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Abstract

The nonlinear selfdual variational principle established in a preceding paper [N. Ghoussoub, Anti-symmetric Hamiltonians:
Variational resolution of Navier–Stokes equations and other nonlinear evolutions, Comm. Pure Appl. Math. 60 (5) (2007) 619–653]
– though good enough to be readily applicable in many stationary nonlinear partial differential equations – did not however cover
the case of nonlinear evolutions such as the Navier–Stokes equations. One of the reasons is the prohibitive coercivity condition that
is not satisfied by the corresponding selfdual functional on the relevant path space. We show here that such a principle still hold for
functionals of the form

I (u) =
T∫

0

[
L

(
t, u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)

where L (resp., �) is an anti-selfdual Lagrangian on state space (resp., boundary space), and Λ is an appropriate nonlinear operator
on path space. As a consequence, we provide a variational formulation and resolution to evolution equations involving nonlinear
operators such as the Navier–Stokes equation (in dimensions 2 and 3) with various boundary conditions. In dimension 2, we
recover the well-known solutions for the corresponding initial-value problem as well as periodic and anti-periodic ones, while in
dimension 3 we get Leray solutions for the initial-value problems, but also solutions satisfying u(0) = αu(T ) for any given α in
(−1,1). Our approach is quite general and does apply to many other situations.
© 2008 . .

Résumé

Le principe variationnel auto-dual nonlinéaire établi par le premier auteur dans un article antérieur – quoique suffisant pour
les équations nonlinéaires stationnaires – ne couvrait pas le cas des équations d’évolution de Navier–Stokes. Celà est dû aux
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hypothèses de coercivité forte requises, qui sont rarement satisfaites par les fonctionnelles auto-duales une fois définies sur les
espaces de trajectoires. Dans cet article, on établit un nouveau principe variationnel qui s’applique à des fonctionnelles de la forme

I (u) =
T∫

0

[
L

(
t, u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)

où L (resp., �) est un Lagrangien anti-autodual sur l’espace des états (resp., sur la frontière), et Λ est un opérateur convenable sur un
espace de trajectoires. Comme application, on retrouve variationellement entre autres, les solutions de Leray pour les équations de
Navier–Stokes en dimension 2 et 3 avec, soit des conditions initiales, ou soit des conditions au bord de type périodiques. L’approche
est assez générale pour s’appliquer à d’autres équations d’évolution non linéaire.
© 2008
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1. Introduction

This paper is a continuation of [5] where the first-named author established a general nonlinear selfdual variational
principle, that yields a variational formulation and resolution for several nonlinear partial differential equations which
are not normally of Euler–Lagrange type. Applications included nonlinear transport equations, the stationary Navier–
Stokes equations, and the generalized Choquard–Pekar Schrödinger equations with certain nonlocal potentials. The
principle did not however cover Leray’s existence results for Navier–Stokes evolutions in low dimensions [7,8]. The
primary objective of this paper is to develop a sharper selfdual variational principle to be able to deal with this
shortcoming, and to encompass a larger class of nonlinear evolution equations in its scope of applications.

We first recall the basic concept of selfduality. It relates to the following class of Lagrangians which play a signif-
icant role in our proposed variational formulation. If X is a reflexive Banach space, and L : X × X∗ → R ∪ {+∞}
is a convex lower semi-continuous function, that is not identically equal to +∞, we say that L is an anti-selfdual
Lagrangian (ASD) on X × X∗ if

L∗(p, x) = L(−x,−p) for all (p, x) ∈ X∗ × X, (1)

where L∗ is the Legendre–Fenchel dual (in both variables) of L, defined on X∗ × X as:

L∗(q, y) = sup
{〈q, x〉 + 〈p,y〉 − L(x,p); x ∈ X, p ∈ X∗}.

We shall frequently use the following basic properties of an ASD Lagrangian:

L(x,p) + 〈x,p〉 � 0 for every (x,p) ∈ X × X∗, (2)

and the fact that

L(x,p) + 〈x,p〉 = 0 if and only if (−p,−x) ∈ ∂L(x,p). (3)

We therefore define the derived vector fields of L at x ∈ X to be the – possibly empty – sets

∂̄L(x) := {
p ∈ X∗; L(x,−p) − 〈x,p〉 = 0

} = {
p ∈ X∗; (p,−x) ∈ ∂L(x,−p)

}
. (4)

These anti-selfdual vector fields are natural extensions of subdifferentials of convex lower semi-continuous functions.
Indeed, the most basic anti-selfdual Lagrangians are of the form L(x,p) = ϕ(x)+ϕ∗(−p) where ϕ is such a function
in X, and ϕ∗ is its Legendre conjugate on X∗, in which case ∂̄L(x) = ∂ϕ(x). More interesting examples of anti-
selfdual Lagrangians are of the form L(x,p) = ϕ(x)+ϕ∗(−Γ x −p) where ϕ is a convex and lower semi-continuous
function on X, and Γ : X → X∗ is a skew adjoint operator. The corresponding anti-selfdual vector field is then
∂̄L(x) = Γ x + ∂ϕ(x). Actually, it turned out that every maximal monotone operator is an anti-selfdual vector field
(see for example [6]). This means that ASD-Lagrangians can be seen as the potentials of maximal monotone operators,
in the same way as the Dirichlet integral is the potential of the Laplacian operator (and more generally as any convex
lower semi-continuous energy is a potential for its own subdifferential), leading to a variational formulation and
resolution of most equations involving maximal monotone operators.
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In this article, we develop further the approach – introduced in [5] – to allow for a variational resolution of nonlinear
PDEs of the form

Λu + ∂̄L(u) = 0, (5)

and nonlinear evolution equations of the form

u̇(t) + Λu(t) + ∂̄L
(
u(t)

) = 0 starting at u(0) = u0, (6)

where L is an anti-selfdual Lagrangian and Λ : D(Λ) ⊂ X → X∗ is a nonlinear regular map, that is if

Λ is weak-to-weak continuous and u → 〈Λu,u〉 is weakly lower semi-continuous on D(Λ). (7)

We note that positive linear operators are necessarily regular maps, but that there is also a wide class of nonlinear
regular operators, such as those appearing in the basic equations of hydrodynamics and magnetohydrodynamics (see
below and [9]).

Our approach is based on the following simple observation: If L is an anti-selfdual Lagrangian on X × X∗, then
for any map Λ : D(Λ) ⊂ X → X∗, we have from (2) and (3) above that

I (x) := L(x,Λx) + 〈x,Λx〉 � 0 for all x ∈ D(Λ), (8)

and that Eq. (5) is satisfied by x̄ ∈ X provided the infimum of I is equal to zero and that it is attained at x̄. The
following theorem established in [5] provides conditions under which such an existence result holds.

Theorem 1.1. Let L be an anti-selfdual Lagrangian on a reflexive Banach space X and let HL be its Hamiltonian. If
Λ : D(Λ) ⊂ X → X∗ is a regular map such that Dom1(L) ⊂ D(Λ) and

lim‖x‖→+∞HL(0,−x) + 〈Λx,x〉 = +∞, (9)

then the functional I (x) = L(x,Λx) + 〈Λx,x〉 attains its minimum at x̄ ∈ D(Λ) in such a way that:

I (x̄) = inf
x∈D(Λ)

I (x) = 0, (10)

0 ∈ Λx̄ + ∂̄L(x̄). (11)

We have denoted here the effective domain of L by Dom(L) = {(x,p) ∈ X × X∗; L(x,p) < +∞}, and by
Dom1(L) its projection on X, that is Dom1(L) = {x ∈ X; L(x,p) < +∞ for some p ∈ X∗}.

