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Abstract

We consider the incompressible Navier–Stokes equations with spatially periodic boundary conditions. If the Reynolds number
is small enough we provide an elementary short proof of the existence of global in time Hölder continuous solutions. Our proof
uses a stochastic representation formula to obtain a decay estimate for heat flows in Hölder spaces, and a stochastic Lagrangian
formulation of the Navier–Stokes equations.
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1. Introduction

The Navier–Stokes equations

∂tu + (u · ∇)u − ν�u + ∇p = 0, (1.1)

∇ · u = 0 (1.2)

describe the evolution of the velocity field of an incompressible fluid with kinematic viscosity ν > 0. One of the
(still open) million dollar problems posed by the Clay Institute [10] is to show that given a smooth initial data u0 the
solution to (1.1)–(1.2) in three dimensions remains smooth for all time.

In two dimensions, the long time existence of (1.1)–(1.2) is well known [3]. In three or higher dimensions, long
time existence is known provided a smallness condition is imposed on the initial data. In 1962, Kato and Fujita [8]
showed existence of global solutions to (1.1)–(1.2) when the initial data is small in L3. Global existence when the
initial data is small in H 1 is standard and can be found in books. Possibly the most general result of this type (see
Koch and Tataru [17]) shows global existence of (1.1)–(1.2) assuming that the initial data is small in BMO−1. We
also remark that recently Chemin and Gallagher [13] found a (non-linear) criterion on the initial data that guarantees
global existence of (1.1)–(1.2), and does not reduce to a smallness criterion in BMO−1.
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In this paper we prove global existence of (1.1)–(1.2) provided our initial data has small Hölder norm. Though
global existence under our assumptions can be deduced from the Koch–Tataru result, the proof we present here (Sec-
tion 5) is short, ‘elementary’ and essentially relies only on the decay of heat flows (Section 4), and a stochastic
representation of the Navier–Stokes equations using particle trajectories (Section 3, see also [5,15]).

2. Notational conventions and description of results

In this section we describe the notational convention we use, and state the main result we prove. Let L > 0 be
a fixed length scale, and I = [0,L]. We define the Hölder norms and semi-norms on I d by

|u|α = sup
x,y∈I d

Lα |u(x) − u(y)|
|x − y|α ,

‖u‖Ck =
∑

|m|�k

L|m| sup
I d

|Dmu|,

‖u‖k,α = ‖u‖Ck +
∑

|m|=k

Lk|Dmu|α,

where Dm denotes the derivative with respect to the multi index m. We let Ck denote the space of all k-times continu-
ously differentiable spatially periodic functions on I , and Ck,α denote the space of all spatially periodic k + α Hölder
continuous functions. The spaces Ck and Ck,α are endowed with the norms ‖ · ‖Ck and ‖ · ‖k,α respectively.

We use I to denote the identity function on R
d (or on I d depending on the context), and use I to denote the identity

matrix. The main theorem we prove in this paper is

Theorem 2.1. Let k � 1, α ∈ (0,1) and u0 ∈ Ck+1,α(I d) be spatially periodic, divergence free and have mean 0. Let
R = L

ν
‖u0‖k+1,α be the Reynolds number of the flow. Then ∃T = T (k,α, d, 1

L
‖u0‖k+1,α) and R0 = R0(k,α, d) such

that for all 0 < R < R0 the solution u of (1.1)–(1.2) with Reynolds number R, initial data u0 and periodic boundary
conditions is in Ck+1,α for time T , and satisfies

‖uT ‖k+1,α � ‖u0‖k+1,α. (2.1)

We prove Theorem 2.1 in Section 5. A few remarks are in order.

Remark 2.2. Local existence (Theorem A.5) combined with the Theorem 2.1 immediately show that for given ini-
tial data, we can choose ν large enough so that (1.1)–(1.2) have time global Ck+1,α solutions. Alternately for fixed
viscosity, if ‖u0‖k+1,α is small enough, Theorems 2.1 and A.5 again give time global Ck+1,α existence of (1.1)–(1.2).

