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Abstract

Given a connected compact Riemannian surface (M,g), f an absolutely continuous function satisfying f � f ′ > 0 and a real
parameter α, we deal with classical solutions of{−�gu = f (u) − α in M,

∂u
∂n

= 0 on ∂M.

We prove that any non-constant solution of the above problem satisfies∫
M

f (u) � 8π inf
s∈(0,vol(M))

{
I2
M

(s)

I2
SM

(s)

}
,

where IM and ISM
denote respectively the isoperimetric profile of M and of the standard two-dimensional sphere having same

measure than M (see Definition 2.1 below). This inequality is applied to derive new uniqueness results for mean field type equations.
A similar result for linear problems is established and gives lower bounds for the first non-zero Neumann eigenvalue.
© 2007

Résumé

Étant donnée une surface Riemannienne compacte connexe (M,g), f une fonction absolument continue satisfaisant f � f ′ > 0
et un paramètre réel α, nous considérons les solutions classiques du problème de Neumann décrit ci-dessus. Nous prouvons que
toute solution non-constante vérifie∫

M

f (u) � 8π inf
s∈(0,vol(M))

{
I2
M

(s)

I2
SM

(s)
t

}
,

où IM et ISM
dénotent respectivement les profils isopérimétriques de M et de la sphère canonique bi-dimensionelle ayant même

mesure que M . Cette inégalité est appliquée pour dériver de nouveaux résultats d’unicité pour des équations du type champs moyen.
Un résultat similaire est établi pour des problèmes linéaires et permet de dériver diverses bornes inférieures sur la première valeure
propre non-nulle.
© 2007
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1. Introduction

Consider a Riemannian surface (M,g) and a function f : R → (0,∞) satisfying the assumptions:

(H1) (M,g) is a connected compact oriented two-dimensional Riemannian manifold of class C2 with a piecewise C1

boundary ∂M (possibly empty);
(H2) f is absolutely continuous, strictly increasing and f > 0.

Under these requirements the present paper deals with the problem⎧⎨⎩
−�gu = f (u) − α,

u ∈ C2(M \ ∂M) ∩ C1(M),
∂u
∂n

= 0 on ∂M,
(1.1)

where α ∈ R, and �g stands for the Laplace–Beltrami operator given in local coordinates by

�gu = |g|−1/2 ∂

∂xi

(
|g|1/2gij ∂u

∂xj

)
with |g| = detgij . The surface M can be with or without boundary, and in the second case the Neumann boundary
condition in (1.1) is irrelevant. Integrating Eq. (1.1) on the surface M , we get the natural identity

α|M| =
∫
M

f (u). (1.2)

Relation (1.2) shows that any constant function trivially solves problem (1.1). The aim of the present work is to find,
within the class of non-constant solutions, a lower bound for (1.2) which depends on the geometry of the surface M .

Our motivation for getting such a priori bound is driven by the wish to understand the uniqueness of solutions to
non-local problems of the type

−�gu = λ

(
eu∫
M

eu
− 1

|M|
)

,
∂u

∂n
= 0 on ∂M, (1.3)

or

−�gu = λ

( [u2 + 1]∫
M

[u2 + 1] − 1

|M|
)

,
∂u

∂n
= 0 on ∂M, u � 0. (1.4)

In these problems the constant functions are solutions, and one would like to know for which range of the parameter
λ they are the only solutions. Notice that a given non-constant function u solving the non-local problem (1.3) can be
considered as a solution of (1.1) by defining

C := λ∫
M

eu
, f (s) := Ces , α := λ

|M| ,

and similarly for (1.4). Hence a lower a priori estimate for (1.2) in the class of non-constant solutions gives immedi-
ately a necessary condition on λ to ensure existence of non-trivial solutions in problems (1.3)–(1.4).

Problem (1.3) is of relevance in several fields. Non-linear PDE involving exponential non-linearity had already
been brought to our attention by Liouville in [34], who was certainly interested in the problem of prescribing constant
curvature on a domain of R

2. On the standard 2-sphere, with λ = 8π , Eq. (1.3) is precisely the problem of finding
the conformal metrics ḡ = eug having constant Gaussian curvature. This is a special case of the commonly called
“Nirenberg Problem” which has been extensively studied by Moser [39], Kazdan and Warner [27] and others; we
refer to [8] for a more detailed discussion. In statistical mechanics Caglioti et al. [7] and independently Kiessling [28]
have shown that the asymptotical behavior of the Gibbs measure associated to a system of particles contained in a
domain of R

2 and having logarithmic interactions leads to the equation

−�u = λ
eu∫

eu
, u ∈ H 1

0 (Ω). (1.5)

Ω
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But similar consideration on manifold lead naturally to Eq. (1.3) (see [29]). Both problems (1.3) and (1.4) turn out
also to be of interest in several models of chemotaxis [22–24].

In both works [28] and [7] it has been noted that problem (1.5) always admits a solution in the range λ < 8π .
For simply connected domains of R

2, Suzuki proved in [45] that uniqueness holds in the range λ < 8π . The crucial
point in his arguments is the property that the first eigenvalue of the linearized operator is greater or equal to 8π .
Suzuki’s arguments use the Dirichlet boundary conditions and rely mainly on the Bol’s inequality (see [2,45]), an
isoperimetric inequality available for simply connected domain. At the critical value 8π , the problem does not always
have a solution, but Chang et al. [10] have improved Suzuki’s result by showing that there is at most one solution,
still under the assumption that the domain is simply connected. A careful inspection of the arguments of [45] and [10]
shows that the semilinear equation (1.3) with zero boundary condition on a bounded simply connected domain of R

2

admits only u ≡ 0 as a solution whenever λ � 8π . In [36] we were able to prove this same result without restriction
on the topology of the domain M � R

2.
On a manifold or when the boundary condition is of Neumann type, the proof of uniqueness requires new ar-

guments. On the standard sphere the successive works of Onofri [41], Hong [21], Chanillo and Kiessling [11] and
Lin [31] have shown that the constant functions are the unique solution for problem (1.3) whenever λ < 8π . In [32],
we proved that for some flat torus the constants are the unique solutions whenever λ � 8π . Typically the result holds
when the period cell is a square. Concerning problem (1.4) nothing seems to be known about uniqueness of solutions.

Problems (1.3) and (1.4) are quite different in nature. For example the first is the Euler–Lagrange equation of the
functional

J :E → R, u �→ 1

2

∫
M

|∇u|2 − λ log

(
1

|M|
∫
M

eu

)
, (1.6)

where E := {u ∈ H 1(M):
∫
M

u = 0}. The fact that the functional (1.6) is well-defined and smooth is a consequence of
the Moser–Trudinger inequality [39,17]. But this is not anymore the case for problem (1.4) which does not admit any
variational formulation. Nevertheless we shall see how the approach used in [36,32] can be extended and successfully
used to handle in a unified way the question of uniqueness for both problems (1.3) and (1.4).

