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Abstract

We consider a thin multidomain of R
3 consisting of two vertical cylinders, one placed upon the other: the first one with given

height and small cross section, the second one with small thickness and given cross section. The first part of this paper is devoted
to analyze, in this thin multidomain, a “static Landau–Lifshitz equation”, when the volumes of the two cylinders vanish. We derive
the limit problem, which decomposes into two uncoupled problems, well posed on the limit cylinders (with dimensions 1 and 2,
respectively). We precise how the limit problem depends on limit of the ratio between the volumes of the two cylinders. In the
second part of this paper, we study the asymptotic behavior of the two limit problems, when the exterior limit fields increase. We
show that in some cases, contrary to the initial problem, the energies of the limit problems diverge and we find the order of these
energies.
© 2007

Résumé

Nous considérons un multi-domaine mince de R
3 se composant de deux cylindres verticaux, superposés l’un sur l’autre : le

premier possède une taille donnée et une petite section transversale, le second a une petite épaisseur et une section transversale
donnée. La première partie de cet article est consacrée à analyser, dans ce multi-domaine, une équation stationnaire de type Landau–
Lifshitz, quand les volumes des deux cylindres tendent vers 0. Nous montrons que le problème limite, se décompose en deux
probèmes découplés, bien posés sur le domaine limite. Ensuite, nous précisons comment le problème limite dépend de la limite du
rapport des volumes des deux cylindres. Dans la deuxième partie de cet article, nous étudions le comportement asymptotique des
deux problèmes limites, quand les champs extérieurs limites augmentent. Nous prouvons que dans certains cas, contrairement au
problème initial, les énergies des problèmes limites divergent et nous précisons l’ordre de ces énergies.
© 2007
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1. Introduction

This paper is devoted to an asymptotic analysis, in a thin multidomain of R
3, of minimizing maps with values in

S2. Precisely, let Ωn ⊂ R
3, n ∈ N, be a thin multidomain consisting of two vertical cylinders, one placed upon the

other: the first one with constant height 1 and small cross section rnΘ , the second one with small thickness hn and
constant cross section Θ , where rn and hn are two small parameters converging to zero (see Fig. 1). By denoting
H 1(D,S2) = {v ∈ H 1(D,R

3), |v| = 1 a.e. in D} for an open subset D ⊂ R
N (N = 1,2,3), we consider the following

minimization problem:

min

{ ∫
Ωn

[∣∣DV (x1, x2, x3)
∣∣2 − 2V (x1, x2, x3)Fn(x1, x2, x3)

]
d(x1, x2, x3): V ∈ H 1(Ωn,S

2)

}
, (1.1)

where Fn ∈ L2(Ωn,R
3). Problem (1.1) describes the classical 3d system for the static isotropic Heisenberg model

(see [25]), where V is the spin-density with finite magnitude and Fn an external magnetic field. The Euler system
associated to problem (1.1) is

�V + |DV |2V + Fn − 〈V,Fn〉V = 0,

which is equivalent to the time independent spin equation of motion (see [19]). The time dependent spin equation of
motion was first derived by Landau and Lifshitz (see [22]) and it plays a fundamental role in the understanding of
nonequilibrium magnetism. See [17] and [19] about links between harmonic maps and the Landau–Lifshitz equation
of the spin chain.

The first part of our paper is devoted to study the asymptotic behavior of problem (1.1), when rn → 0 and hn → 0,
as n → +∞ (see Section 2). After having reformulated the problem on a fixed domain through appropriate rescaling of
the kind proposed by P.G. Ciarlet and P. Destuynder in [5] and having imposed appropriate convergence assumptions
on the rescaled exterior fields, we derive the limit problem which depends on the limit of the ratio between the volumes
of the two cylinders (see Subsection 2.1). More precisely, if these two volumes vanish with same rate, i.e. hn 	 r2

n , the
limit problem decomposes into two uncoupled problems, well posed on the limit cylinders, with dimensions 1 and 2,
respectively:

Fig. 1.
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min

{
|Θ|

1∫
0

∣∣w′(x3)
∣∣2

dx3 − 2

1∫
0

( ∫
Θ

f a(x1, x2, x3) d(x1, x2)

)
w(x3) dx3: w ∈ H 1(]0,1[, S2)}, (1.2)

min

{∫
Θ

∣∣Dζ(x1, x2)
∣∣2

d(x1, x2) − 2
∫
Θ

( 0∫
−1

f b(x1, x2, x3) dx3

)
ζ(x1, x2) d(x1, x2): ζ ∈ H 1(Θ,S2)

}
, (1.3)

where f a and f b are the L2-weak limits of the rescaled exterior fields in the upper cylinder and in the lower cylinder,
respectively (see (2.5) and (2.10) in Section 2); and w′ stands for the derivative of w. If hn � r2

n , the limit problem
reduces to problem (1.2). If hn � r2

n , the limit problem reduces to Problem (1.3). In all cases, strong convergences in
H 1-norm are obtained for the rescaled minimizers.

The proofs of these results make use of the main ideas of �-convergence method introduced by E. De Giorgi
(see [9]) and they develop in several steps: a priori estimates, construction of the recovery sequence, density results
and l.s.c arguments (see Subsection 2.2). The main difficulty with respect to [10], where the asymptotic behavior of
the Laplacian is studied when hn 	 r2

n , arises from the fact that the set of the admissible vector valued functions of
problem (1.1) is not a convex set, due to the constraint |V ((x1, x2, x3))| = 1. This difficulty is overcome by working
with a projection from R

3 into S2 = {(x1, x2, x3) ∈ R
3: |(x1, x2, x3)| = 1}, introduced in [3] (see also [1]), and by

using the Sard’s Lemma. Moreover, point out that the cases hn � r2
n and hn � r2

n are not treated in [10].
Remark that it is not necessary that the two cylinders are scaled to the same one or that the first cylinder has

height 1. In fact, the results do not essentially change if one assumes Ωn = (rnΘa × [0, l[) ∪ (Θb × ]−hn,0[), with
Θa,Θb ⊂ R

2, 0′ ∈ Θb and l ∈ ]0,+∞[.
In the second part of this paper (see Section 3), we consider the following problem:

min

{ ∫
Ωn

[|DV (x1, x2, x3)|2 + λ|V (x1, x2, x3) − Fn(x1, x2, x3)|2
]
d(x1, x2, x3): V ∈ H 1(Ωn,S

2)

}
, (1.4)

where Fn :Ωn → R
3 is a measurable function such that |Fn((x1, x2, x3))| = 1 a.e. in Ωn and λ � 0. Remark that

problem (1.4) reduces to problem (1.1), up to the additive constant: 2|Ωn|λ. Consequently, for λ fixed, by passing to
the limit as n → +∞, one obtains limit problems (1.2) and (1.3), up to the additive constant: 2|Θ|λ. If we assume
that |f a| = 1, f a is independent of (x1, x2), |f b| = 1 and f b is independent of x3, then the limit problems can be
rewritten as follows:

min

{
|Θ|

1∫
0

[∣∣w′(x3)
∣∣2 + λ

∣∣w(x3) − f a(x3)
∣∣2]

dx3: w ∈ H 1(]0,1[, S2)}, (1.5)

min

{ ∫
Θ

[∣∣Dζ(x1, x2)
∣∣2 + λ

∣∣ζ(x1, x2) − f b(x1, x2)
∣∣2]

d(x1, x2): ζ ∈ H 1(Θ,S2)

}
. (1.6)

Note that, since smooth maps are dense in H 1(Θ,S2) and in H 1(]0,1[, S2) (see [3]), the infimum in (1.5) (resp. (1.6))
does not change if we replace H 1(Θ,S2) (resp. H 1(]0,1[, S2)) by C1(Θ,S2) (resp. C1(]0,1[, S2)). This property
does not hold true for initial Problem (1.4) (for instance, see [18]).

The second part of the paper is devoted to study the asymptotic behavior of problems (1.5) and (1.6), as λ → +∞,
that is when the exterior limit field increases. The interesting cases occur when f a /∈ H 1(]0,1[) or f b /∈ H 1(Θ),
otherwise the asymptotic analysis is trivial. We examine some cases (see Subsection 3.1). For instance, if Fn = x

|x| in

(1.4), one obtains (1.5) and (1.6) with f a = (0,0,1) and f b = 1
|(x1,x2)| (x1, x2,0), respectively (see (2.10) in Section 2).

