
Ann. I. H. Poincaré – AN 26 (2009) 101–138
www.elsevier.com/locate/anihpc

Nodal domains and spectral minimal partitions

B. Helffer a, T. Hoffmann-Ostenhof b,c, S. Terracini d,∗

a Département de Mathématiques, Bat. 425, Université Paris-Sud, 91405 Orsay Cedex, France
b Institut für Theoretische Chemie, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria

c International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Wien, Austria
d Università di Milano Bicocca, Via Cozzi, 53, 20125 Milano, Italy

Received 2 January 2007; received in revised form 22 July 2007; accepted 22 July 2007

Available online 17 October 2007

Abstract

We consider two-dimensional Schrödinger operators in bounded domains. We analyze relations between the nodal domains of
eigenfunctions, spectral minimal partitions and spectral properties of the corresponding operator. The main results concern the
existence and regularity of the minimal partitions and the characterization of the minimal partitions associated with nodal sets as
the nodal domains of Courant-sharp eigenfunctions.
© 2007
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1. Introduction and main results

We consider mainly two-dimensional Laplace operators in bounded domains. We would like to analyze the relations
between the nodal domains of the eigenfunctions of the Dirichlet Laplacians and the partitions by k open sets Di which
are optimal in the sense that the maximum over the Di ’s of the ground state energy of the Dirichlet realization of the
Laplacian in Di is minimal.

1.1. Definitions and notations

Let us consider a Schrödinger operator

H = −� + V (1.1)

on a bounded domain Ω ⊂ R
2 with Dirichlet boundary condition.

In the whole article (except in Section 3) , we will consider that Ω satisfies the following condition of smoothness:
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Assumption 1.1. Ω has compact and piecewise C 1,+ boundary, i.e. piecewise C 1,α for some α > 0. Moreover Ω

satisfies the interior cone property.

This allows a finite number of corners (and cracks) of opening απ (defined in Section 2).
The other general assumption is that

Assumption 1.2. The potential V belongs to L∞(Ω).

Under these assumptions (which will not be recalled at each statement), H is selfadjoint if viewed as the Friedrichs
extension of the quadratic form associated to H with form domain W

1,2
0 (Ω) and form core C∞

0 (Ω). We denote H by
H(Ω). We are interested in the eigenvalue problem for H(Ω) and note that under our assumptions H(Ω) has compact
resolvent and its spectrum, which will be denoted by σ(H(Ω)) is discrete and consists of eigenvalues {λk}∞k=1 with
finite multiplicities which tend to infinity, so that

λ1 < λ2 � λ3 � · · · � λk � · · · (1.2)

and such that the associated eigenfunctions uk can be chosen to form an orthonormal basis for L2(Ω).
Without loss of generality we can assume that the uk are real valued and by elliptic regularity (see also Proposi-

tion 2.8 in Section 2) we have:

uk ∈ C 1,α(Ω) ∩ C 0
0(Ω), (1.3)

for any α < 1.
We know that u1 can be chosen to be strictly positive in Ω , but the other eigenfunctions uk (k � 2) must have

zerosets. We define for any function u ∈ C 0
0(Ω)

N(u) = {
x ∈ Ω | u(x) = 0

}
(1.4)

and call the components of Ω \ N(u) the nodal domains of u. The number of nodal domains of such a function will
be called μ(u).

We now introduce the notions of partition and minimal partition.

Definition 1.3. Let 1 � k ∈ N. We will call partition (or k-partition if we want to indicate the cardinality of the
partition) of Ω a family D = {Di}ki=1 of mutually disjoint subsets of Ω :

Di ∩ Dj = ∅, ∀i 	= j and
k⋃

i=1

Di ⊂ Ω. (1.5)

We call it open if the Di are open sets of Ω , connected if the Di are connected.
We denote by Ok the set of open connected k-partitions of Ω .

We now introduce the notion of spectral minimal partition sequence.

Definition 1.4. Let H = H(Ω) as above. For D in Ok , we introduce

Λ(D) = max
i

λ(Di), (1.6)

where λ(Di) is the ground state energy of H(Dj ).

Remark 1.5. When D is not sufficiently regular, we define λ(D) differently. See Definition 3.1.

Definition 1.6. For any integer k � 1, we define

Lk = inf
D∈Ok

Λ(D). (1.7)

We call the sequence {Lk}k�1 the spectral minimal partition sequence of H(Ω).
For given k, we call a k-partition D ∈ Ok minimal, if Lk = Λ(D).
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Remark 1.7. If k = 2, it is rather well known (see for example [18] or [12]) that L2 is the second eigenvalue and the
associated minimal 2-partition is the nodal partition associated to the second eigenfunction.

We now introduce the notion of strong partition.

Definition 1.8. A partition D = {Di}ki=1 of Ω in Ok is called strong if

Int

(⋃
i

Di

)
\ ∂Ω = Ω. (1.8)

Attached to a partition, we can naturally associate a closed set in Ω defined by

N(D) =
⋃
i

(∂Di ∩ Ω). (1.9)

This leads us to introduce the definition of a regular closed set. This definition is modeled on some (but not all) of
the properties of the nodal set of an eigenfunction of a Schrödinger operator (see [23] and Section 2).

Definition 1.9. A closed set N ⊂ Ω is regular (and write N ∈ M(Ω)) if N meets the following requirements:

(i) There are finitely many distinct xi ∈ Ω ∩ N and associated positive integers νi with νi � 2 such that, in a
sufficiently small neighborhood of each of the xi , N is the union of νi(xi) C 1,+ curves (non self-crossing) with
one end at xi (and each pair defining at xi a positive angle in (0,2π)) and such that in the complement of these
points in Ω , N is locally diffeomorphic to a C 1,1− (i.e. C 1,α for any α ∈ (0,1)) curve.

(ii) ∂Ω ∩ N consists of a (possibly empty) finite set of points zi , such that, at each zi , ρi C 1,+ half-lines belonging
to N (with ρi � 1) hit the boundary.

(iii) Moreover the half curves meet with equal angle at each critical point of N ∩Ω and also at each point of N ∩ ∂Ω

together with the boundary.

Complementarily, we introduce the notion of regular partition.

Definition 1.10. A strong partition D is regular (and we write in this case D ∈ R(Ω)) if there exists a regular closed
set N such that D = D(N), where D(N) is the family of the connected components of Ω \ N belongs (by definition)
to R(Ω).

In Fig. 1, we give the example of a regular partition which cannot correspond to nodal domains because the
associated graph1 is not bipartite.

1.2. Main results

Although some of the statements could be obtained under weaker assumptions we assume below that Ω is bounded
and connected.

It has been proved2 by Conti–Terracini and Verzini [12] that

Theorem 1.11. For any k, there exists a minimal regular strong k-partition.

The first aim of this paper is to show the

Theorem 1.12. Any minimal k-partition has a connected, regular and strong representative.

1 See the next subsection for definitions.
2 But these papers treat only smoother boundaries than assumed in the whole article. So we will prove here a slight generalization.
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Fig. 1. An example of regular partition and associated graph.

Here we need to explain what we mean by representative (which involves implicitly the notion of capacity). This
involves indeed a notion of equivalence classes. Two k-partitions D and D̃ are equivalent if there is a labeling such
that for any ground state ui associated with Di , there is a ground state ũi associated with D̃i such that ui = ũi in
W

1,2
0 (Ω), and conversely.
Once this notion is introduced it is natural to look for the existence of a regular representative and uniqueness will

always be inside this class.
In general, there is no reason for a minimal partition to be unique (and here we speak of uniqueness of equivalence

classes). This can for example occur in presence of symmetries. However, we will show that a uniqueness property
always holds for subpartitions of a given minimal partition. More precisely, we have

Theorem 1.13. Let D be a minimal k-partition relative to Lk(Ω). Let D′ ⊂ D be a subpartition of D into 1 � k′ < k

elements and assume that

Ω ′ := Int

( ⋃
Di∈D′

Di

)
,

is connected. Then Lk(Ω) = Lk′(Ω ′) and the k′-minimal partition of Ω ′ is unique.

A natural question is whether a minimal partition is the partition induced by an eigenfunction (in this case, we will
more shortly speak of nodal partition). Theorem 1.14 gives a simple criterion for a partition to be associated to a nodal
set. For this we need some additional definitions.

We say that Di,Dj are neighbors and we write Di ∼ Dj , if the set Di,j := Int(Di ∪ Dj) \ ∂Ω is connected. We
then construct for each D a graph G(D) by associating to each Di a vertex and to each pair of neighbors (Di,Dj )

an edge. This is an undirected graph without multiple edges or loops. Following [14], we will say that the graph is
bipartite if it can be colored by two colors (two neighbors having different colors). We recall that the graph associated
to a collection of nodal domains of an eigenfunction is always bipartite. In this case, we say that the partition is
admissible. We have now the following converse theorem:

Theorem 1.14. If the graph of the minimal partition of Ω is bipartite, this is a partition associated to the nodal set of
an eigenfunction of H(Ω) corresponding to Lk(Ω).

This theorem was already obtained in [18] by adding a strong a priori regularity assumption on the partition and the
assumption that Ω is simply connected. Any subpartition of cardinality two (Di,Dj ) corresponds indeed to a nodal
partition of some eigenfunction associated to the second eigenvalue of H(Di,j ). This implies the Pair Compatibility
Condition (see in Appendix B) and Theorem B.1 can be applied.

The proof given here is more general (but more difficult) and is actually a byproduct of the proof of Theorem 1.12,
which will directly give an eigenfunction whose nodal domains form the partition.

A natural question is now to determine how general is the situation described in the previous theorem. The surprise
is that this will only occur in the so-called Courant-sharp situation. Before stating precisely our second main result we
need to introduce some further statements and notations. The Courant Nodal Theorem says:
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Theorem 1.15. Let k � 1, λk = λk(Ω) the k-th eigenvalue of H(Ω) and u any real associated eigenfunction. Then
the number of nodal domains μ(u) of u satisfies μ(u) � k.

When the number of nodal domains μ(u) satisfies

μ(u) = k,

we will say, as in [4], that u is Courant-sharp.

Definition 1.16. For any integer k � 1, we denote by Lk(Ω) (or simply Lk) the smallest eigenvalue whose eigenspace
contains an eigenfunction with k nodal domains.

In general, we will show in Corollary 5.6, that

λk(Ω) � Lk(Ω) � Lk(Ω). (1.10)

The last goal consists in giving the full picture of cases of equality:

Theorem 1.17. If Lk(Ω) = Lk(Ω) or Lk(Ω) = λk(Ω), then

λk(Ω) = Lk(Ω) = Lk(Ω).

In addition, one can find in the eigenspace associated to λk an eigenfunction u such that μ(u) = k.

In other words, the only case when the k nodal domains of an eigenfunction of H(Ω) form a minimal partition is
the case when this eigenfunction is Courant-sharp.

1.3. Organization of the paper

The paper is organized as follows. We first start in Section 2 by recalling and extending (up to the boundary) results
on the local properties of the nodal set of an eigenfunction. Section 3 is devoted to the analysis of the geometrical
properties of minimal partitions in RN . Section 4 gives stronger results but limited to the two-dimensional case, which
is our main subject. This gives in particular the proof of our first Main Theorem 1.12. Sections 5 and 6 are devoted to
additional properties of the minimal partitions. We discuss different notions related to the spectrum and revisit Pleijel’s
theorem and its proof. Section 7 gives the proof of the second Main Theorem 1.17 permitting to show that when a
minimal k-partition is a nodal family then the corresponding eigenvalue is the k-th one. In Section 8, we complete
the proofs and the statements concerning subpartitions. In Sections 9 and 10 we analyze in great detail the various
spectra of specific H(Ω) in connection with minimal partitions. This leads in particular to nice conjectures and open
problems. Finally, we develop in two appendices useful results which will complete some proofs or help the reader.

2. Preliminaries: Hölder regularity of nodal sets

It is a well-known property of nodal sets of eigenfunctions to be the union of curves ending either at interior
singular points or at the boundary. This section is devoted to the analysis of the regularity of the nodal curves in
the Hölder spaces C 1,ε , for some ε > 0. A word of caution must be entered at this point: with regularity we mean
global regularity of the nodal branch up to the singularities or the boundary. This is not a completely obvious issue
(basically because of the lack of regularity of our solutions and, possibly, of the boundary of the domain) and will
require a reconsideration of the well-known asymptotic estimates about critical points of eigenfunctions. To start with,
we recall the classical local regularity result by Hartman and Wintner ([17], Corollary 1), stating that interior critical
points of non-zero solutions to our class of equations are isolated and have finite (local) multiplicity m. In addition
the solution satisfies, for some c 	= 0, the asymptotic formula

u(r, θ) = crm+1 cos
(
(m + 1)(θ + θ0)

) + o(rm+1), r = |z − z0|. (2.1)

Here we identify R
2 with C and use either z, or (x, y), or (r, θ) for a point of R

2, with the standard notations:

z = r exp iθ, z = x + iy, x = r cos θ, y = r sin θ.