In order to state our results we introduce the surface

SM = canonical 2-sphere having same measure than M,

and denote by IM the isoperimetric profile of M whose definition is recalled in the next section (see Definition 2.1).
With these notations the main result of this paper reads as follows:

Theorem 1.1. Assume (H1), (H2) hold. Then any non-constant solutions u of problem (1.1) satisfies∫
M

f (u) � 8π

∫ ∞
−∞ f (t)I 2

M(V (t)) dt∫ ∞
−∞ f ′(t)I 2

SM
(V (t)) dt

, (1.7)

where V (t) := |{x ∈ M: u(x) > t}|.

Theorem 1.1 immediately implies the following result that will have interesting consequences:

Proposition 1.2. Assume (H1), (H2) hold and

f (s) � f ′(s) > 0, ∀s ∈ R. (1.8)

Then any non-constant solution of problem (1.1) satisfies∫
M

f (u) � 8π inf
s∈(0,|M|)

{
I 2
M(s)

I 2
SM

(s)

}
. (1.9)

Note that in the above results the derivative of f exists almost everywhere since in (H2) we assume f to be
absolutely continuous.
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In [32] a weaker version of Theorem 1.1 has been established for the specific problem (1.3) on a flat torus. In
this previous work the analyticity of the exponential function and of the manifold (a torus) was used. The purpose
of this paper is to refine these arguments in order to assume only (H1)–(H2), and to present several applications of
Theorem 1.1 that go much beyond the case considered in [32]. For example if the surface is a sphere Sκ of curvature κ ,
Proposition 1.2 implies∫

Sκ

f (u) � 8π,

for any non-constant solution u of problem (1.1). In particular we recover the result of [41,21,11,31] stating that, on the
standard sphere, the constant functions are the unique solutions of problem (1.3) whenever λ < 8π . But the present
paper shows that this uniqueness result is not restricted to the exponential non-linearity but applies also to (1.4).
Actually by making use of the Lévy–Gromov inequality [20], we are even able to generalize these previous results as
follows:

Proposition 1.3. Let M be a surface without boundary satisfying (H1) with Gauss curvature bounded from below by
κ > 0. Assume f satisfies (H2) and (1.8). Then any non-constant solution u of problem (1.1) satisfies∫

M

f (u) � 2κ|M|. (1.10)

Furthermore if equality holds in (1.10) for some non-constant solution u, then M is isometric to the sphere SM .

Note that in the case of a standard two-dimensional sphere, the lower bound in (1.10) is precisely 8π . In this paper
we will present beside Proposition 1.3 other examples for which similar explicit lower bounds can be derived. On
bounded domain of R

2 we will treat among other things discs, rectangles and triangles. In this latter case we shall see
that our conclusion is optimal.

But our approach has also quite interesting consequences on the linear problem⎧⎨⎩
−�gu = λu,

u ∈ C2(M \ ∂M) ∩ C1(M),
∂u
∂n

= 0 on ∂M.
(1.11)

Though this problem does not fit directly in the framework of Theorem 1.1, by exploiting the linearity one can derive
from inequality (1.7) the following:

Theorem 1.4. Let M be a surface satisfying (H1). Then any eigenfunction ϕ with associated eigenvalue λ > 0 satisfies

λ|M| � 8π

∫ ∞
−∞ I 2

M(V (t)) dt∫ ∞
−∞ I 2

SM
(V (t)) dt

, (1.12)

where V (t) := |{x ∈ M: ϕ(x) > t}|.

As a consequence we derive a lower bound on the first non-zero eigenvalue:

Proposition 1.5. Assume (H1) holds and let λ be a positive eigenvalue of problem (1.11). Then

λ|M| � 8π inf
s∈(0,|M|)

{
I 2
M(s)

I 2
SM

(s)

}
. (1.13)

Applying Proposition 1.5 within the class of closed compact surface with Gauss curvature bounded from below
by 1, we get in dimension two an alternative proof of the well known Lichnerowicz–Obata Theorem. This and other
consequences will be discussed in detail in Section 5. An interesting feature of the present work is that the lower
bounds obtained in Propositions 1.2 and 1.5 for

∫
f (u) and respectively λ|M| are the same.
M
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The paper is organized as follows. In Section 2 we derive a differential inequality which involves the distribution
function of u, the function

∫
{u>t} f (u), and the isoperimetric profile of the surface. Based on this result we prove

in Section 3 the inequality stated in Theorem 1.1 and give a more precise version of Proposition 1.2. This main
theorem is applied in Section 4 on several manifolds and contains in particular the proof of Proposition 1.3. In a final
section we derive Theorem 1.4 from Theorem 1.1, and apply it to get a lower bound on the first non-zero Neumann
eigenvalue. We conclude with several results of uniqueness for the non-local problem (1.3) and discuss also in that
case the question of existence of non-trivial solutions.

2. A differential inequality

Denote by Hs the s-dimensional Hausdorff measure in M . Given ω ⊂ M , its perimeter relative to Mo := M \ ∂M

is defined as

P (ω,Mo) := H1(∂ω ∩ Mo),

and its area H2(ω) will be denoted by |ω|.

Definition 2.1. Consider the class M of open set ω ⊂ M such that ∂ω ∩ Mo is a 1-submanifold of class C1. The
“isoperimetric profile” of M is the function IM : [0, |M|] → (0,∞) defined as

IM(s) := inf
{

P (ω,Mo): ω ∈ M, |ω| = s
}
, ∀s ∈ (

0, |M|],
and we set IM(0) = 0.

Let us emphasize that the possible part of the boundary of ω lying in ∂M is not taken into consideration in the
above definition. We mention two properties of the isoperimetric profile that will be used in the sequel:

IM(s) = IM

(|M| − s
)
, ∀s ∈ [

0, |M|]; (2.1)

IM(s) = 0 ⇐⇒ s = 0 or s = |M|. (2.2)

The symmetry property (2.1) readily follows from the definition of isoperimetric profile, and for (2.2) we refer to [19].
In order to simplify the notations, we shall write {u > t}, {u < t}, {u = t} instead of {x ∈ Mo: u(x) > t}, {x ∈

Mo: u(x) < t} and {x ∈ Mo: u(x) = t}. Given a solution u of (1.1), we also introduce the following notations:

F(t) :=
∫

{u>t}
f (u), V (t) :=

∫
{u>t}

1, (2.3)

F̃ (t) :=
∫

{u<t}
f (u), Ṽ (t) :=

∫
{u<t}

1. (2.4)

We will need the following lemma.