Remark 2.3. The assumption that u0 has mean 0 is not restrictive. First note that our boundary conditions imply that∫
ut is conserved in time. Set ū = 1

Ld

∫
u0 to be the mean velocity. Now if we change to coordinates moving with the

mean velocity by letting u′(x, t) = u(x + ūt, t) − ū, then u′ solves (1.1)–(1.2) with mean 0 initial data u0 − ū. Thus
the smallness assumption in Remark 2.2 is really smallness assumptions on the deviation from the mean velocity.

Remark 2.4. Theorem 2.1 shows that for some time T , Eq. (2.1) holds. Unfortunately our proof does not show that
‖ut‖k+1,α is decreasing in time.

3. The stochastic Lagrangian formulation

The Kolmogorov forward equation (or Feynman–Kac formula) [12,16] have been extensively used to represent
solutions of linear parabolic PDE’s as the average of a stochastic process. In this section we briefly describe here a
different approach used in [5,15,6] (see also [19,21]), which we use to provide a representation of the Navier–Stokes
equations based on noisy particle paths.

Let u : Rd × [0,∞) → R
d be some given (time dependent) vector field, and θ a solution to the heat equation

∂t θ + (u · ∇)θ − ν�θ = 0 (3.1)
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with initial data θ0. We impose either periodic or decay at infinity boundary conditions on θ .
We express θ as the expected value of a stochastic process as follows: Let W be a d dimensional Wiener process,

and let X : Rd → R
d be a solution to the SDE

dX = udt + √
2ν dW

with initial data X0(a) = a. Standard theory2 [20] shows that the flow X is a homeomorphism, and as spatially
differentiable as u. We let At denote the spatial inverse of the flow map Xt .

Proposition 3.1. If u ∈ C1, θ0 ∈ C2 then the unique solution θ of (3.1) with initial data θ0 and either periodic or
decay at infinity boundary conditions is given by

θt = Eθ0(At ), (3.2)

where E denotes the expected value with respect to the Wiener measure.

Note that if ν = 0, then Proposition 3.1 is nothing but the method of characteristics. If ν > 0, this can be interpreted
as solving along random characteristics, and then averaging. Notice also that the Wiener process

√
2νWt is the natural

one to consider here, as it’s generator is ν�.
The reason we use the representation (3.2) and not the Kolmogorov forward equation is because the Kolmogorov

forward equation in it’s natural setting involves final conditions, and not initial conditions. Thus the standard method
employed by probabilists is to make a t = T − s substitution [11]. The process obtained in this manner will have
the same one dimensional distribution as the process At above, however spatial covariances and gradients of the
two processes will in general be different. The stochastic representation of the Navier–Stokes equations we describe
below involves spatial gradients of the flow map A, and for this reason our representation will not be valid if we use
the Feynman Kac formula.

We now use Proposition 3.1 to represent the solution to the Navier–Stokes equations as the expected value of a
system that is nonlinear in the sense of McKean. The essential idea is to find a representation of the Euler equations
involving particle trajectories [4], and then add noise and average as in Proposition 3.1 (as opposed to attempting to
use the Kolmogorov forward equation).

Theorem 3.2. Let ν > 0, W be an n-dimensional Wiener process, k � 1 and u0 ∈ Ck+1,α be a given deterministic
divergence free vector field. Let the pair u, X satisfy the stochastic system

dXt = ut dt + √
2ν dWt , (3.3)

At = X−1
t , (3.4)

ut = EP
[
(∇∗At)(u0 ◦ At)

]
(3.5)

with initial data

X(a,0) = a. (3.6)

We impose boundary conditions by requiring u and X − I are either spatially periodic, or decay at infinity. Then u

satisfies the incompressible Navier–Stokes equations (1.1)–(1.2) with initial data u0.

