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Abstract

Using the heat flow as a deformation, a Morse theory for the solutions of the nonlinear elliptic equation:

−�u − λu = a+(x)|u|q−1u − a−(x)|u|p−1u + h(x,u)

in a bounded domain Ω ⊂ RN with the Dirichlet boundary condition is established, where a± � 0, supp(a−) ∩ supp(a+) = ∅,
supp(a+) �= ∅, 1 < q < 2∗ − 1 and p > 1. Various existence and multiplicity results of solutions are presented.
© 2007

1. Introduction

We study the nonlinear elliptic equations with indefinite nonlinearities. Arising from differential geometry and
biology, the problem has been received much attention in recent years, see [1–5,8,9,16–18,21,22,24,26].

One of the modelling problems can be stated as follows: Let Ω be a bounded domain in RN with smooth boundary,
we study the existence and multiplicity of positive, negative and sign-changing solutions of the following elliptic
boundary value problem:

−�u = λu + a+(x)|u|q−1u − a−(x)|u|p−1u + h(x,u) in Ω,

u = 0 on ∂Ω, (1.1)

where a± :Ω → R are continuous functions and h :Ω ×R → R is a C1 function, and λ is a real parameter. We assume

(A1) a± � 0, Ω+ ∩ Ω− = ∅ and Ω+ �= ∅, where Ω± = supp(a±),

(A2) 1 < q < 2∗ − 1 = N+2
N−2 , p > 1,

(A3) there exists a constant C > 0 such that∣∣h(x, ξ)
∣∣ � C

(
1 + |ξ |), ξ ∈ R.

The case 1 < p � q < 2∗ − 1 has been studied by many of the previous papers, while the case 1 < q < p and
q < 2∗ − 1 by [5], but only for positive solutions.

✩ This work was supported by NSFC, RFDP of the Ministry of Education of China.
* Corresponding author.

E-mail address: mjiang@math.pku.edu.cn (M.-Y. Jiang).

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter © 2007
doi:10.1016/j.anihpc.2007.08.004

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



140 K.-C. Chang, M.-Y. Jiang / Ann. I. H. Poincaré – AN 26 (2009) 139–158
The paper is a continuation of our previous paper [16]. The simple decomposition lemma in [16], on which the
computation of the critical groups at infinity of the associated functional I (see below) relies, plays an important role
in dealing with this kind of indefinite nonlinearities.

In [14], the first author observed that there are several advantages if we use the heat flow for Eq. (1.1) to establish
the Morse theory for isolated critical points, i.e., instead of the gradient flow:

∂tv(t) = v(t) − (−�)−1(λv + a+(x)|v|q−1v − a−(x)|v|p−1v + h(x, v)
)

for the associated functional of (1.1):

I (u) =
∫
Ω

[
1

2

(|∇u|2 − λu2) − a+(x)

q + 1
|u|q+1 + a−(x)

p + 1
|u|p+1 − H(x,u)

]
dx,

where H(x,u) = ∫ u

0 h(x, s) ds, in R × H 1
0 (Ω), the following heat semi-flow:

∂tv(t, x) = (� + λ)v + a+(x)|v|q−1v − a−(x)|v|p−1v + h(x, v), (t, x) ∈ R+ × Ω

in R+ × C1
0(Ω) is considered. The heat semi-flow is the L2 gradient flow of I and can be used as deformation of the

level sets of I as the gradient flow.
The disadvantage of this method, to our knowledge, is that a more restrictive exponent on the nonlinear term

|u|q−1u is needed, i.e., q < p∗
1 < 2∗ − 1, where p∗

1 is defined in Section 3. But one of the advantages of the heat

semi-flow is the positive invariance of the cones ±P̃ , where P̃ = {u ∈ C1
0(Ω) | u(x) � 0, x ∈ Ω}. This was observed

in [1] and plays an important role in the existence of sign-changing solutions of (1.1).
Recall the case of definite nonlinearity, i.e., a− = 0, Ω+ = Ω , if there is a positive invariant set D for the gradient

flow, then one can estimate the number of solutions inside and outside of D, separately. Few abstract critical point
theorems can be applied in the study of multiple solutions, see [13]. In this paper, we shall extend these results to fit
the indefinite nonlinearity by the above two ingredients. Our main purpose is to develop the above tools in dealing
with the multiple solution problems for indefinite nonlinearities. The main results are stated in Section 5, among other
things, the following theorem will be proved:

Theorem. Under the assumption (A1), (A2′), (A3′), (A4) and (A6), to Eq. (0.1)λ,γ there exists γ ∗ > 0 such that
∀γ > γ ∗, ∃ − ∞ < λ−(γ ) < λ1 < λ+(γ ) such that:

(1) For 0 < λ < λ−(γ ), there exist at least one positive, one negative and one sign-changing solutions.
(2) For λ−(γ ) < λ < λ1, there exist at least three positive, three negative and one sign-changing solutions.
(3) For λ1 < λ < λ+(γ ), there exist at least two positive, two negative and one sign-changing solutions.
(4) For λ2 < λ < λ+(γ ), there exist at least two positive, two negative and three sign-changing solutions.

Results in [1,4,5,16,22] are extended.

2. A decomposition lemma and the critical groups at infinity

We extend the decomposition lemma in [16] to the problem (1.1). The main difference is that the exponent p may
be greater than 2∗ −1. For Eq. (1.1), the associated functional is defined on the Banach space E = H 1

0 (Ω)∩L
p+1
a− (Ω),

where

L
p+1
a− (Ω) =

{
u ∈ D′(Ω)

∣∣∣ ∫
Ω

a−(x)
∣∣u(x)

∣∣p+1
dx < ∞

}
.

Thus E �= H 1
0 (Ω) if Ω− �= ∅ and p > 2∗ − 1, and E = H 1

0 (Ω) if p � 2∗ − 1 by the embedding theorem. The norm
on E is defined by ‖u‖ = (‖∇u‖2

2 + ‖u‖2
L

p+1
a−

)2.

The space is the closed subspace

E = {
(u1, u2) ∈ H 1

0 (Ω) × L
p+1
a− (Ω) | u1 = u2

}
of H 1(Ω) × L

p+1
a− (Ω), and both H 1(Ω) and L

p+1
a− (Ω) are reflexive, according to Pettis Theorem, we have
0 0
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Lemma 2.1. The Banach space E is reflexive.

The following decomposition lemma was proved in [16] if p � 2∗ − 1. Let

E1 = H 1
0 (Ω0 ∪ Ω− ) ∩ L

p+1
a− (Ω0 ∪ Ω− )

and

E2 = {
u ∈ H 1

0 (Ω0 ∪ Ω+ ) | �u(x) = 0 ∀x ∈ Ω0
}
.

Theorem 2.2.

E = E1 ⊕ E2.

Proof. (1) ∀u ∈ E, let

v(x) =
{

u(x), x ∈ Ω−,

u(x) − w0(x), x ∈ Ω0

and

w(x) =
{

w0(x), x ∈ Ω0,

u(x), x ∈ Ω+,

where w0 ∈ H 1(Ω0) is given by{
�w0 = 0, x ∈ Ω0,

w0(x) = 0, x ∈ ∂Ω0 ∩ ∂Ω−,

w0(x) = u(x), x ∈ ∂Ω0 ∩ ∂Ω+.

Then v ∈ E1 and w ∈ E2, and u = v + w.
(2) The decomposition is unique, i.e., if u = v + w = 0 for v ∈ E1 and w ∈ E2, then v = w = 0.
Indeed we have v(x) = u(x) = 0 ∀x ∈ Ω− and w(x) = u(x) = 0 ∀x ∈ Ω+, then w0|∂Ω0 = 0, hence w0 = 0 by the

maximum principle, and v = w = 0.
(3) Define the mapping π :u → (v,w) from E to E1 ⊕ E2. It is linear and bounded. Moreover, it is also surjective.