The Hamiltonian HL : X × X → R̄ of L is defined by:

HL(x, y) = sup
{〈y,p〉 − L(x,p); p ∈ X∗},

which is the Legendre transform in the second variable.
As shown in [5], Theorem 1.1 applies readily to many nonlinear stationary equations giving variational proofs of

existence of solutions. For example, one can obtain (weak) solutions of the incompressible stationary Navier–Stokes
equation on a smooth bounded domain Ω of R

3{
(u · ∇)u + f = ν
u − ∇p on Ω,

divu = 0 on Ω,

u = 0 on ∂Ω

(12)

where ν > 0 and f ∈ Lp(Ω;R
3), as follows. Letting

Φ(u) = ν

2

∫
Ω

3∑
j,k=1

(
∂uj

∂xk

)2

dx +
∫
Ω

3∑
j=1

fjuj dx (13)

be the convex continuous function on the space X = {u ∈ H 1
0 (Ω;R3); divv = 0}, and Φ∗ be its Legendre transform

on X∗, Eq. (12) can then be reformulated as{
Λu = −∂Φ(u) = ν
u − f − ∇p,

u ∈ X,
(14)
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where Λ : X → X∗ is the regular nonlinear operator defined as

〈Λu,v〉 =
∫
Ω

3∑
j,k=1

uk

∂uj

∂xk

vj dx = 〈
(u · ∇)u, v

〉
. (15)

Theorem 1.1 then readily yields that if p > 6
5 , then the infimum of the functional

I (u) = Φ(u) + Φ∗(−(u · ∇)u
)

(16)

on X is equal to zero, and is attained at a solution of (12). Theorem 1.1 does not however cover the case of nonlinear
evolutions such as the Navier–Stokes equations. This is because of the prohibitive coercivity condition (9) that is
not satisfied by the corresponding selfdual functional on the relevant path space. We shall therefore prove a similar
result under a more relaxed coercivity condition that will allow us to prove a selfdual variational principle that is
more appropriate to nonlinear evolution equations. The concept can be seen as a selfdual version of the classical
Palais–Smale condition in standard variational problems. Indeed, if I is a selfdual functional of the form I (u) =
L(u,Λu)+〈u,Λu〉, then its stationary states correspond to those points u where I (u) = inf I = 0, in which case they
satisfy the equation ∂̄L(u) + Λu = 0. So by analogy to classical variational theory, we introduce the following.

Assume J to be a duality map from X to X∗, i.e., for every u ∈ X, Ju is the element of the dual X∗ that is uniquely
determined by the relation

〈Ju,u〉 = ‖u‖2
X and ‖Ju‖X∗ = ‖u‖X. (17)

It is well known that if X is a reflexive Banach space equipped with a strictly convex norm, then J is one-to-one
and onto X∗, while being monotone and continuous from X (with its strong topology) to X∗ equipped with its weak
topology.

Definition 1.2. Given a map Λ : D(Λ) ⊂ X → X∗, and a Lagrangian L on X × X∗.

1. Say that (un)n is a selfdual Palais–Smale sequence for the functional IL,Λ(u) = L(u,Λu) + 〈u,Λu〉, if for some
εn → 0 it satisfies

Λun + ∂̄L(un) = −εnJun. (18)

2. The functional IL,Λ is said to satisfy the selfdual Palais–Smale condition (selfdual-PS), if every selfdual Palais–
Smale sequence for IL,Λ is bounded in X.

3. The functional IL,Λ is said to be weakly coercive if

lim‖xn‖→+∞L

(
xn,Λxn + 1

n
Jxn

)
+ 〈xn,Λxn〉 + 1

n
‖xn‖2 = +∞. (19)

It is clear that a weakly coercive functional necessarily satisfies the selfdual Palais–Smale condition. On the other
hand, a strongly coercive selfdual functional (i.e., if it satisfies (9)) is necessarily weakly coercive.

In the dynamic case, one considers an evolution triple X ⊂ H ⊂ X∗ where H is a Hilbert space equipped with 〈 , 〉
as scalar product, and where X is a dense vector subspace of H , that is a reflexive Banach space once equipped with
its own norm ‖ · ‖. Let [0, T ] be a fixed real interval and consider for p,q > 1, the Banach space L

p
X as well as the

space X p,q of all functions in L
p
X such that u̇ ∈ L

q
X∗ , equipped with the norm

‖u‖Xp,q
= ‖u‖L

p
X

+ ‖u̇‖L
q

X∗ .

Let now L be a time-dependent anti-selfdual Lagrangian on [0, T ]×X×X∗, � an anti-selfdual Lagrangian on H ×H ,
and let Λ : Xp,q → L

q
X∗ be a given map. We shall make use of the selfdual Palais–Smale property for the following

type of selfdual functionals on path space.

I
L,�,Λ

(u) =
T∫ [

L
(
t, u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
. (20)
0
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In this case, I
L,�,Λ

is said to satisfy the selfdual Palais–Smale condition on Xp,q if any sequence {xn}∞n=1 ⊆ Xp,q

satisfying{
ẋn(t) + Λxn(t) + εn‖xn‖p−2Jxn(t) ∈ −∂̄L(t, xn(t)) a.a. t ∈ [0, T ],
xn(0)+xn(T )

2 ∈ ∂̄�(xn(0) − xn(T ))
(21)

for some εn → 0, is necessarily bounded in Xp,q .
Similarly, I

L,�,Λ
is said to be weakly coercive if for any sequence {xn}∞n=1 ⊆ Xp,q we have

lim‖xn‖Xp,q →+∞

T∫
0

[
L

(
t, xn(t), ẋn(t) + Λxn(t) + 1

n
‖xn‖p−2Jxn(t)

)
+ 〈

xn(t),Λxn(t)
〉 + 1

n

∥∥xn(t)
∥∥p

]
dt

+ �

(
xn(0) − xn(T ),

xn(T ) + xn(0)

2

)
= +∞. (22)

Here is one useful corollary of the variational principle we establish for nonlinear evolutions in Section 3.

Theorem 1.3. Let X ⊂ H ⊂ X∗ be an evolution triple where X is a reflexive Banach space, and H is a Hilbert space.
For p > 1 and q = p

p−1 , assume that Λ : Xp,q → L
q
X∗ is a regular map such that for some nondecreasing continuous

real function w, and 0 � k < 1, it satisfies

‖Λx‖L
q

X∗ � k‖ẋ‖L
q

X∗ + w
(‖x‖L

p
X

)
for every x ∈ Xp,q, (23)

and ∣∣∣∣∣
T∫

0

〈
Λx(t), x(t)

〉
dt

∣∣∣∣∣ � w
(‖x‖L

p
X

)
for every x ∈ Xp,q . (24)

Let � be an anti-selfdual Lagrangian on H ×H that is bounded below with 0 ∈ Dom(�), and let L be a time dependent
anti-selfdual Lagrangian on [0, T ] × X × X∗ such that for some C > 0 and r > 1, we have

T∫
0

L
(
t, u(t),0

)
dt � C

(
1 + ‖u‖r

L
p
X

)
for every u ∈ L

p
X. (25)

The functional

I (u) =
T∫

0

[
L

(
t, u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
(26)

is then selfdual on Xp,q , and if in addition it satisfies the selfdual Palais–Smale condition, then it attains its minimum
at v ∈ Xp,q in such a way that I (v) = infu∈Xp,q

I (u) = 0 and{−Λv(t) − v̇(t) ∈ ∂̄L(t, v(t)) a.e on [0, T ],
− v(0)+v(T )

2 ∈ ∂̄�(v(0) − v(T )).
(27)

Now while the main Lagrangian L is expected to be smooth and hence its subdifferential coincides with its gradient,
and the differential inclusion is often an equation, it is crucial that the boundary Lagrangian � be allowed to be
degenerate so that its subdifferential can cover the various boundary conditions discussed below.