Here P in equation (3.5) denotes the Leray–Hodge projection onto divergence free vector fields [2] and ∇∗At

denotes the transpose of the Jacobian of At . We remark that (3.5) is algebraically equivalent to

ωt = E
[
(∇Xt)u0

] ◦ At, (3.7)

ut = −�−1∇ × ω (3.8)

and (3.5) can be replaced with (3.7)–(3.8) in Theorem 3.2. Note that (3.8) is exactly the Biot–Savart law. When ν = 0,
Eq. (3.7) reduces to the well known vorticity transport for the Euler equations [2], and in this case (3.3)–(3.6) (or
equivalently the system (3.3), (3.4), (3.6)–(3.8)) are exactly a Lagrangian formulation of the Euler equations [4].

2 See also [5,15,6] for an elementary proof for flows of the type we consider here.
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We do not prove Proposition 3.1 or Theorem 3.2 here, and we refer the reader to [5,15] instead. A generalization
of Proposition 3.1 where the diffusion matrix is not spatially constant can be found in [15,6,19,21].

4. Decay of heat flows

In this section we prove a decay estimate for solutions to the heat equation with an incompressible drift. Our first
estimate is an L∞ → L∞ estimate that is independent of the drift. A more general L1 → L∞ version of this estimate
appeared for example in [7] and [9]. We provide a proof that follows the proof in [7] and keeps track of the dependence
of the constants on viscosity and our length scale L.

Lemma 4.1. Let u ∈ C1([0, T ], I d) be divergence free, and θ be a solution to Eq. (3.1) with initial data θ0. If θ0 is
spatially periodic, mean 0, and the dimension d � 3, then there exists an constant c = c(d) such that

‖θt‖∞ � cLd

(νt)d/2
‖θ0‖∞.

Proof. Let ϕ be mean zero and periodic, p � d+2
4 and c = c(d,p) be a constant that changes from line to line. Then

the Hölder, Poincaré and Sobolev in inequalities give∫
ϕ2 =

∫
ϕ1/pϕ(2p−1)/p � ‖ϕ‖1/p

L1 ‖ϕ‖(2p−1)/p

L(2p−1)/(p−1) � cL(4p−d−2)/2p‖ϕ‖1/p

L1 ‖∇ϕ‖(2p−1)/p

L2 .

If we set q = 2
2p−1 this gives

‖∇ϕ‖2
L2 � cL(qd−4)/2‖ϕ‖2+q

L2 ‖ϕ‖−q

L1 .

Now let θ ′ and θ ′′ to be solutions of (3.1) with initial conditions θ−
0 and θ+

0 respectively. Integrating (3.1) immedi-
ately shows that

∫
θ ′ and

∫
θ ′′ are conserved. Since θ ′ and θ ′′ are of constant sign, this means that ‖θ ′‖L1 and ‖θ ′′‖L1

are conserved in time. Finally, the maximum principle implies that θ ′ � θ � θ ′′, and hence ‖θ‖L1 is nondecreasing in
time.

Thus multiplying (3.1) by θ and integrating over I d gives

∂t‖θ‖2
L2 = −2ν‖∇θ‖2

L2 � −cνL(qd−4)/2‖θ‖−q

L1 ‖θ‖2+q

L2 � −cνL(qd−4)/2‖θ0‖−q

L1 ‖θ‖2+q

L2 .

Dividing by ‖θ‖2+q

L2 and integrating in time gives

‖θ‖L2 � c
L2/q−d/2

(νt)1/q
‖θ0‖L1 .

Let Pt (u) be the solution operator of (3.1). The above estimate shows

∥∥Pt (u)
∥∥

L1→L2 � c
L2/q−d/2

(νt)1/q
.

Since u is divergence free the dual operator P ∗(u) = P (−u), and hence satisfies the same bound. Thus

‖P2t‖L1→L∞ � ‖Pt‖L1→L2‖Pt‖L2→L∞ = ‖Pt‖L1→L2‖P ∗
t ‖(L∞)∗→L2

� ‖Pt‖L1→L2‖P ∗
t ‖L1→L2 � c

L4/q−d

(νt)2/q
.

Hence

‖θ‖L∞ � c
L4/q−d

(νt)2/q
‖θ0‖L1 � c

L4/q

(νt)2/q
‖θ0‖L∞ .

