ ,( ∫
Σ

h
np

n−1 dν

) n−1
np

� cn,p

( ∫
Σ

hp dσ

) 1
p

.

In particular, for every Borel set E ⊂ Σ , ν(E)
n−1
np � cn,pσ (E)

1
p . Based on this inequality we may proceed as in the

proof of [7, Proposition 3.1] to get the second conclusion. �
Now we are ready to derive Theorem 6.1.

Proof of Theorem 6.1. First we want to show cM,g,p � cn,p is always true. To see this we may fix a point
ξ0 ∈ Σ , choose a normal coordinate for Σ at ξ0, namely τ1, . . . , τn−1. For δ > 0 small, we denote Cδ = {x ∈ Mδ:
dΣ(π(x), ξ0) � δ}, then we have a natural coordinate near ξ0 for M as

φ :Cδ → Bn−1
δ × [0, δ] :x �→ (

τ
(
π(x)

)
, t (x)

)
.

We will identify Cδ with Bn−1
δ × [0, δ] through φ. On Cδ we have the Euclidean metric g0 = ∑n

i=1 dxi ⊗ dxi . If
f̄ ∈ Lp(Σ)\{0} and f̄ vanishes outside Bn−1

δ , then it follows from Corollary 6.2 that

|Kf̄ |
L

np
n−1 (Cδ,g)

� |P f̄ |
L

np
n−1 (Cδ,g)

+ c(M,g,p)δ
1
p |f̄ |Lp(Σ).

Let f (ξ) = f̄ (ξ) for |ξ | � δ and f (ξ) = 0 for |ξ | > δ, ξ ∈ R
n−1, and u be the harmonic extension of f to R

n+, then

|u|
L

np
n−1 (Cδ,g0)

� (1 + ε1)|Kf̄ |
L

np
n−1 (Cδ,g)

� (1 + ε1)|P f̄ |
L

np
n−1 (Cδ,g)

+ c(M,g,p)δ
1
p |f̄ |Lp(Σ).

Here ε1 = ε1(M,g,p, δ) and ε1 → 0+ as δ → 0+. Hence
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cM,g,p �
|P f̄ |

L
np

n−1 (M)

|f̄ |Lp(Σ)

�
|P f̄ |

L
np

n−1 (Cδ,g)

|f̄ |
Lp(Bn−1

δ ,g)

� 1

(1 + ε1)2

|u|
L

np
n−1 (Cδ,g0)

|f |
Lp(Bn−1

δ ,g0)

− c(M,g,p)δ
1
p .

Assume f ∈ Lp(Rn−1)\{0} and f = 0 outside a ball, u is the harmonic extension of f to R
n+, then for ε > 0 small

enough, we write fε(ξ) = ε
− n−1

p f (
ξ
ε
) and uε(x) = ε

− n−1
p u(x

ε
). Let f̄ = fε on Bn−1

δ and 0 on Σ\Bn−1
δ , then we get

cM,g,p � 1

(1 + ε1)2

|uε|
L

np
n−1 (Cδ,g0)

|fε|Lp(Bn−1
δ ,g0)

− c(M,g,p)δ
1
p .

Let ε → 0+ then δ → 0+, we see

cM,g,p �
|u|

L
np

n−1 (Rn+)

|f |Lp(Rn−1)

.

By approximation we know the inequality remains true for all f ∈ Lp(Rn−1)\{0} and this implies cM,g,p � cn,p .
If f is a maximizer, then it is clear that f will be either nonnegative or nonpositive. Assume f � 0, then it satisfies

the Euler–Lagrange equation∫
M

P(x, ξ)(Pf )(x)
np

n−1 −1 dμ(x) = c
np

n−1
M,g,pf (ξ)p−1.

It follows from Proposition 4.1 that f must be smooth and hence it is strictly positive.
Assume cM,g,p > cn,p . Let fi ∈ Lp(Σ) be a sequence of functions with |fi |Lp(Σ) = 1 and |Pfi |

L
np

n−1 (M)
→ cM,g,p .

After passing to a subsequence we may assume fi ⇀ f in Lp(Σ), |fi |p dS ⇀ σ in M(Σ) and |Pfi |
np

n−1 dμ ⇀ ν in
M(M). It follows from Proposition 6.1 that we may find a countable set of points ζj ∈ Σ such that ν = |Pf | np

n−1 dμ+∑
j νj δζj

and σ � |f |p dS + ∑
j σj δζj

. Here σj = σ({ζj }) and ν
n−1
n

j � c
p
n,pσj . In particular 1 = σ(Σ) � |f |p

Lp(Σ)
+∑

j σj . We claim νj = 0 for all j . If this is not the case, then

c
np

n−1
M,g,p = ν(M) = |Pf |

np
n−1

L
np

n−1 (M)
+

∑
j

νj � c
np

n−1
M,g,p|f |

np
n−1
Lp(Σ)

+
∑
j

νj .

Hence

c
p
M,g,p � c

p
M,g,p|f |pLp(Σ) +

∑
j

ν
n−1
n

j � c
p
M,g,p|f |pLp(Σ) + c

p
n,p

∑
j

σj

< c
p
M,g,p|f |pLp(Σ) + c

p
M,g,p

∑
j

σj .

This implies 1 < |f |pLp(Σ) + ∑
j σj , a contradiction. Since νj = 0 for all j , we see |Pf |

L
np

n−1 (M)
= cM,g,p . Hence

|f |Lp(Σ) � 1. This implies fi → f in Lp(Σ). That is every maximizing sequence has a convergent subsequence in
Lp(Σ) and cM,g,p is achieved. �
7. Proof of the Theorem 1.1

In this section we finish the proof of Theorem 1.1. Without losing of generality we may assume R = 0. It follows
from Theorems 3.1, 6.1 and [7, Theorem 1.1] that

ΘM,g = c
2

n−2

M,g,
2(n−1) � c

2
n−2

n,
2(n−1) = n− 1

n−1 ω
− 1

n(n−1)
n = ΘB1,gRn

.

n−2 n−2
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On the other hand, if ΘM,g > ΘB1,gRn
, then c

M,g,
2(n−1)
n−2

> c
n,

2(n−1)
n−2

. It follows from Theorem 6.1 that we may find a

f ∈ C∞(Σ) with f > 0 such that |f |
L

2(n−1)
n−2 (Σ)

= 1 and c
M,g,

2(n−1)
n−2

= |Pf |
L

2n
n−2 (M)

. Let g̃ = (Pf )
4

n−2 g, then clearly

R̃ = 0 and I (M, g̃) = ΘM,g .
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