We shall need a refined version of it which is stated below:
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Theorem 2.1. Let Ω be open and V ∈ L∞(Ω). Assume u ∈ W
1,2
loc (Ω) solves

−�u + V (x, y)u = 0,

in the distributional sense.
Let z0 = (x0, y0) ∈ Ω be such that u(x0, y0) = 0 and ∇u(x0, y0) = 0; then, in a neighborhood of z0,

(a) There are an integer n, a complex-valued function ξ of class C 0,+ such that ξ(z0) 	= 0 and

ux + iuy = rne−inθ ξ(x, y), r = |z − z0|. (2.2)

(b) There is a function ξ̃ of class C 0,+ such that ξ̃ (x0, y0) = 0 and

u(x, y) = rn+1

n + 1

(�(
ξ(x0, y0)

)
cos(n + 1)θ + �(

ξ(x0, y0)
)

sin (n + 1)θ + ξ̃ (x, y)
)
. (2.3)

(c) There exists a positive radius R such that u−1({0}) ∩ B(z0,R) is composed by 2n C 1,+-simple arcs which all end
in z0 and whose tangent lines at z0 divide the disc into 2n angles of equal amplitude.

Proof. We follow the paper by Hartman and Wintner [17] and write w = uy + iux and set z0 = 0. It is shown there
that, if

u = o
(|z|k), (2.4)

for some integer k � 0, then the Cauchy formula is available:

2πi
w(ζ )

ζ k
=

∫
|z|=R

w(z)

zk(z − ζ )
dz −

∫
|z|<R

V (z)u(z)

zk(z − ζ )
dx dy, (2.5)

where R > 0 is fixed and the double integral over the disk is absolutely convergent. We now show that the left-hand
side is Hölder continuous in ζ in a neighborhood of the origin. The line integral is smooth in ζ , since the integrand
has no singularities on the circle. Concerning the second term, notice that we can find a constant K such that∣∣∣∣ ∫

|z|<R

V (z)u(z)

zk

(
1

z − ζ1
− 1

z − ζ2

)
dx dy

∣∣∣∣ �
∫

|z|<R

|V (z)u(z)|
|z|k

∣∣∣∣ |ζ1 − ζ2|
|z − ζ1||z − ζ2|

∣∣∣∣dx dy

� K|ζ1 − ζ2|
∣∣log |ζ1 − ζ2|

∣∣.
Now we show that (2.4) cannot be verified for every integer. To this aim, we integrate Eq. (2.5) over the disk and,
taking absolute values, we obtain:

2π

∫
|z|<R

|w(z)|
|z|k dx dy � 2πR

∫
|z|=R

|w(z)|
|z|k |dz| + 2πR

∫
|z|<R

|V (z)||u(z)|
|z|k dx dy. (2.6)

Following [17] and using the identity

u(r, θ) =
r∫

0

(
ux(ρ, θ) cos θ + uy(ρ, θ) sin θ

)
dρ, (2.7)

we observe that:

∣∣u(z)
∣∣ �

1∫
0

∣∣zw(tz)
∣∣dt,

implies∫ |V (z)||u(z)|
|z|k dx dy � K

∫ |zw(z)|
|z|k dx dy � KR

∫ |w(z)|
|z|k dx dy.
|z|<R |z|<R |z|<R
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Thus, for R sufficiently small, inequality (2.6) leads to∫
|z|<R

|w(z)|
|z|k dx dy � 2R

∫
|z|=R

|w(z)|
|z|k |dz|. (2.8)

We have now fixed R > 0 such that (2.8) is satisfied. Let us assume that w(z0) 	= 0 for some |z0| < R. Then, for a
constant K independent of k, there holds∣∣w(z0)

∣∣ � K

( |z0|
R

)k

, k = 1,2, . . . .

Let us take the limit k → +∞ in this inequality. Then the limit of the sequence (|z0|/R)k does not vanish, in contra-
diction with |z0| < R. This completes the proof of point (a) in the statement of the theorem. Point (b) follows from
point (a) together with the identity (2.7).

To prove point (c) we choose a branch of the nodal set and we choose, as a regular parametrization the path
z(t) = r(t)eiθ(t), where the pair (r(t), θ(t)) solves the following system of ordinary differential equations:{

ṙ = 1
rn+1 (xuy − yux),

θ̇ = 1
rn+2 (xux + yuy).

Here ṙ and θ̇ denote respectively the derivative of r(t) and θ(t) with respect to t .
One can easily prove using points (a) and (b) that both functions t �→ ṙ(t) and t �→ r(t)θ̇ (t) are Hölder continuous;

therefore both r and θ are Hölder continuous functions. Hence they can be extended through the singularity. Since the
parametrization is regular (ż 	= 0), the assertion follows from the equation

ż = ṙ(t)eiθ(t) + ir(t)θ̇ (t)eiθ(t). �
Remark 2.2. Theorem 2.1 extends, with the same argument, to the case when the potential V has a singularity at z0,
provided there exists β < 1 and K such that∣∣V (x, y)

∣∣ � K

|z − z0|β .

This fact will be useful when we shall consider the case of domains with corners or cracks; indeed such singular
potentials result as conformal factors associated with the complex exponentials.
Note that this singular situation was also analyzed, but for the interior problem, in [21] and [22] and that in this case
the authors obtain a better regularity.

In order to examine the regularity up to the boundary of the nodal partition associated to an eigenfunction we
now extend a known result by Alessandrini [2,3] (which treats the convex case) to our setting. The proof exploits
the classical Kellog–Warschawski theorem on the boundary regularity of conformal mappings which states that any
conformal map on a C 1,ε domain extends continuously on the boundary keeping the same regularity (see the book by
Pommerenke [26], Theorem 3.6 in Chapter 3).

Theorem 2.3. Let ε > 0 and Ω be an open set with C 1,ε boundary and V ∈ L∞(Ω). Assume u ∈ W
1,2
0 (Ω) solves

−�u + V (x, y)u = 0,

in the distributional sense. Then the associated nodal partition is regular. More precisely if u−1({0}) intersects ∂Ω at
z0, then there exist an integer m and R > 0 such that u−1({0}) ∩ B(z0,R) is composed by m C 1,ε-simple arcs which
all end in z0 and whose tangent lines at z0 divide the tangent cone Γ (z0) into m + 1 angles of equal opening.

Proof. The result immediately follows from Theorem 2.1 in the case of the half-plane: indeed one can extend u by a
reflection to the other half-plane and reduce to the case of the interior zeros. The general case reduces to that of the
half-space through the Riemann mapping theorem. Indeed, by [26] (Theorem 3.6 in Chapter 3) the Hölder regularity
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C 1,ε of ∂Ω implies the same regularity property for the extensions, up to boundary, of the Riemann map f and of its
inverse. Since the composition of C 1,ε maps enjoys the same regularity property, the statement follows. �

Now we wish to extend Theorem 2.3 to the case of domains possessing corners or cracks. To be precise we start
with the following

Definition 2.4. Let ε ∈ (0,1]. We say that ∂Ω has a C 1,ε-corner of opening απ (0 � α � 2) at z0 if, in a sufficiently
small neighborhood, ∂Ω contains the union of two curves of class C 1,ε (non self-crossing) ending at z0, and such
that Ω lies in the curvilinear sector of angle opening απ spanned by the two arcs, which does not intersect other
components of the boundary ∂Ω .

Remark 2.5. Note that the boundary ∂Ω can have several corners of angle opening αi at the same point z0: of course
the sum of all the angles does not exceed 2π . Moreover, it is worthwile noticing that we allow the presence of cracks
(i.e. corners of angle opening 2π where the two curves coincide), exterior cusps (i.e. corners of angle opening 2π

spanned by two distinct curves), as well as angles of any possible positive angles, (positiveness is required by the
interior cone property). Finally, a corner can be a point of smoothness of the boundary, when its angle opening is π .

Our next goal is to prove the following result

Theorem 2.6. Let V ∈ L∞(Ω) and ε ∈ ]0,1]. Assume u ∈ W
1,2
0 (Ω) solves −�u+V (x, y)u = 0 in the distributional

sense, in a neighborhood of some z0 ∈ ∂Ω , a C 1,ε-corner of opening απ (0 < α � 2). If u−1({0}) intersects ∂Ω at z0,
then there exist an integer m and R > 0 such that u−1({0}) ∩ B(z0,R) is composed by m C 1,ε′(α)-simple arcs which
all end at z0 and whose tangent lines at z0 divide the tangent cone Γ (z0) into m + 1 angles of equal amplitude. In
addition

ε′(α) =
{

ε min(α,1/α) if 1/2 < α � 2,

2nεα if 1/2(n+1) < α � 1/2n.

To prove the theorem we shall first straighten the corner and then apply Theorem 2.3. We shall need the following
basic result.

Proposition 2.7. Let ε ∈ ]0,1] and let C be a Hölder-continuous arc ending at the origin, without self-intersections.
Let w(τ), τ ∈ [0, τ̄ ] be a regular parametrization of C such that w(0) = 0 and w′(0) 	= 0, and define the curve C 1/α

by the parametrization

t �→ v(t) := (
w(tα)

)1/α
.

Then, for any α > 0

C ∈ C 1,ε �⇒ C1/α ∈ C 1,ε min(1,α).

Proof. We have

v′(t) = w′(tα)u(tα), u(τ) := (
τw(τ)

)−1+1/α
.

Obviously v defines a regular parametrization of C1/α . At first we remark that u is Hölder continuous with exponent ε.
Indeed∣∣∣∣w(τ1)

τ1
− w(τ2)

τ2

∣∣∣∣ =
∣∣∣∣∣

1∫
0

(
w′(τ2s) − w′(τ1s)

)
ds

∣∣∣∣∣ � K|τ1 − τ2|ε.

Therefore the product w′(τ )u(τ ) is of the same class C 0,ε and the composition v′(t) = w′(tα)u(tα) is in the Hölder
space C 0,ε min(1,α). �
Proof. We are in position to prove Theorem 2.6. We consider separately the two cases:
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First, we assume the case of openings satisfying the inequality 1/2 < α � 2. We straighten the corner as in Propo-
sition 2.7, by the map z → z1/α . Then, through this composition, the boundary ∂Ω1/α becomes smooth (of class
C 1,ε min(1,α)) while the potential V has to be multiplied by the conformal factor 2α2|z − z0|2(α−1), which is singular
whenever α < 1. As already observed in Remark 2.2, this is not a problem if α > 1/2. Thanks to Theorem 2.3, the
nodal set of the composition z �→ u(zα) is the union of arcs of class C 1,ε min(1,α). Now we take its inverse image
through the map z → zα and, applying again Proposition 2.7 we obtain the desired value of ε′(α).

Next we turn to the case when the opening is too small, that is when 1/2(n+1) < α � 1/2n, for some n � 1. Using
again Theorem 3.6 in Chapter 3 of [26], one can easily construct, locally in Ω , a conformal map of class C 1,ε up to
the boundary such that the image of one of the two arcs is a straight segment. Next step is to reflect the domain about
this line and extend the function on the reflected corner, in such a way to double the opening, which is now 2α. In this
procedure, the second arc, being composed with a C 1,ε map, still remains in the same Hölder class. We iterate this
reflection procedure n times, until 1/2 < 2nα � 1, and we afterward proceed as in the proof of the case α > 1/2. �

Using the same technique of straightening the angles by conformal maps, one can easily prove the following

Proposition 2.8. Let V ∈ L∞(Ω) and ε ∈ ]0,1]. Assume u ∈ W
1,2
0 solves −�u + V (x, y)u = 0 in the distributional

sense, in a neighborhood of some z0 ∈ ∂Ω , a C 1,ε-corner of opening απ (0 < α � 2). Then, if α � 1, u ∈ C 1,ε , locally
at z0; otherwise, if 1 < α � 2, we only have u ∈ C 0,1/α .

3. Optimal partitions in N dimensions

In the recent literature, an optimal partition problem is a minimization problem of the form

min
{

F (D1, . . . ,Dk): Di ∈ A(Di),Di ∪ Dj = ∅ for i 	= j
}

where k is a fixed integer, A(Ω) is the given class of all admissible domains and F : A(Ω)k → [0,+∞) is the cost
function. When k = 1 it is called a shape optimization problem. Both optimal shape and partition problems may fail
to admit a solution: a minimizer exists, in general, only for an associated relaxed problem (see, for instance, [8,9]).
In order to recover compactness and obtain the existence of a minimizer for the original problem, two strategies have
been proposed in the recent literature: the first one consists in imposing some capacitary constraint on the admissible
domains and has been mainly developed in [32,6]. A second approach, introduced in [7], requires the cost function
to be monotonic with respect to set inclusion and gives existence of an optimal partition in the class of quasi-open
partitions (a set is termed quasi-open if it can be arbitrarily approximated, in capacity, by open sets). This section deals
with the existence of a minimizer of the cost function defined in Definition 1.4 as the maximal first eigenvalue for the
Dirichlet problem of the elements of the partition:

Λ(D1, . . . ,Dk) = max
i

λ1(Di),

and we require the elements of the partition to be open connected sets. It is worthwhile noticing that this is a much
stronger admissibility assumption than the one in [7] and will require a more detailed analysis of the regularity of
the interfaces, though the general existence theory developed in [7] could very well be applied in this case, giving
the existence of a quasi-open minimal partition. In order to establish the regularity of any minimizing partition, we
shall exploit the strategy already developed in [11,12]. We shall first prove the validity of some optimality conditions,
expressed by the system of differential inequalities (I1)–(I2), generalizing the domain derivative condition of [28].
Some regularity results regarding the solutions of a different, though related, optimal partition problems are outlined
in [10].

To begin with, let Ω ⊂ R
N be a connected, open bounded domain. Note that at this stage we do not need any

regularity of the boundary. However we will need it later (in Section 4), in the 2-dimension case, in order to describe
the local structure of nodal lines at their intersection with the boundary.