Finally, p � d+2
4 is the same as q � 4

d
, and choosing q = 4

d
concludes the proof. �
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Remark 4.2. When d = 2, p � d+2
4 needs to be replaced with p > d+2

4 , and hence the above proof will show that for
any ε > 0,

‖θt‖∞ � cεL
d+ε

(νt)(d+ε)/2
‖θ0‖∞.

Lemma 4.1 cannot directly be used in our proof of Theorem 2.1. This is because the relation between the velocity
field u and the inverse flow map (Eq. (3.5)) involves the Leray–Hodge projection P. The Leray–Hodge projection is
a Calderón–Zygmund type singular integral operator and is known to be unbounded on Ck (see [22] for instance).
However, singular integral operators, and in particular the Leray–Hodge projection is known are known to be bounded
on Hölder spaces, and thus we now proceed to extend Lemma 4.1 to Hölder spaces.

Using the stochastic flows from [5,15] we obtain the Hölder space estimate we need in an elementary manner.
We remark that the usual PDE methods [18] will only provide Hölder estimates that grow exponentially in time. The
estimate we provide here will in general also grow exponentially in time, however decays in time when the viscosity
is large, or drift U is small.

Lemma 4.3. Let d � 3 and u ∈ Ck+1,α([0, T ], I d) be divergence free and define U by

U = sup
t∈[0,T ]

‖ut‖k+1,α. (4.1)

Let θ0 ∈ C(I d) have mean 0, and θ satisfy Eq. (3.1) with initial data θ0. Then there exists T ′ = T ′(U
L

, d, k,α) and a
constant c = c(UT

L
, d, k,α) such that

‖θt‖k+1,α � c

(
Ld

(νt)d/2
+

(
Ut

L

)α)
‖θ0‖k+1,α

holds for all t ∈ [0, T ′]. If d = 2, the above estimate is still true if we replace Ld

(νt)d/2 with cεL
d+ε

(νt)(d+ε)/2 for any ε > 0.

Remark 4.4. Note that the growth term is independent of the viscosity, and the decay term is independent of the
drift u.

Proof. We present the proof for d � 3. The d = 2 case will then follow by replacing d with d + ε. Define X,A by
Eqs. (3.3) and (3.4) respectively. From [5,15] and uniqueness of strong solutions to (3.1) we know

θt = Eθ0 ◦ At .

Let 	 = A − I be the Lagrangian displacement. First notice that if f ∈ C0,α then Lemma A.4 shows

|f ◦ At |α � c|f |α
(

Ut

L

)α

a.s. (4.2)

Now, let m a multi index with 1 � |m| � k. We note that Dmθt is a sum of terms of the form

Dnθ0|At

∏
1�i�|n|

Dni 	t and Dnθ0|At , (4.3)

where ni ’s are multi indices with |ni | � 1 and |n| + ∑
i |ni | = |m|. By Proposition 3.1 we know that EDnθ0|At

satisfies (3.1) with initial data Dnθ0, and hence by Lemma 4.1 we know

∥∥E[Dnθ0] ◦ At

∥∥
L∞ � cLd

(νt)d/2
‖Dnθ0‖L∞ .

Thus using Lemma A.4, inequality (4.2) we have

∥∥E[Dnθ0] ◦ At

∥∥
0,α

� c

(
Ld

(νt)d/2
+

(
Ut

L

)α)
‖Dnθ0‖0,α. (4.4)

Using (4.4) and Lemma A.4, we bound the remaining terms of (4.3), concluding the proof. �
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5. Global existence

In this section we prove Theorem 2.1. We start with a lemma involving bounds for the Leray–Hodge projection.

Lemma 5.1. Let k � 1, and A,v ∈ Ck+1,α be such that ∇A, v are spatially periodic. There exists a constant c =
c(d,α) such that∥∥P

[
(∇∗A)v

]∥∥
k+1,α

� c‖∇A‖k,α‖v‖k+1,α.