Remark that f b /∈ H 1(Θ), although x
|x| ∈ H 1

loc(R
3, S2). In this case, energy (1.6) diverges, as λ → +∞. By adapting

some results proved by F. Bethuel, H. Brezis and F. Hélein in [2], we show that π logλ + c is an upper bound
of energy (1.6), for λ large enough. It provides that every sequence of minimizers of problem (1.6) converges to

1
|(x1,x2)| (x1, x2,0) strongly in L2(Θ), as λ → +∞. Moreover, with a technique introduced in [26] in the case of

the Ginzburg–Landau energy, we prove that lim infλ→+∞
∫
Θ

λ|ζλ(x1, x2) − f b(x1, x2)|2d(x1, x2) < +∞, where ζλ

solves (1.6). This result allows us to obtain, by an integration by parts, the existence of a diverging sequence {λk}k∈N

for which corresponding energy (1.6) is bounded from below by π logλk − c.
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By choosing Fn(x1, x2, x3) = 1
|(x1,x2,x3−γ )| (x1, x2, x3 −γ ), with γ ∈]0,1[, in (1.4), one obtains (1.5) and (1.6) with

f a(x3) = (0,0,
x3−γ
|x3−γ | ) and f b(x1, x2) = 1

|(x1,x2,−γ )| (x1, x2,−γ ), respectively (see (2.10) in Section 2). Remark that

Fn ∈ H 1
loc(R

3, S2), f b ∈ H 1(Θ,S2), but f a /∈ H 1(]0,1[). In this case, by using suitable test functions, we derive the
upper bound |Θ|2√

2π
√

λ of energy (1.5). It provides that every sequence of minimizers of problem (1.5) converges
to (0,0,

x3−γ
|x3−γ | ) strongly in L2(]0,1[), as λ → +∞. Moreover, by virtue of an auxiliary scalar problem, we obtain the

lower bounds |Θ|(2− ε)
√

λ of energy (1.5), for λ > λε . The proofs of this results will be developed in Subsection 3.2.
For the study of thin structures and multi-structures we refer to [4,6,8,20,21,23,27] and the references quoted

therein. For a thin multi-structure as considered in this paper, we refer to [10–14] and [16]. Precisely, the model,
described in [10] and [11] through its integral energy, and in [12] through the related constitutive equations, is a
quasilinear Neumann second order scalar problem. A fourth order problem is examined in [16]. The case of the
linearized elasticity system in R

3 is studied in [14]. The spectrum of a Laplacian Problem is considered in [15].
For n fixed, problem (1.4) is studied in [7] and in [18]. The authors show that any minimizer of (1.4) is regular if

λ is small enough; while, if λ is large and Fn is not a strong limit of smooth maps in H 1(Ωn,S
2) (for instance, this

is the case when Fn(x) = x
|x| ), then any minimizer of (1.4) possesses singularities. In this case, a minimizer of (1.4)

is of the type: R(
x−x0|x−x0| ), where R is a rotation, near each singularity x0. It is also shown that any minimizer for (1.4)

tends to Fn weakly in H 1, as λ tends to +∞.

2. First part: derivation of the limit model

In the sequel, x = (x1, x2, x3) = (x′, x3) denotes the generic point of R
3 and, Dx′ and Dx3 stand for the gradient

with respect to the first 2 variables x1, x2 and for the derivative with respect to the last variable x3, respectively.
Let Θ ⊂ R

2 be a bounded open connected set with smooth boundary such that the origin in R
2, denoted by 0′,

belongs to Θ , and {rn}n∈N, {hn}n∈N ⊂ ]0,1[ be two sequences such that

lim
n

hn = 0 = lim
n

rn. (2.1)

For every n ∈ N, let Ωa
n = rnΘ × [0,1[, Ωb

n = Θ × ]−hn,0[ and Ωn = Ωa
n ∪ Ωb

n (see Fig. 1).
For every n ∈ N, let Fn ∈ L2(Ωn,R

3) and

Jn :V ∈ H 1(Ωn,S
2) −→

∫
Ωn

∣∣DV (x)
∣∣2

dx − 2
∫
Ωn

V (x)Fn(x) dx. (2.2)

By applying the Direct Method of Calculus of Variations, for every n ∈ N there exists a solution Un ∈ H 1(Ωn,S
2) of

the following problem:

Jn(Un) = min
{
Jn(V ): V ∈ H 1(Ωn,S

2)
}
. (2.3)

As it is usual (see [5]), problem (2.3) can be reformulated on a fixed domain through an appropriate rescaling which
maps Ωn into Ω = Θ × ]−1,1[. Namely, for every n ∈ N by setting

un(x) =
{

ua
n(x

′, x3) = Un(rnx
′, x3), (x′, x3) a.e. in Ωa = Θ × ]0,1[,

ub
n(x

′, x3) = Un(x
′, hnx3), (x′, x3) a.e. in Ωb = Θ × ]−1,0[, (2.4)

fn(x) =
{

f a
n (x′, x3) = Fn(rnx

′, x3), (x′, x3) a.e. in Ωa = Θ × ]0,1[,
f b

n (x′, x3) = Fn(x
′, hnx3), (x′, x3) a.e. in Ωb = Θ × ]−1,0[, (2.5)

Vn = {
(va, vb) ∈ H 1(Ωa,S2) × H 1(Ωb,S2): va(x′,0) = vb(rnx

′,0), for x′a.e. in Θ
}
, (2.6)

jn : v = (va, vb) ∈ Vn −→
∫

Ωa

∣∣∣∣
(

1

rn
Dx′va,Dx3v

a

)∣∣∣∣
2

− 2vaf a
n dx

+ hn

r2
n

∫
b

∣∣∣∣
(

Dx′vb,
1

hn

Dx3v
b

)∣∣∣∣
2

− 2vbf b
n dx,

(2.7)
Ω
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it results that un ∈ Vn solves the following problem:

jn(un) = min
{
jn(v): v ∈ Vn

}
. (2.8)

Remark that we have also multiplied the rescaled functional by 1/r2.
To study the asymptotic behavior of problem (2.8), as n → +∞, assume that

lim
n

hn

r2
n

= q ∈ [0,+∞], (2.9)

and

f a
n ⇀ f a weakly in L2(Ωa,R

3), f b
n ⇀ f b weakly in L2(Ωb,R

3). (2.10)

Moreover, set

ja : w ∈ H 1(]0,1[, S2) −→ |Θ|
1∫

0

∣∣w′(x3)
∣∣2

dx3 − 2

1∫
0

w(x3)

( ∫
Θ

f a(x′, x3) dx′
)

dx3, (2.11)

jb: ζ ∈ H 1(Θ,S2) −→
∫
Θ

∣∣Dζ(x′)
∣∣2

dx′ − 2
∫
Θ

ζ(x′)
( 0∫

−1

f b(x′, x3) dx3

)
dx′, (2.12)

where w′ stands for the derivative of w.

2.1. Convergence results when n → +∞

The main result of this section, describing the asymptotic behavior of problem (2.8) when q ∈ ]0,+∞[, is the
following one:

Theorem 2.1. For every n ∈ N, let un = (ua
n,u

b
n) be a solution of problem (2.6)–(2.8), under assumptions (2.1), (2.9)

with q ∈ ]0,+∞[ and (2.10).
Then, there exist an increasing sequence of positive integer number {ni}i∈N, ua ∈ {w ∈ H 1(Ωa,S2): w is indepen-

dent of x′} 	 H 1(]0,1[, S2) and ub ∈ {ζ ∈ H 1(Ωb,S2): ζ is independent of x3} 	 H 1(Θ,S2) (ua and ub depending
on the selected subsequence) such that

ua
ni

→ ua strongly in H 1(Ωa,S2), ub
ni

→ ub strongly in H 1(Ωb,S2), (2.13)

as i → +∞, and ua , ub solve the following problems:

ja(ua) = min
{
ja(w): w ∈ H 1(]0,1[, S2)}, (2.14)

jb(ub) = min
{
jb(ζ ): ζ ∈ H 1(Θ,S2)

}
, (2.15)

respectively, with ja and jb defined in (2.11) and (2.12), respectively. Moreover,

1

rn
Dx′ua

n → 0 strongly in L2(Ωa,R
6),

1

hn

Dx3u
b
n → 0 strongly in L2(Ωb,R

3), (2.16)

as n → +∞. Furthermore, the energies converge in the sense that

lim
n

jn(un) = ja(ua) + qjb(ub). (2.17)

If q = 0, the following result holds true:

Theorem 2.2. For every n ∈ N, let un = (ua
n,u

b
n) be a solution of problem (2.6)–(2.8), under assumptions (2.1), (2.9)

with q = 0 and (2.10).
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Then, there exist an increasing sequence of positive integer number {ni}i∈N and ua ∈ {w ∈ H 1(Ωa,S2): w is
independent of x′} 	 H 1(]0,1[, S2) (ua depending on the selected subsequence) such that

ua
ni

→ ua strongly in H 1(Ωa,S2), (2.18)

as i → +∞, and ua solves problem (2.14). Moreover,

1

rn
Dx′ua

n → 0 strongly in L2(Ωa,R
6),

√
hn

rn
ub

n → 0 strongly in H 1(Ωb,R
3), (2.19)

1√
hnrn

Dx3u
b
n → 0 strongly in L2(Ωb,R

3),

as n → +∞. Furthermore, the energies converge in the sense that

lim
n

jn(un) = ja(ua). (2.20)

If q = +∞, the following result holds true:

Theorem 2.3. For every n ∈ N, let un = (ua
n,u

b
n) be a solution of problem (2.6)–(2.8), under assumptions (2.1), (2.9)

with q = +∞ and (2.10).
Then, there exist an increasing sequence of positive integer number {ni}i∈N and ub ∈ {ζ ∈ H 1(Ωb,S2): ζ is

independent of x3} 	 H 1(Θ,S2) (ub depending on the selected subsequence) such that

ub
ni

→ ub strongly in H 1(Ωb,S2), (2.21)

as i → +∞, and ub solves problem (2.15). Moreover,

1

hn

Dx3u
b
n → 0 strongly in L2(Ωb,R

3),

rn√
hn

ua
n → 0 strongly in H 1(Ωa,R

3), (2.22)

1√
hn

Dx′ua
n → 0 strongly in H 1(Ωa,R

6),

as n → +∞. Furthermore, the energies converge in the sense that

lim
n

(
r2
n

hn

jn(un)

)
= jb(ub). (2.23)

As regard as the asymptotic behavior of original problem (2.3), as n → +∞, from the rescaling (2.4)–(2.5) and
Theorems 2.1, 2.2 and 2.3, the result below follows immediately.

