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Abstract

We examine the regularity of weak solutions of quasi-geostrophic (QG) type equations with supercritical (α < 1/2) dissipation
(−�)α . This study is motivated by a recent work of Caffarelli and Vasseur, in which they study the global regularity issue for
the critical (α = 1/2) QG equation [L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-
geostrophic equation, arXiv: math.AP/0608447, 2006]. Their approach successively increases the regularity levels of Leray–Hopf
weak solutions: from L2 to L∞, from L∞ to Hölder (Cδ , δ > 0), and from Hölder to classical solutions. In the supercritical case,
Leray–Hopf weak solutions can still be shown to be L∞, but it does not appear that their approach can be easily extended to
establish the Hölder continuity of L∞ solutions. In order for their approach to work, we require the velocity to be in the Hölder
space C1−2α . Higher regularity starting from Cδ with δ > 1 − 2α can be established through Besov space techniques and will
be presented elsewhere [P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic
equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press].
© 2007
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1. Introduction

This paper studies the regularity of Leray–Hopf weak solutions of the dissipative QG equation of the form{
∂t θ + u · ∇θ + κ(−�)αθ = 0, x ∈ Rn, t > 0,

u = R(θ), ∇ · u = 0, x ∈ Rn, t > 0,
(1.1)

where θ = θ(x, t) is a scalar function, κ > 0 and α > 0 are parameters, and R is a standard singular integral operator.
The fractional Laplace operator (−�)α is defined through the Fourier transform

̂(−�)αf (ξ) = |ξ |2αf̂ (ξ), ξ ∈ Rn.
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(1.1) generalizes the 2D dissipative QG equation (see [6,8,12,17] and the references therein). The main mathematical
question concerning the 2-D dissipative QG equation is whether or not it has a global in time smooth solution for any
prescribed smooth initial data. In the subcritical case α > 1

2 , the dissipative QG equation has been shown to possess
a unique global smooth solution for every sufficiently smooth initial data (see [9,18]). In contrast, when α < 1

2 , the
question of global existence is still open. Recently this problem has attracted a significant amount of research [2–
7,11,13–16,19–24]. In Constantin, Córdoba and Wu [7], we proved in the critical case (α = 1

2 ) the global existence
and uniqueness of classical solutions corresponding to any initial data with L∞-norm comparable to or less than the
diffusion coefficient κ . In a recent work [15], Kiselev, Nazarov and Volberg proved that smooth global solutions persist
for any C∞ periodic initial data [7], for the critical QG equation. Also recently, Caffarelli and Vasseur [2] proved the
global regularity of the Leray–Hopf weak solutions to the critical QG equation in the whole space.

We focus our attention on the supercritical case α < 1
2 . Our study is motivated by the work of Caffarelli and Vasseur

in the critical case. Roughly speaking, the Caffarelli–Vasseur approach consists of three main steps. The first step
shows that a Leray–Hopf weak solution emanating from an initial data θ0 ∈ L2 is actually in L∞(Rn × (0,∞)). The
second step proves that the L∞-solution is Cγ -regular, for some γ > 0. For this purpose, they represent the diffusion
operator Λ ≡ (−�)1/2 as the normal derivative of the harmonic extension L from C∞

0 (Rn) to C∞
0 (Rn × R+) and

then exploit a version of De Giorgi’s isoperimetric inequality to prove the Hölder continuity. The third step improves
the Hölder continuity to C1,β , the regularity level of classical solutions.

We examine the approach of Caffarelli and Vasseur to see if it can be extended to the super-critical case. The
first step of their approach can be modified to suit the supercritical case: any Leray–Hopf weak solution can still be
shown to be L∞ for any x ∈ Rn and t > 0 (see Theorem 2.1). Corresponding to their third step, we can show that
any weak solution already in the Hölder class Cδ with δ > 1 − 2α, is actually a global classical solution. This result
is established by representing the Hölder space functions in terms of the Littlewood–Paley decomposition and using
Besov space techniques. We will present this result in a separate paper [10]. We do not know if any solution in Hölder
space Cγ with arbitrary γ > 0 is smooth, and therefore there exists a significant potential obstacle to the program:
even if all Leray–Hopf solutions are Cγ , γ > 0, it may still be the case that only those solutions for which γ > 1 − 2α

are actually smooth. If this would be true, then the critical case would be a fortuitous one, (1 − 2α = 0). If, however,
all Leray–Hopf solutions are smooth, then providing a proof of this fact would require a new idea.

The most challenging part is how to establish the Hölder continuity of the L∞-solutions. It does not appear that
the approach of Caffarelli and Vasseur can be easily extended to the supercritical case. In the critical case, Caffarelli
and Vasseur lifted θ from Rn to a harmonic function θ∗ in the upper-half space Rn × R+ with boundary data on Rn

being θ . The fractional derivative (−�)
1
2 θ is then expressed as the normal derivative of θ∗ on the boundary Rn and

the H̊ 1-norm of θ∗ is then bounded by the natural energy of θ . Taking the advantage of the nice properties of harmonic
functions, they were able to obtain a diminishing oscillation result for θ∗ in a box near the origin. More precisely, if
θ∗ satisfying |θ∗| � 2 in the box, then θ∗ satisfies in a smaller box centered at the origin

sup θ∗ − inf θ∗ < 4 − λ∗

for some λ∗ > 0. The proof of this result relies on a local energy inequality, an isoperimetric inequality of De Giorgi
and two lengthy technical lemmas. Examining the proof reveals that λ∗ depends on the BMO-norm of the velocity u.
To show the Hölder continuity at a point, they zoom in at this point by considering a sequence of functions θ∗

k and uk

with (θk, uk) satisfying the critical QG equation. This process is carried out through the natural scaling invariance that
(θ(μx,μt), u(μx,μt)) solves the critical QG equation if (θ, u) does so. Applying the diminishing oscillation result
to this sequence leads to the Hölder continuity of θ∗. An important point is that the BMO-norm of uk is preserved in
this scaling process.

In the supercritical case, the diminishing oscillation result can still be established by following the idea of Caf-
farelli and Vasseur (see Theorem 3.1). However, the scaling invariance is now represented by μ2α−1θ(μx,μ2αt) and
μ2α−1u(μx,μ2αt) and the BMO-norm deteriorates every time the solution is rescaled. This is where the approach of
Caffarelli and Vasseur stops working for the supercritical case. If we make the assumption that u ∈ C1−2α , then the
scaling process preserves this norm and we can still establish the Hölder continuity of θ . This observation is presented
in Theorem 4.1.
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2. From L2 to L∞

In this section, we show that any Leray–Hopf weak solution of (1.1) is actually in L∞ for t > 0. More precisely,
we have the following theorem.

Theorem 2.1. Let θ0 ∈ L2(Rn) and let θ be a corresponding Leray–Hopf weak solution of (1.1). That is, θ satisfies

θ ∈ L∞([0,∞),L2(Rn)
) ∩ L2([0,∞); H̊ α(Rn)

)
. (2.1)

Then, for any t > 0,

sup
Rn

∣∣θ(x, t)
∣∣ � C

‖θ0‖L2

t
n

4α

.