Lemma 2.2.

(a) Assume (H1) is satisfied and f ∈ C0(R). Given a non-constant solution u of problem (1.1) we have

H2({u = t}) = 0, whenever f (t) �= α. (2.5)

In particular the functions defined in (2.3) and (2.4) are continuous on any closed interval of R \ f −1(α).
(b) Given a function Ψ ∈ C([a, b],R) which is differentiable a.e. with Ψ ′ � 0. Then Ψ is monotone increasing.

Proof. (a) Given a fixed t ∈ R, the set{
x ∈ Mo: u(x) = t, du(x) �= 0

}
is by the implicit function theorem a C1-submanifold and so has measure zero.
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To prove (2.5) we only need to study the set of critical points:

K0 := {
x ∈ Mo: du(x) = 0, f

(
u(x)

) �= α
}
.

Let p ∈ K0. Consider a system of Riemannian normal coordinates ϕ :U ⊂ Mo → B(0, ε), with ϕ(p) = 0. In these
coordinates we have

�gu(p) =
(

∂2(u ◦ ϕ−1)

∂x2
1

+ ∂2(u ◦ ϕ−1)

∂x2
2

)
(0) = α − f

(
u(p)

) �= 0.

Therefore without loss of generality we may assume ∂2(u◦ϕ−1)

∂x2
1

(0) �= 0. The implicit function theorem implies that the

set {x ∈ B(0, ε): ∂(u◦ϕ−1)
∂x1

(x) = 0} is a 1-submanifold in a neighborhood of 0. Hence the set K0 is a countable union
of 1-submanifold and so statement (2.5) follows.

(b) For the second statement we refer to [18] (p. 19 and p. 97). �
The main results of this section are the two differential inequalities given in the next proposition.

Proposition 2.3. Let M be a surface satisfying (H1) and f ∈ C0(R) a non-negative function differentiable a.e. Then
any solution u of (1.1) satisfies the following inequalities:

{αf V 2 − F 2}′(t) � αf ′(t)V 2(t) + 2f (t)I 2
M

(
V (t)

) ∀t ∈ R \ C, (2.6)

{αf Ṽ 2 − F̃ 2}′(t) � αf ′(t)Ṽ 2(t) + 2f (t)I 2
M

(
Ṽ (t)

) ∀t ∈ R \ C, (2.7)

where C := {u(x): x ∈ Mo,du(x) = 0}, the functions V,F, Ṽ , F̃ are defined by (2.3)–(2.4) and IM stands for the
isoperimetric profile of M .

Proof. Note that since u ∈ C2(Mo) and Mo is assumed to be a C2-manifold, Sard’s Theorem ensures that its set of
critical value C has Lebesgue measure zero in R.

Let us first prove (2.6). By Lemma 2.2, the functions F and V are continuous on R \ f −1(α). Therefore, by using
co-area formula (see [16], Proposition 3, p. 118), we obtain

V ′(t) = −
∫

{u=t}

1

|∇u| dH1 ∀t ∈ R \ C, (2.8)

F ′(t) = −
∫

{u=t}

f (u)

|∇u| dH1 = f (t)V ′(t) ∀t ∈ R \ C. (2.9)

Secondly, by integrating Eq. (1.1) on the set {u > t} and using Stokes’s Theorem, we obtain∫
∂{u>t}

|∇u|dH1 = F(t) − αV (t) ∀t ∈ R \ C. (2.10)

Since

∂{u > t} = (
∂{u > t} ∩ Mo

) ∪ (
∂{u > t} ∩ ∂M

)
= {u = t} ∪ (

∂{u > t} ∩ ∂M
)
,

and furthermore ∂M is either empty or u satisfies a Neumann boundary condition, the left-hand side of (2.10) can be
rewritten as:∫

∂{u>t}
|∇u|dH1 =

∫
{u=t}

|∇u|dH1.

Based on this observation, Eq. (2.10) yields

F(t) = αV (t) +
∫

|∇u|dH1 ∀t ∈ R \ C. (2.11)
{u=t}
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Using (2.11), (2.9) and Schwarz inequality together with the assumption f � 0, we derive:

−F(t)F ′(t) =
(

αV (t) +
∫

{u=t}
|∇u|

) ∫
{u=t}

f (t)

|∇u| ,

= f (t)

( ∫
{u=t}

|∇u|
)( ∫

{u=t}

1

|∇u|
)

− αf (t)V (t)V ′(t),

� f (t)

( ∫
{u=t}

dH1
)2

− αf (t)V (t)V ′(t). (2.12)

The definition of perimeter and of isoperimetric profile of M now implies∫
{u=t}

dH1 = P
({u > t},Mo

)
� IM

(
V (t)

)
. (2.13)

Hence (2.12) together with (2.13) yield

−F(t)F ′(t) � f (t)I 2
M

(
V (t)

) − αf (t)V (t)V ′(t) ∀t ∈ R \ C. (2.14)

Since

FF ′ = (F 2)′

2
and f V V ′ = f

(V 2)′

2
= 1

2

{
(f V 2)′ − f ′V 2},

we may rewrite (2.14) as:

1

2
{αf V 2 − F 2}′(t) � f (t)I 2

M

(
V (t)

) + α

2
f ′(t)V 2(t) ∀t ∈ R \ C.

This proves (2.6).
The proof of (2.7) follows the same line, but instead of (2.8), (2.9) and (2.11) one needs to use the identities

Ṽ ′(t) =
∫

{u=t}

1

|∇u| dH1, F̃ ′(t) =
∫

{u=t}

f (t)

|∇u| dH1,

F̃ (t) = αṼ (t) +
∫

{u=t}
|∇u|dH1. �

Remark 2.4.

(i) The idea of deriving a differential inequality for F and V as in the proof of Proposition 2.3 is inspired by some ar-
guments found in [2], and especially from the proof of Bol’s inequality as given by Suzuki in (Proposition 3, [45]).
In both of these works, the aim was to get estimates on functions v satisfying −�v � ev in a domain of R

2.
(ii) When f (s) = es we were in [32] (also in [36]) considering the level sets of eu (as in [2,45]). Here instead we have

worked with the level sets of the solution u. This allows us to relax the assumptions on the non-linearity f .

3. Comparison with the profile of the sphere

All our results will rely on the following integral inequality.

Theorem 3.1. Assume (H1)–(H2) hold. Given a solution u of (1.1), consider V defined in (2.3). Then

α

2

∞∫
−∞

f ′(t)V (t)
(|M| − V (t)

)
dt �

∞∫
−∞

f (t)I 2
M

(
V (t)

)
dt. (3.1)
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Proof. Let us set

t0 := min
M

u, t1 := max
M

u, FM :=
∫
M

f (u).