Definition 3.1. For any measurable D ⊂ Ω and for V ∈ L∞(Ω), let λ1(D) denotes the first eigenvalue of the Dirichlet
realization of the Schrödinger operator in the following generalized sense. We define

λ1(D) = +∞,
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if {u ∈ W
1,2
0 (Ω), u ≡ 0 a.e. on Ω \ D} = {0}, and

λ1(D) = min

{∫
Ω

(|∇u(x)|2 + V (x)u(x)2) dx∫
Ω

|u(x)|2 dx
: u ∈ W

1,2
0 (Ω) \ {0}, u ≡ 0 a.e. on Ω \ D

}
,

otherwise. We call groundstate any function φ achieving the above minimum.

We shall always assume that

λ1(Ω) > 0.

Remark 3.2. The presence of an L∞ potential V does not create particular problems. We prefer, to simplify the
notation, to explain all the proofs with the additional assumption that V is identically 0. In this case the positivity of
λ1(Ω) is effectively satisfied. In the general case, we can always assume this property by adding a constant to V .

We observe that the minimization problem always possesses a (possibly not unique) non-negative solution φ � 0.
We shall always make this choice. Next we consider the following class of minimal partition problems:

Lk,p := inf
Bk

(
1

k

k∑
i=1

(
λ1(Di)

)p

)1/p

, (3.1)

Lk := inf
Bk

max
i=1,...,k

(
λ1(Di)

)
(3.2)

where the minimization is taken over the class of partitions in k “disjoint” measurable subsets of Ω

Bk :=
{

D = (D1, . . . ,Dk):
k⋃

i=1

Di ⊂ Ω, |Di ∩ Dj | = 0 if i 	= j

}
,

where, for a Lebesgue-measurable set A, |A| denotes the measure of A.

Remark 3.3. The values Lk considered in this section can be viewed as a relaxation of those defined in the introduc-
tion. We have indeed replaced “open” by “measurable”. We keep the same notation, for we shall prove as a part of our
regularity theory that, in all the interesting cases, the two definitions coincide.

The main result of this section is the following

Theorem 3.4. Let D = (D̃1, . . . , D̃k) ∈ Bk be any minimal partition associated with Lk and let (φ̃i)i be any set of
positive eigenfunctions normalized in L2 corresponding to (λ1(D̃i))i . Then there exist ai � 0, not all vanishing, such
that the functions ũi = aiφ̃i verify in Ω the differential inequalities in the distributional sense

(I1) −�ũi � Lkũi , ∀i = 1, . . . , k,
(I2) −�(ũi − ∑

j 	=i ũj ) � Lk(ũi − ∑
j 	=i ũj ), ∀i = 1, . . . , k.

Remark 3.5. Note that at this stage we do not know whether the D̃i ’s are connected and consequently whether the
φ̃i ’s are unique. It will be shown in the next section that these properties are true in two dimensions.

The following results were proved in [12]:

Theorem 3.6. Let p ∈ [1,+∞) and let D = (D1, . . . ,Dk) ∈ Bk be a minimal partition associated with Lk,p and let
(φi)i be any set of positive eigenfunctions normalized in L2 corresponding to (λ1(Di))i . Then there exist ai > 0, such
that the functions ui = aiφi satisfy in Ω the differential inequalities in the distribution sense

(I1) −�ui � λ1(Di)ui ,
(I2) −�(ui − ∑

j 	=i uj ) � λ1(Di)ui − ∑
j 	=i λ1(Dj )uj .



B. Helffer et al. / Ann. I. H. Poincaré – AN 26 (2009) 101–138 111
Remark 3.7. In particular, this implies that U = (u1, . . . , uk) is in the class S ∗ as defined in [11]. Hence Theorem 8.3
in [11] ensures the Lipschitz continuity of the ui ’s in the interior of Ω . Therefore we can choose a partition made of
open representatives Di = {ui > 0}.

Moreover, taking the limit as p → +∞, the following result was shown in [12]:

Theorem 3.8. There holds

lim
p→+∞Lk,p = Lk.

Moreover, there exists a minimizer of Lk such that (I1)–(I2) hold for suitable non-negative multiples ui = aiφi of an
appropriate set of associated eigenfunctions.

Let us start the proof of Theorem 3.4.
Let (D̃1, . . . , D̃k) ∈ Bk be a particular minimal partition associated with Lk and let (φ̃1, . . . , φ̃k) be any choice of

associated eigenfunctions. The existence of such a minimal partition was proved, in a slightly less general framework
in [12]. To recover the proof of the existence under the assumptions of our paper, the reader can follow the argument
below just deleting the penalization term in the definition of Fk,p . We wish to prove that (I1)–(I2) hold for a suitable
set of multiples of the φ̃j ’s. We consider, for a given

q ∈ (
1,N/(N − 2)

)
, (3.3)

(or q ∈ (1,+∞) when N = 2), the penalized Rayleigh quotient:

Fk,p(u1, . . . , uk) =
(

1

k

k∑
i=1

(∫
Ω

|∇ui(x)|2 dx∫
Ω

|ui(x)|2 dx

)p
)1/p

+
k∑

i=1

(
1 −

∫
Ω

ui(x)q φ̃i(x)q dx

(
∫
Ω

ui(x)2q dx
∫
Ω

φ̃i(x)2q dx)1/2

)
.

We consider the minimization problem

Mk,p = inf
{

Fk,p(u1, . . . , uk): (u1, . . . , uk) ∈ U
}
, (3.4)

where

U = {
(u1, . . . , uk) ∈ (

W
1,2
0 (Ω)

)k: ui · uj = 0, for i 	= j, ui � 0, ui 	≡ 0, ∀i = 1, . . . , k
}
. (3.5)

We note that the condition on q permits to have (weak and strong) continuity and differentiability in W
1,2
0 (Ω) of

the penalization term, which involves integrals of powers of ui . This will be used later to apply the direct method of
the Calculus of Variations and to differentiate Fk,p at the minimum.

It is also worthwhile noticing that Fk,p is invariant by multiplication:

Fk,p(a1u1, . . . , akuk) = Fk,p(u1, . . . , uk), ∀ai 	= 0. (3.6)

Recalling Definition 3.1 we have:

Proposition 3.9. There holds, for every p ∈ [1,+∞),

1

k1/p
Lk � Lk,p � Mk,p � Lk.

Proof. It is an immediate consequence of Jensen and Hölder inequalities. �
Lemma 3.10. For every p ∈ [1,+∞), the value Mk,p is achieved.

Proof. Using the invariance by multiplication (3.6), we can choose a bounded minimizing sequence, having as weak
limit the configuration (u1, . . . , uk) ∈ U . Now the assertion simply follows from the weak lower semi-continuity of
the norm and the compact embeddings of W

1,2
0 (Ω) into Ls(Ω) for any s ∈ [1,+∞), whenever N = 2, and for any

s ∈ [1,2N/(N − 2)) when N � 3. �
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Lemma 3.11. Let Λ > 0 and let U = (u1, . . . , uk) be any minimizer of Mk,p normalized in such a way that(∫
Ω

|∇ui |2 dx

)p−1

=
(

Λ

∫
Ω

|ui |2 dx

)p

, ∀i = 1, . . . , k. (3.7)

Define

fi(u)(x) = −γ q

2(
∫
Ω

u(x)2q dx
∫
Ω

φ̃i(x)2q dx)1/2

[
u(x)q−1φ̃i (x)q −

∫
Ω

u(x)q φ̃i(x)q dx∫
Ω

u(x)2q dx
u(x)2q−1

]
, (3.8)

where

γ = Λ−p

(
1

k

k∑
i=1

(∫
Ω

|∇ui(x)|2 dx∫
Ω

|ui(x)|2 dx

)p
)1−1/p

. (3.9)

Then U satisfies the differential inequalities in the distribution sense

(I1) −�ui � λ1(Di)ui + fi(ui),
(I2) −�(ui − ∑

j 	=i uj ) � λ1(Di)ui + fi(ui) − ∑
j 	=i (λ1(Dj )uj + fj (uj )).

Proof. For a fixed index i, let us introduce

ûi = ui −
∑
j 	=i

uj .

Let ϕ � 0, ϕ ∈ W
1,2
0 (Ω), and, for t > 0 very small, let us define a new test function V = (v1, . . . , vk), belonging to

(W
1,2
0 (Ω))k , as follows:

vj =
{

(ûi + tϕ)+, if j = i,

(−uj + tϕ)− = (ûi + tϕ)−χ{uj >0}, if j 	= i.

We first remark that there is differentiability (with respect to t ) of all the terms which do not involve derivatives.
Indeed, since the map u → (u+)r is differentiable, we have, for any set of functions ηj ∈ Ls(Ω) and r > 1:∫

Ω

ηjv
r
j dx =

{∫
Ω

ηju
r
j dx + rt

∫
Ω

ηju
r−1
j ϕ dx + o(t), if j = i,∫

Ω
ηju

r
j dx − rt

∫
Ω

ηju
r−1
j ϕ dx + o(t), if j 	= i.

By the Sobolev Embedding Theorem, this expansion holds with respect to the W
1,2
0 (Ω)-norm provided s ∈ (1,+∞]

and r � (1 − 1/s)(2N/(N − 2)). As a first application, letting

αj = 1

t

{∫
Ω

|vj |2 dx −
∫
Ω

|uj |2 dx

}
,

and r = 2, we have

αj =
{

2
∫
Ω

ujϕ dx + o(1), if j = i,

−2
∫
Ω

ujϕ dx + o(1), if j 	= i.

Moreover, letting

βj = 1

t

{(
1 −

∫
Ω

vj (x)q φ̃j (x)q dx

(
∫

v (x)2q dx
∫

φ̃ (x)2q dx)1/2

)
−

(
1 −

∫
Ω

uj (x)q φ̃j (x)q dx

(
∫

u (x)2qdx
∫

φ̃ (x)2q dx)1/2

)}
,

Ω j Ω j Ω j Ω j
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we find, recalling that q ∈ (1,N/(N − 2)), by the usual differentiation rules

βj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−q

(
∫
Ω

uj (x)2q dx
∫
Ω

φ̃j (x)2q dx)1/2

[∫
Ω

uj (x)q−1φ̃j (x)qϕ(x) dx

−
∫
Ω

uj (x)2q−1ϕ(x)dx
∫
Ω

uj (x)q φ̃j (x)q dx

(
∫
Ω

uj (x)2q dx)

]
+ o(1), if j = i,

+q

(
∫
Ω

uj (x)2q dx
∫
Ω

φ̃j (x)2q dx)1/2

[∫
Ω

uj (x)q−1φ̃j (x)qϕ(x) dx

−
∫
Ω

uj (x)2q−1ϕ(x)dx
∫
Ω

uj (x)q φ̃j (x)q dx

(
∫
Ω

uj (x)2qdx)

]
+ o(1), if j 	= i.

On the other hand, differentiation with respect to t may fail when we consider the gradient integrals. Let us denote

δj = 1

t

{∫
Ω

|∇vj |2 dx −
∫
Ω

|∇uj |2 dx

}
.

Although tδj → 0 as t → 0, the δj ’s themselves can be unbounded in general, for they involve boundary integrals
which are not necessarily finite for functions in W

1,2
0 (Ω). On the other hand, from the definition∫

Ω

|∇vj |2 dx �
∫
Ω

∣∣∇(uj − tϕ)
∣∣2

dx, if j 	= i,

we can easily deduce that

δj � −2
∫
Ω

∇uj · ∇ϕ dx + o(1), if j 	= i, and ϕ � 0, (3.10)

while, from

t
∑
j

δj =
∑
j

{∫
Ω

|∇vj |2 dx −
∫
Ω

|∇uj |2 dx

}

=
∫
Ω

∣∣∇(ûi + tϕ)
∣∣2

dx −
∫

{ûi+tϕ=0}
|∇ûi + tϕ|2 dx −

∫
Ω

|∇ûi |2 dx +
∫

{ûi=0}
|∇ûi |2 dx

= 2t

∫
Ω

∇ûi · ∇ϕ dx + t2
∫
Ω

|∇ϕ|2 dx,

we easily conclude that∑
j

δj = 2
∫
Ω

∇ûi · ∇ϕ dx + o(1). (3.11)

Let us estimate, for a fixed index j , the difference:(∫
Ω

|∇vj (x)|2 dx∫
Ω

|vj (x)|2 dx

)p

−
(∫

Ω
|∇uj (x)|2 dx∫

Ω
|uj (x)|2 dx

)p

= ptΛp
(
δj − λ1(Dj )αj + o(δj )

)
,

here we used the normalization condition (3.7), which implies∫
Ω

|∇uj |2 dx =
(

λ1(Dj )

Λ

)p

. (3.12)

On the other hand, we have:(
1 −

∫
Ω

vj (x)q φ̃j (x)q dx

(
∫

v (x)2q dx
∫

φ̃ (x)2q dx)1/2

)
−

(
1 −

∫
Ω

uj (x)q φ̃j (x)q dx

(
∫

u (x)2q dx
∫

φ̃ (x)2q dx)1/2

)
= tβj .
Ω j Ω j Ω j Ω j
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Now we prove inequality (I1). We select j 	= i and we replace only the j ’th component uj by vj . We obtain, as
t → 0+,

0 � 1

t

(
Fk,p(u1, . . . , vj , . . . , uk) − Fk,p(u1, . . . , uj , . . . , uk)

)
= 1

γ

(
δj − λ1(Dj )αj − γβj

) + o(δj ) + o(1).

This inequality and the boundedness of the αj ’s, the βj ’s and γ gives a lower bound of the δj ’s. On the other hand
(3.10) gives an upper bound of the δj ’s, which are consequently bounded as t → 0. Hence we can deduce from (3.10)
and the last inequality that

0 � −2
∫
Ω

(∇uj · ∇ϕ − λ1(Dj )ujϕ − fj (uj )ϕ
)
dx.