Corollary 2.4. For every n ∈ N, let Un be a solution of problem (2.3), under assumptions (2.1) and (2.10) with {fn}n∈N

defined by (2.5), and let q be given by (2.9).
Then, there exist an increasing sequence of positive integer number {ni}i∈N, ua ∈ {w ∈ H 1(Ωa,S2): w is indepen-

dent of x′} 	 H 1(]0,1[, S2) and ub ∈ {ζ ∈ H 1(Ωb,S2): ζ is independent of x3} 	 H 1(Θ,S2) (ua and ub depending
on the selected subsequence) such that

(1) if q ∈ ]0,+∞[,

lim
i

(
1

r2
ni

∫
rn Θ×]0,1[

|Uni
− ua|2 + |Dx′Uni

|2 + |Dx3Uni
− Dx3u

a|2 dx

)
= 0, (2.24)
i
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lim
i

(
1

hni

∫
Θ×]−hni

,0[
|Uni

− ub|2 + |Dx′Uni
− Dx′ub|2 + |Dx3Uni

|2 dx

)
= 0, (2.25)

lim
n

Jn(Un)

r2
n

= ja(ua) + qjb(ub);

(2) if q = 0,

lim
i

(
1

r2
ni

∫
rni

Θ×]0,1[
|Uni

− ua|2 + |Dx′Uni
|2 + |Dx3Uni

− Dx3u
a|2 dx

)
= 0, (2.26)

lim
n

(
1

r2
n

∫
Θ×]−hn,0[

|Un|2 + |Dx′Un|2 + |Dx3Un|2 dx

)
= 0,

lim
n

Jn(Un)

r2
n

= ja(ua);

(3) if q = +∞,

lim
n

(
1

hn

∫
rnΘ×]0,1[

|Un|2 + |Dx′Un|2 + |Dx3Un|2 dx

)
= 0,

lim
i

(
1

hni

∫
Θ×]−hni

,0[
|Uni

− ub|2 + |Dx′Uni
− Dx′ub|2 + |Dx3Uni

|2 dx

)
= 0, (2.27)

lim
n

Jn(Un)

hn

= jb(ub);

and ua and ub solve problems (2.14) and (2.15), respectively.

Remark 2.5. If problem (2.14) (resp. (2.15)) admits a unique solution, then the first convergence in (2.13) and con-
vergence (2.18), (2.24) and (2.26) (resp. the second convergence in (2.13) and convergences (2.21), (2.25) and (2.27))
hold true for the whole sequence.

2.2. Proof of Theorems 2.1, 2.2 and 2.3

Proof of Theorem 2.1. The proof of Theorem 2.1 will be performed in several steps. In the sequel, |A|i , i = 2,3,
denotes the R

i -Lebesgue measure of a measurable set A ⊂ R
i .

1) A priori estimates. Being ((0,0,1), (0,0,1)) ∈ Vn for every n ∈ N, by virtue of (2.9) with q ∈ [0,+∞[ and
(2.10), there exists a constant c, independent of n, such that

jn(un) � −2
∫

Ωa

(0,0,1)f a
n dx − 2

hn

r2
n

∫
Ωb

(0,0,1)f b
n dx � c, ∀n ∈ N. (2.28)

Consequently, by taking into account that q ∈ ]0,+∞[, |un| = 1 a.e. in Ω for every n ∈ N and (2.10), there exist
an increasing sequence of positive integer number {ni}i∈N, ua ∈ H 1(Ωa,S2) independent of x′, ub ∈ H 1(Ωb,S2)

independent of x3, ξa ∈ L2(Ωa,R
6) and ξb ∈ L2(Ωb,R

3) such that

ua
ni

⇀ ua weakly in H 1(Ωa,S2), ub
ni

⇀ ub weakly in H 1(Ωb,S2), (2.29)

1

rni

Dx′ua
ni

⇀ ξa weakly in L2(Ωa,R
6),

1

hni

Dx3u
b
ni

⇀ ξb weakly in L2(Ωb,R
3), (2.30)

as i → +∞, Remark that ua ∈ H 1(]0,1[, S2) and ub ∈ H 1(Θ,S2).
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2) Recovery sequence. Let (w, ζ ) ∈ C1([0,1], S2)×C1(Θ,S2) such that and w(0) = ζ(0′). This step is devoted to
prove the existence of a sequence {vn}n∈N, with vn ∈ Vn, such that

lim
n

jn(vn) = ja(w) + qjb(ζ ). (2.31)

For every n ∈ N, set

gn(x) =

⎧⎪⎨
⎪⎩

w(x3), if x = (x′, x3) ∈ Θ × ]rn,1[,
w(rn)

x3
rn

+ ζ(rnx
′) rn−x3

rn
, if x = (x′, x3) ∈ Θ × [0, rn],

ζ(x′), if x = (x′, x3) ∈ Ωb.

(2.32)

Remark that, for every n ∈ N, gn|Θ×]0,rn[ ∈ C1(Θ × ]0, rn[). Moreover, assumption (2.9) with q ∈ ]0,+∞[ and, in
particular, the transmission condition w(0) = ζ(0′) provide (for the proof, see (4.11) and (4.12) in [11]) that

lim
n

∫
(Θ×]0,rn[)

∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx = 0. (2.33)

Of course, ga
n ∈ H 1(Ωa), gb

n ∈ H 1(Ωb), and ga
n(x′,0) = gb

n(rnx
′,0) for x′ a.e. in Θ ; but |gn(x)| � 1 for every

x ∈ Θ × ]0, rn[. Then, gn is not an admissible test function for problem (2.6)–(2.8). To overcome this difficulty, for
y ∈ B 1

2
(0) = {x ∈ R

3: |x| � 1
2 }, introduce the function

πy :x ∈ B1(0) \ {y} → y + y(y − x) + √
(y(x − y))2 + |x − y|2(1 − |y|2)

|x − y|2 (x − y) ∈ S2

projecting x ∈ B1(0) \ {y} = {x ∈ R
3: |x| � 1} \ {y} on S2 along the direction x − y (see [3] and [1]). It is easily seen

that

πy(x) = x, ∀x ∈ S2, (2.34)

and there exists a constant c > 0 such that

|Dπy(x)|2 � c

|x − y|2 , ∀y ∈ B 1
2
(0), ∀x ∈ B1(0) \ {y}. (2.35)

The idea is to choose y ∈ B 1
2
(0) opportunely, and to define vn = πy ◦ gn. To do that, one has to be careful that the

set {x: gn(x) = y} is “sufficiently small”.
By setting G = ⋃

n∈N
{y ∈ B 1

2
(0): ∃x ∈ Θ × ]0, rn[ with gn(x) = y and rank((Dgn)(x)) < 3}, Sard’s Lemma

assures that meas(G) = 0. Moreover, for every n ∈ N and for every y ∈ B 1
2
(0) \ G, the set Gn,y = {x ∈ Θ × ]0, rn[:

gn(x) = y} has dimension 0 (see [24], ch. 13, par. 14). Consequently, for every n ∈ N and for every y ∈ B 1
2
(0) \ G,

the function πy ◦ (gn|Ω\Gn,y
) is well defined and, by virtue of (2.35) there exists a constant c > 0 such that

∫
B 1

2
(0)\G

∫
(Θ×]0,rn[)\Gn,y

∣∣∣∣
(

1

rn
Dx′

(
πy

(
gn(x)

))
,Dx3

(
πy

(
gn(x)

)))∣∣∣∣
2

dx dy

�
∫

B 1
2
(0)\G

∫
(Θ×]0,rn[)\Gn,y

∣∣(Dπy

(
gn(x)

)∣∣2
∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx dy

� c

∫
B 1

2
(0)\G

∫
(Θ×]0,rn[)\Gn,y

1

|gn(x) − y|2
∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx dy

= c

∫
B 1 (0)\G

∫
(Θ×]0,rn[)