As a special consequence,∥∥u(·, t)∥∥BMO(Rn)
� C

‖θ0‖L2

t
n

4α

for any t > 0.

This theorem can be proved by following the approach of Caffarelli and Vasseur [2]. For the sake of completeness,
it is provided in Appendix A.

3. The diminishing oscillation result

This section presents the diminishing oscillation result. We first recall a theorem of Caffarelli and Silvestre [1]. It
states that if L(θ) solves the following initial and boundary value problem{∇ · (zb∇L(θ)) = 0, (x, z) ∈ Rn × (0,∞),

L(θ)(x,0) = θ(x), x ∈ Rn,
(3.1)

then

(−�)αθ = lim
z→0

(−zbL(θ)z
)
, (3.2)

where b = 1 − 2α. Furthermore, the boundary-value problem (3.1) can be solved through a Poisson formula

L(θ)(x, z) = P(x, z) ∗ θ ≡
∫
Rn

P (x − y, z)θ(y) dy,

where the Poisson kernel

P(x, z) = Cn,b

z1−b

(|x|2 + |z|2) n+1−b
2

= Cn,α

z2α

(|x|2 + |z|2) n+2α
2

. (3.3)

For notational convenience, we shall write

θ∗(x, z, t) = L
(
θ(·, t))(x, z).

The following notation will be used throughout the rest of the sections:

f+ = max(0, f ), Br ≡ [−r, r]n ⊂ Rn, Qr ≡ Br × [0, r] ⊂ Rn × {t � 0}
and

B∗
r ≡ Br × [0, r] ⊂ Rn × R+, Q∗

r ≡ [−r, r]n × [0, r] × [0, r] ⊂ Rn × R+ × {t � 0}.

Theorem 3.1. Let θ be a weak solution to (1.1) satisfying

θ ∈ L∞([0,∞),L2(Rn)
) ∩ L2([0,∞); H̊ α(Rn)

)
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with u satisfying (3.8) below. Assume

|θ∗| � 2 in Q∗
4.

Then there exists a λ∗ > 0 such that

sup
Q∗

1

θ∗ − inf
Q∗

1

θ∗ � 4 − λ∗. (3.4)

The proof of this theorem relies on three propositions stated below and will be provided in Appendix A. It can
be seen from the proofs of this theorem and related propositions that λ∗ may depend on ‖u‖

L
n
α

in the fashion
λ∗ ∼ exp(−‖u‖m

L
n
α
) for some constant m.

The first proposition derives a local energy inequality which bounds the L2-norm of the gradient of θ∗ in terms of
the local L2-norms of θ and θ∗.

Proposition 3.2. Let 0 < t1 < t2 < ∞. Let θ be a solution of (1.1) satisfying

θ ∈ L∞([t1, t2];L2(Rn)
) ∩ L2([t1, t2]; H̊ α(Rn)

)
.

Assume the velocity u satisfies

u ∈ L∞([t1, t2];L n
α (Rn)

)
. (3.5)

Then, for any cutoff function η compactly supported in B∗
r with r > 0,

t2∫
t1

∫
B∗

r

zb
∣∣∇(ηθ∗+)

∣∣2
dx dzdt +

∫
Br

(ηθ+)2(t2, x) dx �
∫
Br

(ηθ+)2(t1, x) dx

+ C1

t2∫
t1

∫
Br

(|∇η|θ+
)2

dx dt +
t2∫

t1

∫
B∗

r

zb
(|∇η|θ∗+

)2
dx dzdt, (3.6)

where

C1 = ‖u‖
L∞([t1,t2];L n

α (Rn))
. (3.7)

If, instead of (3.5), we assume

u ∈ L∞([t1, t2];C1−2α(Rn)
)

and
∫
Br

u(x, t) dx = 0, (3.8)

then the same local energy inequality (3.6) holds with C1 in (3.7) replaced by

C2 = ‖u‖L∞([t1,t2];C1−2α(Rn)). (3.9)

The following proposition establishes the diminishing oscillation for θ∗ under the condition that the local L2-norms
of θ and θ∗ are small.

Proposition 3.3. Let θ be a solution of the supercritical QG equation (1.1) satisfying

θ ∈ L∞([0,∞);L2) ∩ L2([0,∞); H̊ α
)
.

Assume that u satisfies the condition in (3.8) and

θ∗ � 2 in B∗
4 × [−4,0].

There exist ε0 > 0 and λ > 0 such that if

0∫
−4

∫
B∗

(θ∗+)2 zb dx dz ds +
0∫

−4

∫
B4

(θ+)2 dx ds � ε0, (3.10)
4
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then

θ+ � 2 − λ on B1 × [−1,0]. (3.11)

The proof is obtained by following Caffarelli and Vasseur and will be presented in Appendix A. The following
proposition supplies a condition that guarantees the smallness of the local L2-norms of θ and θ∗.

Proposition 3.4. Let θ be a Leray–Hopf weak solution to the supercritical equation (1.1) with u satisfying (3.8).
Assume that

θ∗ � 2 in Q∗
4

and ∣∣{(x, z, t) ∈ Q∗
4: θ∗ � 0

}∣∣
w

�
|Q∗

4|w
2

,

where |Q∗
4|w denotes the weighted measure of Q∗

4 with respect to zb dx dz dt . For every ε1 > 0, there exists a constant
δ1 > 0 such that if∣∣{(x, z, t) ∈ Q∗

4: 0 < θ∗(x, z, t) < 1
}∣∣

w
� δ1,

then ∫
Q1

θ2+ dx dt +
∫
Q∗

1

(θ∗+)2 zb dx dz dt � C εα
1 .

The proof of this proposition involves a weighted version of De Giorgi’s isoperimetric inequality. More details will
be given in Appendix A. The isoperimetric inequality with no weight was given in Caffarelli and Vasseur [2].

Lemma 3.5. Let Br = [−r, r]n ⊂ Rn and B∗
r = Br × [0, r]. Let b ∈ [0,1) and let p > (1 + b)/(1 − b). Let f be a

function defined in B∗
r such that

K ≡
∫
Br

r∫
0

zb|∇f |2 dzdx < ∞.

Let

A ≡ {
(x, z) ∈ B∗

r : f (x, z) � 0
}
,

B ≡ {
(x, z) ∈ B∗

r : f (x, z) � 1
}
,

C ≡ {
(x, z) ∈ B∗

r : 0 < f (x, z) < 1
}

(3.12)

and let |A|w , |B|w and |C|w be the weighted measure of A, B and C with respect to zb dx dz, respectively. Then

|A|w|B|w � Cr
1+ 1

2 (n+1− p+1
p−1 b)(1− 1

p
)(|C|w

) 1
2p K

1
2 ,

where C is a constant independent of r .

Proof. We scale the z-variable by

z̃ = 1

b + 1
zb+1 or z = (

(b + 1)z̃
) 1

b+1 .