The result will follow by integrating the differential inequalities (2.6) and (2.7) on the interval (t0, t1) and then by
summing the both relations obtained in this way. More specifically consider the functions

Ψ := αf V 2 − F 2 and Ψ̃ := αf Ṽ 2 − F̃ 2.

Let us remind that by Lemma 2.2 the functions Ψ and Ψ̃ are continuous on any interval [a, b] ⊂ R \ f −1(α). But at
the value f −1(α) these functions may be discontinuous, which creates a technical difficulty when integrating (2.6)
or (2.7).

Step 1. Setting a := f −1(α) and a := {u = a}, we claim

Ψ (a+) − Ψ (a−) = 2f (a)|a |
(
F(a) − f (a)V (a)

)
� 0, (3.2)

Ψ̃ (a+) − Ψ̃ (a−) = 2f (a)|a |
(
f (a)Ṽ (a) − F̃ (a)

)
� 0, (3.3)

where Ψ (a±) := limε↓0 Ψ (a ± ε), Ψ̃ (a±) := limε↓0 Ψ̃ (a ± ε).
Indeed we check easily that (remind also f (a) = α):

Ψ (a+) = αf (a)V (a)2 − F(a)2 = f (a)2V (a)2 − F(a)2, (3.4)

Ψ (a−) = f (a)2(V (a) + |a |
)2 − (

F(a) + f (a)|a |
)2

. (3.5)

Relations (3.4), (3.5) and the assumption that f is increasing yield (3.2). The proof of (3.3) is similar.
Step 2. Let us prove that

t1∫
t0

Ψ ′ � F 2
M − αf (t0)|M|2, (3.6)

t1∫
t0

Ψ̃ ′ � αf (t1)|M|2 − F 2
M. (3.7)

We only prove (3.6) since the arguments for (3.7) are similar. Choose ε > 0. On one hand by Lemma 2.2 and assump-
tion (H2) the function Ψ is continuous in [t0, t1] \ f −1(α). Furthermore inequality (2.6) and the hypothesis f ′ � 0
show that Ψ ′ � 0 a.e. in [t0, t1]. Hence Lemma 2.2 implies that Ψ is monotone increasing on the intervals [t0, a − ε]
and [a + ε, t1]. By applying now ([35], Theorem 7.2.3, p. 159) we deduce that

t1∫
a+ε

Ψ ′ � Ψ (t1) − Ψ (a + ε) = −Ψ (a + ε), (3.8)

a−ε∫
t0

Ψ ′ � Ψ (a − ε) − Ψ (t0) = Ψ (a − ε) − (
αf (t0)|M|2 − F 2

M

)
. (3.9)

Therefore by adding (3.8) with (3.9), letting ε tend to zero and using (3.2), we obtain
t1∫

t0

Ψ ′ � Ψ (a−) − Ψ (a+) + (
F 2

M − αf (t0)|M|2) � F 2
M − αf (t0)|M|2,

which concludes the proof of inequality (3.6). The same arguments yield (3.7).
We may now conclude the proof of the statement (3.1). Integrating (2.6) on the interval (t0, t1) and taking into

consideration (3.6), we deduce

F 2
M − αf (t0)|M|2 �

t1∫ {
αf ′(t)V 2(t) + 2f (t)I 2

M

(
V (t)

)}
dt. (3.10)
t0
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Similarly, integrating (2.7) on the interval (t0, t1) together with (3.7) yield

αf (t1)|M|2 − F 2
M �

t1∫
t0

{
αf ′(t)Ṽ 2(t) + 2f (t)I 2

M

(
Ṽ (t)

)}
dt. (3.11)

Therefore, by adding (3.10) with (3.11), writing Ṽ = |M| − V and using that IM(V ) = IM(|M| − V ) we derive

α|M|2(f (t1) − f (t0)
)

�
t1∫

t0

αf ′(t)
{
V 2(t) + (|M| − V (t)

)2}
dt + 4

t1∫
t0

f (t)I 2
M

(
V (t)

)
dt,

= α|M|2
t1∫

t0

f ′(t) dt + 2α

t1∫
t0

f ′(t)V (t)
(
V (t) − |M|)dt + 4

t1∫
t0

f (t)I 2
M

(
V (t)

)
dt. (3.12)

Since f is absolutely continuous, inequality (3.12) yields:

0 � α

t1∫
t0

f ′(t)V (t)
(
V (t) − |M|)dt + 2

t1∫
t0

f (t)I 2
M

(
V (t)

)
dt,

or equivalently

α

t1∫
t0

f ′(t)V (t)
(|M| − V (t)

)
dt � 2

t1∫
t0

f (t)I 2
M

(
V (t)

)
dt,

which proves the proposition. �
Remark 3.2. It is not clear if the functions (2.3), (2.4) are absolutely continuous (see [4]). But if this is the case the
proof of previous theorem goes through for Lipschitz function without the restriction that f is strictly increasing.

So far all our results are, up to some obvious modifications, available in higher dimension. But in dimension two,
one term appearing in the conclusion of Theorem 3.1 can be identified as the isoperimetric profile of the canonical
sphere having same volume than the surface M . This leads to our Theorem 1.1:

Proof of Theorem 1.1. The isoperimetric profile of the two-dimensional canonical sphere Sκ of curvature κ is ex-
plicitly given by (see [42,12]):

I 2
Sκ

(s) = s(4π − κs) ∀s ∈ [
0, |Sκ |]. (3.13)

Therefore, in dimension two, the integrand appearing in the left-hand side of (3.1) can be rewritten using (3.13) as
follows:

V (t)
(|M| − V (t)

) = |M|
4π

V (t)

(
4π − 4π

|M|V (t)

)
= |M|

4π
I 2
Sκ

(
V (t)

)
,

with κ = |M|
4π

and note also that |Sk| = |M|. Therefore by considering the canonical two-dimensional sphere Sκ of
constant curvature κ having same volume than M , inequality (3.1) is equivalent to

α|M|
8π

∞∫
−∞

f ′(t)I 2
Sκ

(
V (t)

)
dt �

∞∫
−∞

f (t)I 2
M

(
V (t)

)
dt. (3.14)

We claim that the right-hand side of (3.14) is strictly positive. Indeed by (H2) we have f > 0, and since u is as-
sumed non-constant we easily derive from (2.2) that IM(V (t)) > 0 for t ∈ (minu,maxu). Therefore the left-hand
side of (3.14) is also strictly positive and conclusion (1.7) follows. �
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The previous theorem readily implies Proposition 1.2. We actually have the following more precise result:

Proposition 3.3. Let (H1)–(H2) be satisfied with f � f ′ > 0. Assume the isoperimetric profile satisfies for some γ > 0
the inequality:

I 2
M(s) � γ s

(|M| − s
)
, a.e. s ∈ [

0, |M|]. (3.15)

Then any non-constant solution u of problem (1.1) satisfies∫
M

f (u) � 2γ |M|,

and the inequality is strict whenever (3.15) is strict a.e.