Proof. Since P vanishes on gradients, we can ‘integrate by parts’ to avoid the loss of derivatives. Note

P
[
(∇∗u)v

] = P
[∇(u · v) − (∇∗v)u

] = −P
[
(∇∗v)u

]
for any u,v ∈ C1. Thus we have

∂iP
[
(∇∗A)v

] = P
[
(∇∗A)∂iv

] − P
[
(∇∗v)∂iA

]
.

Since P is Calderón–Zygmund singular integral operator, it is bounded on Hölder spaces [22,1]. Finally note that the
right hand side only depends on first derivatives of A and v, and the lemma follows by taking Hölder norms. �

We now prove Theorem 2.1. We restate it here for the readers convenience.

Theorem 2.1. Let k � 1, α ∈ (0,1) and u0 ∈ Ck+1,α(I d) be spatially periodic, divergence free and have mean 0. Let
R = L

ν
‖u0‖k+1,α be the Reynolds number of the flow. Then ∃T = T (k,α, d, 1

L
‖u0‖k+1,α) and R0 = R0(k,α, d) such

that for all 0 < R < R0 the solution u of (1.1)–(1.2) with Reynolds number R, initial data u0 and periodic boundary
conditions is in Ck+1,α for time T , and satisfies

‖uT ‖k+1,α � ‖u0‖k+1,α. (2.1)

Proof. We assume that d � 3. The d = 2 case follows similarly by replacing d with d + ε. Let C, δ be the dimen-
sional constants in Theorem A.5. We let U = C‖u0‖k+1,α , and choose T such that UT

L
< δ. By Theorem A.5, there

exist a pair of Ck+1,α functions X,u : [0, T ] → I d which are the unique (strong) solution to (3.3)–(3.6). Recall that
‖ut‖k+1,α � U for all t ∈ [0, T ].

From equation (3.5) we see

ut = EPu0 ◦ At + EP(∇∗	)u0 ◦ At .

Let c = c(k,α, d) be a constant that changes from line to line. Applying Lemmas 5.1 and A.4 to the second term we
have

‖ut‖k+1,α � c‖Eu0 ◦ At‖k+1,α + cE‖∇∗	t‖k,α‖u0 ◦ At‖k+1,α

and hence by Lemma 4.3 we have

‖ut‖k+1,α � c

(
Ld

(νt)d/2
+

(
Ut

L

)α)
‖u0‖k+1,α.

Minimizing Ld

(νt)d/2 + (Ut
L

)α in time shows that the minimum value is attained at t0 = cL
U

Rd/(2α+d), and the minimum

value is cRαd/(2α+d). Thus we can choose R small enough to ensure t0 < T and equation (2.1) is satisfied. �
Acknowledgement
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Appendix A. Bounds for the Lagrangian displacement

In this section, we prove bounds on ‖∇X − I‖k,α . The estimates proved here are elementary, and are taken directly
from [14,15]. We reproduce them here for completeness and the readers convenience.

We remark that the estimates provided here were used in [14,15] to prove local existence for the system (3.3)–(3.6).
As the local existence proof is a little lengthier, we do not reproduce it here.

Lemma A.1. Let X be a Banach algebra. If x ∈ X is such that ‖x‖ � ρ < 1 then 1+x is invertible and ‖(1+x)−1‖ �
1

1−ρ
. Further if in addition ‖y‖ � ρ then

∥∥(1 + x)−1 − (1 + y)−1
∥∥ � 1

(1 − ρ)2
‖x − y‖.

Proof. The first part of the lemma follows immediately from the identity (1 + x)−1 = ∑
(−x)n. The second part

follows from the first part and the identity

(1 + x)−1 − (1 + y)−1 = (1 + x)−1(y − x)(1 + y)−1. �
Lemma A.2. If k � 1, then there exists a constant c = c(k,α) such that

‖f ◦ g‖k,α � c‖f ‖k,α

(
1 + ‖∇g‖k−1,α

)k+α

and

‖f ◦ g1 − f ◦ g2‖k,α � c‖∇f ‖k,α

(
1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1 · ‖g1 − g2‖k,α.