When (x, z) ∈ Br × [0, r], (x, z̃) ∈ Br × [0, r̃] with r̃ = r
1+b

. For notational convenience, we write Er = Br × [0, r̃].
Define

g(x, z̃) = f (x, z) for (x, z̃) ∈ Br × [0, r̃].
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Let

Ã ≡ {
(x, z̃) ∈ Br × [0, r̃]: g(x, z̃) � 0

}
and B̃ and C̃ be similarly defined. Therefore,

|A|w|B|w ≡
∫

A

∫
B

zb
1 dx1 dz1 zb

2 dx2 dz2

�
∫

A

∫
B

(
f (x1, z1) − f (x2, z2)

)
zb

1 dx1 dz1 zb
2 dx2 dz2

=
∫

Ã

∫
B̃

(
g(x1, z̃1) − g(x2, z̃2)

)
dx1 dz̃1 dx2 dz̃2

=
∫

Ã

∫
B̃

(
g(ỹ1) − g(ỹ2)

)
dỹ1 dỹ2, (3.13)

where ỹ1 = (x1, z̃1) and ỹ2 = (x2, z̃2). This integral now involves no weight and can be handled similarly as in
Caffarelli and Vasseur [2].

|A|w|B|w � C

∫
Er

∫
Er

|∇g(ỹ1 + ỹ2)|
|ỹ2|n−1

χ{ỹ1+ỹ2)∈C̃} dỹ1 dỹ2

= C

∫
Er

∫
Er+{ỹ2}

∣∣∇g(ỹ)
∣∣χ{ỹ} dỹ

1

|ỹ2|n−1
dỹ2

= Cr

∫
Er

∣∣∇g(ỹ)
∣∣χ{ỹ∈C̃} dỹ, (3.14)

where χ denotes the characteristic function. By the definition of g,

∇g(x, z̃) = (∇xg, ∂z̃g) =
(

∇xf, ∂zf
∂z

∂z̃

)
= (∇xf, ∂zf z−b).

By substituting back to the z-variable and letting y = (x, z), we have

|A|w|B|w � Cr

∫
Br

r∫
0

χ{y∈C}
√

|∇xf |2 + (∂zf )2z−2b zb dz dx

� Cr

(∫
B∗

r

(|∇xf |2z2b + (∂zf )2) zb dz dx

)1/2(∫
B∗

r

χ{y∈C}z−b dz dx

)1/2

.

By Hölder’s inequality,∫
B∗

r

χ{y∈C}z−b dz dx �
(∫

C

zb dz dx

)1/p(∫
Br

r∫
0

z
− p+1

p−1 b
dz dx

)1−1/p

= |C|1/p
w r

(n+1− p+1
p−1 b)(1− 1

p
)
.

Therefore,

|A|w |B|w � C r
1+ 1

2 (n+1− p+1
p−1 b)(1− 1

p
) |C|

1
2p
w K

1
2 .

This completes the proof of this lemma. �
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4. Hölder continuity under the condition u ∈ C1−2α

This section proves the following theorem.

Theorem 4.1. Let θ be a solution of (1.1) satisfying

θ ∈ L∞([0,∞),L2(Rn)
) ∩ L2([0,∞); H̊ α(Rn)

)
.

Let t0 > 0. Assume that

θ ∈ L∞(
Rn × [t0,∞)

)
and

u ∈ L∞([t0,∞);C1−2α(Rn)
)
.

Then θ is in Cδ(Rn × [t0,∞)) for some δ > 0.

Proof. Fix x ∈ Rn and t ∈ [t0,∞). We show θ is Cδ at (x, t). Define

F0(y, s) = θ
(
x + y + x0(s), t + s

)
,

where x0(s) is the solution to

x̊0(s) = 1

|B4|
∫

x0(s)+B4

u(x + y, t + s) dy,

x0(0) = 0.

Note that x0(s) is uniquely defined from the classical Cauchy–Lipschitz theorem. Since θ is bounded in Rn ×[t0,∞),
we can define

θ̄∗
0 = 4

supQ∗
4
F ∗

0 − infQ∗
4
F ∗

0

(
F ∗

0 −
supQ∗

4
F ∗

0 + infQ∗
4
F ∗

0

2

)
,

u0(y, s) = u
(
x + y + x0(s), t + s

) − x̊0(s),

where F ∗
0 (y, z, s) = L(F0(·, s))(y, z). Trivially, |θ̄∗

0 | � 2 and thus |θ̄0| � 2. To verify that (θ̄0, u0) solves the super-
critical QG equation (1.1), it suffices to show that (F0, u0) solves (1.1). In fact,

∂sF0 + u0 · ∇yF0 = x̊0(s) · ∇xθ + ∂t θ + (
u − x̊0(s)

) · ∇xθ

= ∂t θ + u · ∇θx = −Λ2α
x θ = −Λ2α

y F0.

In addition, for any s � 0,∥∥u0(·, s)
∥∥

C1−2α = ∥∥u(·, t + s)
∥∥

C1−2α and
∫
B4

u0(y, s) dy = 0.

Let μ > 0 and set for every integer k > 0

Fk(y, s) = μ2α−1 Fk−1
(
μy + μ2α xk(s),μ

2αs
)
,

θ̄∗
k = 4

supQ∗
4
F ∗

k − infQ∗
4
F ∗

k

(
F ∗

k −
supQ∗

4
F ∗

k + infQ∗
4
F ∗

k

2

)
,

x̊k(s) = 1

|B4|
∫

B4+μ2α−1xk(s)

uk−1(μy,μ2αs) dy,

xk(0) = 0,

uk(y, s) = μ2α−1uk−1
(
μy + μ2αxk(s),μ

2αs
) − μ2α−1x̊k(s).
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By the construction, |θ̄k| � 2 and∥∥uk(·, s)
∥∥

C1−2α = μ2α−1
∥∥uk−1(μ · +μ2α,μ2αs)

∥∥
C1−2α

�
∥∥uk−1(·,μ2αs)

∥∥
C1−2α

�
∥∥u0(·,μ2αks)

∥∥
C1−2α

= ∥∥u(·, t + μ2αks)
∥∥

C1−2α .

Furthermore,∫
B4

uk(y, s) dy = 0.

We show inductively that (θ̄k, uk) solves (1.1). Assume that (θ̄k−1, uk−1) solves (1.1), we show that (θ̄k, uk) solves
(1.1). It suffices to show that (Fk,uk) solves (1.1). By construction, we have

∂sFk + uk · ∇yFk = μ4α−1x̊k(s) · ∇Fk−1 + μ4α−1 ∂sFk−1 + μ4α−1(uk−1 − x̊k(s)
) · ∇Fk−1

= μ4α−1 (∂sFk−1 + uk−1 · ∇Fk−1)

= −μ4α−1Λ2αFk−1

= −Λ2α
y Fk.

For every k, we apply the diminishing oscillation result (Theorem 3.1). There exists a λ∗ such that

sup
Q∗

1

θ̄∗
k − inf

Q∗
1

θ̄∗
k � 4 − λ∗.