As a consequence of the above theorem, we provide a variational resolution to evolution equations involving
nonlinear operators such as the Navier–Stokes equation with various boundary conditions. Indeed, by considering⎧⎨

⎩
∂u
∂t

+ (u · ∇)u + f = ν
u − ∇p on Ω ⊂ R
n,

divu = 0 on Ω, (28)
u = 0 on ∂Ω,
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where f ∈ L2
X∗([0, T ]), X = {u ∈ H 1

0 (Ω;Rn); divv = 0}, and H = L2(Ω), we can associate the nonlinear operator
equation{

∂u
∂t

+ Λu ∈ −∂Φ(t, u) on [0, T ],
u(0)+u(T )

2 ∈ −∂̄�(u(0) − u(T )).
(29)

where � is any anti-selfdual Lagrangian on H × H , while Φ and Λ are defined in (13) and (15), respectively.
Note that Λ maps X into its dual X∗ as long as the dimension N � 4. On the other hand, if we lift Λ to path space

by defining (Λu)(t) = Λ(u(t)), we have the following facts:

• If N = 2, then Λ is a regular operator from X2,2[0, T ] into L2
X∗ [0, T ].

• However, if N = 3, we then have that Λ is a regular operator from X2,2[0, T ] into L
4/3
X∗ [0, T ].

We therefore distinguish the two cases.

Corollary 1.4. Assuming N = 2, f in L2
X∗([0, T ]), and � to be an anti-selfdual Lagrangian on H ×H that is bounded

from below, then the infimum of the functional

I (u) =
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)

on X2,2 is zero and is attained at a solution u of (28) that satisfies the following time-boundary condition:

−u(0) + u(T )

2
∈ ∂̄�

(
u(0) − u(T )

)
. (30)

Moreover, u verifies the following “energy identity”:

∥∥u(t)
∥∥2

H
+ 2

t∫
0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt = ∥∥u(0)
∥∥2

H
for every t ∈ [0, T ]. (31)

In particular, with appropriate choices for the boundary Lagrangian �, the solution u can be chosen to verify either
one of the following boundary conditions:

• an initial value problem: u(0) = u0 where u0 is a given function in X;
• a periodic orbit: u(0) = u(T );
• an anti-periodic orbit: u(0) = −u(T ).

However, in the three dimensional case, we have to settle for the following result.

Corollary 1.5. Assume N = 3, f in L2
X∗([0, T ]), and consider � to be an anti-selfdual Lagrangian on H × H that is

now coercive in both variables. Then, there exists u ∈ X2, 4
3

such that

I (u) =
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)
� 0,

and u is a weak solution of (28) that satisfies the time-boundary condition (30). Moreover, u verifies the following
“energy inequality”:

‖u(T )‖2
H

2
+

T∫
0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt �
‖u(0)‖2

H

2
. (32)

In particular, with appropriate choices for the boundary Lagrangian �, the solution u will verify either one of the
following boundary conditions:
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• an initial value problem: u(0) = u0;
• a periodicity condition of the form: u(0) = αu(T ), for any given α with −1 < α < 1.

The above results are actually particular cases of a much more general nonlinear selfdual variational principle
which applies to both the stationary and to the dynamic case. It will be stated and established in full generality in the
next section.

2. Basic properties of selfdual functionals

Consider the Hamiltonian H = HL associated to an ASD Lagrangian L on X × X∗. It is easy to check that
H : X × X → R ∪ {+∞} ∪ {−∞} then satisfies:

• for each y ∈ X, the function Hy : x → −H(x,y) from X to R ∪ {+∞} ∪ {−∞} is convex;
• the function x → H(−y,−x) is the convex lower semi-continuous envelope of Hy .

It readily follows that for such a Hamiltonian, the function y → H(x,y) is convex and lower semi-continuous for
each x ∈ X, and that the following inequality holds:

H(−y,−x) � −H(x,y) for every (x, y) ∈ X × X. (33)

In particular, we have

H(x,−x) � 0 for every x ∈ X. (34)

Note that HL is always concave in the first variable, however, it is not necessarily upper semi-continuous in the first
variable (see [3], p. 55).

Another property of ASD Lagrangians that will be used in the sequel is the following: If we define the following
operation on two ASD Lagrangians L and M on X × X∗,

L ⊕ M(x,p) = inf
{
L(x, r) + M(x,p − r); r ∈ X∗}, (35)

then we have for any (x,p) ∈ X × X∗,

L ⊕ M(x,p) = sup
{〈y,−p〉 + HL(y,−x) + HM(y,−x); y ∈ X

}
. (36)

As in [5], we consider the following notion which extends considerably the class of Hamiltonians associated to selfdual
Lagrangians.

Definition 2.1. Let E be a convex subset of a reflexive Banach space X.

1. A functional M : E × E → R is said to be an anti-symmetric Hamiltonian on E × E if it satisfies the following
conditions:

For every x ∈ E, the function y → M(x,y) is concave on E, (37)

M(x,x) � 0 for every x ∈ E. (38)

2. It is said to be a regular anti-symmetric Hamiltonian if in addition it satisfies:

For every y ∈ E, the function x → M(x,y) is weakly lower semi-continuous on E. (39)

The class of regular anti-symmetric Hamiltonians on a given convex set E – denoted Hasym(E) – is an interesting
class of its own. It contains the “Maxwellian” Hamiltonians H(x,y) = ϕ(y) − ϕ(−x) + 〈Ay,x〉, where ϕ is convex
and A is skew-adjoint. More generally,

1. If L is an anti-selfdual Lagrangian on a Banach space X, then the Hamiltonian M(x,y) = HL(y,−x) is in
Hasym(X).
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2. If Λ : D(Λ) ⊂ X → X∗ is a – nonnecessarily linear – regular map, then the Hamiltonian H(x,y) = 〈x − y,Λx〉
is in Hasym(D(Λ)).

Since Hasym(X) is obviously a convex cone, we can therefore superpose certain nonlinear operators with anti-
selfdual Lagrangians, via their corresponding anti-symmetric Hamiltonians, to obtain a remarkably rich family that
generates nonconvex selfdual functionals as follows.

Definition 2.2. A functional I : X → R ∪ {+∞} is said to be selfdual on a convex set E ⊂ X if it is nonnegative and
if there exists a regular anti-symmetric Hamiltonian M : E × E → R such that for every x ∈ E,

I (x) = sup
y∈E

M(x,y). (40)

A key aspect of our variational approach is that solutions of many nonlinear PDEs can be obtained by minimizing
properly chosen selfdual functionals in such a way that the infimum is actually zero. This is indeed the case in view
of the following immediate application of a fundamental min–max theorem of Ky–Fan (see [1] or [2]).