In dimension strictly greater than two we cannot except to verify a condition like (3.15). Indeed under mild as-

sumptions it is known that IM(s) = O(s
n−1
n ), and therefore in such a case we get

inf
s∈(0,|M|)

I 2
M(s)

s(|M| − s)
= 0.

4. Isoperimetric bounds and L1-estimates

In this section we illustrate how Theorem 3.3 can be applied to estimate
∫
M

f (u) in problem (1.1). We first recall
one definition.

Definition 4.1. Let M be the class of open sets ω ⊂ M such that ∂ω ∩ Mo is a 1-submanifold of class C1. The
“relative isoperimetric constant” iM is defined by:

iM := inf
ω∈M

P (ω,Mo)

(min{|ω|, |M \ ω|})1/2
.

The next proposition gives several cases where it is possible to compare the isoperimetric profile of a surface with
the one of a sphere. Due to the symmetry of the isoperimetric profile, it is enough to state such bounds on the interval
(0, |M|/2). Other interesting estimates on IM can be found in [3].

Proposition 4.2. Let M be a surface satisfying (H1).

(a) If iM > 0 then(
IM(s)

s

)2

>
I 2
M(s)

s(|M| − s)
>

i2M
|M| , ∀s ∈

(
0,

|M|
2

)
. (4.1)

(b) Assume M is simply connected, ∂M = ∅ and denote by K its Gauss curvature. Then

I 2
M(s)

s(|M| − s)
�

(
8π

|M| − sup
M

K

)
, ∀s ∈

(
0,

|M|
2

]
, (4.2)

and inequality is strict whenever supM K > 4π
|M| .

(c) Lévy–Gromov inequality. Assume ∂M = ∅ and that its Gauss curvature is bounded from below by κ > 0. Then,

I 2
M(s)

s(|M| − s)
� κ, ∀s ∈

(
0,

|M|
2

]
. (4.3)

If equality holds for some s, then M is isometric to the canonical 2-sphere of curvature 4π
|M| .

(d) For a flat torus T with shortest closed geodesic length �, we have

I 2
T (s)

s(|T | − s)
>

{ 4π
|T | if |T |

�2 � 4
π
,

16 �2

|T |2 if |T |
�2 � 4

π
,

∀s ∈
(

0,
|T |
2

)
. (4.4)
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(e) If M is a rectangle R = [0, a] × [0, b] in R
2 (a � b), then

I 2
R(s)

s(|R| − s)
>

{
π
|R| if a

b
� 4

π
,

4
a2 if a

b
� 4

π
,

∀s ∈
(

0,
|R|
2

)
. (4.5)

(f) For a disc D ⊂ R
2 we have

I 2
D(s)

s(|D| − s)
>

16

π |D| , ∀s ∈
(

0,
|D|
2

)
. (4.6)

Furthermore relations (4.4)–(4.6) become an equality at s = |M|/2.

Proof. (a) The first inequality in (4.1) is obvious. Concerning the second, we note that the isoperimetric profile of a
surface can be bounded from below as follows:

IM(s) � iM |s|1/2, ∀s ∈
(

0,
|M|

2

]
. (4.7)

Using the lower approximation (4.7), for each s ∈ (0, M
2 ] we get

I 2
M(s)

s(|M| − s)
�

i2M
|M| − s

>
i2M
|M| . (4.8)

(b) Set κ := supM K . For a two-dimensional simply connected surface, recall that the following isoperimetric
inequality holds for any simply connected domain with C1-boundary [42]:[

H1(∂w)
]2 � |w|(4π − κ|ω|). (4.9)

Using the fact that the surface is simply connected and arguing as in (Lemma 4.2, [10]), inequality (4.9) holds also
for non-simply connected domain. Hence the isoperimetric profile of M can be bounded from below as follows:

I 2(s) � s(4π − κs). (4.10)

Therefore

I 2(s)

s(|M| − s)
� 4π − κs

|M| − s
. (4.11)

By applying Gauss–Bonnet Theorem we note that

4π =
∫
M

K � κ|M|.

Hence

(i) if κ|M| > 4π the function in the right-hand side of (4.11) is strictly decreasing on the interval (0,
|M|

2 );
(ii) if κ|M| = 4π , the right-hand side of (4.11) is identically equal to 4π

|M| .

Thus in case (i) we get

I 2(s)

s(|M| − s)
>

8π − κ|M|
|M| , ∀s ∈

(
0,

|M|
2

)
,

and in the second case (ii),

I 2(s)

s(|M| − s)
� 4π

|M| , ∀s ∈
(

0,
|M|

2

)
.

(c) See Appendix C in [20], and we also refer to [3].
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(d) The isoperimetric profile of a flat torus is given by (see [25]):

IT (s) :=
{√

4πs if s ∈ [
0, �2

π

]
,

2� if s ∈ (
�2

π
,

|T |
2

]
,

and is symmetric with respect to s = |T |
2 . Therefore,

I 2
T (s)

s(|T | − s)
=

{
4π

|T |−s
if s ∈ (

0, �2

π

]
,

4�2

s(|T |−s)
if s ∈ (

�2

π
,

|T |
2

]
.

(4.12)

Thus the function in (4.12) is strictly increasing on the interval (0, �2

π
] and strictly decreasing on the interval ( �2

π
,

|T |
2 ].

Therefore we get the strict inequality

I 2
T (s)

s(|T | − s)
>

⎧⎨⎩
4π
|T | if �2

|T | � π
4 ,

16 �2

|T |2 if �2

|T | � π
4 ,

∀s ∈
(

0,
|T |
2

)
.

(e) The isoperimetric profile of R := [0, a] × [0, b] (a � b) is given by (see [25]):

IR(s) :=
{√

πs if s ∈ [
0, b2

π

]
,

b if s ∈ (
b2

2π
,

|R|
2

]
.

Hence

I 2
R(s)

s(|R| − s)
=

{
π

|R|−s
if s ∈ (

0, b2

π

]
,

b2

s(|R|−s)
if s ∈ (

b2

2π
,

|R|
2

]
.

Arguing as we did for the flat torus (part (d)) we deduce

I 2
R(s)

s(|R| − s)
>

{
π
|R| if a

b
� 4

π
,

4
a2 if a

b
� 4

π
,

∀s ∈
(

0,
|R|
2

)
.