(1 − χGn,y )
1

|gn(x) − y|2
∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx dy
2
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� c

∫
(Θ×]0,rn[)

( ∫
B 1

2
(0)\G

1

|gn(x) − y|2 dy

)∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx

� c

∫
(Θ×]0,rn[)

( ∫
B 3

2
(0)

1

|z|2 dz

)∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx

= c

∫
B 3

2
(0)

1

|z|2 dz

∫
(Θ×]0,rn[)

∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx, ∀n ∈ N,

where
∫
B 3

2
(0)

|z|−2 dz < +∞. Consequently, there exist a constant C > 0 and a sequence {yn}n∈N ⊂ B 1
2
(0) \ G such

that ∫
(Θ×]0,rn[)\Gn,yn

∣∣∣∣
(

1

rn
Dx′

(
πyn

(
gn(x)

))
,Dx3

(
πyn

(
gn(x)

)))∣∣∣∣
2

dx

� C

∫
(Θ×]0,rn[)

∣∣∣∣
(

1

rn
Dx′gn(x),Dx3gn(x)

)∣∣∣∣
2

dx, ∀n ∈ N,

from which, by virtue of (2.33), it follows that

lim
n

∫
(Θ×]0,rn[)\Gn,yn

∣∣∣∣
(

1

rn
Dx′

(
πyn

(
gn(x)

))
,Dx3

(
πyn

(
gn(x)

)))∣∣∣∣
2

dx = 0. (2.36)

Finally, for every n ∈ N set vn = πyn ◦ (gn|Ω\Gn,yn
). Then, by virtue of (2.32) and (2.34), it results that

vn(x) =

⎧⎪⎨
⎪⎩

w(x3), if x = (x′, x3) ∈ Θ × ]rn,1[,
πyn(w(rn)

x3
rn

+ ζ(rnx
′) rn−x3

rn
), if x = (x′, x3) ∈ (Θ × [0, rn]) \ Gn,yn,

ζ(x′), if x = (x′, x3) ∈ Ωb.

(2.37)

At first, remark that va
n ∈ H 1(Ωb,S2). Indeed, va

n ∈ H 1(Θ × ]rn,1[, S2). Moreover, since va
n ∈ L2(Θ × ]0, rn[, S2)

and Dva
n ∈ (L2(Θ × ]0, rn[))9 (see (2.36)), it results that va

n ∈ H 1(Θ × ]0, rn[, S2). Furthermore, since va
n ∈ C((Θ ×

[0, rn]) \ Gn,yn) and Gn,yn has dimension 0, the trace of va
n |Θ×]0,rn[ on Θ × {rn} is equal to w(rn). Consequently,

these properties provide that va
n ∈ H 1(Ωb,S2). On the other hand, it is evident that vb

n ∈ H 1(Ωb,S2), and va
n(x′,0) =

vb
n(rnx

′,0) for x′ a.e. in Θ . In conclusion, for every n ∈ N, vn ∈ Vn. Now, it remains to prove that {vn}n∈N satisfies
(2.31).

By virtue of (2.37), it results that

jn(vn) =
∫

Ωa

(∣∣(Dx3w)
∣∣2 − 2wf a

n

)
dx −

∫
Θ×]0,rn[

(∣∣(Dx3w)
∣∣2 − 2wf a

n

)
dx

+
∫

(Θ×]0,rn[)\Gn,yn

[∣∣∣∣
(

1

rn
Dx′(πyn ◦ gn),Dx3(πyn ◦ gn)

)∣∣∣∣
2

− 2(πyn ◦ gn)f
a
n

]
dx

+ hn

r2
n

∫
Ωb

(∣∣(Dx′ζ )
∣∣2 − 2ζf b

n

)
dx. (2.38)

On the other side, convergence (2.10) provides that

lim
n

∫
a

wf a
n dx =

∫
a

wf a dx, lim
n

∫
b

ζf b
n dx =

∫
b

ζf b dx, (2.39)
Ω Ω Ω Ω



68 A. Gaudiello, R. Hadiji / Ann. I. H. Poincaré – AN 26 (2009) 59–80
lim
n

∫
Θ×]0,rn[

(∣∣(Dx3w)
∣∣2 − 2wf a

n

)
dx = 0, lim

n

∫
(Θ×]0,rn[)\Gn,yn

(πyn ◦ gn)f
a
n dx = 0. (2.40)

Then, by passing to the limit, as n diverges, in (2.38) and by taking into account (2.39), (2.40), (2.36) and (2.9)
with q ∈ ]0,+∞[, one obtains that

lim
n

jn(vn) =
∫

Ωa

(∣∣(Dx3w)
∣∣2 − 2wf a

)
dx + q

∫
Ωb

(∣∣(Dx′ζ )
∣∣2 − 2ζf b

)
dx = ja(w) + qjb(ζ ).

3) Density result. Let (w, ζ ) ∈ C1([0,1], S2)×C1(Θ,S2). This step is devoted to prove the existence of a sequence
{(wk, ζk)}k∈N ⊂ C1([0,1], S2) × C1(Θ,S2), with wk(0) = ζk(0′) for every k ∈ N, such that

(wk, ζk) → (w, ζ ) strongly in H 1(]0,1[, S2) × H 1(Θ,S2).

For every k ∈ N, set

θk = w(0)ϕk + (1 − ϕk)ζ,

where ϕk is the solution of the following problem:

min

{ ∫
B 1

k
(0′)

∣∣Dϕk(x
′)
∣∣2

dx′: ϕk ∈ C1
0

(
B 1

k
(0′)

)
, ϕk = 1 in B 1

k2
(0′), 0 � ϕk � 1

}
,

with B 1
k
(0′) = {x′ ∈ R2: |x′| < 1

k
} and B 1

k2
(0′) = {x′ ∈ R2: |x′| < 1

k2 }. Remark that (for instance, see (3.4) in [11])

lim
k

∫
B 1

k
(0′)\B 1

k2
(0′)

∣∣Dθk(x
′)
∣∣2

dx′

� 2 lim
k

(
‖Dζ‖2

L∞(Θ)

∣∣B 1
k
(0′)

∣∣
2 + (∣∣w(0)

∣∣ + ‖ζ‖L∞(Θ)

)2
∫

B 1
k
\B 1

k2

∣∣Dϕk(x
′)
∣∣2

dx′
)

= 0. (2.41)

Since θk :Θ ⊂ R
2 → R

3 is a C1 function, it results that |⋃k∈N
θk(Θ)|3 = 0. Consequently, now it is easier than in

the previous step to apply the projection πy for obtaining S2-value functions. Indeed, for every k ∈ N and for every
y ∈ B 1

2
(0) \ ⋃

k∈N
θk(Θ), the function πy ◦ θk ∈ C1(Θ,S2) and, by virtue of (2.35), there exists a constant c > 0 such

that ∫
B 1

2
(0)\⋃k∈N

θk(Θ)

∫
B 1

k
(0′)\B 1

k2
(0′)

∣∣D(
πy

(
θk(x

′)
))∣∣2

dx′dy

� c

∫
B 3

2
(0)

1

|z|2 dz

∫
B 1

k
(0′)\B 1

k2
(0′)

∣∣Dθk(x
′)
∣∣2

dx′, ∀k ∈ N.

Consequently, by taking into account (2.41), there exists a subsequence, still denoted by {k}, and

y ∈ B 1
2
(0) \

⋃
k∈N

θk(Θ)

such that

lim
k

∫
B 1

k
(0′)\B 1

2
(0′)

∣∣D(
πy

(
θk(x

′)
))∣∣2

dx′ = 0. (2.42)
k
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Now, for every k ∈ N set wk = w and ζk = πy ◦ θk . Then, it is evident that {(wk, ζk)}k∈N ⊂ C1([0,1], S2) ×
C1(Θ,S2), with ζk(0′) = wk(0), and wk → w strongly in H 1(Θ,S2). Moreover, it results that ζk → ζ strongly in
H 1(Θ,S2). In fact, by taking into account that (see (2.34))

ζk(x
′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(0′), if x′ ∈ B 1
k2

(0),

πy(w(0)ϕk(x
′) + (1 − ϕk(x

′))ζ ), if x′ ∈ B 1
k
(0′) \ B 1

k2
(0′),

ζ(x′), if x′ ∈ Θ \ B 1
k
(0′),

∀k ∈ N, (2.43)

and (2.42), it results that

lim
k

∫
Θ

|ζk − ζ |2 dx′ = lim
k

∫
B 1

k
(0′)

∣∣(πy ◦ θk) − ζ
∣∣2

dx′ = 0,

and

lim
k

∫
Θ

|Dζk − Dζ |2 dx′ = lim
k

( ∫
B 1

k
(0′)\B 1

k2
(0′)

∣∣D(πy ◦ θk) − Dζ
∣∣2

dx′ +
∫

B 1
k2

(0′)

|Dζ |2 dx′
)

� lim
k

(
2

∫
B 1

k
(0′)\B 1

k2
(0′)

∣∣D(πy ◦ θk)
∣∣2

dx′ + 3‖Dζ‖2
L∞(Θ)

∣∣B 1
k
(0′)

∣∣
2

)
= 0.