Indeed, for (v,w) ∈ E1 ⊕ E2, let

u(x) =
{

v(x), x ∈ Ω−,

v(x) + w(x), x ∈ Ω0,

w(x), x ∈ Ω+,

then u ∈ E and π(u) = (v,w). Therefore E is isomorphic to E1 ⊕ E2 by Banach Theorem. �
Again, the spaces E1 and E2 are decomposable. Indeed, let

E3 =
{
v3 ∈ E1

∣∣∣ ∫
Ω

∇v3 · ∇φ dx = 0, ∀φ ∈ H 1
0 (Ω0) ∪ H 1

0 (Ω−)

}

and

E4 =
{
v4 ∈ E2

∣∣∣ ∫
Ω

∇v4 · ∇φ dx = 0, ∀φ ∈ H 1
0 (Ω+)

}
.

It is easy to verify that

E1 = (
H 1

0 (Ω−) ∩ L
p+1
a− (Ω−)

) ⊕ H 1
0 (Ω0) ⊕ E3

and

E2 = H 1
0 (Ω+) ⊕ E4.
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These decompositions were used in [16] in the computation of the critical groups of I at infinity. In order to compute
these groups, we follow the method in Section 4 of [16], by introducing a family of functionals Is , s ∈ [0,1], as
follows:

Is(u) = 1

2

∫
Ω

[|∇v|2 + 2s∇v · ∇w + |∇w|2 − λ
(
v2 + 2sv · w + w2)]dx

−
∫
Ω

[
a+(x)

q + 1
|w|q+1 − a−(x)

p + 1
|v|p+1 + sH(x, v + w)

]
dx

for (v,w) ∈ E1 × E2.
We note that I1(v,w) = I (v + w) = I (u) and that I0(v,w) = J−(v) + J+(w) is of separable variables, where

J−(v) =
∫
Ω

[
1

2

(|∇v|2 − λv2) + a−(x)

p + 1
|v|p+1

]
dx

and

J+(w) =
∫
Ω

[
1

2

(|∇w|2 − λw2) − a+(x)

q + 1
|w|q+1

]
dx.

We shall compute the critical groups of I at infinity via those of I0. One can easily figure out the critical groups for J±
and so does for I0. Thus it remains to show that the critical groups for Is are invariant along s ∈ [0,1].
Definition 2.3. Let C be a constant. A sequence {uk} = {(vk,wk)} ⊂ E1 ⊕ E2 is said a weak Palais–Smale sequence
for Is , if

Is(vk,wk) � C and
∥∥I ′

s(vk,wk)
∥∥

E∗ = o
(‖uk‖E

) = o
(‖vk‖E1 + ‖wk‖E2

)
.

Obviously, a Palais–Smale sequence is a weak Palais–Smale sequence.

Lemma 2.4. Assume (A1), (A2),

(A3′) h(x, ξ) = o(|ξ |) as |ξ | → +∞ uniformly in x,
(A4) λ /∈ σ(Ω0).

Then any weak Palais–Smale sequence for Is is bounded in E.

Proof. From the definition

Is(vk,wk) � C and
∥∥I ′

s(vk,wk)
∥∥

E∗ = o
(‖vk‖E1 + ‖wk‖E2

)
,

we have

Is(vk,wk) = 1

2

∫
Ω

(|∇vk|2 + 2s∇vk · ∇wk + |∇wk|2 − λ
(
v2
k + 2svk · wk + w2

k

))
dx

−
∫
Ω

(
a+(x)

q + 1
|wk|q+1 − a−(x)

p + 1
|vk|p+1 + sH(x, vk + wk)

)
dx � C

and 〈
I ′
s(vk,wk), (vk,wk)

〉 = ∫
Ω

(|∇vk|2 + 2s∇vk · ∇wk + |∇wk|2 − λ
(
v2
k + 2svk · wk + w2

k

))
dx

−
∫
Ω

(
a+(x)|wk|q+1 − a−(x)|vk|p+1 + sh(x, vk + wk)(vk + wk)

)
dx

= o
(‖vk‖2

E + ‖wk‖2
E

)
.

1 2
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These imply(
1

2
− 1

q + 1

)∫
Ω

a+(x)|wk|q+1 dx −
(

1

2
− 1

p + 1

)∫
Ω

a−(x)|vk|p+1 dx � C + o
(‖vk‖2

E1
+ ‖wk‖2

E2

)
. (2.1)

Now let η ∈ C∞(Ω) satisfy

η(x) =
{

1, x ∈ Ω−,

0, x ∈ Ω+,

again, we have

〈
Is(vk,wk), (ηvk, ηwk)

〉 = ∫
Ω

[∇vk · ∇(ηvk) + s∇(ηvk) · ∇wk + s∇(ηwk) · ∇vk + ∇wk · ∇(ηwk)
]
dx

+
∫
Ω

a−(x)|vk|p+1 dx + O
(‖uk‖2

2

)

= o
(‖uk‖E

)‖ηuk‖E = o
(‖uk‖2

E

)
. (2.2)

The first integral on the right-hand side of (2.2) equals∫
Ω

[
1

2
∇v2

k · ∇η + η|∇vk|2 + sη∇vk · ∇wk

]
dx

+
∫
Ω

[
sη∇vk · ∇wk + s∇η · ∇(vkwk) + 1

2
∇w2

k · ∇η + η|∇wk|2
]

dx

=
∫
Ω

[
(1 − s)

(|∇vk|2 + |∇wk|2
) + s

∣∣∇(vk + wk)
∣∣2]

η dx − 1

2

∫
Ω

(|vk|2 + |wk|2 + 2svkwk

)
�ηdx. (2.3)

Substituting (2.3) into (2.2) it follows∫
Ω

a−(x)|vk|p+1 dx � O
(‖uk‖2

2

) + o
(‖uk‖2

E

)
. (2.4)

Combining (2.4) with (2.1) we get∫
Ω

a+(x)|wk|q+1 dx � C + O
(‖uk‖2

2

) + o
(‖uk‖2

E

)
. (2.5)

The assumption Is(vk,wk) � C and (2.5) imply

1

2

∫
Ω

(|∇vk|2 + 2s∇vk · ∇wk + |∇wk|2
)
dx +

∫
Ω

a−(x)|vk|p+1 dx � C + O
(‖uk‖2

2

) + o
(‖uk‖2

E

)
. (2.6)

However, there is a constant C1 such that∫
Ω

(|∇v|2 + 2s∇v · ∇w + |∇w|2)dx � (1 − s)

∫
Ω

(|∇v|2 + |∇w|2)dx + s

∫
Ω

|∇u|2 dx

� C1

∫
Ω

(|∇v|2 + |∇w|2)dx. (2.7)

Inserting (2.7) into (2.6) we have∫ (|∇vk|2 + |∇wk|2
)
dx +

∫
a−(x)|vk|p+1 dx � C + O

(‖uk‖2
2

) + o
(‖uk‖2

E

)
. (2.8)
Ω Ω



144 K.-C. Chang, M.-Y. Jiang / Ann. I. H. Poincaré – AN 26 (2009) 139–158
Therefore

‖uk‖2
E � C

(
1 + ‖uk‖2

2

)
(2.9)

for some constant C.
In view of (2.9), it remains to prove that ‖vk‖2 + ‖wk‖2 is bounded. This is proved by contradiction. Suppose not,

we have a weak Palais–Smale sequence {(vk,wk)} satisfying ‖vk‖2 + ‖wk‖2 → +∞ as k → ∞. Define

ũk = uk

‖vk‖2 + ‖wk‖2
, ṽk = vk

‖vk‖2 + ‖wk‖2
, w̃k = wk

‖vk‖2 + ‖wk‖2
,

(2.8) implies that {ṽk}, {w̃k}, and {ũk} are bounded. By Lemma 2.1, E is reflexive, so we may assume, after a subse-
quence that

ṽk ⇀ v0, w̃k ⇀ w0, ũk ⇀ u0 weakly in H 1
0 (Ω)

and

ṽk → v0, w̃k → w0, ũk → u0 strongly in L2(Ω)

with u0 = v0 + w0. Then u0 �= 0 as ‖v0‖2 + ‖w0‖2 = 1. Setting zk = ∂vIs(vk,wk) and φ = vk

(‖vk‖2+‖wk‖2)
2 we have

〈zk,φ〉 =
∫
Ω

(|∇ṽk|2 − λṽ2
k

)
dx + s

∫
Ω

(∇ṽk · ∇w̃k − sλṽk · w̃k) dx

+ (‖vk‖2 + ‖wk‖2
)p−1

∫
Ω

a−(x)|ṽk|p+1 dx + o(1).