λ∗ is independent of k since ‖uk‖C1−2α obeys a uniform bound in k. According to the construction of θ̄∗
k , we have

sup
Q∗

1

θ̄∗
k − inf

Q∗
1

θ̄∗
k = 4

supQ∗
4
F ∗

k − infQ∗
4
F ∗

k

(
sup
Q∗

1

F ∗
k − inf

Q∗
1

F ∗
k

)
.

Therefore,

sup
Q∗

1

F ∗
k − inf

Q∗
1

F ∗
k �

(
1 − λ∗

4

)(
sup
Q∗

4

F ∗
k − inf

Q∗
4

F ∗
k

)
.

By the construction of Fk , we have

sup
(y,s)∈Q∗

4

F ∗
k (y, s) − inf

(y,s)∈Q∗
4

F ∗
k (y, s)

= μ2α−1
(

sup
(y,s)∈Q∗

4

F ∗
k−1

(
μy + μ2αxk(s),μ

2αs
) − inf

(y,s)∈Q∗
4

F ∗
k−1

(
μy + μ2αxk(s),μ

2αs
))

.

For notational convenience, we have omitted the z-variable. It is easy to see from the construction of x̊k that∣∣x̊k(s)
∣∣ �

∥∥uk−1(·,μ2αs)
∥∥

L∞ �
∥∥uk−1(·,μ2αs)

∥∥
C1−2α �

∥∥u(·, t + μ2αks)
∥∥

C1−2α . (4.1)

For 0 � s � 1, we can choose μ > 0 sufficiently small such that∣∣μy + μ2αxk(s)
∣∣ � 4μ + C μ2α < 1. (4.2)

We then have

sup
(y,s)∈Q∗

4

F ∗
k−1

(
μy + μ2αxk(s),μ

2αs
) − inf

(y,s)∈Q∗
4

F ∗
k−1

(
μy + μ2αxk(s),μ

2αs
)

� sup
(y,s)∈Q∗

F ∗
k−1(y, s) − inf

(y,s)∈Q∗
1

F ∗
k−1(y, s).
1
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Consequently,

sup
Q∗

1

F ∗
k − inf

Q∗
1

F ∗
k � μ2α−1

(
1 − λ∗

4

)(
sup
Q∗

1

F ∗
k−1 − inf

Q∗
1

F ∗
k−1

)
.

By iteration, for any k > 0,

sup
Q∗

1

F ∗
k − inf

Q∗
1

F ∗
k � μ(2α−1)k

(
1 − λ∗

4

)k(
sup
Q∗

1

F ∗
0 − inf

Q∗
1

F ∗
0

)
. (4.3)

By construction,

F0(y, s) = θ
(
x + y + x0(s), t + s

)
,

Fk(y, s) = μ(2α−1)kθ
(
x + μky + μ2α+k−1xk(s) + μ2α+k−2xk−1(μ

2αs)

+ · · · + μ2αx1(μ
2α(k−1)s) + x0(μ

2αks), t + μ2αks
)
.

To deduce the Hölder continuity of θ in x, we set s = 0. Then (4.3) implies

sup
y∈B1

μ(2α−1)k θ(x + μky, t) − inf
y∈B1

μ(2α−1)k θ(x + μky, t) � C μ(2α−1)k

(
1 − λ∗

4

)k

.

or

sup
y∈B1

θ(x + μky, t) − inf
y∈B1

θ(x + μky, t) � C

(
1 − λ∗

4

)k

. (4.4)

To see the Hölder continuity from this inequality, we choose δ > 0 such that

1 − λ∗

4
< μδ.

Then, for any |y| > 0, we choose k such that(
1 − λ∗/4

μδ

)k

� |y|δ or

(
1 − λ∗

4

)k

�
(
μk|y|)δ

.

It then follows from (4.4) that

sup
y∈B1

θ(x + μky, t) − inf
y∈B1

θ(x + μky, t) � C
(
μk|y|)δ

.

For general 0 � s � 1 and y ∈ B1, we have, according to (4.1),

rk ≡ μ2α+k−1xk(s) + μ2α+k−2xk−1(μ
2αs) + · · · + μ2αx1(μ

2α(k−1)s) + x0(μ
2αks)

� Cμ2α+k−1|s|(1 + μ2α−1 + · · · + μ(2α−1)k)

= C|s|μ2α(k+1)−1 1 − μ(1−2α)(k+1)

1 − μ1−2α

� C|s|μ2α(k+1)−1.

Without loss of generality, we can assume that μk|y| > |s|μ2αk . Then we can pick up δ > 0 satisfying

1 − λ∗

4
< μ2αδ

and suitable k such that

sup
(y,s)∈B1×[0,1]

θ(x + μky + rk, t + μ2αks) − inf
(y,s)∈B1×[0,1] θ(x + μk y + rk, t + μ2αks)

� C
(
μk|y|)δ + C

(
μ2αk|s|)δ

.

That is, θ is Hölder continuous at (x, t). This completes the proof. �
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Appendix A

The appendix contains the proofs of several theorems and propositions presented in the previous sections. These
proofs are obtained by following the ideas of Caffarelli and Vasseur [2]. They are attached here for the sake of
completeness.

Proof of Theorem 2.1. We first remark that (2.1) implies that θ satisfies the level set energy inequality. That is, for
every λ > 0, θλ = (θ − λ)+ satisfies∫

θ2
λ(x, t2) dx + 2

t2∫
t1

∫
|Λαθλ|2 dx dt �

∫
θ2
λ(x, t1) dx (A.1)

for any 0 < t1 < t2 < ∞. This can be verified by using an inequality of A. Córdoba and D. Córdoba [11] for fractional
derivatives, namely

f ′(θ)(−�)αθ � (−�)αf (θ)

for any convex function f . Applying this inequality with

f (θ) = (θ − λ)+,

we have

∂t θλ + u · ∇θλ + Λ2αθλ � 0.

Multiplying this equation by θλ then leads to (A.1). Let k � 0 be an integer and let λ = Ck = M(1 − 2−k) for some
M to be determined. It then follows from (A.1) that

θk = (θ − Ck)+.

satisfies

∂t

∫
θ2
k (x, t) dx +

∫
|Λαθk|2 dx � 0. (A.2)

Fix any t0 > 0. Let tk = t0(1 − 2−k). Consider the quantity Uk ,

Uk = sup
t�tk

∫
θ2
k (x, t) dx + 2

∞∫
tk

∫
|Λαθk|2 dx dt.

Now let s ∈ [tk−1, tk]. We have from (A.2) that for any s � t ,∫
θ2
k (x, t) dx + 2

t∫
s

∫
|Λαθk|2 dx dt �

∫
θ2
k (x, s) dx

which implies that

sup
t�tk

∫
θ2
k (x, t) dx �

∫
θ2
k (x, s) dx, 2

∞∫
s

∫
|Λαθk|2 dx dt �

∫
θ2
k (x, s) dx

Since s ∈ (tk−1, tk), we add up these inequalities to get

Uk � 2
∫

θ2
k (x, s) dx.
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Taking the mean in s over [tk−1, tk], we get

Uk � 2k+1

t0

∞∫
tk−1

∫
θ2
k (x, t) dx dt. (A.3)

By Sobolev embedding and Riesz interpolation,

‖θk−1‖2
Lq([tk−1,∞)×Rn) � C

(
sup

t�tk−1

∫
θ2
k−1(x, t) dx

)σ ( ∞∫
tk−1

∫
Rn

|Λαθk−1|2 dx dt

)1−σ

,

where

1

q
= 1 − σ

2
= σ

2
+

(
1

2
− α

n

)
(1 − σ), or σ = 2α

n + 2α
, q = 2 + 4α

n
, (A.4)

Therefore,

Uk−1 � C

( ∞∫
tk−1

∫
|θk−1|q dx dt

)2/q

.