4) Conclusion. By using a l.s.c. argument, from (2.9) with q ∈ ]0,+∞[, (2.10), (2.29) and (2.30) it follows that∫
Ωa

|ξa|2 dx + ja(ua) + q

(
jb(ub) +

∫
Ωb

|ξb|2 dx

)
� lim inf

i
jni

(uni
). (2.44)

On the other hand, by virtue of step 2, for every (w, ζ ) ∈ C1([0,1], S2) × C1(Θ,S2) with w(0) = ζ(0′), there
exists a sequence {vn}n∈N, with vn ∈ Vn, such that

lim sup
i

jni
(uni

) � lim sup
i

jni
(vni

) = lim
n

jn(vn) = ja(w) + qjb(ζ ). (2.45)

Then, by combining (2.44) with (2.45), one obtains that∫
Ωa

|ξa|2 dx + ja(ua) + q

(
jb(ub) +

∫
Ωb

|ξb|2 dx

)
� lim inf

i
jni

(uni
)

� lim sup
i

jni
(uni

) � ja(w) + qjb(ζ ), (2.46)

for every (w, ζ ) ∈ C1([0,1], S2) × C1(Θ,S2) such that w(0) = ζ(0′).
Step 3 provides that inequality (2.46) holds true for every (w, ζ ) ∈ C1([0,1], S2) × C1(Θ,S2). Moreover, since

C1([0,1], S2) × C1(Θ,S2) is dense in H 1(]0,1[, S2) × H 1(Θ,S2) (see [3]), inequality (2.46) holds true also for
every (w, ζ ) ∈ H 1(]0,1[, S2) × H 1(Θ,S2). Consequently, it results that

ξa = 0, ξb = 0, (2.47)

ua and ub solve problems (2.14) and (2.15), respectively, and

lim
i

jni
(uni

) = ja(ua) + qjb(ub). (2.48)

Really, convergence (2.48) holds true for the whole sequence (so (2.17) is proved), since ja(ua) and jb(ub) are
independent of the selected subsequence, being the minimum of problems (2.14) and (2.15), respectively.

Finally, by combining (2.9) with q ∈ ]0,+∞[, (2.10), (2.29), (2.30) and (2.47) with (2.48), and by using the
Rellich–Kondrachov compact embedding theorem and the uniform convexity of the space L2, it is easy to see that
convergences (2.29) and (2.30) occur in the strong sense, i.e. (2.13) and (2.16). �
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Proof of Theorem 2.2. A priori estimates (2.28) hold true also if q = 0 in (2.9). Consequently, by taking into account
that q = 0, |un| = 1 a.e. in Ω for every n ∈ N and (2.10), there exist an increasing sequence of positive integer number
{ni}i∈N, ua ∈ H 1(Ωa,S2) independent of x′, ξa ∈ L2(Ωa,R

6) and zb ∈ L2(Ωb,R
3) such that convergence (2.19)

holds true, and

ua
ni

⇀ ua weakly in H 1(Ωa,S2), (2.49)

1

rni

Dx′ua
ni

⇀ ξa weakly in L2(Ωa,R
6), (2.50)

1√
hni

rni

Dx3u
b
ni

⇀ zb weakly in L2(Ωb,R
3), (2.51)

as i → +∞. Remark that ua ∈ H 1(]0,1[, S2).
By using a l.s.c. argument, from (2.10), (2.49), (2.50) and (2.51) it follows that∫

Ωa

|ξa|2 dx + ja(ua) +
∫

Ωb

|zb|2 dx

� lim inf
i

( ∫
Ωa

∣∣∣∣
(

1

rni

Dx′ua
ni

,Dx3u
a
ni

)∣∣∣∣
2

− 2ua
ni

f a
ni

dx +
∫

Ωb

∣∣∣∣ Dx3u
b
ni√

hni
rni

∣∣∣∣
2

− 2hni

r2
ni

ub
ni

f b
ni

dx

)

� lim inf
i

jni
(uni

). (2.52)

On the other hand, for every w ∈ C1([0,1], S2) the sequence {vn}n∈N, defined by va
n = w and vb

n = w(0), belongs
to Vn and satisfies

lim sup
i

jni
(uni

) � lim sup
i

jni
(vni

) = lim
n

jn(vn) = ja(w). (2.53)

By combining (2.52) with (2.53), and by taking into account that C1([0,1], S2) is dense in H 1(]0,1[, S2) (see [3]),
one obtains that ξa = 0, zb = 0, that ua solves problem (2.14), and the convergence of the energies (2.20). One
achieves the proof of Theorem 2.2, by arguing as in the last part of the proof of Theorem 2.1. �
Proof of Theorem 2.3. Being ((0,0,1), (0,0,1)) ∈ Vn for every n ∈ N, by virtue of (2.9) with q = +∞ and (2.10),
there exists a constant c, independent of n, such that

r2
n

hn

jn(un) � − r2
n

hn

∫
Ωa

2(0,0,1)f a
n dx −

∫
Ωb

2(0,0,1)f b
n dx � c, ∀n ∈ N. (2.54)

Consequently, by taking into account that q = +∞, |un| = 1 a.e. in Ω for every n ∈ N and (2.10), there exist an
increasing sequence of positive integer number {ni}i∈N, ub ∈ H 1(Ωb,S2) independent of x3, ξb ∈ L2(Ωb,R

3) and
za ∈ L2(Ωb,R

6) such that convergence (2.22) holds true, and

1√
hn

Dx′ua
n ⇀ za weakly in H 1(Ωa,R

6), (2.55)

ub
ni

→ ub strongly in H 1(Ωb,S2), (2.56)

1

hni

Dx3u
b
ni

⇀ ξb weakly in L2(Ωb,R
3), (2.57)

as i → +∞. Remark that ub ∈ H 1(Θ,S2).
By using a l.s.c. argument, from (2.10), (2.56), (2.57) and (2.55) it follows that∫

a

|za |2 dx + jb(ub) +
∫

b

|ξb|2 dx
Ω Ω
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� lim inf
i

( ∫
Ωa

∣∣∣∣ 1√
hni

Dx′ua
ni

∣∣∣∣
2

− 2r2
ni

hni

ua
ni

f a
ni

dx +
∫

Ωb

∣∣∣∣
(

Dx′ub
ni

,
Dx3u

b
ni

hni

)∣∣∣∣
2

− 2ub
ni

f b
ni

dx

)

� lim inf
i

(
r2
ni

hni

jni
(uni

)

)
. (2.58)

On the other hand, for every ζ ∈ C1(Θ,S2), such that ζ is constant in a neighbourhood of 0′, the sequence {vn}n∈N,
defined by va

n = ζ(0′) and vb
n = ζ , belongs to Vn (for n sufficiently large) and satisfies

lim sup
i

(
r2
ni

hni

jni
(uni

)

)
� lim sup

i

(
r2
ni

hni

jni
(vni

)

)
= lim

n

(
r2
ni

hni

jn(vn)

)
= jb(ζ ). (2.59)

Obviously, step 3 of the proof of Theorem 2.1 is independent of q ∈ [0,+∞]. Moreover, a careful reading of this
step (in particular, see (2.43)) shows that the space {ζ ∈ C1(Θ,S2): ζ is constant in a neighbourhood of 0′} is dense
in C1(Θ,S2) with respect to the H 1-norm. Consequently, by combining (2.58) with (2.59), it results that∫

Ωa

|za |2 dx + jb(ub) +
∫

Ωb

|ξb|2 dx � lim inf
i

(
r2
ni

hni

jni
(uni

)

)

� lim sup
i

(
r2
ni

hni

jni
(uni

)

)
� jb(ζ ), ∀ζ ∈ C1(Θ,S2)

from which, by taking into account that C1([0,1], S2) is dense in H 1(]0,1[, S2) (see [3]), one obtains that za = 0,
ξb = 0, that ub solves problem (2.15), and the convergence of the energies (2.23). One achieves the proof of Theorem
2.3, by arguing as in the last part of the proof of Theorem 2.1. �
3. Second part: analysis of the limit model

For every n ∈ N and λ ∈ [0,+∞[, consider the following problem:

Jn,λ :V ∈ H 1(Ωn,S
2) −→

∫
Ωn

∣∣DV (x)
∣∣2

dx + λ

∫
Ωn

∣∣V (x) − Fn(x)
∣∣2

dx, (3.1)

where Fn :Ωn → S2 is a measurable function.
Remark that Jn,λ has the same minimum points of the functional:

J̃n,λ :V ∈ H 1(Ωn,S
2) −→

∫
Ωn

∣∣DV (x)
∣∣2

dx − 2λ

∫
Ωn

V (x)Fn(x) dx,

since Jn,λ(V ) = J̃n,λ(V ) + 2λ|Ωn|, for every V ∈ H 1(Ωn,S
2). Consequently, after a rescaling as in Section 2, by

passing to the limit as n → +∞, one obtains all the results of Subsection 2.1 with

ja
λ (w) = |Θ|

1∫
0

∣∣w′(x3)
∣∣2

dx3 − 2λ

1∫
0

w(x3)

( ∫
Θ

f a(x′, x3) dx′
)

dx3 + 2λ|Θ|, ∀w ∈ H 1(]0,1[, S2), (3.2)

jb
λ (ζ ) =

∫
Θ

∣∣Dζ(x′)
∣∣2

dx′ − 2λ

∫
Θ

ζ(x′)
( 0∫

−1

f b(x′, x3) dx3

)
dx′ + 2λ|Θ|, ∀ζ ∈ H 1(Θ,S2), (3.3)

where f a and f b are given by (2.10), and w′ stands for the derivative of w. Remark that, since |f a
n (x)| = 1 a.e. in Ωa

and |f b
n (x)| = 1 a.e. in Ωb for every n ∈ N, weak convergences in (2.10) are always satisfied for a subsequence.