(f) Since (4.6) is invariant by dilation, it is enough to consider a disc of radius 1 centered at the origin. Referring
to [5, 18.1.3], the isoperimetric regions E of a disc1 are well-known and are given by:

(i) either E = Do ∩ B where B is an open ball whose boundary intersects ∂D orthogonally when s ∈ (0,
|D|
2 );

(ii) or E is the intersection of a half-plane with Do when s = |D|
2 .

For each ball B(A, r) whose boundary meets ∂D orthogonally, consider the intersections points {A1,A2} :=
∂B(A, r) ∩ ∂D and denote by θ ∈ [0, π

2 ) the (positive) angle defined by the vectors OA and OA1. By setting

L(θ) := H1(∂B(A, r) ∩ D◦), V (θ) := ∣∣B(a, r) ∩ D◦∣∣,
simple geometrical arguments show that

L(θ) = 2

(
π

2
− θ

)
tan θ, (4.13)

V (θ) =
(

π

2
− θ

)
tan2 θ − tan θ + θ. (4.14)

Using (4.13) and (4.14), let us prove that

Ψ := L2 − 16

π2
V (π − V ) > 0 in

(
0,

π

2

)
. (4.15)

1 These are defined as open sets E ⊂ D◦ satisfying ID(|E|) = P(E,D◦).
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Notice that

Ψ (0) = lim
θ→ π

2

Ψ (θ) = 0. (4.16)

We claim that Ψ ′ has a unique zero θ0 in the interval (0, π
2 ), and

Ψ ′ > 0 in (0, θ0), Ψ ′ < 0 in

(
θ0,

π

2

)
. (4.17)

With the aim of proving (4.17) we calculate the derivatives L′, V ′, V ′′. A straight calculation and the convexity of the
function θ �→ tan θ in the interval [0, π

2 ) imply

L′

2
=

(
π

2
− θ

)
(1 + tan2 θ) − tan θ > 0. (4.18)

Furthermore

V ′ = 2 tan θ

{(
π

2
− θ

)
(1 + tan2 θ) − tan θ

}
= L′ tan θ, (4.19)

and also

V ′′

2
= (1 + tan2 θ)

{
3

(
π

2
− θ

)
tan2 θ − 3 tan θ +

(
π

2
− θ

)}
= 3(1 + tan2 θ) tan2 θ

[
π

2
− θ − 1

tan θ
+

π
2 − θ

3 tan2 θ

]
︸ ︷︷ ︸

f (θ)

. (4.20)

We readily check that f : (0, π
2 ) → R satisfies both following properties:

lim
θ→ π

2

f (θ) = 0,

f ′(θ) = 2

3 tan3 θ

{
tan θ −

(
π

2
− θ

)
(1 + tan2 θ)

}
= − L′(θ)

3 tan3 θ
< 0,

the last strict inequality following from (4.18). Therefore f is strictly positive in the interval (0, π
2 ). As a consequence,

relation (4.20) shows that V ′′ > 0 in [0, π
2 ). Summarizing above information, we get in the interval (0, π

2 )

L′ > 0, V ′ = 2L′ tan θ, V ′′ > 0. (4.21)

Calculating the derivative of Ψ yields

Ψ ′(θ) = 2LL′ − 16

π2
(π − 2V )V ′

= 4L′ tan θ

{(
π

2
− θ

)
− 8

π2

(
π

2
− V

)}
. (4.22)

Since L′ > 0 and V is strictly convex in (0, π
2 ) we check easily that the function (4.22) vanishes at exactly one value

θ0 and so (4.17) follows. Properties (4.17) and (4.16) readily give conclusion (4.15). �
The above bounds on the isoperimetric profile allows us to derive the following L1-apriori estimates in prob-

lem (1.1).

Proposition 4.3. Assume (H1)–(H2) hold, and f � f ′. Then for any non-constant solution u of (1.1) the following
statements hold.

(a) If iM > 0 then
∫

f (u) > 2i2 .

M M
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(b) Assume M is simply connected without boundary and denote by K its Gauss curvature. Then∫
M

f (u) � 2
(

8π − sup
M

{
K|M|}),

and inequality is strict if supM{K|M|} > 4π .
(c) Assume ∂M = ∅ and that its Gauss curvature is bounded from below by κ > 0. Then,

∫
M

f (u) � 2κ|M| and if
equality holds for some non-constant solution u then M is isometric to the sphere SM .

(d) If M is a flat torus T with shortest closed geodesic length �, then∫
T

f (u) >

{
8π if |T |

�2 � 4
π
,

32 �2

|T | if |T |
�2 � 4

π
.

(e) If M is a rectangle R = [0, a] × [0, b] in R
2 (a � b), then∫

R

f (u) >

{
2π if a

b
� 4

π
,

8 b
a

if a
b

� 4
π
.

(f) If D ⊂ R
2 is a disc we have

∫
D

f (u) > 32
π

.

Proof. Each of these statements is proved by applying Theorem 3.3 together with the bounds on I 2
M as obtained in

Proposition 4.2. �
For domain Ω � R

2 with Lipschitz boundary it is known that iΩ > 0 (see [38, Corollary 3.2.1], [16, Section 5.6]),
but the lower bound obtained in this way could be very rough. For example in the case of a rectangle R = [0, a]×[0, b]
of R

2 (a � b), the isoperimetric constant is given by i2R = 2 b
a

(see [14]). Hence claim (a) of Proposition 4.3 gives∫
R

f (u) � 4 b
a

which is far from being optimal by comparing with part (e) of Proposition 4.3. Nevertheless, such an
estimate could be useful when the isoperimetric profile is too complicated and can also in some cases give sharp results
(see the next section). By using the specific knowledge of the relative isoperimetric constant for some domains of the
plane (see [14]), we give a sample of explicit lower bounds that can be derived thanks to part (a) of Proposition 4.3.

Corollary 4.4. Given f satisfying (H2), consider a non-constant solution u of (1.1). Then the following statements
hold.

(a) Let K be a bounded convex domain of R
2 which is symmetric about the origin and denote by WK its width. Then∫

K
f (u) > 4

W 2
K|K| .

(b) Let Ea,b be the ellipse whose axes have lengths a and b (a � b). Then
∫
Ea,b

f (u) > 16
π

b
a

.

(c) Let Pk be a regular polygon of R
2 with k-sides, k an even integer. By setting θ := π/k we get

∫
Pk

f (u) > 32
k

cos2 θ
sin 2θ

.

(d) Let T be a triangle of R
2 with smallest angle θ0. Then

∫
T

f (u) > 4θ0.

5. Uniqueness results

5.1. Lower bounds on the spectrum

Let us see how our results can be used to derive lower bounds on the first non-zero Neumann eigenvalue λ1(M) of
the linear problem (1.11). We need first to adapt our Theorem 1.1.