Proposition 2.1. Let I : E → R ∪ {+∞} be a selfdual functional on a closed convex subset E of a reflexive Banach
space X, with M being its corresponding anti-symmetric Hamiltonian on E × E. If M is coercive in the following
sense,

lim‖x‖→+∞M(x,x0) = +∞ for some x0 ∈ E, (41)

then there exists x̄ ∈ E such that I (x̄) = supy∈E M(x̄, y) = 0.

The following was also proved in [5].

Proposition 2.2. Let X ⊂ H ⊂ X∗ be an evolution triple and consider a time-dependent anti-selfdual Lagrangian L

on [0, T ] × X × X∗ such that

For each r ∈ L
q
X∗ , the map u →

T∫
0

L
(
t, u(t), r(t)

)
dt is continuous on L

p
X. (42)

The map u →
T∫

0

L
(
t, u(t),0

)
dt is bounded on the unit ball of L

p
X. (43)

Let � be an anti-selfdual Lagrangian on H × H such that:

−C � �(a, b) � C
(
1 + ‖a‖2

H + ‖b‖2
H

)
for all (a, b) ∈ H × H. (44)

Then the Lagrangian

L(u, r) =
{∫ T

0 L(t, u(t), r(t) + u̇(t)) dt + �(u(0) − u(T ),
u(T )+u(0)

2 ) if u ∈ Xp,q,

+∞ otherwise

is anti-selfdual on L
p
X × L

q
X∗ .

Consider now the following convex lower semi-continuous function on L
p
X:

ψ(u) =
{

1
q

∫ T

0 ‖u̇(t)‖q
X∗ dt if u ∈ Xp,q,

+∞ if u ∈ L
p
X \ Xp,q,

(45)

and for any μ > 0, we let Ψμ be the anti-selfdual Lagrangian on L
p
X × L

q
X∗ defined by

Ψμ(u, r) = μψ(u) + μψ∗
(

− r
)

. (46)

μ
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Now for each (u, r) ∈ L
p
X × L

q
X∗ , define

L ⊕ Ψμ(u, r) := inf
s∈L

q

X∗

{
L(u, s) + Ψμ(u, r − s)

}
. (47)

Lemma 2.3. Let L and � be two anti-selfdual Lagrangians verifying the hypothesis of Proposition 2.2, and let L be
the corresponding anti-selfdual Lagrangian on path space L

p
X × L

q
X∗ . Suppose Γ is a regular operator from Xp,q

into L
q
X∗ then,

1. The functional

Iμ(u) = L ⊕ Ψμ(u,Γ u) +
T∫

0

〈
Γ u(t), u(t)

〉
dt

is then selfdual on Xp,q , and its corresponding anti-symmetric Hamiltonian on Xp,q × Xp,q is

Mμ(u,v) :=
T∫

0

〈
Γ u(t), u(t) − v(t)

〉
dt + HL(v,−u) + μψ(u) − μψ(v),

where HL(v,u) = supr∈L
q

X∗ {
∫ T

0 〈r, u〉dt − L(v, r)} is the Hamiltonian of L on L
p
X × L

p
X .

2. If in addition lim‖u‖Xp,q →+∞
∫ T

0 〈Γ u(t), u(t)〉dt + HL(0,−u) + μψ(u) = +∞, then there exists u ∈ Xp,q with

∂ψ(u) ∈ L
q
X∗ such that

u̇(t) + Γ u(t) + μ∂ψ
(
u(t)

) ∈ −∂̄L
(
t, u(t)

)
on [0, T ], (48)

u(T ) + u(0)

2
∈ −∂̄�

(
u(0) − u(T )

)
, (49)

u̇(T ) = u̇(0) = 0. (50)

Proof. First note that since L and Ψμ are anti-selfdual, we have that L ⊕ Ψμ(u, r) + 〈u, r〉 � 0 for all (u, r) ∈
L

p
X × L

q
X∗ , and therefore I (u) � 0 on Xp,q .

Now by (36), we have for any (u, r) ∈ L
p
X × L

q
X∗ ,

L ⊕ Ψμ(u, r) = sup
v∈L

p
X

{ T∫
0

〈−r, v〉dt + HL(v,−u) + μψ(−u) − μψ(v)

}
.

But for u ∈ Xp,q and v ∈ L
p
X \ Xp,q , we have HL(v,−u) = supr∈L

q

X∗ {
∫ T

0 −〈r, u〉dt − L(v, r)} = −∞, and therefore

for any u ∈ Xp,q , we have

sup
v∈Xp,q

Mμ(u, v) = sup
v∈L

p
X

Mμ(u, v)

=
T∫

0

〈
Γ u(t), u(t)

〉
dt + sup

v∈L
p
X

T∫
0

〈
Γ u(t),−v(t)

〉
dt + HL(v,−u) + μψ(u) − μψ(v)

=
T∫

0

〈
Γ u(t), u(t)

〉
dt + L ⊕ Ψμ(u,Γ u)

= I (u).

It follows from Proposition 2.1 that there exists uμ ∈ Xp,q such that
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Iμ(uμ) = L ⊕ Ψμ(uμ,Γ uμ) +
T∫

0

〈
Γ uμ(t), uμ(t)

〉
dt = 0. (51)

Since L ⊕ Ψμ is convex and coercive in the second variable, there exists r ∈ L
q
X∗ such that

L ⊕ Ψμ(uμ,Γ uμ) = L(uμ, r) + Ψμ(uμ,Γ uμ − r). (52)

It follows that

0 = L(uμ, r) + Ψμ(uμ,Γ uμ − r) +
T∫

0

〈
Γ uμ(t), uμ(t)

〉
dt

=
T∫

0

[
L

(
t, uμ(t), u̇μ(t) + r(t)

) + 〈
uμ(t), r(t)

〉]
dt + �

(
uμ(T ) − uμ(0),

uμ(T ) + uμ(0)

2

)

+ Ψμ(uμ,Γ uμ − r) +
T∫

0

〈
Γ uμ(t) − r(t), uμ(t)

〉
dt

=
T∫

0

[
L

(
t, uμ(t), u̇μ(t) + r(t)

) + 〈
uμ(t), u̇μ(t) + r(t)

〉]
dt − 1

2

∥∥uμ(T )
∥∥2 + 1

2

∥∥uμ(0)
∥∥2

+ �

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
+ Ψμ(uμ,Γ uμ − r) +

T∫
0

〈
Γ uμ − r, uμ(t)

〉
dt.

Since this is the sum of three nonnegative terms, we get the following three identities,

T∫
0

[
L

(
t, uμ(t), u̇μ(t) + r(t)

) + 〈uμ, u̇μ + r〉]dt = 0, (53)

Ψμ(uμ,Γ uμ − r) +
T∫

0

〈
Γ uμ − r, uμ(t)

〉
dt = 0, (54)

�

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
− 1

2

∥∥uμ(T )
∥∥2 + 1

2

∥∥uμ(0)
∥∥2 = 0. (55)

It follows from the limiting case of Fenchel duality that

u̇μ(t) + Γ uμ(t) + μ∂ψ
(
uμ(t)

) ∈ −∂̄L
(
t, uμ(t)

)
on [0, T ],

uμ(T ) + uμ(0)

2
∈ −∂̄�

(
uμ(0) − uμ(T )

)
.

Since u := uμ ∈ Xp,q , we have that −μ∂ψ(u(t)) = u̇(t) + Γ u(t) + ∂̄L(t, u(t)) ∈ L
q
X∗ .