If |f a(x)| = 1 a.e. in Ωa , f a is independent of x′, |f b(x)| = 1 a.e. in Ωb and f b is independent of x3, then
functionals (3.2) an (3.3) can be rewritten as follows:
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ja
λ (w) = |Θ|

1∫
0

∣∣w′(x3)
∣∣2 + λ

∣∣w(x3) − f a(x3)
∣∣2

dx3, ∀w ∈ H 1(]0,1[, S2), (3.4)

jb
λ (ζ ) =

∫
Θ

∣∣Dζ(x′)
∣∣2 + λ

∣∣ζ(x′) − f b(x′)
∣∣2

dx′, ∀ζ ∈ H 1(Θ,S2). (3.5)

In the sequel, wλ and ζλ denote solutions of the following problems:

ja
λ (wλ) = min

{
|Θ|

1∫
0

∣∣w′(x3)
∣∣2 + λ

∣∣w(x3) − f a(x3)
∣∣2

dx3: w ∈ H 1(]0,1[, S2)}, (3.6)

jb
λ (ζλ) = min

{ ∫
Θ

∣∣Dζ(x′)
∣∣2 + λ

∣∣ζ(x′) − f b(x′)
∣∣2

dx′: ζ ∈ H 1(Θ,S2)

}
, (3.7)

respectively.
This section is devoted to study the asymptotic behavior, as λ → +∞, of problem (3.6) and problem (3.7). Remark

that, if λ = 0, the solutions of problem (3.6) and problem (3.7) are the constants of S2.

3.1. Convergence results when λ → +∞

If f a ∈ H 1(]0,1[, S2), from (3.6) it follows that

∥∥(wλ)
′∥∥2

(L2(]0,1[))3 + λ‖wλ − f a‖2
(L2(]0,1[))3 �

1∫
0

∣∣(f a)′(x3)
∣∣2

dx3, ∀λ ∈ ]0,+∞[,

((wλ)
′ and (f a)′ stand for the derivative of wλ and f a , respectively) which provides that

wλι ⇀ f a weakly in H 1(]0,1[, S2),
for any diverging sequence of positive numbers {λι}ι∈N. Moreover, by using a l.s.c. argument, it results that

|Θ|∥∥(f a)′
∥∥2

(L2(]0,1[))3 � |Θ| lim inf
ι

∥∥(wλι)
′∥∥2

(L2(]0,1[))3 � lim inf
ι

j a
λι

(wλι)

� lim sup
ι

j a
λι

(wλι) � lim sup
ι

j a
λι

(f a) = |Θ|∥∥(f a)′
∥∥2

(L2(]0,1[))3 ,

for any diverging sequence of positive numbers {λι}ι∈N, from which it follows that

lim
λ→+∞ ja

λ (wλ) = |Θ|∥∥(f a)′
∥∥2

(L2(]0,1[))3 .

Similarly, if f b ∈ H 1(Θ,S2), one has that

ζλι ⇀ f b weakly in H 1(Θ,S2),

for any diverging sequence of positive numbers {λι}ι∈N, and

lim
λ→+∞ jb

λ (ζλ) = ‖Df b‖2
(L2(Θ))6 .

Then, interesting situations occur when f a /∈ H 1(]0,1[), or f b /∈ H 1(Θ).
At first, consider the case: f b = 1

|x′| (x
′,0). Remark that 1

|x′| (x
′,0) /∈ H 1(Θ) (although x

|x| ∈ H 1
loc(R

3, S2)). Conse-
quently, it results that

lim
λ→+∞ jb

λ (ζλ) = +∞. (3.8)

In fact, by arguing by contradiction, if (3.8) does not hold true, then there exists c ∈ ]0,+∞[ and a diverging sequence
of positive numbers {λk}k∈N such that jb

λk
(ζλk

) � c for every k. Consequently, ζλk
⇀ f bweakly in H 1(Θ,S2), which

is false, since f b /∈ H 1(Θ).
On the other hand, the following a priori estimates hold true (the proof will be performed in Subsection 3.2):
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Proposition 3.1. For every λ ∈ [0,+∞[, let ζλ be a solution of problem (3.7) with f b = ( x′
|x′| ,0).

Then, there exist c1 and λ1 ∈ ]0,+∞[ such that

jb
λ (ζλ) � π logλ + c1, ∀λ ∈ ]λ1,+∞[. (3.9)

Moreover, there exist a diverging sequence of positive numbers {λk}k∈N and c2, c3 ∈ ]0,+∞[ such that∫
Θ

∣∣ζλk
(x′) − f b(x′)

∣∣2
dx′ � c2

λk

, ∀k ∈ N, (3.10)

π logλk − c3 � jb
λk

(ζλk
), for k ∈ N large enough. (3.11)

Remark 3.2. If one can prove estimate (3.10) for λ large enough, the proof of Proposition 3.1 shows that also estimate
(3.11) holds true for λ large enough.

Proposition 3.1 immediately provides the following convergence result:

Corollary 3.3. For every λ ∈ [0,+∞[, let ζλ be a solution of problem (3.7) with f b = ( x′
|x′| ,0).

Then, it results that

ζλι → f b strongly in L2(Θ,S2),

for any diverging sequence of positive numbers {λι}ι∈N.
There exists a diverging sequence of positive numbers {λk}k∈N and c ∈ ]0,+∞[ such that∫

Θ

∣∣ζλk
(x′) − f b(x′)

∣∣2
dx′ � c

λk

, ∀k ∈ N,

and

lim
k→+∞

jb
λk

(ζλk
)

logλk

= π.

Obviously, {ζλι}ι∈N does not converge weakly in H 1(Θ,S2), since f b = ( x′
|x′| ,0) /∈ H 1(Θ).

One obtains the same results, if f b = 1
|(x1−α,x2−β)| (x1 − α,x2 − β,0), where (α,β) is a fixed point in Θ .

Consider, now, the case: f a = (0,0,
x3−γ
|x3−γ | ), where γ is a fixed number in ]0,1[. Obviously, f a /∈ H 1(]0,1[)

(remark that f a ∈ H 1(]0,1[, S2) if γ ∈ {0,1}, and wλ = (0,0,1) if γ = 0, wλ = (0,0,−1) if γ = 1). Consequently,
it results that

lim
λ→+∞ ja

λ (wλ) = +∞. (3.12)

In fact, by arguing by contradiction, if (3.12) does not hold true, then there exists c ∈ ]0,+∞[ and a diverging sequence
of positive numbers {λk}k∈N such that ja

λk
(wλk

) � c for every k. Consequently, wλk
⇀ f aweakly in H 1(]0,1[, S2),

which is false, since f a /∈ H 1(]0,1[).
When f a = (0,0,

x3−γ
|x3−γ | ), the following a priori estimates hold true (the proof will be performed in Subsec-

tion 3.2):

Proposition 3.4. For every λ ∈ [0,+∞[, let wλ be a solution of problem (3.6) with f a = (0,0,
x3−γ
|x3−γ | ) and γ ∈ ]0,1[.

Then, it results that

ja
λ (wλ) � |Θ|2√

2π
√

λ, ∀λ ∈ ]0,+∞[. (3.13)

Moreover, for every ε ∈ ]0,2[ there exists λε ∈ ]0,+∞[ such that

|Θ|(2 − ε)
√

λ � ja
λ (wλ), ∀λ ∈ ]λε,+∞[. (3.14)

Estimate (3.13) immediately provides the following convergence result:
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Corollary 3.5. For every λ ∈ [0,+∞[, let wλ be a solution of problem (3.6) with f a = (0,0,
x3−γ
|x3−γ | ) and γ ∈ ]0,1[.

Then, it results that

wλι → f a strongly in L2(]0,1[, S2),
for any diverging sequence of positive numbers {λι}ι∈N.