By the definition of θk , θk � 0. When θk > 0,

θk−1 = θk + M2−k � M2−k

and thus we have

χ{(x,t): θk>0} �
(

2kθk−1

M

)q−2

,

where χ denotes the characteristic function. It then follows from (A.3) that

Uk � 2k+1

t0

∞∫
tk−1

∫
θ2
k (x, t)χ{θk>0} dx dt

� 2k+1

t0

∞∫
tk−1

∫
θ2
k−1(x, t)χ{θk>0} dx dt

� 2k+1+(q−2)k

t0Mq−2

∞∫
tk−1

∫
|θk−1|q dx dt

� 2

t0Mq−2
2(q−1)kU

q/2
k−1. (A.5)

Since q > 2, we rewrite (A.5) as

Vk � V
q/2
k−1, (A.6)

where

Vk = 2γ k Uk

t
2/(q−2)

0 M22(−γ q−2)/(q−2)
with γ = 2(q − 1)

q − 2
> 0.

Since U0 � ‖u0‖2
L2 < ∞, we can choose sufficiently large M such that V0 < 1 and (A.6) then implies Vk → 0 as

k → ∞. Consequently, we conclude that for each fixed t0 > 0 and M sufficiently large, Uk → 0 as k → ∞. That is,
θ � M . Applying this process to −θ yields a lower bound.

The scaling invariance

θρ(x, t) = ρ2α−1θ(ρx,ρ2αt)



170 P. Constantin, J. Wu / Ann. I. H. Poincaré – AN 26 (2009) 159–180
of (1.1) allows us to deduce the following explicit bound∥∥θ(·, t)∥∥
L∞ � C

‖u0‖L2

tn/(4α)
.

This concludes the proof of Theorem 2.1. �
Proof of Proposition 3.2. Multiplying the first equation in (3.1) by η2θ∗+ and integrating over Rn × (0,∞) leads to

0 =
∞∫

0

∫
Rn

η2θ∗+∇ · (zb∇θ∗) dx dz

=
∞∫

0

∫
Rn

(∇ · (η2θ∗+zb∇θ∗) − ∇(η2θ∗+) · zb∇θ∗)dx dz.

Since η has compact support on B∗
r and

lim
z→0

(−zb∂zθ
∗) = (−�)αθ ≡ Λ2αθ,

we have

0 =
∫
Rn

η2θ+Λ2αθ dx −
∞∫

0

∫
Rn

zb (2η∇ηθ∗+ · ∇θ∗ + η2∇θ∗+ · ∇θ∗) dx dz

=
∫
Rn

η2θ+Λ2αθ dx −
∞∫

0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dz +

∞∫
0

∫
Rn

zb|∇η|2(θ∗+)2 dx dz.

Multiplying both sides of the QG equation (1.1) by η2θ+, we get

−
∫
Rn

η2θ+Λ2αθ dx = ∂t

∫
Rn

η2 θ2+
2

dx −
∫
Rn

∇(η2) · uθ2+
2

dx.

Combining these two equations, we get
∞∫

0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dz + ∂t

∫
Rn

η2 θ2+
2

dx =
∞∫

0

∫
Rn

zb|∇η|2(θ∗+)2 dx dz +
∫
Rn

∇(η2) · uθ2+
2

dx.

Integrating with respect to t over [t1, t2], we get

t2∫
t1

∞∫
0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dzdt +

∫
Rn

η2 θ2+
2

(t2, x) dx =
∫
Rn

η2 θ2+
2

(t1, x) dx +
t2∫

t1

∞∫
0

∫
Rn

zb |∇η|2(θ∗+)2 dx dz

+
∣∣∣∣∣

t2∫
t1

∫
Rn

η∇η · uθ2+ dx dt

∣∣∣∣∣. (A.7)

We now bound the last term. By the inequalities of Hölder and Young,∣∣∣∣ ∫
Rn

η∇η · uθ2+ dx

∣∣∣∣ � ‖ηθ+‖Lq

∥∥|∇η|uθ+
∥∥

Lq′ � ε ‖ηθ+‖2
Lq + 1

ε

∥∥|∇η|uθ+
∥∥2

Lq′ , (A.8)

where ε > 0 is small, and q and q ′ satisfies

1 = 1 − α
,

1 + 1
′ = 1.
q 2 n q q



P. Constantin, J. Wu / Ann. I. H. Poincaré – AN 26 (2009) 159–180 171
By the Gagliardo–Nirenberg inequality,

‖ηθ+‖2
Lq � C‖ηθ+‖2

Hα = C

∫
Rn

ηθ+Λ2αηθ+ dx.

Furthermore, since L(ηθ+) and ηθ∗+ have the same trace ηθ+ on the boundary z = 0, we apply the Trace Theorem to
obtain∫

Rn

ηθ+ Λ2αηθ+ dx =
∞∫

0

∫
Rn

zb
∣∣∇(

L(ηθ+)
)∣∣2

dx dz

�
∞∫

0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dz. (A.9)

Therefore,

‖ηθ+‖2
Lq � C

∞∫
0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dz. (A.10)

Noticing that 1/q ′ = 1/2 + α/n, the second term in (A.8) can be bounded by∥∥|∇η|uθ+
∥∥2

Lq′ � ‖u‖2
Ln/α

∥∥|∇η|θ+
∥∥2

L2 .

(3.6) is thus obtained. If we further know that u satisfies (3.8), then

‖u‖Ln/α =
(∫
B4

∣∣∣∣u(x, t) − 1

|B4|
∫
B4

u(y, t) dy

∣∣∣∣ n
α

dx

) α
n

� C‖u‖C1−2α .

This completes the proof of Proposition 3.2. �
Proof of Theorem 3.1. It suffices to show that if∣∣{(x, z, t) ∈ Q∗

4: θ∗ � 0
}∣∣

w
� 1

2
|Q∗

4|w, (A.11)

then there exists a λ∗ > 0 such that

θ∗ � 2 − λ∗ in Q∗
1. (A.12)

Otherwise, we have∣∣{(x, z, t) ∈ Q∗
4: −θ∗ � 0

}∣∣
w

� 1

2
|Q∗

4|w
which implies

−θ∗ � 2 − λ∗ or θ∗ � −2 + λ∗ in Q∗
1.

Thus, in either case,

sup
Q∗

1

θ̄∗
k − inf

Q∗
1

θ̄∗
k � 4 − λ∗.