It follows that ∂ψ(u(t)) = − d
dt

(‖u̇‖q−2∗ J−1u̇), where J is the duality map between L
p
X and L

q
X∗ . Hence, for each

v ∈ Xp,q we have

0 =
T∫

0

[〈
u̇(t) + Γ u(t) + ∂̄L

(
t, u(t)

)
, v

〉 + μ
〈‖u̇‖q−2∗ J−1u̇, v̇

〉]
dt

=
T∫ 〈

u̇(t) + Γ u(t) − μ
d

dt

(‖u̇‖q−2∗ J−1u̇
) + ∂̄L

(
t, u(t)

)
, v

〉
dt
0
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+ μ
〈∥∥u̇(T )

∥∥q−2
∗ J−1u̇(T ), v(T )

〉 − μ
〈∥∥u̇(0)

∥∥q−2
∗ J−1u̇(0), v(0)

〉
from which we deduce that

u̇(t) + Γ u(t) − d

dt

(‖u̇‖q−2J−1u̇(t)
) ∈ −∂̄L

(
t, u(t)

)
on [0, T ],

u̇(T ) = u̇(0) = 0. �
We shall make repeated use of the following lemma which describes three ways of regularizing an anti-selfdual

Lagrangian by way of λ-convolution. It is an immediate consequence of the calculus of anti-selfdual Lagrangians
developed in [4] to which we refer the reader.

Lemma 2.4. For a Lagrangian L : X × X∗ → R ∪ {+∞}, define for every (x, r) ∈ X × X∗

L1
λ(x, r) = inf

{
L(y, r) + ‖x − y‖p

X

λp
+ λq−1‖r‖q

X∗
q

; y ∈ X

}

and

L2
λ(x, r) = inf

{
L(x, s) + ‖r − s‖q

X∗
λq

+ λp−1‖x‖p
X

p
; s ∈ X∗

}

and

L
1,2
λ (x, r) = inf

{
L(y, s) + 1

2λ
‖x − y‖2

X + λ

2
‖r‖2

X∗ + 1

2λ
‖s − r‖2

X∗ + λ

2
‖y‖2

X; y ∈ X, s ∈ X∗
}
.

If L is anti-selfdual then the following hold:

1. L1
λ, L2

λ and L
1,2
λ are also anti-selfdual Lagrangians on X × X∗.

2. L1
λ (resp., L2

λ) (resp., L
1,2
λ ) is continuous in the first variable (resp., in the second variable) (resp., in both vari-

ables). Moreover, ‖∂̄L1
λ(x)‖ � ‖x‖

λ
for every x ∈ X.

3. ∂̄L2
λ(x) = ∂̄L(x) + λp−1‖x‖p−2Jx for every x ∈ X.

4. ∂̄L1
λ(x) = ∂̄L(x + λq−1‖r‖q−2J−1r) for every x ∈ X where r = ∂̄L(x).

5. Suppose L is bounded from below. If xλ ⇀ x and pλ ⇀ p weakly in X and X∗ respectively as λ → 0, and if
L

1,2
λ (xλ,pλ) is bounded from above, then

L(x,p) � lim inf
λ→0

L
1,2
λ (xλ,pλ).

Proof. It suffices to notice that L1
λ = L � Mλ and L2

λ = L ⊕ Mλ where Mλ(x, r) = ψλ(x) + ψ∗
λ (r) with ψλ(x) =

1
λp

‖x‖p . Note that L
1,2
λ = (L ⊕ Mλ) � Mλ with Mλ(x, r) = 1

2λ
‖x‖2 + λ

2 ‖r‖2. The rest follows from the calculus of
selfdual Lagrangians developed in [4]. �
3. A selfdual variational principle for nonlinear evolutions

This section is dedicated to the proof of the following general variational principle for nonlinear evolutions.

Theorem 3.1. Let X ⊂ H ⊂ X∗ be an evolution triple where X is a reflexive Banach space, and H is a Hilbert space.
Let L be a time dependent anti-selfdual Lagrangian on [0, T ]×X ×X∗ such that for some C > 0 and r > 0, we have

T∫
L

(
t, u(t),0

)
dt � C

(
1 + ‖u‖r

L
p
X

)
for every u ∈ L

p
X. (56)
0
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Let � be an anti-selfdual Lagrangian on H ×H that is bounded below with 0 ∈ Dom(�), and consider Λ : Xp,q → L
q
X∗

to be a regular map such that for some q > 1:

‖Λu‖L
q

X∗ � k‖u̇‖L
q

X∗ + w
(‖u‖L

p
X

)
for every u ∈ Xp,q, (57)

where w is a nondecreasing continuous real function and 0 < k < 1. Assume that one of the following two conditions
hold:

(A) |∫ T

0 〈Λu(t), u(t)〉dt | � w(‖u‖L
p
X
) for every u ∈ Xp,q .

(B) For each p ∈ L
q
X∗ , the functional u → ∫ T

0 L(t, u(t),p(t)) dt is continuous on L
p
X , and there exists C > 0 such

that for every u ∈ L
p
X we have:

∥∥∂̄L(t, u)
∥∥

L
q

X∗ � w
(‖u‖L

p
X

)
, (58)

T∫
0

〈
∂̄L

(
t, u(t)

) + Λu(t), u(t)
〉
dt � −C

(‖u‖L
p
X

+ 1
)
. (59)

Then the functional

I (u) =
T∫

0

[
L

(
t, u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
(60)

is selfdual on Xp,q , and if in addition it is weakly coercive on that space, then it attains its minimum at v ∈ Xp,q in
such a way that I (v) = infu∈Xp,q

I (u) = 0 and

{−Λv(t) − v̇(t) = ∂̄L(t, v(t)) on [0, T ],
− v(0)+v(T )

2 ∈ ∂̄�(v(0) − v(T )).
(61)

For the proof of Theorem 3.1, we start with the following proposition in which we consider a regularization (coer-
civization) of the anti-selfdual Lagrangian L by the ASD Lagrangian Ψμ, and also a perturbation of Λ by the operator

Ku = w
(‖u‖L

p
X

)
Ju + ‖u‖p−1

L
p
X

Ju (62)

which is regular from Xp,q into L
q
X∗ .

Lemma 3.2. Let Λ be a regular map from Xp,q into L
q
X∗ satisfying (57). Let L to be a time-dependent anti-selfdual

Lagrangian on [0, T ] × X × X∗, satisfying conditions (42) and (43) and let � be an anti-selfdual Lagrangian on
H × H satisfying condition (44). Then for any μ > 0, the functional

Iμ(u) = L ⊕ Ψμ(u,Λu + Ku) +
T∫

0

〈
Λu(t) + Ku(t), u(t)

〉
dt

is selfdual on Xp,q . Moreover, there exists uμ ∈ {u ∈ Xp,q; ∂ψ(u) ∈ L
q
X∗ , u̇(T ) = u̇(0) = 0} such that

u̇μ(t) + Λuμ(t) + Kuμ(t) + μ∂ψ
(
uμ(t)

) ∈ −∂̄L
(
t, uμ(t)

)
on [0, T ], (63)

�

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
=

T∫
0

〈
u̇μ(t), uμ(t)

〉
dt. (64)
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Proof. It suffices to apply Lemma 2.3 to the regular operator Γ = Λ + K , provided we show the required coercivity
condition lim‖u‖Xp,q →+∞ M(u,0) = +∞ where

M(u,0) =
T∫

0

〈
Λu(t) + Ku(t), u(t)

〉
dt + HL(0,−u) + μψ(u).