Obviously, {wλι}ι∈N does not converge weakly in H 1(]0,1[, S2), since f a = (0,0,
x3−γ
|x3−γ | ) /∈ H 1(]0,1[). By mak-

ing use of estimate (3.13) and by arguing as in the proof of estimate (3.10) it is easy to prove the following result:

Proposition 3.6. For every λ ∈ [0,+∞[, let wλ be a solution of problem (3.6) with f a = (0,0,
x3−γ
|x3−γ | ) and γ ∈ ]0,1[.

There exist a diverging sequence of positive numbers {λk}k∈N and c ∈ ]0,+∞[ such that

1∫
0

∣∣wλk
(x3) − f a(x3)

∣∣2
dx3 � c√

λk

, ∀k ∈ N.

This subsection ends by showing some situations when the considered cases:

f a =
(

0,0,
x3 − γ

|x3 − γ |
)

, f b = 1

|(x1 − α,x2 − β)| (x1 − α,x2 − β,0),

appear in the limit problem.
In the sequel, (α,β) denotes a fixed point in R

2 and γ in R.
For instance, by choosing in (3.1)

Fn(x1, x2, x3) = 1

|(x1 − rnα, x2 − rnβ, x3 − γ )| (x1 − rnα, x2 − rnβ, x3 − γ ),

convergence (2.10) gives

f a(x3) =
(

0,0,
x3 − γ

|x3 − γ |
)

, f b(x1, x2) = 1

|(x1, x2,−γ )| (x1, x2,−γ ).

Remark that Fn ∈ H 1
loc(R

3, S2), f a /∈ H 1(]0,1[) ⇔ γ ∈ ]0,1[, f b /∈ H 1(Θ) ⇔ γ = 0.
By choosing in (3.1)

Fn(x1, x2, x3) = 1

|(x1 − α,x2 − β,x3 − hnγ )| (x1 − α,x2 − β,x3 − hnγ ),

convergence (2.10) gives

f a(x3) = 1

|(−α,−β,x3)| (−α,−β,x3), f b(x1, x2) = 1

|(x1 − α,x2 − β)| (x1 − α,x2 − β,0).

Remark that Fn ∈ H 1
loc(R

3, S2), f a ∈ H 1(]0,1[, S2), f b /∈ H 1(Θ) ⇔ (α,β) ∈ Θ .
By choosing in (3.1)

Fn(x1, x2, x3) = 1

|(x1 − rnα, x2 − rnβ, x3 − hnγ )| (x1 − rnα, x2 − rnβ, x3 − hnγ ),

convergence (2.10) gives

f a(x3) = (0,0,1), f b(x1, x2) = 1

|(x1, x2)| (x1, x2,0).

Remark that Fn ∈ H 1 (R3, S2), f a ∈ H 1(]0,1[, S2), f b /∈ H 1(Θ).
loc
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3.2. Proof of Proposition 3.1 and Proposition 3.4

Proof of Proposition 3.1. To obtain estimate (3.9), for r, λ ∈ ]0,+∞[ introduce the functionals:

jb
λ,r : ζ ∈ H 1(Cr(0

′), S2) →
∫

Cr(0′)

∣∣Dζ(x′)
∣∣2 + λ

∣∣ζ(x′) − f b(x′)
∣∣2

dx′,

and denote with ζλ,r a solution of the following problem:

jb
λ,r (ζλ,r ) = min

{
jb
λ,r (ζ ): ζ ∈ H 1(Cr(0

′), S2), ζ = f b on ∂Cr(0
′)
}
,

where Cr(0′) = {x′ ∈ R
2: |x′| < r}.

By arguing as in Lemma III.1 of [2], it is easy to prove that

jb
λ,r (ζλ,r ) � π logλ + 2π log r + jb

1,1(ζ1,1), ∀r ∈ ]0,+∞[, ∀λ � 1

r2
. (3.15)

Let r̄ ∈ ]0,+∞[ be such that Θ ⊂ Cr̄(0′). Then, by virtue of (3.15), it results that

jb
λ (ζλ) � jb

λ,r̄ (ζλ,r̄ ) � π logλ + 2π log r̄ + jb
1,1(ζ1,1), ∀λ � 1

r̄2
,

which provides estimate (3.9) with λ1 = 1
r̄2 and c1 = 2π log r̄ + jb

1,1(ζ1,1).
The next step is devoted to prove that

lim inf
λ→+∞

∫
Θ

λ
∣∣ζλ(x

′) − f b(x′)
∣∣2

dx′ < +∞. (3.16)

The proof of (3.16) makes use of a technique introduced in [26] in the case of the Ginzburg–Landau energy.
Since, for λ̄ � λ, it results

jb

λ̄
(ζλ) � jb

λ̄
(ζλ̄) � jb

λ (ζλ̄) � jb
λ (ζλ),

one derives that the function λ ∈ ]0,+∞[ → jb
λ (ζλ) ∈ ]0,+∞[ is increasing, and therefore derivable a.e. in ]0,+∞[,

and that

jb

λ̄
(ζλ) − jb

λ (ζλ)

λ̄ − λ
�

jb

λ̄
(ζλ̄) − jb

λ (ζλ)

λ̄ − λ
, ∀λ ∈ ]0,+∞[, ∀λ̄ ∈ ]λ,+∞[, (3.17)

jb

λ̄
(ζλ̄) − jb

λ (ζλ)

λ̄ − λ
�

jb

λ̄
(ζλ̄) − jb

λ (ζλ̄)

λ̄ − λ
, ∀λ ∈ ]0,+∞[, ∀λ̄ ∈ ]λ,+∞[. (3.18)

Consequently, by passing to the limit in (3.17) with λ̄ → λ+ and in (3.18) with λ → λ̄−, one obtains that

djb
λ (ζλ)

dλ
=

∫
Θ

∣∣ζλ(x
′) − f b(x′)

∣∣2
dx′, for λ a.e. in ]0,+∞[,

i.e.

jb
λ (ζλ) = jb

1 (ζ1) +
λ∫

1

( ∫
Θ

∣∣ζμ(x′) − f b(x′)
∣∣2

dx′
)

dμ, ∀λ ∈ ]0,+∞[. (3.19)

To prove (3.16), by arguing by contradiction, assume that

lim
λ→+∞

∫
λ
∣∣ζλ(x

′) − f b(x′)
∣∣2

dx′ = +∞.
Θ
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Consequently, there exists λ2 ∈ ]1,+∞[ such that

λ

∫
Θ

∣∣ζλ(x
′) − f b(x′)

∣∣2
dx′ > π + 1, ∀λ ∈ ]λ2,+∞[. (3.20)

By combining (3.9) with (3.19) and (3.20), one obtains

π logλ + c1 � jb
λ (ζλ) = jb

1 (ζ1) +
λ∫

1

( ∫
Θ

∣∣ζμ(x′) − f b(x′)
∣∣2

dx′
)

dμ

= jb
1 (ζ1) +

λ1∫
1

( ∫
Θ

∣∣ζμ(x′) − f b(x′)
∣∣2

dx′
)

dμ +
λ∫

λ1

1

μ

( ∫
Θ

μ
∣∣ζμ(x′) − f b(x′)

∣∣2
dx′

)
dμ

� jb
λ1

(ζλ1) + (π + 1)(logλ − logλ1), ∀λ ∈ ]
max{λ1, λ2},+∞[

,

which gives

π � π + 1.

So estimate (3.16) holds true. In particular, (3.16) provides the existence of a constant c2 ∈ ]0,+∞[ and of a diverging
sequence of positive numbers {λk}k∈N satisfying (3.10).

The next step is devoted to prove estimate (3.11).
Let r̃ ∈ ]0,1[ be such that Cr̃(0′) ⊂ Θ . Then, it results that

jb
λk

(ζλk
) �

∫
Cr̃ (0′)\Cr(0′)

∣∣Dζλk
(x′)

∣∣2
dx′

=
∫

Cr̃ (0′)\Cr(0′)

∣∣D(
f b(x′) + ζλk

(x′) − f b(x′)
)∣∣2

dx′

�
∫

Cr̃ (0′)\Cr(0′)

∣∣Df b(x′)
∣∣2

dx′ + 2
∫

Cr̃ (0′)\Cr(0′)

Df b(x′)D
(
ζλk

(x′) − f b(x′)
)
dx′,

∀r ∈ ]0, r̃[, ∀k ∈ N. (3.21)

Consequently, by integrating by parts the last integral in (3.21) and by recalling that f b = ( x′
|x′| ,0), it follows that

jb
λk

(ζλk
) �

∫
Cr̃ (0′)\Cr(0′)

∣∣∣∣D x′

|x′|
∣∣∣∣
2

dx′ + 2
2∑

α=1

∫
∂(Cr̃ (0′)\Cr(0′))

(
(ζλk

)α(x′) − xα

|x′|
)

D
xα

|x′| · ν dx′

− 2
2∑

α=1

∫
Cr̃ (0′)\Cr(0′)