We now show (A.12) under (A.11). Fix ε0 as in (3.10). Choose δ1 and ε1 as in Proposition 3.4 with C εα
1 = ε0. Let

K+ be the integer

K+ =
[ |Q∗

4|w
2δ1

]
+ 1. (A.13)

For k � K+, define
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θ̄0 = θ,

θ̄k = 2(θ̄k−1 − 1).

It is easy to see that θ̄k = 2k(θ − 2) + 2. Note that for every k, θ̄k verifies (1.1), and

θ̄k � 2 in Q4,∣∣{(x, z, t) ∈ Q∗
4: θ̄∗

k � 0
}∣∣

w
� 1

2
|Q∗

4|w.

Assume that for all k � K+, |{(x, z, t) ∈ Q∗
4: 0 < θ̄∗

k < 1}|w � δ1. Then, for every k,∣∣{(x, z, t): θ̄∗
k � 0

}∣∣
w

= ∣∣{(x, z, t): θ̄∗
k−1 < 1

}∣∣
w

�
∣∣{(x, z, t): θ̄∗

k−1 � 0
}∣∣

w
+ δ1

Hence,∣∣{(x, z, t): θ̄∗
K+ � 0

}∣∣
w

� K+δ1 + ∣∣{(x, z, t): θ � 0
}∣∣

w
� |Q∗

4|w.

That is, θ̄∗
K+ � 0 almost everywhere, which means

2K+(θ∗ − 2) + 2 � 0 or θ∗ � 2 − 2−K++1.

(3.4) is then verified by taking 0 < λ∗ < 2−K++1.
Otherwise, there exists 0 � k0 � K+ such that∣∣{(x, z, t): 0 < θ̄∗

k0
< 1

}∣∣
w

� δ1.

Applying Propositions 3.3 and 3.4, we get θ̄k0+1 � 2 − λ which means

θ � 2 − 2−(k0+1)λ � 2 − 2−K+λ in Q2.

Consider the function f3 satisfying

∇ · (zb∇f3) = 0 in B∗
2 ,

f3 = 2 on the sides of cube except for z = 0,

f3 = 2 − 2−K+ inf (λ,1) on z = 0.

By the maximum principle, f3 < 2 − λ∗ in B∗
1 and

θ∗(x, z, t) � f3(x, z, t) < 2 − λ∗ in Q∗
1.

This completes the proof of Theorem 3.1. �
Proof of Proposition 3.3. We start with the definition of two barrier functions f1 and f2. Here f1 satisfies⎧⎪⎨⎪⎩

∇ · (zb∇f1) = 0 in B∗
4 ,

f1 = 2 on the sides of B∗
4 except for z = 0,

f1 = 0 for z = 0.

(A.14)

By the maximum principle, for some λ > 0,

f1(x, z) � 2 − 4λ on B∗
2 .

The function f2 satisfies⎧⎪⎨⎪⎩
∇ · (zb∇f2) = 0 in [0,∞) × [0,1],
f2(0, z) = 2, 0 � z � 1,

f2(x,0) = f2(x,1) = 0, 0 < x < ∞.

(A.15)

By separating variables, we can explicitly solve (A.15) and find that∣∣f2(x, z)
∣∣ � C̄e−β0x
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for some constants C̄ > 0 and β0 > 0.
It can be verified that there exist 0 < δ � 1 and M > 1 such that for every k > 0,

nC̄e
− β0

(2δ)k � λ2−k−2,
‖P(·,1)‖L2

Mkδ2α(k+1)
� λ2−k−2,

C0,kM
−(k−3)(1+ 1

n+1−2α
) � M−k, k > 12n.

where P(x, z) denotes the Poisson kernel defined in (3.3) and C0,k is the constant in (A.24).
(3.11) is established through an inductive procedure, which resembles a local version of the proof for Theorem 2.1.

Let k be an integer and set

Ck = 2 − λ(1 + 2−k), θk = (θ − Ck)+ (A.16)

and let ηk = ηk(x) be a cutoff function such that

χB1+2−k−1 � ηk � χB1+2−k
and |∇ηk| < C2k, (A.17)

where χ denotes the characteristic function. Set

Ak = 2

0∫
−1−2−k

δk∫
0

∫
Rn

zb
∣∣∇(ηkθ

∗
k )

∣∣2
dx dzdt + sup

[−1−2−k,0]

∫
Rn

(ηkθk)
2 dx. (A.18)

The goal to prove that

Ak � M−k, (A.19)

ηkθ
∗
k is supported in 0 � z � δk. (A.20)

(3.11) then follows as a consequence of (A.19).
We first verify (A.19) for 0 � k � 12n and (A.20) for k = 0. Let

Tk = −1 − 2−k and s ∈ [Tk−1, Tk).

Applying (3.6) with t1 = s and t2 = t , we obtain

t∫
s

∫
B∗

4

zb
∣∣∇(ηθ∗+)

∣∣2
dx dzdt +

∫
B4

(ηθ+)2(t, x) dx

�
∫
B4

(ηθ+)2(s, x) dx + C1

t∫
s

∫
B4

(|∇η|θ+
)2

dx dt +
t∫

s

∫
B∗

4

zb
(|∇η|θ∗+

)2
dx dzdt.

Taking supt∈[Tk,0] for both sides and letting s = Tk on the left gives

0∫
Tk

∫
B∗

4

zb
∣∣∇(ηθ∗+)

∣∣2
dx dzdt + sup

t∈[Tk,0]

∫
B4

(ηθ+)2(t, x) dx

�
∫
B4

(ηθ+)2(s, x) dx + C1

0∫
s

∫
B4

(|∇η|θ+
)2

dx dt +
0∫

s

∫
B∗

4

zb
(|∇η|θ∗+

)2
dx dzdt

�
∫
B4

(ηθ+)2(s, x) dx + C1

0∫
Tk−1

∫
B4

(|∇η|θ+
)2

dx dt +
0∫

Tk−1

∫
B∗

4

zb
(|∇η|θ∗+

)2
dx dzdt.

Taking the mean of this inequality in s over [Tk−1, Tk] yields
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0∫
Tk

∫
B∗

4

zb
∣∣∇(ηθ∗+)

∣∣2
dx dzdt + sup

t∈[Tk,0]

∫
B4

(ηθ+)2(t, x) dx

� 2k

Tk∫
Tk−1

∫
B4

(ηθ+)2(s, x) dx ds + C1

0∫
Tk−1

∫
B4

(|∇η|θ+
)2

dx dt +
0∫

Tk−1

∫
B∗

4

zb
(|∇η|θ∗+

)2
dx dzdt. (A.21)

Letting η = ηk(x)φk(z) with φk supported on [0, δk] and using the assumption (3.10), we then verify (A.19) for
0 < k < 12n if ε0 satisfies

C224n(1 + C1)ε0 � M−12n.