Since this holds for every pair of indices i 	= j (though here i does not appear) and every non-negative test func-
tion ϕ, inequality (I1) is proved.

To prove inequality (I2), we argue by contradiction and we assume the existence of ϕ � 0 such that∫
Ω

∇ûi · ∇ϕ dx <

∫
Ω

(
λ1(Di)ui(x) + fi(ui)(x) −

∑
j 	=i

λ1(Dj )uj (x) + fj (uj )(x)

)
ϕ(x)dx,

or, in other words,∫
Ω

∇ûi · ∇ϕ dx <
∑

i

(
λ1(Dj )

αj

2
+ γ

βj

2

)
+ o(1). (3.13)

Now, by the minimization property of U , we have,

0 � Fk,p(v1, . . . , vk) − Fk,p(u1, . . . , uk) = t

γ

∑
j

(
δj − λ1(Dj )αj − γβj

) + o(t),

in contradiction with (3.13) and (3.11). �
Theorem 3.4 will easily follow from the next two results:

Lemma 3.12. As p → +∞ any family of minimizers of (3.4) satisfying the normalization condition (3.7) with Λ = Lk

converges, up to a subsequence, to a multiple (a1φ̃1, . . . , akφ̃k) (ai � 0, not all vanishing) strongly in (W
1,2
0 (Ω))k .

Proof. From Proposition 3.9 we have for the minimizers ui,p and the corresponding Di,p (we now mention the
reference to p which will then tend to +∞),

1

k

∑
i

∫
Ω

|∇ui,p|2 dx = 1

k

∑
i

(
λ1(Di,p)

Λ

)p

�
( Mk,p

Lk

)p

� 1,

while

1

k

∑
i

∫
Ω

|∇ui,p|2 dx �
(

Lk,p

Lk

)p

� 1

k
.

Hence the family is bounded in (W
1,2
0 (Ω))k and does not vanish. We extract a sequence (ui,pn)n∈N possessing a

limit, in the weak (W
1,2
0 (Ω))k-topology and in any (Lr(Ω))k , for subcritical r’s. We denote by (ũi)i=1,...,k this limit.

We infer that the weak limit cannot be identically zero. We have indeed:

λ1(Di,pn) =
∫
Ω

|∇ui,pn |2 dx∫ |u |2 dx
� k1/pnLk, ∀i = 1, . . . , k,
Ω i,pn
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so that
1

k

∑
i

∫
Ω

|ui,pn |2 dx � 1

k1/pnLk

∑
i

∫
Ω

|∇ui,pn |2 dx.

We further remark that, if for some i the weak limit happens to be zero, then the strong limit vanishes too.
We claim that, for suitable non-negative ai ’s, ũi = aiφ̃i . This is obvious if ũi ≡ 0. If not, since by Proposition 3.9

lim
p→+∞(Mk,p − Lk,p) = 0,

we deduce that, whenever ũi 	≡ 0,

1 −
∫
Ω

ũi(x)q φ̃i(x)q dx

(
∫
Ω

ũi(x)2q dx
∫
Ω

φ̃i(x)2q dx)1/2
= 0,

and therefore that ũi is a multiple of φ̃i . To pass from weak to strong convergence we first notice that each ui,pn − ũi

converges weakly and strongly in L2 to zero. Now we recall that ui,pn satisfy inequalities (I1)–(I2) of Lemma 3.11.
Let us multiply (I1) by (ui,pn − ũi )+, the positive part of ui,pn − ũi , (I2) by (ui,pn − ũi )− and take the difference. We
obtain∫

Ω

∇ui,pn · ∇(ui,pn − ũi ) dx �
∫
Ω

∑
j 	=i

∇uj,pn · ∇(ui,pn − ũi )
− dx + o(1).

Since ui,pn(x)uj,pn(x) vanishes almost everywhere and ũi � 0, we infer∫
Ω

∇ui,pn · ∇(ui,pn − ũi ) dx �
∑
j 	=i

∫
Ω

∇uj,pn · ∇ũi dx + o(1)

=
∑
j 	=i

∫
Ω

∇ũj · ∇ũi dx + o(1) = o(1).

Thus we can deduce strong convergence from the weak. We have indeed∥∥∇(ui,pn − ũi )
∥∥2 =

∫
Ω

∇ui,pn · ∇(ui,pn − ũi ) dx −
∫
Ω

∇ũi · ∇(ui,pn − ũi ) dx = o(1). �

Lemma 3.13. Let Un = (u1,pn , . . . , uk,pn) (n ∈ N) as in the proof of Lemma 3.12. Then its limit, as n → +∞,
Ũ := (ũ1, . . . , ũk) verifies the inequalities in the statement of Theorem 3.4.

Proof. First of all, we wish to pass to the limit in formulas (I1)–(I2) of Lemma 3.11, in the sense of distributions. From
the previous lemma we deduce that −�ui,pn → −�ũi in H−1(Ω). Hence one can pass to the limit in inequality (I1).
Let us turn to (I2). We remark that also fi(ui,pn) converge to fi(ũi), provided ũi 	≡ 0. For such i’s inequality (I2)
passes to the limit, because so does its right hand. On the other hand, when the limit ũi does vanish then (I2) holds
because of (I1) and the fact that −�ũi = 0. In order to end the proof, we have to prove convergence of the eigenvalues
λ1(Di,pn) to Lk whenever ũi does not vanish identically. At first we notice that the λ1(Di,pn)’s do converge, thanks
to the strong convergence of the ui,pn ’s to limits λ1(D̃i) � Lk . Assuming λ1(D̃i) < Lk we deduce from (3.12), using
again the strong convergence, that ũi ≡ 0. �
Remark 3.14.

(a) Thanks to [11], Theorem 8.3 all the ui,p’s and their limits ũi are locally Lipschitz continuous in the interior of Ω

and continuous up to the boundary, for (I1), if the boundary ∂Ω is Lipschitz, or has the interior cone property;
moreover, they are globally Lipschitz up to the boundary, if ∂Ω is of class C 1,+.

(b) Of course, since the eigenfunctions are normalized in L2

ai
def= ‖ũi‖2.



116 B. Helffer et al. / Ann. I. H. Poincaré – AN 26 (2009) 101–138
In general, it may happen that some of the ai ’s vanish; we denote

k0 = {
i ∈ {1, . . . , k}: ai = 0

}
. (3.14)

(c) Going back to the proof of Lemma 3.12, we can extract a subsequence with the further property that the
ui,pn/‖ui,pn‖2 converge strongly in L2(Ω) and weakly in W

1,2
0 (Ω) to φ̃i , also for those indices i for which

the component ui,pn normalized as in (3.12) strongly converges to 0.
(d) We also infer from (3.12) that

λ1(D̃i) � Lk, ∀i ∈ {1, . . . , k},
while

λ1(D̃i) = Lk, ∀i /∈ k0.

(e) Obviously the system of differential inequalities (I1)–(I2) are fulfilled by the set (ũi) with i /∈ k0.
(f) For i /∈ k0, the D̃i ’s are open and possess finitely many connected components.

4. Further results in two dimensions

The aim of this section is to refine the analysis of the geometrical features of the minimal partition to obtain, in the
two-dimensional case, that every open optimal partition is regular and strong. In order to achieve this goal we shall
extensively make use of the optimality conditions expressed by the system of differential inequalities (I1)–(I2). As a
final result we shall obtain that the nodal set associated with a minimal partition is a finite union of Hölder continuous
closed arcs.

In this section, we recall from the introduction that we work under Assumptions 1.1 and 1.2. This implies that ∂Ω

has finitely many connected components. For simplicity, we shall omit the potential V in the following discussion.
All the arguments can be straightforwardly extended (sometimes at the price to replace C 2 by C 1,1− := ⋃

α<1 C 1,α) in
order to cover the case of a non-vanishing bounded potential. A special caution is only due in the proof of Theorem 4.6,
where the needed extra argument is outlined.

4.1. Case when k0 = ∅

In this section we discard in a first step all the identically vanishing components. Hence, from now on, we will
assume that

k0 = ∅.

Relabeling if necessary, and taking a smaller k, we assume that the components of

U = (u1, . . . , uk)

are non-negative, non-vanishing W
1,2
0 (Ω)-functions, such that ui(x)uj (x) ≡ 0 almost everywhere in Ω (for i 	= j ),

satisfying the two differential inequalities (I1)–(I2) of Theorem 3.4. As a consequence of Remark 3.14(a), they are
continuous on the closure of Ω . Hence, by expanding the set of indices if necessary, we can always assume that the
sets

Di = {ui > 0}
are open and connected.

Let us define the set of zeros of U as

Z = {
x ∈ Ω: ui(x) = 0, ∀i = 1, . . . , k

}
,

and define the multiplicity m(x) of x ∈ Ω by

m(x) = �
{
i: meas

({ui > 0} ∩ Br(x)
)
> 0, ∀r > 0

}
. (4.1)

We shall denote by

Zh = {
x ∈ Ω: m(x) � h

}
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the set of points of multiplicity greater than or equal to the integer h and by

Z h = {
x ∈ Ω: m(x) = h

}
.

We remark that, by definition, Z 0 is open. Let us now consider Z 1. This is the object of:

Proposition 4.1.

Z 1 =
k⋃

i=1

Di.

Proof. If a ball Br(x0) intersects only Di we deduce from (I1)–(I2) that ui is a non-negative solution to the differential
equation −�u = Λu on Br(x0). By the strong maximum principle then ui is strictly positive on Br(x0) and therefore
Br(x0) ⊂ Di and all the points of Br(x0) have multiplicity equal to one. �

To continue the analysis of the topological properties related to points of multiplicity two and more, we shall
consider the simplicial homology groups with coefficients in Z2, Hn(X), for n = 0,1. We recall that rank(H0(X)) is
the number of connected components of X. For open subsets of an Euclidean space, as the fundamental group π1 is
already Abelian, there holds rank(π1(X)) = rank(H1(X)). Finally for planar bounded open subsets, rank(H1(X))+ 1
is the number of connected components of ∂X. A reference book for the algebraic topology concepts is Greenberg
and Harper’s book [16].

Proposition 4.2. If H1(Ω) is finite, so is H1(Di) for every i.

Proof. Let us consider a loop γ ⊂ Di which is homotopically trivial in Ω but not in Di ; hence denoting by Σ the
inner region of γ , we have that Σ ⊂ Ω but Σ 	⊂ Di . Let j 	= i; then either Dj is contained in Σ or in its complement,
for it is connected. To prove the proposition, we argue by contradiction and we assume that H1(Di) is infinite. Then
also rank(π1(Di)) is infinite; thus we infer the existence of at least one loop γ = ∂Σ such that Σ ∩ ⋃

j 	=i Dj = ∅ and
Σ 	⊂ Di . Since all the uj ’s (j 	= i) vanish identically in Σ , we deduce from (I1)–(I2) that −�ui = Λui in Σ and, by
the strong maximum principle, that ui is strictly positive there; thus Σ ⊂ Di , a contradiction. �

Let us consider

Γi,j = ∂Di ∩ ∂Dj ∩ Z 2,

Di,j = Di ∪ Dj ∪ Γi,j .

Our next goal consists in showing that the Γi,j consist of a finite number of (possibly open) arcs. This will require
some topological considerations.

Proposition 4.3. Let x0 ∈ Ω such that m(x0) = 2. Then ui − uj is in C 1,1− in some neighborhood of x0 and ∇(ui −
uj )(x0) 	= 0. Furthermore Z 2 is locally a C 1,+-curve through x0.

Proof. Relabeling, we can always assume x0 ∈ ∂{u1 > 0} ∩ ∂{u2 > 0}; thus for all r small enough B(x0, r) ∩ Di = ∅
for all i > 2. Then u = u1 − u2 satisfies the equation −�u = Λu in B(x0, r) and is consequently C 1,1− near x0.
Therefore the zero set of u near x0 (by a standard result on the zero set) is made up by a finite number of even regular
curves starting from x0. But there are actually only two arcs meeting at x0. Indeed, if not, at least one of the Di ’s
should be disconnected. In this case the zero set is actually locally a regular line passing through x0 and the Boundary
Point Lemma (see [15]) gives the proposition. �
Proposition 4.4. If H1(Ω) is finite, so is H1(Di,j ) for every i 	= j .

Proof. This is an obvious statement if Γi,j = ∅.
Let us consider a loop γ ⊂ Di,j which is trivial in Ω but not in Di,j ; hence γ = ∂Σ with Σ ⊂ Ω but Σ 	⊂ Di,j . Let

� /∈ {i, j}; then either D� is contained in Σ or in its complement. Thus, arguing by contradiction we infer the existence
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of a loop γ = ∂Σ such that Σ ∩⋃
�	=i,j D� = ∅ and Σ 	⊂ Di,j . Since all the u�’s (� 	= i, j ) vanish identically in Σ , we

deduce from (I1)–(I2) that −�(ui − uj ) = Λ(ui − uj ) in Σ and, from Proposition 4.3 and the unique continuation
principle we infer that Z ∩ Σ ⊂ Γi,j ; thus Σ ⊂ Di,j , a contradiction. �
Lemma 4.5. If H1(Di,j ) is finite, then Γi,j has finitely many connected components.