Therefore(‖vk‖2 + ‖wk‖2
)p−1

∫
Ω

a−(x)|ṽk|p+1 dx � C

and ∫
Ω

a−(x)|ṽk|p+1 dx → 0

by p > 1 and ‖vk‖2 + ‖wk‖2 → +∞. It follows from ṽk ⇀ v0 that∫
Ω

a−(x)|v0|p+1 dx � lim
k→∞

∫
Ω

a−(x)|ṽk|p+1 = 0

and then supp(v0) ⊂ Ω0.
Similarly, we have∫

Ω

a+(x)|w0|q+1 dx = 0

and supp(w0) ⊂ Ω0 by computing 〈∂wIs(vk,wk),
wk

(‖vk‖2+‖wk‖2)
2 〉. Hence w0 = 0 provided by �w0 = 0 in Ω0 and

then supp(u0) ⊂ Ω0.
Let us choose φ ∈ H 1

0 (Ω0) as an element in E, then we have

1

‖vk‖2 + ‖wk‖2

〈
I ′
s(vk,wk),φ

〉 = ∫
Ω

(∇ṽk · ∇φ − λṽkφ)dx + s

∫
Ω

(∇w̃k · ∇φ − λw̃kφ)dx

=
∫

(∇ũk · ∇φ − λũkφ)dx + s

∫
(∇w̃k · ∇φ − λw̃kφ)dx = o(1).
Ω Ω
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Thus ∫
Ω

(∇u0 · ∇φ − λu0φ)dx = 0 ∀φ ∈ H 1
0 (Ω0)

by w̃k ⇀ 0. According to the assumption λ /∈ σ(Ω0), u0 = 0 in Ω0 and u0 = 0 in E. This is a contradiction. �
Lemma 2.5. Under the assumption of Lemma 2.4, every weak Palais–Smale sequence of Is contains a convergent
subsequence in E.

Proof. (1) Let {uk} = {(vk,wk)} be a weak Palais–Smale sequence of Is for some s ∈ [0,1]. According to Lemma 2.4,
{uk} is bounded in E.

(2) Applying Lemma 2.1, there is a u∗ ∈ E such that uk ⇀ u∗ in E. After a subsequence we have

uk(x) → u∗(x) a.e. in Ω

and

uk → u∗ in L2(Ω) and in Lq+1(Ω).

(3) By the definition of weak Palais–Smale sequence, we have〈
I ′
s(uk) − I ′

s(u
∗), uk − u∗〉 = o

(‖uk‖E

)‖uk − u∗‖E + o(1) = o(1) (2.10)

provided by the boundedness of {uk} in E. On the other hand, there holds〈
I ′
s(uk) − I ′

s(u
∗), uk − u∗〉 = ‖uk − u∗‖2

s +
∫
Ω

a−
(|uk|p−1uk − |u∗|p−1u∗)(uk − u∗) dx + o(1), (2.11)

where

‖u‖2
s =

∫
Ω

(|∇v|2 + 2s∇v · ∇w + |∇w|2)dx

is an equivalent norm of ‖u‖H 1
0

= (
∫
Ω

|∇u|2 dx)1/2 by (2.7). From an elementary inequality, there is a constant C

such that

C

∫
Ω

a−|uk − u∗|p+1 dx �
∫
Ω

a−
(|uk|p−1uk − |u∗|p−1u∗)(uk − u∗) dx. (2.12)

Combining (2.10)–(2.12) we get uk → u∗ in E. �
As a consequence of Lemmas 2.4 and 2.5 we have

Corollary 2.6. Under the assumptions of Lemma 2.5, the functional I satisfies the Palais–Smale condition on E.

The proofs of Lemmas 2.4 and 2.5 also yield (see Proposition 3.3 in [16]).

Theorem 2.7. Under the assumptions of (A1), (A2), (A3′) and (A4), there are constants A and δ > 0 such that
∀s ∈ [0,1],∥∥I ′

s(u)
∥∥

E∗ � δ‖u‖E if Is(u) � A.

Using the deformation Is we have the following theorem on the critical groups at infinity, its proof is referred to
Theorem 4.1 in [16].

Theorem 2.8. Under the assumptions of (A1), (A2), (A3′) and (A4), all critical groups of I at infinity are trivial, i.e.,

C∗(I,∞) := H∗
(
E,Ia

) = {0}, ∗ = 0,1,2, . . .

for a � A, where A is the constant in Theorem 2.7 and I a = {u ∈ E | I (u) � a}.
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Also one defines

I±(u) =
∫
Ω

[
1

2

(|∇u|2 − λu2±
) − a+(x)

q + 1
|u±|q+1 + a−(x)

p + 1
|u±|p+1 − H±(x,u)

]
dx,

where u± = max{±u,0}, H±(x, ξ) is the primitive of h±(x, ξ) and

h±(x, ξ) =
{

h(x, ξ), ±ξ � 0,

0, otherwise.

We have the following facts for I±:
(1) I±(u) = I (u) if ±u � 0;
(2) Let K and K± be the critical sets of I and I±, respectively, then K± = K ∩ (±P), where P = {u ∈ H 1

0 (Ω) |
u(x) � 0 a.e. x ∈ Ω}.

As we proved in [16], the following theorem holds.

Theorem 2.9. Under the assumptions of (A1), (A2), (A3′) and (A4), the critical groups of I± at infinity are well
defined and trivial, i.e.,

C∗(I±,∞) = {0}, ∗ = 0,1,2, . . . .

Remark 2.10. In the following sections we shall consider the functional on the space C1
0(Ω) rather than the space E.

Let Ĩ = I |C1
0 (Ω) and Ĩ± = I±|C1

0 (Ω). It is well known [25] that

H∗
(
C1

0(Ω), Ĩ a
) = H∗

(
E,Ia

) = {0}, ∗ = 0,1,2, . . . ,

and

H∗
(
C1

0(Ω), Ĩ a±
) = H∗

(
E,Ia±

) = {0}, ∗ = 0,1,2, . . . .

This means that the critical groups at infinity for both I and Ĩ are trivial.

Remark 2.11. The results in this section hold if the term |u|q−1u is replaced by g(u) satisfying:

(g1) |g(u)| � C(1 + |u|q) u ∈ R,
(g2) there are constants θ > 2 and R > 0 such that

g(u)u � θG(u) > 0, |u| � R

where G(u) = ∫ u

0 g(s) ds.

3. The heat flow

Let T > 0 and ΩT = (0, T )×Ω and φ ∈ C1
0(Ω), in this section we study the L∞ a priori estimate for the solution

v ∈ C1(ΩT ) of the nonlinear heat equation:

∂tv(t, x) = (� + λ)v + a+(x)|v|q−1v − a−(x)|v|p−1v + h(x, v), (t, x) ∈ ΩT ,

v(t, x) = 0, (t, x) ∈ [0, T ) × ∂Ω,

v(0, x) = φ(x), x ∈ Ω, (3.1)

and explain how the heat flow can be used in Morse theory for the associated functional. It is well known that the
solution v may blow up at finite time. However, if one adds a finite energy condition, the blow up phenomena can be
ruled out, see Ackermann, Bartsch, Kaplicky and Quittner [1], Cazenave and Lions [11], Chang [14], Giga [19] and
Quittner [27]. For technical reasons we assume

(A2′) q < p∗
1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞, n = 1,

7, n = 2,
18
5 , n = 3,

9n2−4n+16
√

n(n−1)
2 , n > 3
(3n−4)
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and p > 1. We shall prove

Theorem 3.1. Assume (A1), (A2′) and (A3). If v is a solution of (3.1) which blows up at a finite time T , then
I (v(t, ·)) → −∞ as t → T − 0.