We now show (A.20) for k = 0. By the maximum principle,

θ∗ � (θ+1B4) ∗ P(·, z) + f1(x, z)

in B∗
4 × (0,∞). By construction, the function on the right-hand side satisfies

∇ · (zb∇(
(θ+1B4) ∗ P(z) + f1(x, z)

)) = 0

and has boundary data greater than or equal to the corresponding ones for θ∗. To obtain an upper bound for θ∗, we
first notice that f1(x, z) � 2 − 4λ. In addition,∥∥(θ+1B4) ∗ P(·, z)∥∥

L∞({x∈B4,z�1}) � C
∥∥P(·,1)

∥∥
L2

√
ε0 � C

√
ε0.

Here we used ‖θ+1B4‖L2 � C
√

ε0, which can be deduced from (3.10) through a simple argument. Choose ε0 small
enough to get

θ∗ � 2 − 2λ for z � 1, t � 0 and x ∈ B4.

Therefore,

θ∗
0 = (

θ∗ − (2 − 2λ)
)
+ � 0 for z � 1, t � 0 and x ∈ B4.

Hence, η0θ
∗
0 is supported in 0 � z � δ0 = 1.

Now, assuming that (A.19) and (A.20) are verified at k, we show they are also true at k + 1. In the process, we will
also show for each k,

ηkθ
∗
k+1 �

[
(ηkθk) ∗ P(z)

]
ηk (A.22)

in the set B̄∗
k = B1+2−k × [0, δk]. First we control θ∗

k in B̄∗
k by a function f satisfying

∇ · (zb∇f ) = 0

by considering the contributions on the boundaries. No contributions come from z = δk thanks to the induction prop-
erty on k. The contribution from z = 0 can be controlled by ηkθk ∗ P(·, z) since it has the same boundary data as θ∗

k

on B1+2−k−1 . On each of the other sides, the contribution can be controlled by

f2
(
(−xi + x+)/δk, z/δk

) + f2
(
(xi − x−)/δk, z/δk

)
,

where x+ = 1 + 2−k and x− = −x+. Recall that f2 satisfies ∇ · (zb∇f2) = 0 and is no less than 2 on the sides x+
i

and x−
i . By the maximum principle,

θ∗
k �

n∑
i=1

[
f2

(
(xi − x+)/δk, z/δk

) + f2
(
(−xi + x−)/δk, z/δk

)] + (ηkθk) ∗ P(·, z).

We know that, for any x ∈ B1+2−k ,

n∑[
f2

(
(−xi + x+)/δk, z/δk

) + f2
(
(xi − x−)/δk, z/δk

)]
� nC̄e−β0/(2δ)k � λ2−k−2.
i=1
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Therefore,

θ∗
k � (ηkθk) ∗ P(z) + λ2−k−2.

Consequently,

θ∗
k+1 � (θ∗

k − λ2−k−1)+ �
(
(ηkθk) ∗ P(z) − λ2−k−2)

+.

Since, for z = δk+1,∣∣(ηkθk) ∗ P(·, z)∣∣ � Ak

∥∥P(·, z)∥∥
L2 � M−k

δ2α(k+1)

∥∥P(·,1)
∥∥

L2 � λ2−k−2,

we obtain

ηk+1θ
∗
k+1 � 0 on z = δk+1.

Let k > 12n + 1. Assuming that (A.19) is true for k − 3, k − 2 and k − 1, we show

Ak � C0,kA
1+ 1

n+1−2α

k−3 , (A.23)

where

C0,k = C2(1+ 4α
n+1−2α

)k

λ
2α

n+1−2α

. (A.24)

Since ηθ∗+ has the same boundary condition at z = 0 as (ηθ+)∗,

∞∫
0

∫
Rn

zb
∣∣∇(ηθ∗+)

∣∣2
dx dz �

∞∫
0

∫
Rn

zb
∣∣∇(ηθ+)∗

∣∣2
dx dz =

∫
Rn

∣∣Λα(ηθ+)
∣∣2

dx.

Letting η = ηk(x) and integrating with respect to t over [−1 − 2−k,0], we obtain

0∫
−1−2−k

δk∫
0

∫
Rn

zb
∣∣∇(ηkθ

∗+)
∣∣2

dx dzdt �
0∫

−1−2−k

∫
Rn

∣∣Λα(ηθ+)
∣∣2

dx dt.

According to the definition of Ak in (A.18),

Ak−3 �
0∫

−1−2−k+3

∫
Rn

∣∣Λα(ηk−3θk−3)
∣∣2

dx dt.

By the Gagliardo–Nirenberg inequality

Ak−3 � C‖ηk−3θk−3‖2
Lq([−1−2−k+3,0]×Rn)

,

where q is defined in (A.4), namely

q = 2 + 4α

n
.

It then follows from (A.22) that

‖ηk−3θ
∗
k−2‖2

Lq �
∥∥P(·,1)

∥∥2
L1‖ηk−3θk−3‖2

Lq .

Therefore,

Ak−3 � C‖ηk−3θ
∗
k−2‖2

Lq + C‖ηk−3θk−3‖2
Lq

� C
(‖ηk−1θ

∗
k−1‖2

Lq + ‖ηk−1θk−1‖2
Lq

)
.

The second inequality above follows from the simple fact that

θk−3 � θk−1 and ηk−3 � ηk−1.
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Letting η = ηk(x) in (A.21) yields

Ak � C2k(C1 + 2)

(∫
η2

k−1θ
2
k dx +

∫
η2

k−1(θ
∗
k )2 dx dz

)
.

The same trick as in the proof of Theorem 2.1 can then be played here. If θk > 0, then θk−1 � 2−kλ and thus

χ{θk>0} �
(

2kθk−1

λ

)q−2

and χ{θ∗
k >0} �

(
2kθ∗

k−1

λ

)q−2

.

Then,

Ak � C 2(q−1)k

λq−2
A

q
2
k−3 = C2(1+ 4α

n+1−2α
)k

λ
2α

n+1−2α

A
1+ 1

n+1−2α

k−3 = C0,k A
1+ 1

n+1−2α

k−3 .

This completes the proof of Proposition 3.3. �
Proof of Proposition 3.4. It suffices to show∫

Q1

(θ − 1)2+ dx dt +
∫
Q∗

1

(θ∗ − 1)2+zb dx dz dt � Cεα
1 .

From the fundamental local energy inequality (3.6), we have

0∫
−4

∫
B∗

4

|∇θ∗+|2zb dxdz dt � C.

Take ε1 � 1 and set

K =
4
∫ 0
−4

∫
B∗

4
|∇θ∗+|2zb dx dz dt

ε1
.

We further write

I1 =
{
t ∈ [−4,0]:

∫
B∗

4

|∇θ∗+|2(t)zb dx dz � K

}
.

It follows from the Chebyshev inequality that∣∣[−4,0] \ I1
∣∣ � ε1

4
. (A.25)

For all t ∈ I1, the De Giorgi inequality in Lemma 3.5 gives∣∣A(t)
∣∣
w

∣∣B(t)
∣∣
w

� C
∣∣C(t)

∣∣ 1
2p

w
K

1
2 ,

where A, B and C are defined in (3.12) with r = 4. Set

δ1 = ε
2p(1+ 1

α
)+2

1 , I2 = {
t ∈ [−4,0]: ∣∣C(t)

∣∣ 1
2p

w
� ε

1+ 1
α

1

}
.