The proof of Lemma A.2 is elementary and not presented here.

Lemma A.3. Let X1,X2 ∈ Ck+1,α be such that

‖∇X1 − I‖k,α � d < 1 and ‖∇X2 − I‖k,α � d < 1.

Let A1 and A2 be the inverse of X1 and X2, respectively. Then there exists a constant c = c(k,α, d) such that

‖A1 − A2‖k,α � c‖X1 − X2‖k,α.

Proof. Let c = c(k,α, d) be a constant that changes from line to line (we use this convention implicitly throughout
this paper). Note first ∇A = (∇X)−1 ◦ A, and hence by Lemma A.1

‖∇A‖C0 �
∥∥(∇X)−1

∥∥
C0 � c.

Now using Lemma A.1 to bound ‖(∇X)−1‖0,α we have

‖∇A‖0,α = ∥∥(∇X)−1 ◦ A
∥∥

0,α
�

∥∥(∇X)−1
∥∥

0,α

(
1 + ‖∇A‖C0

)
� c.

When k � 1, we again bound ‖(∇X)−1‖k,α by Lemma A.1. Taking the Ck,α norm of (∇X)−1 ◦ A we have

‖∇A‖k,α �
∥∥(∇X)−1

∥∥
k,α

(
1 + ‖∇A‖k−1,α

)k
.

So by induction we can bound ‖∇A‖k,α by a constant c = c(k,α, d). The lemma now follows by applying Lemma A.2
to the identity

A1 − A2 = (A1 ◦ X2 − I ) ◦ A2 = (A1 ◦ X2 − A1 ◦ X1) ◦ A2. �
Lemma A.4. Let u ∈ C([0, T ],Ck+1,α) and X satisfy the SDE (3.3) with initial data (3.6). Let λ = X − I and

U = supt ‖u(t)‖k+1,α . Then there exists T = T (k,α, U
L

) and c = c(k,α, UT
L

) such that for t � T

∥∥∇λ(t)
∥∥

k,α
� cUt

L
and

∥∥∇	(t)
∥∥

k,α
� cUt

L

hold almost surely.
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Proof. From Eq. (3.3) we have

X(x, t) = x +
t∫

0

u
(
X(x, s), s

)
ds + √

2ν Wt ⇒ ∇X(t) = I +
t∫

0

(∇u) ◦ X · ∇X. (A.1)

Taking the C0 norm of Eq. (A.1) and using Gronwall’s Lemma we have∥∥∇λ(t)
∥∥

C0 = ∥∥∇X(t) − I
∥∥

C0 � eUt/L − 1.

Now taking the Ck,α norm in Eq. (A.1) we have

∥∥∇λ(t)
∥∥

k,α
� c

t∫
0

‖∇u‖k,α

(
1 + ‖∇λ‖k−1,α

)k+α(
1 + ‖∇λ‖k,α

)
.

The bound for ‖∇λ‖k,α now follows from the previous two inequalities, induction and Gronwall’s Lemma. The bound
for ‖∇	‖k,α then follows from Lemma A.3.

We draw attention to the fact that the above argument can only bound ∇λ, and not λ. Fortunately, our results only
rely on a bound of ∇λ. �

We conclude this appendix by stating a slightly modified version theorem which appeared in [14]. The only mod-
ification we make is that we trace the dependence of the constants in [14] to dimension less quantities, instead of
absolute ones. The proof that appeared in [14] goes through verbatim.

Theorem A.5. Let k � 1 and u0 ∈ Ck+1,α be divergence free. There exists absolute constants δ = δ(k,α, d) and
C = C(k,α, d) such that for U = C‖u0‖k+1,α , and any T such that UT

L
< δ there exist a pair of functions a pair of

functions λ,u ∈ C([0, T ],Ck+1,α) such that u and X = I + λ satisfy the system (3.3)–(3.6). Further for all t ∈ [0, T ]
we have ‖ut‖k+1,α � U .
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