Proof of Theorem 1.4. We would like to apply Theorem 3.1 with the linear function f (s) = λs. But this latter
changes sign and so the assumption (H2) is not satisfied. To overcome this difficulty, we consider for each ε > 0 the
function

ϕε := ε
(
ϕ − minϕ

)
+ 1,
M
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which is non-constant and satisfies

−�ϕε = λϕε − αε, ϕε > 1, (5.1)

where

αε = λ
(

1 − ε min
M

ϕ
)
.

Consider the linear function f (s) = λs restricted to the interval (1,∞) and extend f in order that (H2) is satisfied.
Then by defining

Vε(t) := ∣∣{ϕε > t}∣∣ =
∣∣∣∣{ϕ >

t − 1

ε
+ min

M
ϕ

}∣∣∣∣,
Theorem 3.1 applied to (5.1) with f (s) = λs on (1,∞) yields

αε

2

maxϕε∫
minϕε

Vε(t)
(|M| − Vε(t)

)
dt �

maxϕε∫
minϕε

tI 2
M

(
Vε(t)

)
dt. (5.2)

Making the change of variable s := t−1
ε

+ minM ϕ and setting V (s) := |{ϕ > s}| we get

αε

2

maxϕ∫
minϕ

V (s)
(|M| − V (s)

)
ds �

maxϕ∫
minϕ

(
ε[s − min

M
ϕ] + 1

)
I 2(V (s)).

By letting ε tend to zero and recalling that ISκ = s(4π − κs) we obtain (1.12). �
As an immediate consequence of Proposition 1.4 we get

Corollary 5.1. Assume (H1) holds and consider the constant

IM := inf
s∈(0,|M|/2)

I 2
M(s)

s(|M| − s)
. (5.3)

Then λ1(M) � 2IM .

Let us compare the constant (5.3) with the “Cheeger’s constant” hM defined as

hM := inf
ω∈M

P (ω,Mo)

min{|ω|, |M \ ω|} .

By using (4.1) we always have IM � h2
M . Furthermore Cheeger’s inequality states that λ1(M) � (hM

2 )2 (see [13,12]).
But the constant IM may give a better lower bound. For example in the square Q := [0,1] × [0,1] of R

2 we have:(
hQ

2

)2

= 1, 2IQ = 2π, λ1(Q) = π2. (5.4)

The first equality in (5.4) follows from the fact that the function I (s)
s

is decreasing (see [3]), and the second is contained
in our Proposition 4.2.

Other lower bounds can be obtained by applying Proposition 1.4 together with the estimates stated in Proposi-
tion 4.2. For example by using the second inequality in (4.1) we get

λ1(M)|M| � 2i2M. (5.5)

But this estimate is not so interesting since the better inequality λ1(M)|M| � 4i2M is known (see [16]). More interesting
are the following lower bounds.

Corollary 5.2. Let M be a surface without boundary satisfying (H1), and denote by K its Gauss curvature.
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(a) If M is simply connected then

λ1(M) � 8π

|M| − max
M

K,

and inequality is strict whenever maxM K > 4π
|M| .

(b) (Lichnerowicz, Obata). Assume K is bounded from below by some constant κ > 0. Then λ1(M) � 2κ and equality
holds if and only if M is isometric to the standard 2-sphere of curvature 4π

|M| .

The second statement of Corollary 5.2 holds in any dimension by assuming a positive lower bound on the Ricci
curvature. This was proved by Lichnerowicz [30] and Obata [40] (see [12, Chapter III. 4]). It is quite interesting that
for surfaces such a result can be recovered from our inequality (1.12).

5.2. Uniqueness for a mean field equation

Let us now apply our results got in previous section to derive several new uniqueness results for problem (1.3).
Since this latter is invariant by adding a constant to a solution, we define

◦
H (M) :=

{
u ∈ H 1(M):

∫
T

u = 0

}
,

and consider the equivalent problem

−�gu = λ

(
eu∫
M

eu
− 1

|M|
)

, u ∈ ◦
H (M). (5.6)

Clearly u ≡ 0 solves (5.6) and the question arises if there are non-trivial solutions. In most cases problem (5.6) admits
a variational formulation and is the Euler–Lagrange equation of the functional:

J (λ, ·) :
◦

H (M) → R, u �→ 1

2

∫
M

|∇u|2 − λ log

(
1

|M|
∫
M

eu

)
. (5.7)

Indeed, the two-dimensional Moser–Trudinger inequality [39] and its various extensions assert the existence of a
constant βM > 0 such that

sup
u∈H 1(M)

∫
Ω

e
βM(

|u−ū|
‖∇u‖2

)2

< ∞, (5.8)

in each of the following situations:

(i) for compact manifolds without boundary, and in this case βM = 4π (see [17]);
(ii) for bounded domains of R

2 with C1,α boundary, and in this case we have βM = 2π (see [15, Theorem 1.1]);
(iii) for bounded, finitely connected domains of R

2 whose boundary is C2-piecewise with finite number of vertices;
in this case β = 2θ0, where θ0 is the minimum interior angle at the vertices (see [9, Proposition 2.3], [15]).

Whenever (5.8) holds for some constant βM > 0, we derive that the functional (5.7) has the following properties
(see [1]):

(i) it is of class C∞ and its critical points solve (5.6);
(ii) it admits a minimizer for each λ < 2βM .

But such a minimizer could just be the trivial solution u ≡ 0. This is the case when λ � 0, since in this range of
the parameter the functional (5.7) is strictly convex. For λ > 0, the study of uniqueness becomes more subtle. Our
previous results can be applied to establish an explicit range of the parameter where u ≡ 0 is the unique solution of
problem (5.6). More precisely we have

Proposition 5.3. Let (λ,u) be a non-zero solution of problem (5.6). Then the following statements hold.
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(a) On any surface satisfying (H1), we have λ > 2i2M .
(b) Assume M satisfies (H1), ∂M = ∅ and is simply-connected. Denoting by K its Gauss curvature we have

λ � 2
(

8π − sup
M

{
K|M|}),

and inequality is strict whenever supM{K|M|} > 4π .
(c) Assume M satisfies (H1), ∂M = ∅ and that its Gauss curvature is bounded from below by κ . Then, λ � 2κ|M|

and equality can hold if and only if M is isometric to the canonical 2-sphere of curvature 4π
|M| .

(d) If M is a flat torus T with shortest closed geodesic length �, then

λ >

{
8π if |T |

�2 � 4
π
,

32 �2

|T | if |T |
�2 � 4

π
.

(e) If M = [0, a] × [0, b] is a rectangle in R
2 (a � b), then

λ >

{
2π if a

b
� 4

π
,

8 b
a

if a
b

� 4
π
.