Note first that it follows from (57) that for ε <
μ
q

, there exists C(ε) > 0 such that

T∫
0

〈
Λu(t), u(t)

〉
dt � k‖u‖L

p
X
‖u̇‖L

q

X∗ + w
(‖u‖L

p
X

)‖u‖L
p
X

� ε‖u̇‖q

L
q

X∗
+ C(ε)‖u‖p

L
p
X

+ w
(‖u‖L

p
X

)‖u‖L
p
X
.

On the other hand, by the definition of K , we have

T∫
0

〈
Ku(t), u(t)

〉
dt = w

(‖u‖L
p
X

)‖u‖2
L

p
X

+ ‖u‖p+1
L

p
X

.

Therefore the coercivity follows from the following estimate:

M(u,0) =
T∫

0

[〈
Λu(t) + Ku(t), u(t)

〉]
dt + HL(u,0) + μ

1

q
‖u̇‖q

L
q

X∗

� −ε‖u̇‖q

L
q

X∗
− C(ε)‖u‖p

L
p
X

− w
(‖u‖L

p
X

)‖u‖L
p
X

+ w
(‖u‖L

p
X

)‖u‖2
L

p
X

+ ‖u‖p+1
L

p
X

− L(0,0) + μ
1

q
‖u̇‖q

L
q

X∗

�
(

μ

q
− ε

)
‖u̇‖q

L
q

X∗
+ ‖u‖p+1

L
p
X

(
1 + o

(‖u‖L
p
X

))
. �

In the following lemma, we get rid of the regularizing diffusive term μψ(u) and prove the theorem with Λ replaced
by the operator Λ + K , and under the additional assumption that � satisfies the boundedness condition (44).

Lemma 3.3. Let L be a time dependent anti-selfdual Lagrangian as in Theorem 3.1 satisfying either one of conditions
(A) or (B), and assume that � is an anti-selfdual Lagrangian on H ×H that satisfies condition (44). Then there exists
u ∈ Xp,q such that

T∫
0

[
L

(
t, u(t), u̇(t) + Λu(t) + Ku(t)

)
dt + 〈

Λu(t) + Ku(t), u(t)
〉]

dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
= 0.

Proof under condition (B). Note first that in this case L satisfies both conditions (42) and (43) of Lemma 2.3, which
then yields for every μ > 0 an element uμ ∈ Xp,q satisfying

u̇μ(t) + Λuμ(t) + Kuμ(t) + μ∂ψ
(
uμ(t)

) ∈ −∂̄L
(
t, uμ(t)

)
on [0, T ] (65)

and

�

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
=

T∫ 〈
u̇μ(t), uμ(t)

〉
dt. (66)
0
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We now establish upper bounds on the norm of uμ in Xp,q . Multiplying (65) by uμ and integrating over [0, T ] we
obtain

T∫
0

〈
u̇μ(t) + Λuμ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

)
, uμ(t)

〉
dt = −

T∫
0

〈
∂̄L

(
t, uμ(t)

)
, uμ(t)

〉
dt. (67)

It follows from (59) and the above equality that

T∫
0

〈
u̇μ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

)
, uμ(t)

〉
� C

(
1 + ‖uμ‖L

p
X

)
. (68)

Taking into account (66) and the fact that
∫ T

0 〈∂ψ(uμ(t)), uμ(t)〉 � 0, it follows from (84) that

�

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
+

T∫
0

〈
Kuμ(t), uμ(t)

〉
� C

(
1 + ‖uμ‖L

p
X

)
.

Since � is bounded from below (say by C1), the above inequality implies that ‖uμ‖L
p
X

is bounded, since we have

C1 + w
(‖uμ‖L

p
X

)‖uμ‖2
L

p
X

+ ‖uμ‖p+1
L

p
X

� C‖uμ‖L
p
X
.

Now we show that ‖u̇μ‖L
q

X∗ is also bounded. For that, we multiply (65) by J−1u̇μ to get that

‖u̇μ‖2
L

q

X∗
+

T∫
0

[〈
Λuμ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

) + ∂̄L
(
t, uμ(t)

)
, J−1u̇μ(t)

〉]
dt = 0. (69)

The last identity and the fact that
∫ T

0 〈∂ψ(uμ(t)), J−1u̇μ(t)〉dt = 0 imply that

‖u̇μ‖2
L

q

X∗
� ‖Λuμ‖L

q

X∗ ‖u̇μ‖L
q

X∗ + ‖Kuμ‖L
q

X∗ ‖u̇μ‖L
q

X∗ + C‖u̇μ‖L
q

X∗ .

It follows from the above inequality and (57) that

‖u̇μ‖L
q

X∗ � ‖Λuμ‖L
q

X∗ + ‖Kuμ‖L
q

X∗ + C � k‖u̇μ‖L
q

X∗ + w
(‖u‖L

p
X

) + ‖Kuμ‖L
q

X∗

from which we obtain that (1 − k)‖u̇μ‖L
q

X∗ � w(‖uμ‖L
p
X
) + ‖Kuμ‖L

q

X∗ , which means that ‖u̇μ‖L
q

X∗ is bounded.

Consider now u ∈ Xp,q such that uμ ⇀ u weakly in L
p
X and u̇μ ⇀ u̇ in L

q
X∗ . From (65) and (66) we have

Jμ(uμ) : =
T∫

0

[〈
Λuμ(t) + Kuμ(t), uμ(t)

〉 + L
(
t, uμ(t), u̇μ(t) + Λuμ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

))]
dt

+ �

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)

�
T∫

0

[〈
Λuμ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

)
, uμ(t)

〉
+ L

(
t, uμ(t), u̇μ(t) + Λuμ(t) + Kuμ(t) + μ∂ψ

(
uμ(t)

))]
dt

+ �

(
uμ(0) − uμ(T ),

uμ(T ) + uμ(0)

2

)
= Iμ(uμ) = 0.

Since Λ + K is regular, ∂ψ(uμ) is uniformly bounded and L is weakly lower semi-continuous on X × X∗, we get by
letting μ → 0 that
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�

(
u(T ) − u(0),

u(T ) + u(0)

2

)
+

T∫
0

[〈
Λu(t) + Ku(t), u(t)

〉 + L
(
t, u(t), u̇(t) + Λu(t) + Ku(t)

)]
dt � 0.

The reverse inequality is true for any u ∈ Xp,q since L and � are anti-selfdual Lagrangians. �
Proof of Lemma 3.3 under condition (A). Note first that condition (56) implies that there is a D > 0 such that

T∫
0

L
(
t, u(t),p(t)

)
dt � D

(‖p‖s

L
q

X∗
− 1

)
for every p ∈ L

q
X∗, (70)

where 1
r

+ 1
s

= 1.
However, since L is not supposed to satisfy condition (42), we first replace it by its λ-regularization L1

λ which
satisfies all properties of Lemma 3.2. Therefore, there exists uμ,λ ∈ Xp,q satisfying

u̇μ,λ(t) + Λuμ,λ(t) + Kuμ,λ(t) + μ∂ψ
(
uμ,λ(t)

) = −∂̄L1
λ

(
t, uμ,λ(t)

)
on [0, T ] (71)

and

�

(
uμ,λ(T ) − uμ,λ(0),

uμ,λ(T ) + uμ,λ(0)

2

)
=

T∫
0

〈
u̇μ,λ(t), uμ,λ(t)

〉
dt. (72)