Theorem 3.2. Assume (A1), (A2′) and

(A3′) h(x, ξ) = o(|ξ |) as |ξ | → ∞ uniformly in x,
(A4) λ /∈ σ(Ω0),

where Ω0 = Ω \ (Ω+ ∪ Ω−) and σ(Ω0) is the spectrum of −� on Ω0 with Dirichlet boundary condition. If v is a
global solution of (3.1) satisfying I (v(t, ·)) � −C0 for some constant C0, then the ω-limit set ω(φ) �= ∅ and contains
critical points of I .

Combining Theorems 3.1 and 3.2 we have

Theorem 3.3. Assume (A1), (A2′), (A3′) and (A4), the Morse theory for isolated critical points of the functional I

holds in the Banach space C1
0(Ω). The Morse theory is related to the order preserving parabolic semi-flow.

In the remaining of this section we give details of the proofs.

Lemma 3.4. If v ∈ C1(ΩT ) is a solution of (3.1) and if I (v(t, ·)) � −C0 ∀t ∈ [0, T ] for some constant C0, then there
is a constant CT (φ,C0) depending only on φ and C0 such that∥∥v(t, ·)∥∥2 � CT (φ,C0).

Proof. It follows from the Hölder inequality that

∥∥v(t, ·) − φ
∥∥

2 =
∥∥∥∥∥

t∫
0

∂sv(s, ·) ds

∥∥∥∥∥
2

� T 1/2

( T∫
0

∥∥∂sv(s, ·)∥∥2
2 ds

)1/2

�
[
T

(
I (φ) − I

(
v(T , ·)))]1/2

provided by

T∫
0

∥∥∂sv(s, ·)∥∥2
2 ds = −

T∫
0

d

dt
I
(
v(t, ·))dt = I (φ) − I

(
v(T , ·)).

Now the conclusion follows easily. �
Lemma 3.5. Under the assumptions of (A1), (A2), (A3′) and (A4), if v ∈ C1(ΩT ) is a global solution of (3.1) and if
I (v(t, ·)) � −C0 ∀t ∈ [0,+∞) for some constant C0, then there is a constant C1 such that∥∥v(t, ·)∥∥2 � C1, t ∈ [0,∞).

Proof. We prove it by contradiction. Suppose not, there exists a sequence {tk} such that ‖v(tk, ·)‖2 � k. According to
Lemma 3.4, tk → +∞ and we may assume tk+1 − tk > 1. By Lemma 2.4, a contradiction follows if we can construct
a weak Palais–Smale sequence of I close to {v(tk, ·)}.
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(1) Claim: ∃η > 0 such that

∥∥v(t, ·)∥∥2 � k

2
, ∀t ∈ [tk − η, tk].

Indeed, ∀s < tk

∣∣∥∥v(s, ·)∥∥2
2 − ∥∥v(tk, ·)

∥∥2
2

∣∣ = 2

∣∣∣∣∣
tk∫

s

∫
Ω

v∂tv(t, x) dx dt

∣∣∣∣∣
� 2

( tk∫
s

∥∥v(t, ·)∥∥2
2 dt

tk∫
s

∥∥∂tv(t, ·)∥∥2
2 dt

)1/2

�
(
I (φ) + C0

) +
tk∫

s

∥∥v(t, ·)∥∥2
2 dt.

From the Gronwall inequality∥∥v(tk, ·)
∥∥2

2 �
(∥∥v(s, ·)∥∥2

2 + C1
)
e(tk−s), s � tk,

where C1 = I (φ) + C0. Thus we can find an η > 0 satisfying

∥∥v(t, ·)∥∥2 � k

2
, t ∈ [tk − η, tk] and k � 1.

(2) Claim: ∃sk ∈ [tk − η, tk] such that∫
Ω

∣∣∂tv(sk, x)
∣∣2

dx � I (φ) + C0

η
.

This is due to the fact:
+∞∫
0

∫
Ω

∣∣∂tv(t, x)
∣∣2

dx dt � I (φ) + C0.

(3) Now let uk = v(sk, ·), then

I (uk) = I
(
v(sk, ·)

)
� I (φ)

and ∀ψ ∈ E,

∣∣〈I ′(uk),ψ
〉∣∣ =

∣∣∣∣
∫
Ω

∂tv(sk, x)ψ dx

∣∣∣∣
�

(∫
Ω

∣∣∂tv(sk, x)
∣∣2

dx

)1/2

‖ψ‖2

� η−1/2(I (φ) + C0
)1/2‖ψ‖E.

That is,∥∥I ′(uk)
∥∥

E∗ � η−1/2(I (φ) + C0
)1/2 = o

(‖uk‖2
) = o

(‖uk‖E

)
.

Therefore, {uk} is a weak Palais–Smale sequence and is bounded by Lemma 2.4. This is a contradiction. �
Having Lemmas 3.4 and 3.5, now we can prove the main estimate.
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Lemma 3.6. Let J = [0, T ]. Assume (A1), (A2′) and (A3), if v ∈ C1(ΩT ) is a solution of (3.1) satisfying∥∥v(t, ·)∥∥2 � CJ , t ∈ [0, T ],
where T is either finite or infinite, then ‖v(t, ·)‖∞ is bounded on J .

Proof. We estimate ‖v(t, ·)‖∞ in various subdomains of Ω separately.
(1) For ε > 0, let Ω+,ε be the ε-neighborhood of Ω+ in Ω . Since Ω+ ∩ Ω− = ∅, there exists ε > 0 such that

Ω+,ε ∩Ω− = ∅, then ∂Ω+,ε \ ∂Ω ⊂ Ω0 and (∂Ω+,ε \ ∂Ω)∩Ω+ = ∅. We fix ε from now on and ∀(t0, x0) ∈ ΩT and
∀R > 0, denote QR(t0, x0) = (t0 − R2, t0 + R2

0) × BR(x0). Now v satisfies

∂tv = �v + λv + h(x, v), (t, x) ∈ [0, T ] × Ω0.

In case QR(t0, x0) ⊂ ΩT
0 , according to Moser’s iteration on the local boundedness of the weak solution v on Ω0,

see [23], there exist R0 and C > 0 such that ∀R ∈ (0,R0], there holds:

sup
Q R

2
(t0,x0)

∣∣v(t, x)
∣∣ �

(
C

Rn+2

∫
QR(t0,x0)

∣∣v(t, x)
∣∣2

dx dt

)1/2

+ C.

In case x0 ∈ ∂Ω ∩ Ω0 and t0 > 0 we also have

sup
Q R

2
(t0,x0)∩ΩT

∣∣v(t, x)
∣∣ �

(
C

Rn+2

∫
QR(t0,x0)∩ΩT

∣∣v(t, x)
∣∣2

dx dt

)1/2

+ C.

If T is finite, one fixes R > 0, then [R2

4 , T ] × (∂Ω+,ε \ ∂Ω) is covered by finitely many, say M , cylinders in the

family {QR
2
(t0, x0)|(t0, x0) ∈ [R2

4 , T ] × (∂Ω+,ε \ ∂Ω)}. Thus

sup
[ R2

4 ,T ]×(∂Ω+,ε\∂Ω)

∣∣v(t, x)
∣∣ � M

[(
C

Rn+2

∫
ΩT

∣∣v(t, x)
∣∣2

dx dt

)1/2

+ C

]
. (3.2)

If T = +∞, applying the same arguments to the domains [k − 1, k + 1] × Ω0, k = 2,3, . . . , we get

sup
[k−1,k+1]×(∂Ω+,ε\∂Ω)

∣∣v(t, x)
∣∣ � M

[(
C

Rn+2

∫
QR(t0,x0)∩ΩT

∣∣v(t, x)
∣∣2

dx dt

)1/2

+ C

]
.

The number M and all constants are independent of k, so we have

sup
[ R2

4 ,+∞)×(∂Ω+,ε\∂Ω)

∣∣v(t, x)
∣∣ � M

[(
C

Rn+2

∫
QR(t0,x0)∩ΩT

∣∣v(t, x)
∣∣2

dx dt

)1/2

+ C

]
. (3.3)

According to the assumption:∥∥v(t, ·)∥∥2 � CJ , t ∈ [0, T ],
the right-hand sides of (3.2) and (3.3) are bounded by M[C + ( C

Rn+2 )1/2CJ ], and then v is bounded on [R2

4 , T ] ×
(∂Ω+,ε \ ∂Ω).