Again by the Chebyshev inequality,∣∣[−4,0] \ I2
∣∣ � |{(x, z, t): 0 < θ∗ < 1}|w

ε
2p(1+ 1

α
)

1

� δ1

ε
2p(1+ 1

α
)

1

� ε2
1 � ε1

4
. (A.26)

Now, set I = I1 ∩ I2. According to (A.25) and (A.26),∣∣[−4,0] \ I
∣∣ � ε1 + ε1 = ε1

.

4 4 2
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In addition, if t ∈ I satisfying |A(t)|w � 1
4 , then

∣∣B(t)
∣∣
w

� C|C(t)|
1

2p
w K

1
2

|A(t)|w � 4Cε
1
2 + 1

α

1 . (A.27)

Therefore,∫
B∗

4

(θ∗+)2(t)zb dx dz � 4
∫

B∪C

zb dx dz � 4
(|B|w + |C|w

)
� 16Cε

1
2 + 1

α

1 .

Let

p1 >
2(1 + b)

1 − b
= 2 − 2α

α
and

1

p1
+ 1

q1
= 1

2
. (A.28)

Then 1 − ( 1
2 + 1

p1
)bq1 > 0 and by Hölder’s inequality,∫

B4

θ2+(t) dx �
∫
B4

(
max

z
θ∗+(x, z)

)2
dx

� 2
∫
B4

4∫
0

|θ∗||∂zθ
∗|dzdx

= 2
∫
B4

4∫
0

z
b

p1 |θ∗|z b
2 |∂zθ

∗|z−( 1
2 + 1

p1
)b

dz dx

� 2
∫
B4

( 4∫
0

zb|θ∗|p1 dz

) 1
p1

( 4∫
0

zb|∂zθ
∗|2 dz

) 1
2
( 4∫

0

z
−( 1

2 + 1
p1

)bq1 dz

) 1
q1

dx

� C

(∫
B∗

4

zb|θ∗|p1 dx dz

) 1
p1

(∫
B∗

4

zb|∇θ∗|2 dx dz

) 1
2

� CK
1
2

(∫
B∗

4

zb|θ∗|2 dx dz

) 1
p1

� Cε
( 1

2 + 1
α
) 1

p1
− 1

2 ≡ Cεν
1 (A.29)

where, thanks to (A.28),

ν =
(

1

2
+ 1

α

)
1

p1
− 1

2
> 0.

The next major part proves that |A(t)|w � 1
4 for every t ∈ I ∩ [−1,0]. Since∣∣{(x, z, t): θ∗ � 0

}∣∣
w

�
|Q∗

4|w
2

,

there exists a t0 � −1 such that |A(t0)|w � 1
4 . Thus, for this t0,∫

B∗
θ+(t0)

2 dx � Cεν
1 .
4



178 P. Constantin, J. Wu / Ann. I. H. Poincaré – AN 26 (2009) 159–180
Using the local energy inequality (3.6), we have for all t � t0,∫
B∗

4

θ2+(t) dx �
∫
B∗

4

θ2+(t0) dx + C(t − t0).

For t − t0 � δ∗ = 1
64C

, we have∫
B∗

4

θ2+(t) dx � 1

64
.

Since δ∗ does not depend on ε1, we can assume that ε1 � δ∗. By

θ∗+(x, z, t) � θ+(x, t) +
z∫

0

∂zθ
∗+ dz,

we have

zb (θ∗+)2(x, z, t) � 2zbθ2+(x, t) + 2zb

( z∫
0

∂zθ
∗+ dz

)2

� 2zbθ2+(x, t) + 2z

z∫
0

zb|∇θ∗|2 dz.

For t − t0 � δ∗, t ∈ I and z � ε2
1 ,

ε2
1∫

0

∫
B4

zb(θ∗+)2 dx dz � 2

b + 1
ε4−4α

1

∫
B4

θ2+(x, t) dx + ε4
1

ε2
1∫

0

∫
B4

zb|∇θ∗|2 dx dz

� 1

64
ε2

1 + Cε3
1 � 1

4
ε2

1 .

By Chebyshev inequality,∣∣{(x, z): z � ε2
1 , x ∈ B4, θ∗+(t) � 1

}∣∣
w

�
ε2

1

4
.

Since |C(t)|w � ε
2p(1+ 1

α
)

1 , this gives∣∣A(t)
∣∣
w

� ε2
1 − 1

4
ε2

1 − ε
2p(1+ 1

α
)

1 � 1

2
ε2.

Combining this bound with (A.27) leads to∣∣B(t)
∣∣
w

� 4C
√

ε1.

In turn, this bound leads to∣∣A(t)
∣∣
w

� 1 − ∣∣B(t)
∣∣
w

− ∣∣C(t)
∣∣
w

� 1 − 4C
√

ε1 − ε
2p(1+ 1

α
)

1 � 1

4
.

Hence, for every t ∈ [t0, t0 + δ∗] ∩ I , we have |A(t)|w � 1
4 . On [t0 + δ∗

2 , t0 + δ∗], there is t1 ∈ I . The reason is that

|[−4,0] \ I | � ε
2 and |[t0 + δ∗

2 , t0 + δ∗]| = δ∗
2 > ε

2 .

This process allows us to construct an increasing sequence tn, 0 � tn � t0 + δ∗
2 such that |A(t)|w � 1

4 on [tn, tn +
δ∗] ∩ I . Since δ∗ is independent of tn, we have∣∣A(t)

∣∣
w

� 1
for t ∈ I ∩ [−1,0].
4
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According to (A.27), this gives∣∣B(t)
∣∣
w

� 4Cε
1
2 + 1

α

1 � ε1

16
for t ∈ I ∩ [−1,0].

Therefore,∣∣{(x, z, t): θ∗ � 1
}∣∣

w
= ∣∣{(x, z, t): t ∈ I ∩ [−1,0], θ∗ � 1

}∣∣
w

+ ∣∣{(x, z, t): t ∈ [−1,0] \ I, θ∗ � 1
}∣∣

w

� ε1

16
+ ε1

2
� ε1.

Since (θ∗ − 1)+ � 1,∫
Q∗

1

zb(θ∗ − 1)2+ dx dzdt � ε1. (A.30)

For fixed x and t ,

θ(x, t) − θ(z)∗(x, z, t) = −
z∫

0

∂zθ
∗ dz.

Thus,

zb (θ − 1)2+ � 2zb
(
θ∗(z) − 1

)2
+ + zb

( z∫
0

|∇θ∗|dz

)2

� 2zb
(
θ∗(z) − 1

)2
+ + z

z∫
0

zb|∇θ∗|2 dz.

Taking the average in z over [0,
√

ε1], we get

ε
b
2
1 (θ − 1)2+ � 2√

ε1

√
ε1∫

0

zb(θ∗ − 1)2+ dz + √
ε1

√
ε1∫

0

zb|∇θ∗|2 dz.

Integrating with respect to (x, t) ∈ B1 × [0,1] and invoking (A.30) lead to∫
Q1

(θ − 1)2+ dx ds � Cεα
1 . �
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