Proof. To prove the statement we will take advantage of the Mayer–Vietoris theorem. The Mayer–Vietoris sequence
is usually proven to be exact for a triad X, X1 and X2 where X1 and X2 are open subsets of the topological space
X and X is the union of X1 and X2 (such a triplet is called and admissible triad). Here we would like to apply the
Mayer–Vietoris sequence to the triad X = Di,j , X1 = Di ∪ Γi,j and X2 = Dj ∪ Γi,j , but these latter two are not open
in Di,j . However, the Mayer–Vietoris sequence is still available because, thanks to Proposition 4.3, the Γi,j ’s are
regular embedded one-dimensional submanifolds in Di,j . Hence each D� ∪ Γi,j is a Euclidean neighborhood retract
in Di,j and therefore has the same homology as the corresponding D� (� = i, j ). Thus, following [16], the triplet Di,j ,
Di ∪ Γi,j , Dj ∪ Γi,j is a proper excision triad and thus the Mayer–Vietoris sequence is exact:

H1(Di,j )
∂∗→ H0(Γi,j )

i∗⊕−j∗→ H0(Di ∪ Γi,j ) ⊕ H0(Dj ∪ Γi,j ).

The assertion then follows as a consequence of Propositions 4.2 and 4.4 taking into account the connectedness of D�

(� = i, j ). Indeed, since both H1(Di,j ) and H0(Di ∪ Γi,j ) ⊕ H0(Dj ∪ Γi,j ) = Z2 ⊕ Z2 are finite, we have that both
the range of ∂∗ and the coker of i∗ ⊕ −j∗ are finite and thus so is H0(Γi,j ). �

The following results follow from [11]:

Theorem 4.6. We have for all i = 1, . . . , k:

(a) ui ∈ W
1,∞
loc (Ω).

(b) The function
∑k

i=1 |∇ui | admits a continuous representative in Ω .
(c) If x0 ∈ Z3, then

lim
x→x0

k∑
i=1

∣∣∇ui(x)
∣∣ = 0.

(d) If x0 ∈ Z3, then

lim
x→x0

ui(x)

|x − x0| = 0.

Proof. Part (a) is indeed stated as Theorem 8.3 of [11]. To prove part (b), we first observe that locally in
⋃2

i=0 Z i

(which is open in Ω) the ui ’s satisfy the differential equation −�(ui − uj ) = Λ(ui − uj ): hence they are regular (of
class C 1(

⋃2
i=0 Z i )). The continuity up to the Z3 (which is indeed the boundary of

⋃2
i=0 Z i ) is then a consequence

of the vanishing of the limit stated in part (c), which is indeed Theorem 9.3 in [11]. The proof of Theorem 9.3 was
originally performed in the absence of the L∞ potential, but all the arguments can be promptly adapted to cover also
this case. A special care is needed when, at the beginning, the function

∑k
i=1 |∇ui |2 is shown to be a subsolution to

a linear differential equation. Subsequently the mean value property is applied. This is not exactly true in the present
situation, for the linear problem is now perturbed by a term of the form ∇w ·∇((Λ+V (x))w), where w is an auxiliary
function (which can be taken, by the way, the same as defined in (4.3)). After integrating by parts one easily sees that
the contribution of this term is negligible. This observation permits us to follow, from then on, exactly the same
arguments of the quoted paper. �
Lemma 4.7. Let x0 ∈ Z3. Then there exists a sequence {xn} ⊂ Ω such that m(xn) = 2 and xn → x0 as n → +∞.

Proof. Assume not, then there would be an element y0 of Z3 with a positive distance d from Z 2. Let r < d/2; then
the ball B(y0, r) intersects at least three of the Di ’s. Therefore there exist i ∈ {1, . . . , k}, x ∈ Di and z0 ∈ Z3 such that
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ρ = d(x, z0) = d(x, Z3) < d(x, Z 2). Then the ball B(x,ρ) is tangent from the interior of Di to Z3 in z0. Furthermore
ui solves an elliptic PDE (in the sense of [15]) and it is positive on Di . Thus we infer from the Boundary Point Lemma
(see Lemma 3.4 and formula (3.11) in [15]) that

lim inf
h→0

ui(z0 + hν)

h
> 0, (4.2)

where ν denotes the inner normal to ∂B(x,ρ) at z0, in contrast with Theorem 4.6(c). �
A simple but important consequence of this discussion is the following result:

Proposition 4.8. If H1(Ω) is finite, then Z3, the closure of Z3 in Ω , has a finite number of connected components.

Proof. Indeed, we have Z3 ⊂ ⋃
i,j (Γi,j \ Γi,j ), and each Γi,j is the union of finitely many arcs, each of them being

homeomorphic to the real line (non-compact case) or to a circle. In the first case they have connected and closed α

and ω-limits.
We recall that the α and ω-limits of a parametrized arc Γ (t) are the sets of the limit points as the parameter tends to

−∞ and +∞ respectively: one easily sees that bounded arcs have compact and connected α and ω-limits. Therefore
each Γi,j \ Γi,j contributes with finitely many connected components by the previous proposition. �

In addition we have:

Proposition 4.9. If H1(Ω) is finite, then Z3 ∪ Z 0 has a finite number of connected components.

Proof. Indeed, by Theorem 4.6 and Lemma 4.7, the boundary ∂(Z3 ∪ Z 0) is the same as ∂Z3 and this last one has
finitely many connected components. �

Our next goal is the following

Theorem 4.10. An isolated connected component of Z3 ∪ Z 0 consists of a single point.

This theorem implies straightforwardly, having in mind that Z 0 is open, that

Corollary 4.11. If H1(Ω) is finite, then Z 0 = ∅.

Proof of Theorem 4.10. To prove the theorem we focus on a connected component Y0 of Z3 ∪ Z 0 and we show that
it is reduced to a single point. First we consider an open connected neighborhood N of Y0 in R

2 having a regular
boundary and such that N ∩ Z3 ∪ Z 0 = Y0. Since Y0 is connected, we can choose N in such a way that its boundary
has exactly one or two connected components (each diffeomorphic to S1), depending on whether Y0 disconnects R

2

or not. This can be achieved by taking one connected component of a regular sublevel of a non-negative C∞ function
having Y0 as null set. Furthermore we can take the measure of N \Y0 small enough that none of the Di ’s is completely
enclosed in N . We may assume that ∂N intersects transversally the Γi,j ’s and ∂Ω . Thus, after possibly cutting off
some portions of N , we can assume that each oriented arc in Γi,j intersects ∂N exactly once. Then each Di ∩ N has
a finite number of connected components. Moreover, we can manage to have these intersections simply connected.
Indeed, assuming not, and arguing as in the proof of Proposition 4.2, at least one of the other Dj ’s should be entirely
contained in Di ∩ N \ Y0. That we have excluded by taking the measure of N \ Y0 small enough. We can label the
connected components of Di ∩ N and (R2 \ Ω) ∩ N clockwise from 1 to h, according to their intersection with ∂N .
By taking a double covering of N , still denoted by N , if necessary, we may assume that h is an even integer. Indeed,
assuming h to be odd, we choose some point y0 ∈ Y0 and perform a double covering branched at y0 (in complex
notation f (z) = (z − y0)

2). With some abuse of notation, we use the same symbols for Di , N and Y0 and their
pre-images, and we introduce ũi (z) = ui(f (z)). Note that

�ũi(z) = 8|z − y0|2�ui

(
f (z)

)
.
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If the original h was even we set ũi = ui and we define, in both cases, the auxiliary function

w(x) =
{

σ(x)ũi(x) if x ∈ Di,

0 otherwise
(4.3)

where σ is a sign assignment compatible with the partition of N . The function w satisfies the linear equation:

−�w = Λa(x)w in Ω ∩ (N \ Y0), (4.4)

w = 0 on (∂Ω ∩ N ) ∪ Y0, (4.5)

where a ≡ 1 if no double covering has been performed, otherwise a(x) = 8|x −y0|2 is the conformal factor. Of course
w is regular outside the singular component Y0. Also, w vanishes identically on the open set N ∩ Z 0; hence, thanks
to Theorem 4.6(c), w is in C 1(Ω ∩ N ).

We claim that w actually solves (4.4) in the whole of Ω ∩ N . This is not a trivial fact, for there is no a priori bound
on the Hausdorff measure of the boundary ∂Y0 of the singular set. In order to overcome this problem we make the
following construction:

Proposition 4.12. There exists a family of neighborhoods Nδ ⊂ N , decreasing to Y0 and bounded by a finite number
of regular arcs, with the property that

lim
δ→0

∫
∂(Nδ∩Ω)

|∇w|ds = 0, (4.6)

where ds denotes the measure on the union of these regular arcs.

Postponing the proof of the proposition, we end the proof of Theorem 4.10. Testing (4.4) with any function ϕ ∈
C∞

0 (N ∩ Ω), it follows, by decomposing the integration on N \ Nδ and on Nδ and then making an integration by
parts, that for the second integral:∣∣∣∣ ∫

N ∩Ω

(∇w · ∇ϕ − Λa(x)uϕ
)
dx

∣∣∣∣ =
∣∣∣∣ ∫

Nδ∩Ω

(∇w∇ϕ − Λa(x)uϕ
)
dx −

∫
∂(Nδ∩Ω)

ϕ∇w · ν ds

∣∣∣∣
� C

(
sup

Nδ∩Ω∩supp(ϕ)

(|w| + |∇w|) +
∫

∂(Nδ∩Ω)

|∇w|ds

)
.

We have now to show that the right-hand side is o(1). Proposition 4.12 ensures that, as δ → 0,∫
∂(Nδ∩Ω)

|∇w|ds = o(1).

So it remains to show that, as δ → 0,

sup
Nδ∩Ω∩supp(ϕ)

(|w| + |∇w|) = o(1).

This can be done by Theorem 4.6. Indeed, both w and ∇w are uniformly continuous on supp(ϕ) which is compactly
contained in Ω , and the distance of Nδ ∩ supp(ϕ) to Y0 tends to zero. Finally, we recall that w and its gradient vanish
identically on Y0. Hence w solves (4.4) on the whole of N ∩ Ω . By a classical local regularity result by Hartman and
Wintner ([17], Corollary 1), we know that interior critical points of solutions to such class of equations are isolated
and have finite (local) multiplicity m, and satisfy (2.1).

Hence we are left with the case when Y0 is contained in a connected component of the boundary. We notice that,
in this case, we do not need the double covering, for a sign assignment compatible with the partition of N always
exists, since ∂Ω disconnects ∂N . Now we need an extension of Theorem 2.1, suitable to cover the case of domains
possessing a finite number of C 1,+-corners: namely Theorems 2.3 and 2.6 in Section 2.

In particular, these results guarantee finiteness of critical points also at the boundary. �
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Proof of Proposition 4.12. First of all, let us consider a triplet of adjacent domains separated by the two arcs Γi,j

and Γj,k . We claim that the distance of the arcs, relative to Dj , must vanish. In other words, we claim that

inf

{ 1∫
0

∣∣γ̇ (s)
∣∣ds: γ (0) ∈ Γi,j , γ (s) ∈ Dj, ∀s ∈ (0,1), γ (1) ∈ Γj,k

}
= 0.

Indeed, if not, one could find in Dj a ball, tangent to the boundary ∂Dj ∩ Y0 at, say, x0 with positive distance from
both Γi,j and Γj,k . By the Boundary Point Lemma, at x0 the gradient of w cannot vanish (in the weak sense of (4.2)),
in contradiction with the fact that x0 ∈ Y0.

As a second remark, by integrating the equation −�ui = Λui over the set {ui > ε} and using the Divergence
Theorem, we obtain,

lim
ε→0+

∫
∂{ui>ε}

|∇ui |ds � C

∫
Ω

ui dx < +∞.

The Divergence Theorem is applicable because the level sets (according to Hartman and Wintner’s regularity
result) of the eigenfunctions of −�+V (x) are compact and piecewise C 1 when the potential V is bounded. Since the
components of ∂{ui > ε} converge to Γi,j as ε → 0, in C 1 as parametrized curves, we obtain that∫

Γi,j

|∇w|ds < +∞, ∀i, j.

If the arc Γi,j meets Y0, then we can choose an orientation for its parametrization γ (t) in a way that

lim
t→+∞ dist

(
γ (t), Y0

) = 0,

and we have:

+∞∫
0

∣∣∇w
(
γ (t)

)∣∣∣∣γ ′(t)
∣∣dt < +∞;

γ (t) /∈ Y0, ∀t � 0;
lim

t→+∞ dist
(
γ (t), Y0

) = 0.

Therefore we conclude

lim
δ→0

∫
Γi,j ∩Bδ(Y0)

|∇w|ds = 0, ∀i, j,

where Bδ(Y0) = {x ∈ R
2, d(x,Y0) < δ}.

Now we illustrate the construction of the boundary of the neighborhood Nδ . We start by taking the component of
Γi,j ∩ Bδ(Y0) ending at Y0; then we can jump from this arc to the next Γj,k , still remaining in Bδ(Y0) ∩ Dj , following
an arc of arbitrarily short length. We proceed in this way passing from one arc to the next until we complete the
loop. �

The next result straightforwardly follows from Theorems 2.3 and 2.6 applied to the auxiliary function w defined
in (4.3); it completes our analysis of the asymptotic expansion of the nodal set at multiple intersection points.