We shall first find bounds for uμ,λ in Xp,q that are independent of μ. Multiplying (71) by uμ,λ and integrating, we
obtain

T∫
0

〈
u̇μ,λ(t) + Λuμ,λ(t) + Kuμ,λ(t) + μ∂ψ

(
uμ,λ(t)

)
, uμ,λ(t)

〉
dt = −

T∫
0

〈
∂̄L1

λ

(
t, uμ,λ(t)

)
, uμ,λ(t)

〉
dt. (73)

Since ∂̄L1
λ(t, .) is a maximal monotone operator, we have

∫ T

0 〈∂̄L1
λ(t, uμ,λ(t)) − ∂̄L1

λ(t,0), uμ,λ(t) − 0〉dt � 0, and
therefore

T∫
0

〈
∂̄L1

λ

(
t, uμ,λ(t)

)
, uμ,λ(t)

〉
dt �

T∫
0

〈
∂̄L1

λ(t,0), uμ,λ(t)
〉
dt. (74)

Taking into account (72), (74) and the fact that
∫ T

0 ∂ψ(uμ(t)), uμ(t)〉 � 0, it follows from (73) that

�

(
uμ,λ(0) − uμ,λ(T ),

uμ,λ(T ) + uμ,λ(0)

2

)
+

T∫
0

〈
Λuμ,λ(t) + Kuμ,λ(t), uμ,λ(t)

〉
dt

� −
T∫

0

〈
∂̄L1

λ(t,0), uμ,λ(t)
〉
dt.

This implies {uμ,λ}μ is bounded in L
p
X , and by the same argument as under condition (B), one can prove that {u̇μ,λ}μ

is also bounded in L
q
X∗ . Consider uλ ∈ Xp,q such that uμ,λ ⇀ uλ weakly in L

p
X and u̇μ,λ ⇀ u̇λ in L

q
X∗ . It follows just

like in the proof under condition (B) that

T∫
0

[〈
Λuλ(t) + Kuλ(t), uλ(t)

〉 + L1
λ

(
t, uλ(t), u̇λ(t) + Λuλ(t) + Kuλ(t)

)]
dt

+ �

(
uλ(0) − uλ(T ),

uλ(T ) + uλ(0)
)

= 0, (75)

2
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and therefore

u̇λ(t) + Λuλ(t) + Kuλ(t) ∈ −∂̄L1
λ

(
t, uλ(t)

)
on [0, T ]. (76)

Now we obtain estimates on uλ in Xp,q . Since � and L1
λ are bounded from below, it follows from (75) that∫ T

0 [〈Λuλ(t) + Kuλ(t), uλ(t)〉dt is bounded and therefore uλ is bounded in L
p
X since

T∫
0

〈
Λuλ(t) + Kuλ(t), uλ(t)

〉
dt � −C

(‖u‖L
p
X

+ 1
) −

T∫
0

〈
∂̄L

(
t, u(t)

)
, u(t)

〉
dt +

T∫
0

〈
Ku(t), u(t)

〉
dt

� −C
(‖u‖L

p
X

+ 1
) − w

(‖u‖L
p
X

)‖u‖L
p
X

+ w
(‖u‖L

p
X

)‖u‖2
L

p
X

+ ‖u‖p+1
L

p
X

.

Setting vλ(t) := u̇λ(t) + Λuλ(t) + Kuλ(t), we get from (76) that

−vλ(t) = ∂̄L1
λ

(
t, uλ(t)

) = ∂̄L
(
t, uλ(t) + λq−1

∥∥vλ(t)
∥∥q−2

∗ J−1vλ(t)
)

on [0, T ].
This together with (75) implies that

0 =
T∫

0

[〈
Λuλ(t) + Kuλ(t), uλ(t)

〉 + λ
∥∥vλ(t)

∥∥q]
dt

+
T∫

0

L
(
t, uλ(t) + λ

∥∥vλ(t)
∥∥q−2

∗ J−1vλ(t), u̇λ(t) + Λuλ(t) + Kuλ(t)
)
dt

+ �

(
uλ(0) − uλ(T ),

uλ(T ) + uλ(0)

2

)
. (77)

It follows that
∫ T

0 L(t, uλ(t) + λ‖vλ(t)‖q−2∗ J−1vλ(t), u̇λ(t) + Λuλ(t) + Kuλ(t)) dt is bounded from above.
In view of (70), there exists then a constant C > 0 such that∥∥u̇λ(t) + Λuλ(t) + Kuλ(t)

∥∥
L

q

X∗ dt � C. (78)

It follows that

‖u̇λ‖L
q

X∗ � ‖Λuλ‖L
q

X∗ + ‖Kuλ‖L
q

X∗ + C � k‖u̇λ‖L
q

X∗ + w
(‖u‖L

p
X

) + ‖Kuλ‖L
q

X∗
from which we obtain

(1 − k)‖u̇λ‖L
q

X∗ � w
(‖uλ‖L

p
X

) + ‖Kuλ‖L
q

X∗ ,

which means that ‖u̇λ‖L
q

X∗ is bounded. By letting λ go to zero in (77), we obtain

�

(
u(0) − u(T ),

u(T ) + u(0)

2

)
+

T∫
0

[〈
Λu(t) + Ku(t), u(t)

〉 + L
(
t, u(t), u̇(t) + Λu(t) + Ku(t)

)]
dt = 0

where u is a weak limit of (uλ)λ in Xp,q . �
Proof of Theorem 3.1. First we assume that � satisfies condition (44), and we shall work towards eliminating the
perturbation K . Let L2

λ be the λ-regularization of L with respect to the second variable, in such a way that L2
λ

satisfies (59). Indeed
T∫

0

〈
∂̄L2

λ

(
t, u(t)

) + Λu(t), u(t)
〉
dt =

T∫
0

〈
∂̄L

(
t, u(t)

) + Λu(t) + λp−1‖u‖p−2Ju(t), u(t)
〉
dt

�
T∫ 〈

∂̄L
(
t, u(t)

) + Λu(t), u(t)
〉
dt � −C‖u‖L

p
X
. (79)
0



N. Ghoussoub, A. Moameni / Ann. I. H. Poincaré – AN 26 (2009) 223–255 239
Moreover, we have in view of (56) that

T∫
0

L2
λ(t, u,p)dt � −D + λp−1

p
‖u‖p

L
p
X

. (80)

From Lemma 3.3, we get for each ε > 0, uε,λ ∈ Xp,q such that

T∫
0

[〈
Λuε,λ(t) + εKuε,λ(t), uε,λ(t)

〉 + L2
λ

(
t, uε,λ(t), u̇ε,λ(t) + Λuε,λ(t) + εKuε,λ(t)

)]
dt

+ �

(
uε,λ(0) − uε,λ(T ),

uε,λ(T ) + uε,λ(0)

2

)
= 0, (81)

and

u̇ε,λ(t) + Λuε,λ(t) + εKuε,λ(t) ∈ −∂̄L2
λ

(
t, uε,λ(t)

)
on [0, T ]. (82)

We shall first find bounds for uε,λ in Xp,q that are independent of ε. Multiplying (82) by uε,λ and integrating, we
obtain

T∫
0

〈
u̇ε,λ(t) + Λuε,λ(t) + εKuε,λ(t), uε,λ(t)

〉
dt = −

T∫
0

〈
∂̄L2

λ

(
t, uε,λ(t)

)
, uε,λ(t)

〉
dt. (83)

It follows from (79) and the above equality that

T∫
0

〈
u̇ε,λ(t) + εKuε,λ(t), uε,λ(t)

〉
� C‖uε,λ‖L

p
X
, (84)

and therefore

�

(
uε,λ(0) − uε,λ(T ),

uε,λ(T ) + uε,λ(0)

2

)
+

T∫
0

〈
εKuε,λ(t), uε,λ(t)

〉
� C‖uε,λ‖L

p
X
,

which in view of (81) implies that

∣∣∣∣∣
T∫

0

L2
λ

(
t, uε,λ(t), u̇ε,λ(t) + Λuε,λ(t) + εKuε,λ(t)

)
dt

∣∣∣∣∣ � C‖uε,λ‖L
p
X
.