(f) For a disc D ⊂ R
2, then λ > 32

π
.

Proof. Apply Theorem 4.3 with

C := λ∫
M

eu
, f (s) := Ces , α := λ

|M| .

Concerning statement (c), we only need to mention that on the 2-sphere existence of a family of non-trivial solution
at λ = 8π is known by the work of [41]. �
Remark 5.4.

(i) When M is a sphere it was proved by Onofri that in the range λ < 8π , u ≡ 0 is the unique minimizer of the
functional (5.7). An alternative proof of this fact has been obtained by Hong [21]. The arguments of Chanillo and
Kiessling [11] and also Lin [31] have strengthen this result by showing that actually u ≡ 0 is the unique solution
of (5.6) whenever λ < 8π . Our statement (c) of Proposition 5.3 extends these previous results to the class of
closed oriented compact surfaces with curvature bounded from below by κ > 0.

(ii) Part (d) of Proposition 5.3 has been obtained in [32]. As shown by the present paper, this result fits actually in a
much more general framework.

(iii) A result due to Weinberger [46] states that among domains of prescribed volume the first positive Neu-
mann eigenvalue is maximized by a ball. In particular λ1(Ω)|Ω| < 4π for any Ω � R

2. Hence for domain
with C1,α-boundary one easily derives that the functional (5.7) admits a non-trivial minimizer whenever
λ ∈ (λ1(Ω)|Ω|,4π) (see [43]). On the other hand our results show that u ≡ 0 is the unique solution when

λ � 2i2Ω , and note that 2i2Ω < λ1(Ω)|Ω| (remind (5.5)). We expect u ≡ 0 to be the unique solution also when
λ ∈ (2i2Ω,λ1(Ω)|Ω|).
In the particular case of a ball our uniqueness result holds up to the value 32

π
which is strictly less than λ1(B)|B|

(we have λ1(B)|B| − 32
π

= 0.461).

Let us emphasize some situations where Proposition 5.3 is sharp. Define the set of non-trivial solutions

SM(λ) := {
u ∈ ◦

H (M): (λ,u) solves (5.6), u �≡ 0
}
. (5.9)

Proposition 5.5. Let T be a triangle of R
2 with smallest angle θ0, then the following hold.

(a) ST (λ) = ∅ whenever λ � 4θ0.
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(b) For a.e. λ ∈ (4θ0, λ1(T )|T |) we have ST (λ) �= ∅. Furthermore for any sequence (λn,un) with

un ∈ ST (λn), λn > 4θ0, λn → 4θ0, (5.10)

we have

lim inf
λn→8π

‖∇un‖L2 = ∞. (5.11)

(c)
∫
T

eu � e
1

8θ0

∫
T |∇u|2

, ∀u ∈ ◦
H (T ). (5.12)

Proof. The first statement follows from part (a) of Proposition 5.3 and the fact that the relative isoperimetric constant
of a triangle is given by i2T = 2θ0 (see [14]).

For the second statement, we prove as in [44] that the associated functional J (λ, ·) defined by (5.7) has a “mountain
pass” structure for each λ ∈ (4θ0, λ1(T )|T |). Without loss of generality we assume that the vertex of the minimum
angle is located at the origin. Consider the family of functions

δμ(x) = log
8μ2

(1 + μ2|x|2)2
, μ � 1,

which solve −�u = eu on R
2 and concentrate at the origin as μ → ∞. The functions δ̄μ := δμ − 1

|T |
∫
T

δμ belong to

the space
◦

H (T ) and a direct calculation shows that∫
T

|∇ δ̄μ|2 = 8θ0 logμ2 + O(1), (5.13)

∫
T

eδ̄μ = O(1), (5.14)

∫
T

δ̄μ = logμ2 + O(1). (5.15)

Therefore using (5.13)–(5.15) we obtain

J (λ, δ̄μ) = (4θ0 − λ) logμ2 + O(1).

Hence for λ ∈ (4θ0, λ1(T )|T |) we get limμ→∞ J (λ, δ̄μ) = −∞. Furthermore as in [44] we see that u ≡ 0 is a local
minimizer of J (λ, ·) whenever λ < λ1(T )|T |. This shows that the functional has a mountain pass structure for each λ

in the interval (4θ0, λ1(T )|T |). Note that such an interval is non-empty, thanks for example to (5.5).
It is known that the Palais–Smale condition may fail for this problem. Nevertheless one may follow [44], or al-

ternatively apply [26], or [37, Proposition 1.2], to deduce the existence of a non-trivial solution for almost every
λ ∈ (4θ0, λ1(T )|T |). The fact that these solutions “blow up” as λ ↓ 4θ0, namely that (5.11) holds, follows from stan-
dard arguments by noting that (4θ0,0) ∈ R× ◦

H (T ) cannot be a bifurcation point since 4θ0 is strictly less than the
first eigenvalue of the linearized problem given by λ1(T )|T |.

To prove the last statement, we note that J (λ,0) = 0, and the minimizer is achieved whenever λ < 4θ0 (by [9]). So
by applying part (a), we deduce that J (λ,u) � 0 whenever λ � 4θ0 and conclusion (5.12) follows immediately. �
Remark 5.6.

(i) To complete the statement (b) of above proposition, one needs to make a blow-up analysis in order to get existence
of solutions in the full interval under consideration. But this analysis is not yet available, and we will give the
details elsewhere.

(ii) Above proposition also implies that the conclusion stated in part (a) of Proposition 5.3 is optimal.
(iii) By applying Moser–Trudinger’s inequality (5.8) one deduces existence of a minimizer for the functional (5.7) in

the range λ < 2βM . At the critical value 2βM the discussion of existence for a minimizer becomes very delicate
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(for homogeneous Dirichlet condition see [10]). In the case of a triangle an answer to this question is given by
Proposition 5.5, which shows that J (4θ0, ·) admits indeed a minimizer which is furthermore unique and given
by u ≡ 0.

Other cases where Proposition 5.5 yield optimal results are the following.

(i) The flat torus T whose shortest length � satisfied |T |
�2 � 4

π
. This has been discussed in detailed in [32] where one

can find the analogue of Proposition 5.5. For rectangular torus others uniqueness results have been obtained in [6]
and [33].

(ii) For rectangle [0, a] × [0, b] with a
b

� 4
π

, Proposition 5.5 holds by replacing the constant θ0 with π
4 .

As a conclusion, let us mention that for closed surface with Gauss curvature bounded from below by κ > 0, our
result is also optimal and gives the following extension of Onofri’s inequality:∫

M

eu � e
1

4κ|M|
∫
M |∇u|2

, ∀u ∈ ◦
H (M).
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