Theorem 4.13. Let x0 ∈ Ω be an isolated point in Z 3 with m(x0) = h � 3. Then there exist an integer n � h (the
local multiplicity), c ∈ R \ 0, θ0 ∈ (−π,π] such that

h∑
ui(r, θ) = crn/2

∣∣∣∣cos

(
n

2
(θ + θ0)

)∣∣∣∣ + o(rn/2),
i=1
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as r → 0, where (r, θ) denotes a system of polar coordinates around x0 and n is the local multiplicity of x0.
Moreover the nodal set in a neighborhood of x0 is the union of n closed arcs of class C 1,+ meeting at x0 and

spanning angles of opening 2π/n.
If the boundary ∂Ω presents a C 1,+-corner of amplitude απ at x0 and the nodal set hits x0 from inside the corner,

then there exist an integer n and R > 0 such that the component of u−1({0}) ∩ B(x0,R) lying inside the corner is
composed by n C 1,+-simple arcs which all end in x0 and whose tangent lines at x0 divide the sector into n + 1 angles
of equal opening angle πα/(n + 1).

4.2. General case

Let us come back to the general case. We no more assume a priori that k0 = ∅, nor the connectedness of the Di ’s.
Then we obtain:

Theorem 4.14. If N = 2 and Ω is a connected open set satisfying Assumption 1.1, then the assertion of Theorem 3.4
holds with all ai ’s strictly positive.

Moreover any minimizing partition D admits an open regular connected representative.

Proof. Assume that some of the ai vanish or, in other words, that k0 	= ∅. Let us denote

W0 = Ω \
⋃
i /∈k0

Di

the nodal set. Then the 2-dimensional measure of W0 is positive, since it contains the supports of φ̃i for all i ∈ k0.
Now, as already remarked, inequalities (I1) and (I2) are still available when we discard all the vanishing compo-

nents and we take U = (ui)i /∈k0 . Hence Theorem 4.13 applies and, as a direct consequence, we find that the zero
set Z , being the union of a finite number of closed C 1,+ curves has vanishing measure in R

2, a contradiction. This
also implies that the partition associated with the Di is strong and that the zero set is indeed the nodal set N(D) as
defined in (1.9).

Now assume by contradiction that some elements of the partition are not connected. We can anyway choose a set
of first eigenfunctions having each a connected support, but we clearly have an open, non-empty set of multiplicity
zero points. This contradicts Corollary 4.11. �
Remark 4.15. Note that Theorem 4.14 completes the proof of Theorem 1.12.

Proof of Theorem 1.14. But we also get the proof of Theorem 1.14 in the following way. If the graph associated to
D̃ is bipartite we can find εi = ±1 satisfying εiεj = −1 if Di ∼ Dj and such that u := ∑

i εiai ϕ̃i is in W
1,2
0 (Ω) and

satisfies

(−� + V )u = Lk(Ω)u (4.7)

in Ω \ Z3. But we have proven that Z3 consists of isolated points (which cannot be the support of a distribution
in W−1,2(Ω)), the dual of W

1,2
0 (Ω). Hence (4.7) is satisfied in Ω and u is actually an eigenfunction of H(Ω)

corresponding to Lk(Ω). We refer to Appendix B for a complementary discussion.

5. More on nodal sets and partitions

We continue by discussing more deeply the links between the various spectral sequences.
The first important property is given by:

Proposition 5.1. Let H(Ω) be defined as above. Then

Lk(Ω) < Lk+1(Ω) for k � 1. (5.1)
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Proof. We take indeed a minimal (k + 1)-partition of Ω . We have proved that this partition is regular. If we take
any subpartition by k elements of the previous partitions. This cannot be a minimal k-partition (it has not the “strong
partition” property). So the inequality in (5.1) is strict. �

The second property concerns the domain monotonicity.
It is indeed immediate to verify:

Proposition 5.2. If Ω ⊂ Ω̃ , then

Lk(Ω̃) � Lk(Ω), ∀k � 1.

We observe indeed that each partition of Ω is a partition of Ω̃ .

Remark 5.3. The analysis of the equality in the proposition will involve the capacity of Ω̃ \Ω . See [4] and references
therein.

We now come back to a definition which was briefly mentioned in the introduction. Having in mind Definition 1.16,
we denote, for any integer k � 1, by Lk(Ω) the smallest eigenvalue whose eigenspace contains an eigenfunction with
k nodal domains. We take Lk = +∞, if there are no eigenfunctions with k nodal domains. We call this sequence the
spectral nodal sequence.

Proposition 5.4. Let λ be an eigenvalue corresponding to an eigenfunction with k nodal domains. Then

Lk � λ. (5.2)

Proof of Proposition 5.4. If u is an eigenfunction associated with λ and with k nodal domains, then, taking as B0 the
collection of these nodal domains, we obtain:

inf
B∈Ok

Λ(B) � Λ(B0) � λ. � (5.3)

Proposition 5.5. Let λ = λk be an eigenvalue H(Ω). Then

λk � inf
B∈Ok

Λ(B). (5.4)

Proof of Proposition 5.5. The basic idea (which is already present in Courant’s theorem) is simply the following. We
can assume (using Proposition 5.1)

λk−1 < λk.

Attached to a minimal Bk (hence regular), we have a k-dimensional space in W
1,2
0 (Ω) generated by the ground

states of the Di (i = 1, . . . , k). We can find in this space a non-trivial element which is orthogonal to the eigenspace
corresponding to the eigenvalues which are � λk−1, whose energy is Lk , hence by the Minimax Principle λk � Lk .

Suppose now that we have the equality λk = Lk . Again by the proof of the Minimax Principle, this non-trivial ele-
ment should be an eigenfunction which is consequently Courant-sharp and we have consequently λk = Lk = Lk . �

The following corollary is just a rephrasing of Propositions 5.5 and 5.4.

Corollary 5.6. We have

Lk � Lk � λk, ∀k � 1. (5.5)

In particular, if Lk = λk (also called the Courant-sharp case in [4]) the nodal domain of a corresponding eigenfunc-
tion gives a minimal partition.
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Remarks 5.7.

(i) For the one-dimensional case the standard Sturm–Liouville theory leads easily to the following

Lk = Lk = λk, ∀k � 1. (5.6)

(ii) It is easy to show, that for a given H

L1 = L1 = λ1, (5.7)

(by the property of the ground state) and that

L2 = L2 = λ2, (5.8)

by the orthogonality of u2 to the ground state combined with Courant’s nodal theorem. (See also [12], Corol-
lary 4.1 (Case V = 0, but the extension to V ∈ L∞ is not a problem).)

(iii) The sequence Lk is not necessarily monotone: see for example (9.6).

One also observes that, using (5.5) and the property that λk → +∞,

lim
k→+∞Lk = +∞. (5.9)

6. Playing around Pleijel’s argument

It is a well-known result of Pleijel ([25]) that the one-dimensional result that the k-th eigenfunction of a Sturm–
Liouville operator on an interval has only k nodal domains cannot be extended to higher dimension. The k-th Courant-
sharp eigenfunctions (i.e. k-th eigenfunctions with k nodal domains) can only be found for a finite number of k’s.

We will show in this section, that the arguments behind the proof of this theorem give also many informations on
the spectral minimal partition sequence in comparison with the spectral sequence and the nodal sequence.

Let us look at a universal lower bound for Lk(Ω). We actually obtain:

Proposition 6.1. Considering the Dirichlet Laplacian, we have

Lk(Ω) � k
πj2

|Ω| ,
where |Ω| denotes the area of Ω and j is the smallest positive 0 of the Bessel function J0:

j ∼ 2.4048 . . . . (6.1)

Proof. For any Dj of a partition, we have by the Faber–Krahn inequality (see [5])

|Dj |λ(Dj ) � πj2.

The Faber–Krahn inequality gives indeed:

λ(D) �
λ(B1/

√
π )

|D| , (6.2)

for any open set D.
The lowest eigenvalue for the disk of radius 1 is known to be:

λ(B1) = j2, with πj2 ∼ 18.1695. (6.3)

Summing up over j , we obtain

πj2k �
∑
j

|Dj |λ(Dj ) � |Ω|maxλ(Dj ). (6.4)

Taking the infimum over the partition leads to the result. �
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Remark 6.2. Using Corollary 5.6, this implies

Lk(Ω) � k
πj2

|Ω| .

We conclude this section with a classical result of Pleijel:

Theorem 6.3. The set of the k’s such that one can find, for a k-th eigenvalue of H(Ω), an eigenfunction with k nodal
domains is finite.

This holds in larger generality for bounded potentials and also for higher dimensions.
Let us describe for completeness how Pleijel’s theorem is proved. The Weyl asymptotics (see for example [27])

says that

λn ∼ 4πn

|Ω| , (6.5)

as n → +∞.
If un is an eigenfunction associated to λn with n nodal domains, we obtain immediately a contradiction for n large

between (6.5) and (6.4) (applied with the family of nodal domains of un), having in mind the value of j given in (6.1).
So un cannot have n nodal domains! More precisely, if there exists a smallest n(k) such that λn(k) = Lk , we obtain
asymptotically

lim inf
k→+∞

n(k)

k
� j2

4
> 1. (6.6)

A more difficult question is to determine whether Lk is always finite.

Proposition 6.4. In the case of the Laplacian and if Ω is regular, we have3

lim sup
k→+∞

Lk(Ω)

k
� λ1(Hx1)/|Ω|, (6.7)

where Hx1 is the regular hexagon of area 1.

For the proof, we just use a (non-strong) partition of Ω by equal hexagons of area at most |Ω|
k

.

Remark 6.5. Adding a potential V does not create any difficulty and the previous discussions can be easily adapted
to go from H0(Ω) to H(Ω). Concerning the values Lk(Ω,V ) we obtain immediately,

Lk(Ω,V ) � k
πj2

|Ω| − sup |V |. (6.8)

On the other hand, using the minimax, there are no problem to show that

Lk(Ω,V ) � k
πj2

|Ω| − sup |V |. (6.9)

This implies in particular that

lim inf
k→+∞

Lk(Ω,V )

k
�

λ1(B1/
√

π )

|Ω| >
4π

|Ω| , (6.10)

is satisfied in full generality.

3 Thanks to M. Van den Berg for discussions. In particular, he conjectures the existence of the limit limk→+∞ Lk
k

and that the limit is actually
λ1(Hx1).
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7. Minimal partitions and Courant-sharp

The main object of this section is the proof of Theorem 1.17.

7.1. Preliminaries

The proof in this section uses essentially [18,19] (or easy extensions4 of it). The minimal partitions which are
involved in the proof are indeed regular. Although not very important here, it seems useful to mention this for possible
extensions to higher dimensions where we do not have the fine results established in Section 4.

7.2. Definition of an exhausting family N(u,α)

Let u be an eigenfunction of H(Ω) with k nodal domains and consider N(u) ∈ M(Ω). First we consider the finite
sets of points

C∗(N) := Z3 ∪ (
N(u) ∩ ∂Ω

)
. (7.1)

From each of these points an arc emanates which ends either in the point itself (irregular loop) or ends in another point
in C∗(N). We call the collection of these arcs A∗. Then we consider those components of N(u) whose intersection
with C∗(N) is empty. They have to be pairwise disjoint embedded circles (without selfintersections) and we call the
collection of these circles A∗∗. Let us introduce

A = A∗ ∪ A∗∗.

Note that each arc (or loop) A ∈ A is rectifiable (because N(um) is regular by Theorem 2.3) and we can associate to
A naturally a middle point xA in the natural way (xA is chosen arbitrarily if A ∈ A∗∗). We have a natural arc length
parametrization starting from the point xA, but we prefer to parametrize A as a parametrized curve [−1,+1] � t �→
L(A, t) such that

L(A,0) = xA, L(A,−1) = y−
A , L(A,1) = y+

A ,

where yA− and yA+ are the end points in the case of an arc, and where yA− = yA+ is the irregular point in the case of
an irregular loop (i.e. in A∗) and the opposite point in the case of a regular loop (i.e. in A∗∗).

For each α ∈ (0,1), we can consider the set

N(u,α) = {
N(u) \ L

(
A, (−1 + α,1 − α)

)}
(7.2)

and complete the definition by

N(u,0) = ∅ and N(u,1) = N(u). (7.3)

Note that by construction for every 0 < α, N(u,α) contains all the critical points and N(u)∩∂Ω ; this will be important
below.

7.3. Proof of Theorem 1.17

We assume for contradiction that for some k, Lk = Lk , but that λk < λm = Lk for some m > k.
Taking the smallest m with this property, we can in addition assume that

λm−1 < λm. (7.4)

Let um be a normalized eigenfunction such that um has μ(um) = k nodal domains Di (i = 1,2, . . . , k). Then we
associate with the exhausting family N(um,α) the decreasing family of open sets:

Ω(α) = Ω \ N(um,α). (7.5)

4 Except that these papers assume that Ω is simply connected.
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Fig. 2. An example of exhausting family.

We want to consider the spectrum of

H(α) := H
(
Ω(α)

)
. (7.6)

(We suppress the dependence on Ω and V .)
Then, H(0) is our initial operator H(Ω) and

H(1) =
k⊕

i=1

H(Di). (7.7)

Hence H(1) has as lowest eigenvalue λm with multiplicity k. By construction σ(H(0)) = σ(H). Furthermore
λ1(H(1)) has multiplicity k and

λk+1
(
H(1)

)
> λk

(
H(1)

) = λm

(
H(0)

)
.

Lemma 7.1. For any �, λ�(H(α)) is monotonically increasing with α.

Proof. We just note that the form domains Q(α) of the quadratic forms q(α) associated to H(α),0 � α � 1, satisfy
Q(α) ⊂ Q(α′) for α′ � α. �
Lemma 7.2. For any �, λ�(H(α)) depends continuously upon α.