(2) By a standard argument of the variation of constant formula, we have

sup
[0, R2

2 ]×Ω

∣∣v(t, x)
∣∣ � C1 sup

Ω

∣∣φ(x)
∣∣. (3.4)

Combining (3.4) with the estimates in the last step we obtain∣∣v(t, x)
∣∣ � C2, (t, x) ∈ J × (∂Ω+,ε \ ∂Ω), (3.5)

where C2 is a constant depending on CJ .
(3) Let us consider Eq. (3.1) on the subdomain Ω \ Ω+,ε :
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∂tv1(t, x) = (� + λ)v1 − a−(x)|v1|p−1v1 + h(x, v1), ∀(t, x) ∈ J × (Ω \ Ω+,ε),

v1(t, x) = v(t, x), ∀(t, x) ∈ J × (∂Ω+,ε \ ∂Ω),

v1(t, x) = 0, ∀(t, x) ∈ J × (
∂Ω ∩ (Ω \ Ω+,ε )

)
,

v1(0, x) = φ(x), ∀x ∈ Ω \ Ω+,ε .

By the uniqueness,

v(t, x) = v1(t, x), ∀(t, x) ∈ J × (Ω \ Ω+,ε).

We apply the weak maximum principle due to De Giorgi’s iteration [23], it follows

‖v‖L∞(J×(Ω\Ω+,ε )) = ‖v1‖L∞(J×(Ω\Ω+,ε )) � C3 (3.6)

for a constant depending on C2, φ, λ, h and CJ .
(4) Finally, we consider Eq. (3.1) on the subdomain Ω+,ε :

∂tv2(t, x) = (� + λ)v2 + a+(x)|v2|q−1v2 + h(x, v2), ∀(t, x) ∈ J × Ω+,ε,

v2(t, x) = v(t, x), ∀(t, x) ∈ J × (∂Ω+,ε \ ∂Ω),

v2(t, x) = 0, ∀(t, x) ∈ J × (∂Ω ∩ Ω+,ε),

v2(0, x) = φ(x), ∀x ∈ Ω+,ε .

Since q < p∗
1 is assumed, after the iteration estimate due to Quittner, see [1], and (3.6), we have

‖v‖L∞(J×Ω+,ε ) = ‖v2‖L∞(J×Ω+,ε ) � C4. (3.7)

In summary we have proved the boundedness of supt∈J ‖v(t, ·)‖∞. �
Proof of Theorem 3.1. This follows from Lemmas 3.4 and 3.6. In fact, if I (v(t, ·)) � −C0 for some constant C0 > 0,
then ‖v(t, ·)‖2 � CT . By Lemma 3.6, ‖v(t, ·)‖∞ is bounded on [0, T ]. This contradicts with the assumption that T is
the blow up time. �
Proof of Theorem 3.2. Let v be the global solution of (3.1). After Lemma 3.6 we have ‖v(t, ·)‖∞ � C2 ∀t . Then
by a standard argument, see [10], Theorem 9.4.2, ω(φ) �= ∅ and ∀u ∈ ω(φ), it is a critical point of I with I (u) =
limt→+∞ I (v(t, ·)) � −C0. According to the regularity theory, the topology can be taken on C1

0(Ω). �
Proof of Theorem 3.3. Assume now that the functional I has only isolated critical points. If the global orbit O(φ) =
{v(t, ·) | t ∈ R+} exists and satisfies I (v(t, ·)) � −C0, again by Lemma 3.6 and Theorem 9.4.2 in [10], the limit set
ω(φ) must be a singleton. Moreover, the limit exists in C1

0(Ω) topology. �
The heat flow v(t, φ) with initial value φ is used to replace the pseudo-gradient flow. In order to establish the

Morse theory for the isolated critical points, it is sufficient to prove the following deformation lemma via the heat
flow: Let K be the critical set of Ĩ , a < d , if K ∩ Ĩ−1(a, d] = ∅ and if Ka = K ∩ Ĩ−1(a) is isolated, then Ĩ a is a strong
deformation retract of Ĩ b , where Ĩ = I |C1

0 (Ω).

Indeed, ∀φ ∈ Ĩ−1(a, d], let Tφ > 0 be the maximal existence time of v(t, φ), and let O(φ) = {v(t, φ) | t ∈ [0, Tφ)}
be its orbit. Let tφ be the arriving time of the orbit O(φ) at the level Ĩ−1(a). According to Theorems 3.1 and 3.2,
tφ > 0 is either finite, tφ < Tφ if Ĩ (ω(φ)) < a, or tφ = +∞ and ω(φ) ∈ Ĩ−1(a). In both cases, we can rescale the time
variable as follows: Let

τ = τ(t) = Ĩ (φ) − Ĩ (v(t, φ))

Ĩ (φ) − a
, ∀φ ∈ Ĩ 1(a, d].

Then we have{
τ(0) = 0,

τ (+∞) = 1 if ω(φ) ∈ Ĩ−1(a),
˜
τ(+∞) > 1 if I (ω(φ)) < a.
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Let t (τ ) be the inverse function of τ(t) and

η(τ,φ) =
{

v(t (τ ),φ) if (τ, x) ∈ [0,1] × Ĩ−1(a, d],
φ if (τ,φ) ∈ [0,1] × Ĩa.

Observing the relation

d

dt
Ĩ
(
v(t, φ)

) = −
∫
Ω

∣∣∂tv(t, φ)
∣∣2

dx < 0, ∀t < Tφ,

the flow v(t, φ) is transversal to each level set Ĩ−1(c) for all c ∈ (a, d] and φ ∈ Ĩ−1(a, d].
A standard argument in [11] and [14] can be applied to verify that η is the desired strong deformation retract. Since

η is a rescaling of the heat semi-flow which is order preserving, so is η.

Remark 3.7. Without the requirements of the strong order preserving and of the C1
0(Ω) topology, the Morse theory

for the isolated critical points of the functional I holds on the space E = H 1
0 (Ω) ∩ L

p+1
a− (Ω) for q < 2∗ − 1.

This is due to the Palais–Smale condition on E, see Corollary 2.6.

Remark 3.8. Theorems 3.1–3.2 hold for the solutions of the following heat flow:

∂tv(t, x) = (� + λ)v + a+(x)|v±|q−1v± − a−(x)|v±|p−1v± + h±(x, v), (t, x) ∈ ΩT ,

v(t, x) = 0, (t, x) ∈ [0, T ) × ∂Ω,

v(0, x) = φ(x), x ∈ Ω. (3.8)

These flows preserve the cones P̃ and −P̃ , respectively.

4. Critical points theorems

In this section, for u, ū ∈ C1
0(Ω) with u � ū, the order interval [u, ū] is defined to be the set {u ∈ C1

0(Ω) | u(x) �
u(x) � ū(x) ∀x ∈ Ω}.

Theorem 4.1. Let the assumptions (A1), (A2), (A3′) and (A4) be satisfied. Suppose that Eq. (1.1) has two pairs of
sub- and super-solutions v i < v̄i , i = 1,2, satisfying v 1 < v̄2 and [v 1, v̄1] ∩ [v 2, v̄2] = ∅. Then (1.1) has at least a
solution u ∈ [v 1, v̄2] \ ([v 1, v̄1] ∪ [v 2, v̄2]), which is a mountain pass point of Ĩ if there are only finite many critical
points of Ĩ on [v 1, v̄2] \ ([v 1, v̄1] ∪ [v 2, v̄2]).