(
(ζλk

)α(x′) − f b
α (x′)

)
�

xα

|x′| dx′, ∀r ∈ ]0, r̃[, ∀k ∈ N, (3.22)

where ν denotes the exterior unit normal to Cr̃(0′) \ Cr(0′), and ζλk
= ((ζλk

)1, (ζλk
)2, (ζλk

)3).
On the other hand, it is evident that∫

Cr̃ (0′)\Cr(0′)

∣∣∣∣D x′

|x′|
∣∣∣∣
2

dx′ =
∫

Cr̃ (0′)\Cr(0′)

1

|x′|2 dx′ = 2π

(
log r̃ + log

1

r

)
, ∀r ∈ ]0, r̃[, (3.23)

and

2
2∑

α=1

∫
′ ′

(
(ζλk

)α(x′) − xα

|x′|
)

D
xα

|x′| · ν dx′ = 0, ∀r ∈ ]0, r̃[, ∀k ∈ N, (3.24)
∂(Cr̃ (0 )\Cr(0 ))
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since D xα|x′| · ν = 0 on ∂(Cr̃ (0′) \ Cr(0′)).
In what concerns the last integral in (3.22), by recalling that � xα|x′| = xα

|x′|3 and by applying the Hölder inequality, it
results that∣∣∣∣2

∫
Cr̃ (0′)\Cr(0′)

2∑
α=1

(
(ζλk

)α(x′) − f b
α (x′)

)
�

xα

|x′| dx′
∣∣∣∣

� 2

( ∫
Cr̃ (0′)\Cr(0′)

∣∣ζλk
(x′) − f b(x′)

∣∣2
dx′

) 1
2
( ∫

Cr̃ (0′)\Cr(0′)

1

|x′|4 dx′
) 1

2

, ∀r ∈ ]0, r̃[, ∀k ∈ N.

Consequently, by taking into account estimate (3.10) and that( ∫
Cr̃ (0′)\Cr(0′)

1

|x′|4 dx′
) 1

2 = √
π

(
− 1

r̃2
+ 1

r2

) 1
2

�
√

π

r
, ∀r ∈ ]0, r̃[, ∀k ∈ N,

it follows that∣∣∣∣2
∫

Cr̃ (0′)\Cr(0′)

2∑
α=1

(
(ζλk

)α(x′) − f b
α (x′)

)
�

xα

|x′| dx′
∣∣∣∣ � 2

√
c2π√
λk

1

r
, ∀r ∈ ]0, r̃[, ∀k ∈ N. (3.25)

Finally, by combining (3.22) with (3.23), (3.24) and (3.25), one derives that

jb
λk

(ζλk
) � 2π log

1

r
+ 2π log r̃ − 2

√
c2π√
λk

1

r
∀r ∈ ]0, r̃[, ∀k ∈ N,

from which, by choosing r = 1/
√

λk with k ∈ N large enough, one obtains (3.11) with c3 = −2π log r̃ + 2
√

c2π. �
Proof of Proposition 3.4. To prove estimate (3.13), for every t ∈ ]0,+∞[ introduce the function:

zt :x3 ∈ ]0,1[ → 1√
t2 + (x3 − γ )2

(t,0, x3 − γ ) ∈ S2.

Since zt ∈ H 1(]0,1[, S2), from (3.6) it follows that

ja
λ (wλ) � |Θ|

1∫
0

∣∣(zt )
′(x3)

∣∣2
dx3 + |Θ|λt

1

t

1∫
0

∣∣∣∣zt (x3) −
(

0,0,
x3 − γ

|x3 − γ |
)∣∣∣∣

2

dx3,

∀t ∈ ]0,+∞[, ∀λ ∈ ]0,+∞[, (3.26)

where (zt )
′ stands for the derivative of zt .

An easy computation shows that

1∫
0

∣∣(zt )
′(x3)

∣∣2
dx3 =

1∫
0

t2

(t2 + (x3 − γ )2)2
dx3 = 1

t2

1∫
0

1

(1 + (
x3−γ

t
)2)2

dx3

= 1

t

1−γ
t∫

− γ
t

1

(1 + y2)2
dy = 1

t

1

2

[
y

1 + y2
+ arctany

] 1−γ
t

− γ
t

= 1

t

1

2

(
t (1 − γ )

t2 + (1 − γ )2
+ tγ

t2 + γ 2
+ arctan

(
1 − γ

t

)
+ arctan

(
γ

t

))
.

Consequently, since

lim+

[
1
(

t (1 − γ )

2 2
+ tγ

2 2
+ arctan

(
1 − γ

)
+ arctan

(
γ

))]
= π

,

t→0 2 t + (1 − γ ) t + γ t t 2
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and

d

dt

[
1

2

(
t (1 − γ )

t2 + (1 − γ )2
+ tγ

t2 + γ 2
+ arctan

(
1 − γ

t

)
+ arctan

(
γ

t

))]

= − t2(1 − γ )

(t2 + (1 − γ )2)2
− t2γ

(t2 + γ 2)2
< 0, ∀t ∈ ]0,+∞[,

it results that

1∫
0

∣∣(zt )
′(x3)

∣∣2
dx3 � π

2

1

t
, ∀t ∈ ]0,+∞[. (3.27)

On the other hand, an easy computation shows that

1

t

1∫
0

∣∣∣∣zt (x3) −
(

0,0,
x3 − γ

|x3 − γ |
)∣∣∣∣

2

dx3 = 2

t
− 2

t

1∫
0

|x3 − γ |√
(x3 − γ )2 + t2

dx3

= 2

t

(
1 + 2t −

√
t2 + γ 2 −

√
t2 + (1 − γ )2

)
, ∀t ∈ ]0,+∞[.

Consequently, since

lim
t→0+

[
2

t

(
1 + 2t −

√
t2 + γ 2 −

√
t2 + (1 − γ )2

)] = 4

and

d

dt

[
2

t

(
1 + 2t −

√
t2 + γ 2 −

√
t2 + (1 − γ )2

)]

= − 2

t2

(
γ − γ 2√

t2 + γ 2

)
− 2

t2

(
(1 − γ ) − (1 − γ )2√

t2 + (1 − γ )2

)
< 0, ∀t ∈ ]0,+∞[,

it results that

1

t

1∫
0

∣∣∣∣zt (x3) −
(

0,0,
x3 − γ

|x3 − γ |
)∣∣∣∣

2

dx3 � 4, ∀t ∈ ]0,+∞[. (3.28)

By combining (3.26) with (3.27) and (3.28), it follows that

ja
λ (wλ) � |Θ|

(
π

2

1

t
+ 4λt

)
, ∀t ∈ ]0,+∞[, ∀λ ∈ ]0,+∞[,

from which, by choosing t = √
π/

√
8λ, one obtains estimate (3.13).

To prove estimate (3.14), at first remark that

ja
λ (wλ) � |Θ|min

{ 1∫
0

∣∣v′(x3)
∣∣2

dx3 + λ

1∫
0

∣∣∣∣v(x3) − x3 − γ

|x3 − γ |
∣∣∣∣
2

dx3: v ∈ H 1(]0,1[,R
)}

,

∀λ ∈ ]0,+∞[. (3.29)

For every λ ∈ ]0,+∞[, the last minimum is attained in the solution vλ ∈ C1(]0,1[) of the following problem:{
v′′
λ − λvλ = −λ

x3−γ
|x3−γ | , in ]0,1[ \ {γ },

v′ (0) = 0 = v′ (1),
λ λ
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that is in

vλ(x3) =

⎧⎪⎨
⎪⎩

e−(2−γ )
√

λ−e−γ
√

λ

e−2
√

λ−1
(ex3

√
λ + e−x3

√
λ) − 1, in ]0, γ ],

e−(2−γ )
√

λ−e−(γ+2)
√

λ

e−2
√

λ−1
ex3

√
λ + eγ

√
λ−e−γ

√
λ

e−2
√

λ−1
e−x3

√
λ + 1, in ]γ,1[.

(3.30)

By combining (3.29) with (3.30), it follows that

ja
λ (wλ) � |Θ|min

{ 1∫
0

∣∣v′(x3)
∣∣2

dx3 + λ

1∫
0

∣∣∣∣v(x3) − x3 − γ

|x3 − γ |
∣∣∣∣
2

dx3: v ∈ H 1(]0,1[,R
)}

= |Θ|1 + e−2(γ+1)
√

λ + e−2(2−γ )
√

λ − e−4
√

λ − e−2(1−γ )
√

λ − e−2γ
√

λ

(e−2
√

λ − 1)2
2
√

λ, ∀λ ∈ ]0,+∞[,

from which, since

lim
λ→+∞

1 + e−2(γ+1)
√

λ + e−2(2−γ )
√

λ − e−4
√

λ − e−2(1−γ )
√

λ − e−2γ
√

λ

(e−2
√

λ − 1)2
= 1,

one obtains estimate (3.14). �
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