Proof. Although there is a lot of literature5 on the subject (see [24,29,30,34–36,31]), it is difficult to give a reference
corresponding to this crack situation. This statement is proved in Dauge and Helffer [13] (at least for the case of
one crack). These authors treat the case when the boundary condition on the crack is Neumann. The Dirichlet case
does not create new problems (the important point being the monotonicity which is evident in the case of Dirichlet).
Note that we have strong resolvent convergence and that the left continuity and the right continuity should be treated
separately. �

We continue with

Lemma 7.3. For each α ∈ [0,1], λm ∈ σ(H(α)).

Proof. By construction of N(um,α), the restriction of um to Ω(α) is indeed an eigenfunction of H(α). �
We recall, see the two first lines of this subsection, that we are inside a proof by contradiction and consider first the

following case.

5 We thank P. Stollmann and M. Dauge for useful discussions.
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Case (a): λm is simple.

Lemma 7.4. There is a minimal α1 ∈ (0,1) such that

λ1(α1) < λ2(α1) � · · · � λm−1(α1) = λm(α1), (7.8)

with λm(α1) = λm.

Proof. By assumption m > k and H(0) has m eigenvalues smaller or equal to λm whereas H(1) has just k eigenvalues
smaller or equal to λm, hence less. By continuity with respect to α at least one eigenvalue has to become larger
than λm. �

Next we consider this eigenvalue of H(α1). The restriction of um to Ω(α1) gives a first eigenfunction but there
exists a second real valued normalized eigenfunction v of H(α1) such that v is orthogonal to um in L2(Ω(α1)):

〈um|v〉 = 0, (7.9)

where 〈·|·〉 denotes the L2-scalar product.
We now play inside the two-dimensional eigenspace spanned by um and v.

Lemma 7.5. There exists β0 > 0, such that ∀β ∈ (−β0,+β0) the function wβ = um +βv has exactly k nodal domains.
Furthermore, the family of the nodal domains of wβ gives, for β 	= 0, a minimal bipartite partition of Ω , which is

distinct of the partition associated to N(um).

Proof. We recall that this construction is done for α = α1 ∈ (0,1). For each A ∈ A, let

IA := L
(
A, (−1 + α1,1 − α1)

)
,

and let VA ⊂ Ω be an open neighborhood of IA, whose regular boundary crosses N(um) twice (transversally) and
such that each component of the open set Ω(α1) \ ⋃

A∈A VA (which is contained in Ω(1)), is contained in a unique
nodal domain of um.

We assume that we have colored these nodal domains by + or −, and this permits us to write, for each A ∈ A, the
decomposition

∂VA ∩ Ω(α1) = b+
A ∪ b−

A,

where b±
A is contained in a positive or negative nodal domain of um.

The first claim is now that there exists β0 such that if we add βv, with |β| � β0, the number of nodal domains
of um + βv can only increase. Using Hopf’s boundary point lemma for u = um, [15], we have |∇um(x)| > 0 for
x ∈ (N(um)\N(um,α1))∩Ω and using the property that v vanishes at the boundary of Ω(α), we obtain the existence
of β0 such that um + βv is strictly positive on each b+

A and strictly negative on b−
A . It is then clear that associated to

each positive Di , there is at least one nodal domain of um + βv, with non-trivial intersection with Di and contained
in Di ∪ (∪AVA). All these nodal domains are necessarily disjoint and this proves the first claim.

Let us now show that we cannot increase the number of nodal domains. If it was the case, this would give an upper
bound for Lk+1 and using (5.1), we would obtain, using the strict monotonicity of the sequence L� (see (5.1)) with
respect to �, λm = Lk < Lk+1 � λm, hence a contradiction.

So wβ has also exactly k nodal domains corresponding also to a minimal k-partition D′ ∈ Ok of Ω . But D′ 	= D
since both functions, um and v (and hence wβ for β 	= 0) are linearly independent. In addition, one can verify that
G(D′) is bipartite. �

Now we can complete the proof of Theorem 1.17 for case (a). Indeed by Theorem 1.14, wβ (more precisely the
natural extension of wβ to Ω) is an eigenfunction of H = H(0) and therefore this would imply that λm has multiplicity
at least two, contradicting our assumption that λm is simple.

Remark 7.6. Note that for these proofs we only need weak versions of our results because we work only with strong
regular partitions (satisfying in addition the equal angle meeting property). So the techniques of [18] (as recalled in
Appendix B) are also relevant.
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In the non-simply connected case, if one wants to apply [18], one should also verify a global compatibility condition
for each homotopy class of Ω . Because wβ is an eigenfunction in Ω(α1), this is a consequence of the property that
any path in Ω is homotopic to a path in Ω(α1). It is then easy to verify this additional cycle-compatibility condition
introduced in [18], because wβ is an eigenfunction of H(α1).

Case (b): λm has multiplicity greater than one.
Assume that λm has multiplicity � > 1, so that the m + � first eigenvalues of H = H(0) satisfy:

λ1 < λ2 � · · · � λk � · · ·λm−1 < λm = · · · = λm+�−1 < λm+�. (7.10)

Of course, all the previous constructions can be done but arriving at the last line of case (a), we loose the contradiction.
The idea is that we have to choose our w more carefully.

λm being an eigenvalue of H(α) for any α, we can associate to λm the eigenspace U(α,λm) of H(α). Inside
U(α,λm), we then introduce the subspace U(α,λm) consisting of functions which are restrictions to Ω(α) of eigen-
functions of H(Ω). Of course, U(α,λm) contains um but could be larger.

We then need to show the following lemma.

Lemma 7.7. For α = α1, the inclusion of U(α1, λm) in U(α1, λm) is strict.

Proof. For any α < α1, we can choose a normalized vα in U(α,λm−1(α)). Then it is clear, observing that λm−1(α) <

λm, that

• vα is orthogonal in L2(Ω(α)) to U(α1, λm) which is (more precisely, can be identified to) a subspace of U(α,λm)

for any α < α1.
• vα is bounded independently of α in W 1,2(Ω(α1)).

Then we can by compactness, find a sequence wα(n) such that α(n) tends to α1 as n → +∞ and vα(n) converges
weakly to some vα1 in W 1,2(Ω(α1)) and strongly in W 1,s(Ω(α1)) for s < 1 by compactness.

Now, it is clear that

• vα1 is orthogonal to U(α1, λm).
• ‖vα1‖ = 1.
• (−� + V )vα1 = λmvα1 in Ω(α1).

With a small additional work, one can show that vα1 ∈ W
1,2
0 (Ω(α1)). So vα1 is effectively in the form domain for

the Dirichlet problem in Ω(α1) and in U(α1, λm) ∩ U(α1, λm)⊥. �
End of the proof of case (b).
The argument is then as in case (a), but, using Lemma 7.7, we can choose a non-trivial v in U(α1, λm)\U(α1, λm).

But on one hand wβ cannot belong to U(α1, λm) (because v does not). On the other hand, we have obtained some β 	=
0 such that wβ extends as an eigenfunction of H(Ω) hence by definition in U(α1, λm) and this gives the contradiction.

Theorem 1.17 has an immediate consequence.

Corollary 7.8. Let Ω satisfy Assumption 1.1 and assume that V ∈ L∞(Ω). Then∣∣{k | Lk = Lk}
∣∣ < ∞. (7.11)

Proof. This is an immediate consequence of Theorem 1.17 and of Pleijel’s Theorem 6.3. �
Remark 7.9. It is now easier to analyze the situation for the disk and for rectangles (at least in the irrational case),
since we have just to check for which eigenvalues one can find associated Courant-sharp eigenfunctions. This will be
done in Sections 9 and 10.
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8. Further properties of subpartitions

All the statements of this section illustrate the rigidity of the structure of the subpartitions. This can be very efficient
for disproving that a partition is minimal. In particular we will prove Theorem 1.13.

The following proposition is useful:

Proposition 8.1. Under Assumptions 1.1 and 1.2, let D = (Di)i∈{1,...,k} be a minimal k-partition for Lk(Ω). Then, for
any subset I ∈ {1, . . . , k}, the associated subpartition DI = (Di)i∈I satisfies

Lk = Λ
(

DI
) = L|I |

(
ΩI

)
, (8.1)

where

ΩI := Int

(⋃
i∈I

Di

)
.

Proof. We prove this proposition by contradiction. If it was not the case, we would construct (starting of a minimal
|I |-partition of ΩI ) a new minimal partition D̃ of Ω , for which the λ(D̃i)’s are not equal in contradiction with what
we proved in Section 4 (see also (d) in Remark 3.7 together with the fact that k0 = ∅ in our case). �

As a consequence of a more general theorem in [4], we have (with very weak assumptions on Ω) the analogous of
Proposition 8.1

Proposition 8.2. Suppose u is Courant-sharp. Denote the associated nodal domains by {Di}k1. Let L be a subset of

{1,2, . . . , k} with #L = � < k and let ΩL = Int(
⋃

i∈L Di) \ ∂Ω . Then

λ�

(
ΩL

) = λk (8.2)

where λj (Ω
L) are the eigenvalues of H(ΩL).

Moreover, if ΩL is connected, u|ΩL is Courant-sharp and λ�(Ω
L) is simple.

Proposition 8.3. Under the assumptions of the introduction on Ω and V , let D = (D1, . . . ,Dk) be a minimizing
partition associated to Lk . Let D′ ⊂ D be any subpartition into 1 � k′ � k elements which is bipartite relatively to

Ω ′ := Int

( ⋃
Di∈D′

Di

)
.

Then

(a) Lk = λk′(Ω ′);
(b) If k′ < k, and Ω ′ is connected then λk′(Ω ′) is simple.

Proof. The point (a) is shown like Theorem 1.14 at the end of Section 4. The proof of (b) is an immediate consequence
of Proposition 8.2, if we add the assumption that there exists a bipartite subpartition D′′ such that D′ ⊂ D′′ ⊂ D with
k′ < k′′ � k.

The general proof is a little more tricky. Given the minimal partition D of Ω , and the subpartition D′ (with associ-
ated bipartite graph), there is a subfamily A0 of the set A of arcs, which are supposed to be closed (see the discussion
in Section 7) with the following properties

• Ω̃ := Ω \ A0 has for the same partition a bipartite graph relatively to Ω̃ ;
• A0 does not contain arcs belonging to the intersection of the boundaries of two neighbors of D′ in Ω ′.

But we are in a Courant-sharp situation, so

Lk(Ω) = Lk(Ω̃) = λk(Ω̃), (8.3)



B. Helffer et al. / Ann. I. H. Poincaré – AN 26 (2009) 101–138 131
and we can apply the Courant-sharp theorem relatively to Ω̃ and the partition D (which is now the nodal family
associated to an eigenfunction on Ω̃). �
Remark 8.4. In the preceding proof, Ω̃ is not unique, but it is interesting to emphasize that what we have shown is
that, once a minimal k-partition of Ω is given, then all the possible Ω̃’s should share the property (8.3).

In order to complete the proof of Theorem 1.13, it remains to establish our uniqueness result at the level of the
subpartitions of a minimal partition.

Proposition 8.5 (Uniqueness). Let D be a minimal k-partition relative to Lk(Ω). Let D′ ⊂ D be any subpartition of
D into 1 � k′ < k elements and let

Ω ′ = Int

( ⋃
Di∈D′

Di

)
,

be connected. Then Lk′(Ω ′) is uniquely achieved.

We know already from Proposition 8.1 that Lk′(Ω ′) = Lk(Ω). The proof of uniqueness is by contradiction. Let I

and J two subsets of {1, . . . , k} such that I ∩ J = ∅ and I ∪ J = {1, . . . , k}.
If we have indeed two minimal subpartitions of ΩI for some I of cardinality strictly less than k, we can complete

them by the open sets Dj (j ∈ J ). Now take a pair (Di,Dj ), with i ∼ j (i ∈ I and j ∈ J ). This should exist if Ω

is connected and ΩI is connected. There is necessarily another D̃
ĩ

of the other partition which meets Di and is a
neighbor of Dj . But the eigenfunction uij of Dij and ũij of D̃ij should be proportional on Dj to uj . It is then clear
that by unique continuation Di should coincide with D̃i and ui should be proportional to ũi . Possibly iterating the
argument, we arrive to a contradiction when the two partitions are different.

9. Example 1: The case of the disk

In this section, we analyze the case of the disk. Although the spectrum is explicitly computable, we are mainly
interested in the ordering of the eigenvalues corresponding to different angular momenta. In particular this will give a
first example where the inequalities in (5.5) can be strict.

Consider the Dirichlet realization H0 in the unit disk B1 ⊂ R
2. We have in polar coordinates:

−� = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂θ2
,

and the Dirichlet boundary conditions require that any eigenfunction u satisfies u(r, θ) = 0 for r = 1. We analyze for
any � ∈ N the eigenvalues λ�,j of(

− d2

dr2
− 1

r

d

dr
+ �2

r2

)
f�,j = λ�,j f�,j , in (0,1).

We observe that the operator is self adjoint for the scalar product in L2((0,1), r dr).
The corresponding eigenfunctions of the eigenvalue problem take the form

u(r, θ) = f�,j (r)(a cos�θ + b sin�θ), with a2 + b2 > 0, (9.1)

where the f�,j (r) are suitable Bessel functions satisfying for � = 0, f ′
0,j (0) = 0 and f0,j (1) = 0 and for � > 0,

f�,j (0) = f�,j (1) = 0. For the corresponding λ�,j ’s, we find (see in Appendix A) the following ordering.

λ1 = λ0,1 < λ2 = λ3 = λ1,1 < λ4 = λ5 = λ2,1 < λ6 = λ0,2 < λ7 = λ8 = λ3,1 < · · ·
· · · < λ9 = λ10 = λ1,2 < λ11 = λ12 = λ4,1 < · · ·
· · · < λ13 = λ14 = λ2,2 < λ15 = λ0,3 < · · · . (9.2)

We recall that the zeros j�,k of the Bessel functions are related to the eigenvalues by the relation

λ�,k = (j�,k)
2. (9.3)
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Fig. 3. The candidate for the 3-minimal partition of the disk and associated graph.