Proof. We only work on the ordered interval [v 1, v̄2], which is a bounded set in the L∞-norm, so we can use the
modified gradient flow of I :

η̇ = η − (−� + kI)−1(λη + a+|η|q−1η − a−|η|p−1η + h(x,η) + kη
)
, k > 0 large

as a deformation for the functional Ĩ . All intervals [v 1, v̄2], [v 1, v̄1] and [v 2, v̄2] are positively invariant w.r.t. the
modified gradient flow. This can be proved as in the definite nonlinearity case. Let Si be the critical set of Ĩ located
in the intervals [v i, v̄i], i = 1,2, and S = S1 ∪ S2, then [v i, v̄i] and [v 1, v̄2] are isolated neighborhoods of Si and S,
([v i, v̄i],∅), and ([v 1, v̄2],∅) are the index pairs of Si and S, respectively, i = 1,2. All intervals [v 1, v̄2], [v 2, v̄2],
[v 1, v̄2] are contractible, hence we have

C∗(Ĩ , Si) = C∗(Ĩ , S) = δ∗,0G, ∗ = 0,1,2, . . . ,

where C∗(Ĩ , S), ∗ = 0,1,2, . . . , are the critical groups for isolated critical set S, G is the coefficient group of homol-
ogy, see [15]. Following the Morse relation, there must be a critical point u ∈ [v 1, v̄2] \ ([v 1, v̄1] ∪ [v 2, v̄2]) with
C1(Ĩ , u) �= 0 provided by the finiteness of the critical points. Thus u is a mountain pass point of Ĩ . �
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Remark 4.2. Without assuming the finiteness of critical points, a minimax proof can be found in [22] (proof of
Theorem 1.3).

In the study of sign-changing solutions of definitely nonlinear problem, i.e, a− = 0, we have combined the infor-
mation of critical groups at infinity and the positive invariance of the positive and negative cones under the flow to
obtain an abstract critical point theorem in [13], see also [7]. Now we are going to use the heat flow, which preserves
the positive and negative cones in C1

0(Ω), and the results in Section 2 on the critical groups at infinity to get a similar
result with indefinite nonlinearities.

With the aid of the functionals I± and the heat flow for the functionals Ĩ±, we can prove the following theorem.
Let P̃ = P ∩ C1

0(Ω).

Theorem 4.3. Under the assumptions (A1), (A2′), (A3′) and (A4), if u < 0 < ū is a pair of sub and super-solutions
of (1.1), then there exist at least 3 distinct solutions u±, u0 of (1.1) such that u± ∈ ±P̃ \ D and u0 /∈ P̃ ∪ (−P̃ ) ∪ D,
where D = [u, ū].

Proof. (1) Let K be the critical set of Ĩ and K± be that of Ĩ±, then K± = ±P̃ ∩ K . We know by the excision that

H∗
(±P̃ ∪ Ĩ a±, Ĩ a±

)
� H∗

(±P̃ ,±P̃ ∩ Ĩ a±
)
, ∗ = 0,1,2, . . . . (4.1)

In the following we choose a < A, which is defined in Theorem 2.7 and min{Ĩ (u) | u ∈ D} > a. We claim if 1 < q <

p∗
1 , then

H∗
(
C1

0(Ω), Ĩ a±
)

� H∗
(±P̃ ∪ Ĩ a±, Ĩ a±

) = 0, ∗ = 0,1,2, . . . . (4.2)

We follow the argument in [6] (proof of Theorem 3.2) to prove (4.2). We only consider the functional Ĩ+. Let v(t, φ) be
the solution of (3.8). By the strong maximum principle for sub- and super-solutions we know that 0 is in the interior
of D (see Section 3.2 in [20]). According to the strong maximum principle of the heat equation and Remark 3.8,
using the fact that 0 is in the interior of D, ∀φ ∈ C1

0(Ω), ∃t (φ) � 0 such that v(t (φ),φ) ∈ int(P̃ ∪ D ∪ Ĩ a+). Thus
there is a neighborhood Uφ of φ in C1

0(Ω) such that v(t (φ),ψ) ∈ int(P̃ ∪ D ∪ Ĩ a+) for all ψ ∈ Uφ . Consider the
covering {Uφ |φ ∈ C1

0(Ω)} of C1
0(Ω), we take a locally finite partition of unity (πj )j∈J subordinating to {Uφ}, then

supp(πj ) ⊂ Uφj
for some φj . Let

T :C1
0(Ω) → [0,+∞), T (φ) =

∑
j

πj (φ)t (φj )

and

η : [0,1] × C1
0(Ω) → C1

0(Ω), η(s,φ) = v
(
sT (φ),φ

)
.

Since P̃ ∪ D ∪ Ĩ a+ is positively invariant w.r.t. the heat flow, η(s, P̃ ∪ D ∪ Ĩ a+) ⊂ P̃ ∪ D ∪ Ĩ a+ for s ∈ [0,1]. Moreover,
η(1,C1

0(Ω)) ⊂ P̃ ∪ D ∪ Ĩ a+. Now, let η1 = η|[0,1]×(P̃∪D∪Ĩ a+)
, then

η1 : [0,1] × (
P̃ ∪ D ∪ Ĩ a+

) → P̃ ∪ D ∪ Ĩ a+
is a homotopy between the identity and η1(1, ·). Hence

η1(1, ·)∗ :H∗
(
P̃ ∪ D ∪ Ĩ a+

) → H∗
(
P̃ ∪ D ∪ Ĩ a+

)
is an isomorphism. This implies that

i∗ :H∗
(
P̃ ∪ D ∪ Ĩ a+

) → H∗
(
C1

0(Ω)
)

is injective, and that

η1(1, ·)∗ :H∗
(
C1

0(Ω)
) → H∗

(
P̃ ∪ D ∪ Ĩ a+

)
is surjective, where i : P̃ ∪ D ∪ Ĩ a+ → C1(Ω) is the inclusion map. Therefore
0



K.-C. Chang, M.-Y. Jiang / Ann. I. H. Poincaré – AN 26 (2009) 139–158 153
H∗
(
P̃ ∪ D ∪ Ĩ a+

) = H∗
(
C1

0(Ω)
) = 0, ∗ = 1,2, . . . ,

H0
(
P̃ ∪ D ∪ Ĩ a+

) = G

since H0(P̃ ∪ D ∪ Ĩ a+) �= 0 and H0(C
1
0(Ω)) = G. This proves that i∗ is an isomorphism and

H∗
(
P̃ ∪ D ∪ Ĩ a+

) = H∗
(
C1

0(Ω)
) = δ∗,0G, ∗ = 1,2, . . . . (4.3)

Since both P̃ and D are closed and convex, P̃ ∩ D is a strong deformation retract of D, i.e., there is a continuous
map r : [0,1] × D → P̃ ∩ D such that

r(s, u) = u, u ∈ P̃ ∩ D,

r(0, u) = u, u ∈ D,

r(1, u) ∈ P̃ ∩ D, u ∈ D.

It follows from min{Ĩ (u)|u ∈ D} > a that the map r̃ : [0,1] × (P̃ ∪ D ∪ Ĩ a+) → P̃ ∪ D ∪ Ĩ a+ given by

r̃(s, u) =
{

r(s, u) if u ∈ D,

u if u /∈ D

is a strong deformation retract, which induces an isomorphism

i∗ :H∗
(
P̃ ∪ Ĩ a+

) ∼= H∗
(
P̃ ∪ D ∪ Ĩ a+

)
.

By (4.3) we have

H∗
(
P̃ ∪ Ĩ a+

) = δ∗,0G, ∗ = 0,1,2, . . . , (4.4)

and that i∗ :H∗(P̃ ∪ Ĩ a+) → H∗(C1
0(Ω)) is also an isomorphism.