We hence have from (9.1)

μ(u1) = 1,

μ(u) = 2, for any eigenfunction u associated to λ2 = λ3,

μ(u) = 4, for any eigenfunction u associated to λ4 = λ5,

μ(u6) = 2,

μ(u) = 6, for any eigenfunction u associated to λ7 = λ8,

μ(u) = 4, for any eigenfunction u associated to λ9 = λ10,

μ(u) = 8, for any eigenfunction u associated to λ11 = λ12,

μ(u) = 8, for any eigenfunction u associated to λ13 = λ14,

μ(u15) = 3.

(9.4)

Hence

L1 = λ1, L2 = λ2, L3 = λ15, L4 = λ4 (9.5)

and this implies

L3 > λ6 > L4 > λ3. (9.6)

In addition, let us show that

L3 > L3. (9.7)

This can be seen as follows. We can split B1 in three sectors with opening angle 2π/3. Call such a sector S1/3 then
the corresponding eigenvalue λ(S 1

3
) (whose approximate eigenvalue can be recovered from (A.5) with � = 1

2 , j = 1

and from (9.3)) satisfies:

L3 � λ(S 1
3
).

We then observe that by monotonicity that:

λ(S 1
3
) < λ(S 1

4
)

and we can recognize that λ(S 1
4
) = λ4 observing that λ4 = λ�,j with � = 2 and j = 1 (see (9.1)). The proof of (9.7) is

then a consequence of (9.6).
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Remark 9.1. An open problem is to prove or disprove the equality L3 = λ(S 1
3
).

A possibility for trying to find other configurations could be to look at the second eigenvalue of a half disk problem
{(x2

1 +x2
2) < 1}∩{x2 > 0}, where we take Dirichlet on the circular part and a part of the straight basis and Neumann on

the other part. More precisely, we take Neumann on x2 = 0, |x1| < t , where t is a free parameter. The nodal domains
of the second eigenfunction (completed by symmetry) could give an alternative candidate for such a minimal partition.

In the case of the disk, we have

Proposition 9.2. Except the cases k = 1, 2 and 4, minimal partitions never correspond to nodal domains.

Proof. According to Theorem 1.17, it is enough to investigate when the k-th eigenvalue corresponds to Courant-sharp
eigenfunctions. �

One can in addition use the twisting trick (as done in [20]) for eliminating all the eigenvalues λ�,m, for which m � 2
and � > 0. This trick goes roughly as follows. When � > 0, we can divide the disk as the union of a smaller disk and
of its complementary, each of these sets being the union of at least two nodal domains. Then by small rotation of the
small disk, we obtain a new partition which has the same energy. If the initial one was minimal, the new one should be
also minimal, but it is easy to show that the new one has not the “equal angle meeting” property of a regular partition.
This gives the contradiction.

So we have finally to analyze the eigenvalues λ0,k and the family λ�,1.
For the first family, we observe that λ0,k can neither be the k-th eigenvalue as soon as k � 2.
For the second family, which occurs only for k = 2� even, inspection of the tables leads to the condition k � 4, we

observe indeed that λ0,2 < λ3,1.
We also observe that when k is odd, we obtain that necessarily Lk = λ0,k .

Remark 9.3. It could be interesting to determine when Lk is an eigenvalue of the Laplacian on the double covering.
Again, one can show (as done in [20]) that this cannot be the case for k large.

10. Example 2: the case of the rectangle

Note that for the case of a rectangle, the spectrum and the properties of the eigenfunctions are analyzed as toy
models in [25], Section 4. This was also used for testing general conjectures in [4].

For a rectangle of sizes a and b, the spectrum is given by π2(m2/a2 + n2/b2) ((m,n) ∈ (N∗)2).

The first remark is that all the eigenvalues are simple if a2

b2 is irrational. Except for specific remarks for the square,
we now assume

(a/b)2 is irrational.

So we can associate to each eigenvalue λm,n, an (essentially) unique eigenfunction um,n such that μ(um,n) = nm.
Given k ∈ N

∗, the lowest eigenvalue corresponding to k nodal domains is given by

Lk = π2 inf
mn=k

(m2/a2 + n2/b2).

The behavior of Lk can depend dramatically of the arithmetical properties of k but what is important for us is that
in any case we have

Lk � 2π2k/(ab). (10.1)

This immediately implies

lim inf
k→+∞

Lk

k
� 2π2

ab
. (10.2)

We note that the right-hand side can also be written in the form λ([0,1]2)/|Ω|.
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Remark 10.1. Note that these estimates are much better than the estimates obtained by Faber–Krahn inequality (see
in Section 6).

As we have seem in (6.7) and using6 the comparison between the lowest eigenvalue of the hexagon and of the
square,

λ(Hx1) ∼ 18.59013 < λ
([0,1]2) = 2π2 ∼ 19.7392, (10.3)

this will imply

lim inf
k→+∞

Lk

k
> lim sup

k→+∞
Lk

k
. (10.4)

This implies that Lk > Lk for k large.

Remark 10.2. In the case when ( a
b
)2 is rational we could have problems in the case of multiplicities. We have then to

control the nodal sets of the eigenfunctions corresponding to the degenerate eigenvalues which are � Lk .

We now describe all the possible situations.

Lemma 10.3. In the irrational case, λm,n cannot lead to a Courant-sharp situation if inf(m,n) � 3.

Proof. Applying Proposition 8.2, it is sufficient to analyze the case when m = n = 3. It is then enough to show that
λ3,3 cannot be the ninth eigenvalue.

Because the eigenvalues corresponding to max(m,n) � 3 are obviously below λ3,3, let us assume by contradiction
that λ3,3 � λ1,4 and that λ3,3 � λ4,1.

This reads

9

a2
+ 9

b2
� 1

a2
+ 16

b2
,

and

9

a2
+ 9

b2
� 1

a2
+ 16

b2
.

So, we obtain

8

7
� a2

b2
� 7

8
,

hence a contradiction. �
The next step is given in

Lemma 10.4. In the irrational case, λm,n cannot lead to a Courant-sharp situation if m = 2 and n � 4 or if m � 4
and n = 2.

Again it is enough to look at the case (m = 2, n = 4), and to show that it cannot be the eighth eigenvalue. Using
the same idea as in the previous lemma, we assume by contradiction that λ2,4 � λ1,5 and that λ2,4 � λ3,1.

This reads

4

a2
+ 16

b2
� 1

a2
+ 25

b2
,

6 We thank V. Bonnaillie-Noël and G. Vial for giving us a precise numerical approximation of λ(Hx1). According to A. El Soufi, it seems
unknown that the hexagon gives the minimal eigenvalue between all the polygons (of same area) permitting to realize a perfect partition of the
plane. We just compare here the square and the hexagon.
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and
4

a2
+ 16

b2
� 9

a2
+ 1

b2
.

So, we obtain

1

3
� a2

b2
� 1

3
.

But this gives a2

b2 = 1
3 , which is excluded by the assumption that a2

b2 is irrational.
Let us now analyze the Courant-sharp property for the remaining cases.

In the case m = 2, n = 3, an eigenfunction corresponding to λm,n is Courant-sharp if

4

a2
+ 9

b2
� 9

a2
+ 1

b2
,

and
4

a2
+ 9

b2
� 1

a2
+ 16

b2
.

So, we obtain

8

5
� a2

b2
� 5

3
.

The case m = 3, n = 2, is obtained by exchanging the role of a and b. So, we obtain

8

5
� b2

a2
� 5

3
.

In the case m = 2, n = 2, we obtain similarly

3

5
� a2

b2
� 5

3
.

For the case m = 1, n = k, we obtain

1

a2
+ k2

b2
� 4

a2
+ 1

b2
.

So, we obtain simply

k2 − 1

3
<

a2

b2
.

Finally, the case m = k, n = 1 leads to the condition

k2 − 1

3
<

b2

a2
.

A candidate for the 3-minimal partition on the square.
In the case of the square (− 1

2 , 1
2 ) × (− 1

2 , 1
2 ) , an argument similar to the case of the disk shows that L3 (which

should be smaller than L4) is strictly less than L3. We observe indeed that λ4 is Courant-sharp, so L4 = λ4, and
there is no eigenfunction corresponding to λ2 = λ3 with three nodal domains (by Courant’s theorem). Assuming
that there is a minimal partition which is symmetric with {y = 0}, and intersecting the partition with the half-square
(− 1

2 , 1
2 ) × (0, 1

2 ), one is reduced to analyze a family of Dirichlet–Neumann problems. Numerical computations7

performed by V. Bonnaillie-Noël (in January 2006) and G. Vial lead to a natural candidate (see Fig. 4) for a symmetric
minimal partition.

The complete structure is recovered from the half-square by symmetry with respect to the horizontal axis. We
observe numerically that the three lines of N(D) meet at the center (0,0) of the square. As expected by the theory
they meet at (0,0) with equal angle 2π

3 and start from the boundary orthogonally.

7 See http://www.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions/.
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Fig. 4. The candidate for the minimal 3-partition of the square (upper part).
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Appendix A. Zeros of Bessel functions

Let j�,k the k-th zero of the Bessel function corresponding to the integer � ∈ N. The reference is the book by
G.N. Watson [33]. The most important statement for us is that j�,k = j�′,k′ imply if � and �′ are positive integers, that
� = �′ and k = k′. We refer to the subsection 15.28 (pp. 484–485) in [33]. Note that the proof of this result is based on
deep results by Siegel about algebraic numbers.

Here is a list of approximate values after the handbook of [1], p. 409, we keep only the values which are less than
approximately 13.

� = 0 1 2 3 4 5 6 7 8
k = 1 2.40 3.83 5.14 6.38 7.59 8.77 9.93 11.08 12.22

2 5.52 7.02 8.42 9.76 11.06 12.34 .

3 8.65 10.17 11.62 13.02 ..

4 11.79 13.32 .

(A.1)

This leads to the following ordering of the zeros:

j0,1 < j1,1 < j2,1 < j0,2 < j3,1 < j1,2 < j4,1 < j2,2 < j0,3 < · · ·
· · · < j5,1 < j3,2 < j6,1 < j1,3 < j7,1 < j2,3 < j0,4 < j8,1.

(A.2)

Note that, using Sturm–Liouville theory (see for example the proof in [33]), the following inequalities are always
true:

j�,k < j�+1,k < j�,k+1, ∀� ∈ R
+, ∀k ∈ N

∗. (A.3)

As a corollary, we obtain

j�,k � j0,k+�, (A.4)

with strict inequality for � > 0.
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It is also useful, for the analysis of the problem for the double covering of the disk, to have the half integer results
(see in [1], p. 467).

� = 1
2

3
2

5
2

7
2

9
2

11
2

13
2

k = 1 π 4.49 5.76 6.99 8.18 9.36 10.51
2 2π 7.73 9.09 10.42 11.7
3 3π 10.9 12.52 13.69 ..

4 4π 14.06

(A.5)

Appendix B. Alternative approach in the regular case

Although not needed in this article, we recall some of the results of statements of [18,19]. The main theorem is the
following

Theorem B.1. Suppose that Ω is regular and simply connected and that, for some regular closed set N sat-
isfying in addition the “equal angle meeting condition”. Suppose that, for some λ ∈ R, the associated family
D(N) = {D1, . . . ,Dμ} is admissible and satisfies a Pair Compatibility Condition, which means that λ is an eigenvalue
of H(Di,j ) for which Di and Dj are the two nodal domains of some corresponding eigenfunction. Then there is an
eigenfunction u of H(Ω) with corresponding eigenvalue λ such that the family of nodal domains of u is D(N).

Remarks B.2.

• If Ω is not simply connected then the result does not hold in general. One should add a non-holonomy condition
(see [19]). In the case of minimal partitions, we have seen that this condition is reduced to the bipartite condition.

• Note that the Pair Compatibility Condition is weaker than to assume that λ is the second eigenvalue of H(Di,j )

for each pair of neighbors (Di,Dj ).

As an application of this theorem, the authors obtain:

Corollary B.3. Let Ω be simply connected, k ∈ N (k � 2) and let Dmin = (Di)i=1,...,k be a minimal admissible strong
regular8 partition. Then there is an eigenfunction u of H(Ω) associated with

λ = max
i

(
λ(Di)

)
,

such that Dmin is the family of the k nodal domains of u.

Proof. Let us apply Theorem B.1. We take as λ = maxi (λ(Di)).
The first point is that all the λ(Di) should be equal. If not, one could by deformation of the Di ’s in a neighborhood

of regular points of their boundary find a new partition D̃, which would decrease maxi (λ(Di)).
The second point is to observe that considering two neighbors Di and Dj , then λ should be the second eigenvalue

of H(Di,j ). If it was not the case for some pair (i, j), the two nodal domains of the second eigenfunction of H(Di,j )

will give two new open sets D′
i and D′

j with λ(D′
i ) = λ(D′

j ), in contradiction with the assumption of minimality and
the first point of the proof.

Hence the Pair Compatibility Condition is satisfied. �
Remark B.4. As mentioned in the introduction, the case where k = 2 corresponds to a rather well known charac-
terization of the second eigenvalue of H(Ω). The admissibility condition is of course automatically satisfied in this
case.

8 The notion of regularity was actually stronger there, but the Pair Compatibility Condition gives actually some regularity assumption on the
boundaries.
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