Consider the following commutative diagram:

Hl(Ĩ
a+) Hl(P̃ ∪ Ĩ a+) Hl(P̃ ∪ Ĩ a+, Ĩ a+) Hl−1(Ĩ

a+) Hl−1(P̃ ∪ Ĩ a+)

Hl(Ĩ
a+) Hl

(
C1

0(Ω)
)

Hl

(
C1

0(Ω), Ĩ a+
)

Hl−1(Ĩ
a+) Hl−1

(
C1

0(Ω)
)

,

all vertical maps i∗ :H∗(Ĩ a+) → H∗(Ĩ a+) and i∗ :H∗(P̃ ∪ Ĩ a+) → H∗(C1
0(Ω)), ∗ = 0,1, . . . , are induced by the inclusion,

and are isomorphisms, the rows are exact, so by the Five Lemma, Theorem 2.9 and Remark 2.10, (4.2) holds.
(2) There exists u0 ∈ K such that u0 /∈ P̃ ∪ (−P̃ ) ∪ D.
If K ⊂ P̃ ∪ (−P̃ ) ∪ D, then by the same argument as above we have

H∗
(
C1

0(Ω), Ĩ a
)

� H∗
(
P̃ ∪ (−P̃ ) ∪ D ∪ Ĩ a, Ĩ a

) = 0. (4.5)

On the other hand, by ±P̃ ∩ Ĩ a± = ±P̃ ∩ Ĩa and min{Ĩ (u)|u ∈ D} > a, after excision we obtain

H∗
(
P̃ ∪ (−P̃ ) ∪ D ∪ Ĩ a, Ĩ a

)
� H∗

(
P̃ ∪ (−P̃ ) ∪ D, Ĩ a ∩ (

P̃ ∪ (−P̃ )
))

� H∗
(
P̃ ∪ (−P̃ ) ∪ D,

(
Ĩ a+ ∩ P̃

) ∪ (−P̃ ∩ Ĩ a−
))

. (4.6)

We see from (4.1), (4.2) and the exact sequence of homology for the pairs (±P̃ ,±P̃ ∩ Ĩ a±) that

H∗
(±P̃ ∩ Ĩ a±

) = δ∗,0G, ∗ = 0,1,2, . . . , (4.7)

since ±P̃ is contractible. The set P̃ ∪ (−P̃ ) ∪ D is also contractible provided by the convexity of ±P̃ , D and 0 ∈
P̃ ∩ (−P̃ ) ∩ D. Applying the exact sequence to the pair (P̃ ∪ (−P̃ ) ∪ D,(Ĩ a+ ∩ P̃ ) ∪ (−P̃ ∩ Ĩ a−)) and (4.7) we get

H∗
(
P̃ ∪ (−P̃ ) ∪ D ∪ Ĩ a, Ĩ a

)
� H∗

(
P̃ ∪ (−P̃ ) ∪ D,

(
Ĩ a+ ∩ P̃

) ∪ (−P̃ ∩ Ĩ a−
))

� δ∗,1G, ∗ = 0,1,2, . . . ,

which contradicts with (4.5). The existence of u0 ∈ K such that u0 /∈ P̃ ∪ (−P̃ ) ∪ D follows.
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(3) There exist u± ∈ ±P̃ \ D.
It follows from the contractibility of P̃ ∪ D and P̃ , the exact sequence and (4.7) that

H∗
(
P̃ ∪ D, P̃ ∩ Ĩ a+

) ∼= H∗
(
P̃ , P̃ ∩ Ĩ a+

) = 0, ∗ = 0,1,2, . . . . (4.8)

Both P̃ ∪ D and D are contractible and positively invariant sets of the heat flow, we have

C∗(Ĩ ,K ∩ D) = δ∗,0G, ∗ = 0,1,2, . . . . (4.9)

Therefore, K ∩ (P̃ \ D) �= ∅ by (4.8), (4.9) and the Morse relation, i.e., ∃u+ ∈ K ∩ (P̃ \ D). Similarly, ∃u− ∈ K ∩
(−P̃ \ D). �
Remark 4.4. One can show that both u+ and u− are mountain pass points of Ĩ if the number of positive and negative
solutions of (1.1) is finite.

Indeed, we have

H∗
(
P̃ ∪ (−P̃ ) ∪ D,

(
P̃ ∩ Ĩ a

) ∪ (−P̃ ∩ Ĩ a
)) ∼= H∗

(
P̃ ∪ (−P̃ ),

(
P̃ ∪ (−P̃ )

) \ {0})
∼= δ∗,1G, ∗ = 0,1,2, . . . . (4.10)

From (4.10) and the Morse relation on the invariant set P̃ ∪ (−P̃ ) ∪ D, we have

m1 =
∑
±

rankC1(Ĩ , u±) = 2

and at least one of rankC1(Ĩ , u±) > 0. Therefore

rankC1(Ĩ , u±) = 1

and u± are mountain pass points of Ĩ , see [12].
This conclusion holds even without the finiteness assumption. It can be proved by the minimax argument in the

invariant set P̃ ∪ (−P̃ ) ∪ D, see the proof of Theorem 1.3 in [22].

5. Multiple solutions

Applying the previous results, now we turn to study the multiplicity of solutions of Eq. (1.1).
Combining Theorems 2.8 and 2.9 we have

Theorem 5.1. Under the assumptions (A1), (A2), (A3′), (A4) and (A5) λ /∈ σ(Ω), Eq. (1.1) has three nonzero solu-
tions, among them, one is positive, one is negative if λ < λ1, and has a nonzero solution if λ > λ1. Moreover, if the
number of positive and negative solutions is finite, then there is a sign-changing solution of (1.1).

Proof. The proof has been given in [16] (Proof of Theorem 5.1) we repeat it here for the convenience.
(1) First we note from (A5) for all cases, u = 0 is an isolated critical point of I (u) with

C∗(I,0) = δ∗,i0G

where i0 = ∑
λi<λ dim(−� − λi). According to Theorem 2.8, H∗(E, Ia) ∼= {0} ∗ = 0,1,2, . . . , hence by the Morse

relation, see [12], there must be a nonzero solution of (1.1). In case λ < λ1, i0 = 0 and 0 is a local minimizer. The
existence of a positive (and a negative) solution follows from the mountain pass theorem for I+ (and I−, respectively).
And the existence of the third solutions follows from the Morse relation and Theorem 2.8.

(2) Next, with the finiteness assumption of the positive and negative solutions, let {u+
i }l1 and {u−

j }m1 be the sets of
positive and negative solutions, respectively. We assume that there is no sign-changing solution. Let

χ±
(
u±) =

∑
(−1)k rankCk(I±, u±)

and

χ
(
u±) =

∑
(−1)k rankCk(I,u

±).
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It is known that χ(u±) = χ±(u±). According to the Morse relations for I+, I−, I and Theorems 2.8–2.9, we have

χ+(0) +
l∑
1

χ+(u+
i ) = 0, (5.1)

χ−(0) +
m∑
1

χ−(u−
j ) = 0 (5.2)

and

χ(0) +
l∑
1

χ(u+
i ) +

m∑
1

χ(u−
j ) = 0. (5.3)

It was proved in [16] that χ+(0) = χ−(0). Thus from (5.1)–(5.3) we get

χ(0) = χ−(0) + χ+(0) = 2χ−(0).

It is known from the previous paragraph (1) that χ(0) is odd, while the right-hand side of the above equality is even.
This contradiction concludes the existence of a sign-changing solution of (1.1). �

In order to emphasize the role of the nonlinear terms a+|u|q−1u and a−|u|p−1u in the modelling equation, we
assume further

(A6) h(x,u) =
{

o(a±(x)|u|α) as |u| → 0 uniformly in x ∈ Ω±,

0, x ∈ Ω0,

where α = max{p,q}. We study two cases:

(I) p < q or p = q with
∫
Ω

(a+ − a−)φ
p+1
1 dx < 0, where φ1 is the first eigenfunction −�.

(II) p > q .

Case I. According to [4], ∃λ+ > λ1 such that (1.1) admits a positive solution for λ ∈ (λ1, λ+), but no positive
solutions for λ > λ+. By the same reason, ∃λ− > λ1 such that (1.1) admits a negative solution for λ ∈ (λ1, λ−), but
no negative solutions for λ > λ−.

Theorem 5.2. Under the assumptions (A1), (A2′), (A3′), (A4) and (A6) in Case (I).

(1) If λ2 < λ < λ± and λ /∈ σ(Ω), then Eq. (1.1) has at least two positive, two negative and three sign-changing
solutions.

(2) If λ1 < λ < λ± < λ2, then Eq. (1.1) has at least two positive, two negative and one sign-changing solutions.

Proof. We only prove the first statement. The second one can be proved similarly.
(i) By the assumption λ2 < λ < λ±, there are two pairs of sub- and super-solutions: v 1 < v̄1 < 0 < v 2 < v̄2, where

v̄1 = −εφ1 and v 2 = εφ1 for small ε. Applying Theorem 4.1, for small ε, we have a positive solution uε+ ∈ [v 2, v̄2],
a negative solution uε− ∈ [v 1, v̄1] and uε

0 ∈ [v 1, v̄2] \ ([v 1, v̄1] ∪ [v 2, v̄2]). Since ε > 0 can be chosen arbitrary small,
all solutions 0 �= u ∈ [v 1, v̄2] \ ([v 1, v̄1] ∪ [v 2, v̄2]) must be sign-changing. If the number of solutions of (1.1) in
[v 1, v̄2] is finite, then we can assume C∗(I, uε

0) = δ∗,1G, by Theorem 4.1. But we know C1(I,0) = 0, hence uε
0 �= 0,

i.e., uε
0 is sign-changing.

Moreover, by the assumption λ /∈ σ(Ω), ind(I ′,0) = ±1 and we conclude that there exists one more sign-changing
solution u1 in [v 1, v̄2] by computing the degree on the invariant set [v 1, v̄2]. Indeed, if uε

0 is the only sign-changing
solution of (1.1), then

deg
(
I ′, [v 1, v̄2],0

) = deg
(
I ′, [v 1, v̄1],0

) + deg
(
I ′, [v 2, v̄2],0

) + ind(I ′,0) + ind
(
I ′, uε

0

)
.

This is impossible because

deg
(
I ′, [v 1, v̄2],0

) = deg
(
I ′, [v 1, v̄1],0

) = deg
(
I ′, [v 2, v̄2],0

) = 1
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provided by the contractibility of [v 1, v̄2], [v i, v̄i], i = 1,2, and ind(I ′, uε
0) = −1.

In summary there are one positive, one negative and two sign-changing solutions in the interval D = [v 1, v̄2].
(ii) Now applying Theorem 4.3 to the set [v 1, v̄2], we conclude that, outside D, (1.1) has a positive, a negative and

a sign-changing solutions.
Combing (i) and (ii), the proof is completed. �

Remark 5.3. One can analyze various cases in more details and count the number of solutions by the previous method.
The results extend those in [16], where only the case λ < λ1 was studied, and in [1], where p = q was assumed.

Case II. We add a parameter γ > 0 to Eq. (1.1) as follows:

−�u = λu + a+(x)|u|q−1u − γ a−(x)|u|p−1u + h(x,u) (1.1)λ,γ

and let Iλ,γ be the associated functional. We assume (A6). Following the argument in [5], (1.1)λ,γ possesses a positive
super-solution ūγ as γ > 0 large and a positive sub-solution uγ , which can be arbitrarily small for λ > λ1 − ε, ε > 0
small. Indeed, let wγ be the unique solution of⎧⎨

⎩
−�w = λ̄w − γ a−wp, x ∈ Ω,

w(x) > 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

where λ̄ ∈ (λ,λ1(Ω0 ∪ Ω+ )), then ∃γ1 = γ1(λ) such that for γ � γ1, ūγ = wγ1 is a positive super-solution. And uγ is
the positive solution bifurcating from (0, λ1). By the assumption (A6) and q < p, the branch of solutions of (λ(α),uα)

with λ(0) = λ1 and uα = αφ1 + o(α) is on the left side of (0, λ1) locally, i.e., λ(α) < λ1 as α > 0 small. Moreover,
by simple computation, see [5],

Iλ,γ (uγ ) � Iλ1,γ (uγ ) < 0 as λ � λ1,

and

Iλ,γ (uγ ) � Iλ1,γ (uγ ) + ε‖uγ ‖2 as λ ∈ [λ1 − ε,λ1]
for ε > 0 small. Therefore,

Iλ,γ (uγ ) < 0 as ε > 0 small and λ � λ1 − ε.

Define

γ0(λ) = inf
{
γ > 0 | (1.1)λ,γ admits a solution u > 0 and Iλ,γ (u) < 0

}
.

Following the proof of [5] Lemma 5.4, we have γ0(λ) > 0 such that for λ ∈ [λ1, λ1(Ω0 ∪ Ω+ )), and that (1.1)λ,γ0(λ)

admits a positive solution.
Let

γ ∗ = inf
{
γ0(λ) | λ > λ1

}
� γ0(λ1) > 0.

In [5], Alama and Tarantello defined, for γ > γ ∗,

λ+(γ ) = sup
{
λ > 0 | (1.1)λ,γ admits a positive solution

}
and

λ−(γ ) = inf
{
λ | (1.1)λ,γ admits a solution u with 0 < u < u+(x) a.e.

}
,

where u+ is a positive solution of (1.1)λ+(γ ),γ , and proved that: −∞ < λ−(γ ) < λ1 < λ+(γ ) < λ1(Ω0 ∪ Ω+ ) in
Lemma 5.9. Moreover, there exists a pairs of positive sub- and super-solutions (uγ , ūγ ) for λ ∈ (λ−(γ ), λ+(γ )).

Now we use these facts to prove

Theorem 5.4. Under the assumption (A1), (A2′), (A3′), (A4) and (A6), to Eq. (1.1)λ,γ , there exist γ ∗ > 0 and
−∞ < λ−(γ ) < λ1 < λ+(γ ) such that ∀γ > γ ∗,
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(1) For 0 < λ < λ−(γ ), there exist at least one positive, one negative and one sign-changing solutions.
(2) For λ−(γ ) < λ < λ1, there exist at least three positive, three negative and one sign-changing solutions.
(3) For λ1 < λ < λ+(γ ), there exist at least two positive, two negative and one sign-changing solutions.
(4) For λ2 < λ < λ+(γ ), there exist at least two positive, two negative and three sign-changing solutions.

Proof. Case (1) follows directly from Theorem 5.1.
Case (2): Let (uγ , ūγ ) (and ( v γ , v̄γ )) be pairs of positive (negative) sub- and super-solutions of (1.1)λ,γ , respec-

tively. Besides, (−εφ1, εφ1) is also a pair of sub- and super-solutions. According to Theorem 4.1, there exist positive
solutions u1

γ ∈ [uγ , ūγ ] and u2
γ ∈ [0, ūγ ] \ [uγ , ūγ ], negative solutions v1

γ ∈ [v γ , v̄γ ] and v2
γ ∈ [v γ ,0] \ [v γ , v̄γ ].

Moreover, we apply Theorem 4.3 to D := [v γ , ūγ ], there exist one positive solution u3
γ , one negative solution v3

γ and
one sign-changing solution v, all are outside D.

Case (3): It is similar to Case (2), but there exist only one positive and one negative solutions inside D.
Case (4): Similar to the first paragraph of the proof of Theorem 5.2, there exist one positive, one negative and

two sign-changing solutions in D. Again, there are one positive, one negative and one sign-changing solutions out-
side D. �
Remark 5.5. The remaining two cases are as follows:

Case (5): λ = λ−(γ ), there are at least two positive, two negative and one sign-changing solutions, see [5], Theo-
rems 4.1 and 4.2.

Case (6): λ = λ+(γ ), there are at least one positive and one negative solutions, see [5].

Remark 5.6. We also have some information on the type of solutions from the point of view of critical points.
Case (1): Both positive and negative solutions are mountain pass points.
Case (2): Among the three positive (negative, respectively) solutions, one is a local minimizer, and two are moun-

tain pass points.
Case (3): Among the two positive (negative, respectively) solutions, one is a local minimizer, the other is a mountain

pass point.
Case (4): The same situation occurs as in Case (3). Moreover, at least one of the sign-changing solutions is a

mountain pass point.

Remark 5.7. The positive solutions for Eq. (1.1)λ,γ have been obtained in [5].

Remark 5.8. As in [16], under the assumptions of theorems in this section, if we assume further that h is odd in u,
then there is a sequence of solutions {uk} of (1.1) such that ‖uk‖∞ → +∞ as k → +∞.
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