By (80), we deduce that {uε,λ}μ is bounded in L
p
X . The same reasoning as above then shows that {u̇ε,λ}μ is also

bounded in L
q
X∗ . Again, the regularity of Λ and the lower semi-continuity of L, yields the existence of uλ ∈ Xp,q

such that

�

(
uλ(0) − uλ(T ),

uλ(T ) + uλ(0)

2

)
+

T∫
0

[〈
Λuλ(t), uλ(t)

〉 + L2
λ

(
t, uλ(t), u̇λ(t) + Λuλ(t)

)]
dt = 0. (85)

In other words,

T∫
0

[〈
Λuλ(t), uλ(t)

〉 + L
(
t, uλ(t), u̇λ(t) + Λuλ(t)

) + λp−1
∥∥uλ(t)

∥∥p−2
Juλ(t) + λp−1

∥∥uλ(t)
∥∥p]

dt

+ �

(
uλ(0) − uλ(T ),

uλ(T ) + uλ(0)
)

= 0. (86)

2
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Now since IL,�,Λ satisfies the selfdual Palais–Smale condition, we get that (uλ)λ is bounded in Xp,q . Suppose uλ ⇀ ū

in L
p
X and u̇λ ⇀ ˙̄u in L

q
X∗ . It follows from (57) that Λuλ is bounded in L

q
X∗ . Again, we deduce that

�

(
ū(T ) − ū(0),

ū(T ) + ū(0)

2

)
+

T∫
0

[〈
Λū(t), ū(t)

〉 + L
(
t, ū(t), ˙̄u(t) + Λū(t)

)]
dt = 0.

Now, we show that we can do without assuming that � satisfies (44), but that it is bounded below while (0,0) ∈
Dom(�). Indeed, let �λ := �

1,2
λ be the λ-regularization of the anti-selfdual Lagrangian � in both variables. Then �λ

satisfies (44) and therefore there exists xλ ∈ Xp,q such that

�λ

(
xλ(T ) − xλ(0),

xλ(T ) + xλ(0)

2

)
+

T∫
0

[〈
Λxλ(t), xλ(t)

〉 + L
(
t, xλ(t), ẋλ(t) + Λxλ(t)

)]
dt = 0. (87)

Since � is bounded from below, so is �λ. This together with (87) imply that the family
∫ T

0 [〈Λxλ(t), xλ(t)〉 +
L(t, xλ(t), ẋλ(t) + Λxλ(t))]dt is bounded above. Again, since IL,�,Λ is weakly coercive, we obtain that (xλ)λ is
bounded in Xp,q . The continuity of the injection Xp,q ⊆ C([0, T ];H) also ensures the boundedness of (xλ(T ))λ and
(xλ(0))λ in H . Consider x̄ ∈ Xp,q such that xλ ⇀ x̄ in L

p
X and ẋλ ⇀ ˙̄x in L

q
X∗ . It follows from the regularity of Λ and

the lower semi-continuity of � and L that

�

(
x̄(T ) − x̄(0),

x̄(T ) + x̄(0)

2

)
+

T∫
0

[〈
Λx̄(t), x̄(t)

〉 + L
(
t, x̄(t), ˙̄x(t) + Λx̄(t)

)]
dt = 0,

and therefore x̄ satisfies Eq. (61). �
Remark 3.4. Note that the hypothesis that IL,�,Λ is weakly coercive, is only needed in the last part of the proof to
deal with the case when � is not assumed to satisfy (44). Otherwise, the hypothesis that IL,�,Λ satisfies the selfdual
Palais–Smale condition would have been sufficient. This will be useful in the application to Schrödinger equations
mentioned below.

3.1. Nonlinear evolutions involving a skew-adjoint operator

Suppose again that we have an evolution triple X ⊂ H ⊂ X∗, where X is reflexive, H is a Hilbert space and where
each space is dense in the following one. Also assume that there exists a linear and symmetric duality map J between
X and X∗ in such a way that ‖x‖2 = 〈x,Jx〉. We can then consider X and X∗ as Hilbert spaces with the following
inner products,

〈u,v〉X×X := 〈Ju, v〉 and 〈u,v〉X∗×X∗ := 〈
J−1u,v

〉
. (88)

A typical example is the evolution triple X = H 1
0 (Ω) ⊂ H := L2(Ω) ⊂ X∗ = H−1(Ω) where the duality map is

given by J = −
.
If now S̄ is an isometry on X∗, then S = J−1S̄J is also an isometry on X, in such a way that

〈u,p〉 = 〈Su, S̄p〉 for all u ∈ X and p ∈ X∗. (89)

Indeed, we have 〈Su, S̄p〉 = 〈JSu, S̄p〉X∗×X∗ = 〈S̄Ju, S̄p〉X∗×X∗ = 〈Ju,p〉X∗×X∗ = 〈u,p〉, from which we can de-
duce that

‖Su‖2
X = 〈Su,Su〉X×X = 〈Su,JSu〉 = 〈Su, S̄Ju〉 = 〈u,Ju〉 = ‖u‖2

X.

Moreover, if L is an anti-selfdual Lagrangian on X × X∗, then LS := L(Su, S̄p) is also an anti-selfdual Lagrangian
on X × X∗, since
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L∗
S(p,u) = sup

{〈v,p〉 + 〈u,q〉 − LS(v, q); (v, q) ∈ X × X∗}
= sup

{〈Sv, S̄p〉 + 〈Su, S̄q〉 − L(Sv, S̄q); (v, q) ∈ X × X∗}
= L∗(S̄p,Su) = L(−Su,−S̄p) = LS(−u,−p).

We shall need the following facts about semi-groups of operators.

Definition 3.5. A C0-group on H is a family of bounded operators S = {St }t∈R satisfying

(i) StSs = St+s for each t, s ∈ R.

(ii) S(0) = I.

(iii) The function t → Stu ∈ C(R,H) for each u ∈ H.

We recall a celebrated result of Stone.

Proposition 3.1. An operator A : D(A) ⊂ H → H on a Hilbert space H is skew-adjoint if and only if it is the
infinitesimal generator of a C0-group of unitary operators (St )t∈R on H . In other words, we have Ax = limt↓0

St x−x
t

for every x ∈ D(A).

It follows from the above that if (St )t is such a group and if L is a time dependent anti-selfdual Lagrangian on
[0, T ] × H × H , then so is the Lagrangian LS(t, u,p) := L(t, Stu, Stp).

The same holds if X ⊂ H ⊂ X∗ is an evolution triple with a linear and symmetric duality map J . Indeed, let (S̄t )t∈R

be a C0-unitary group of operators associated to a skew-adjoint operator A on the dual space X∗ viewed as a Hilbert
space (with scalar product 〈J−1p,q〉). By defining the maps (St )t∈R on X via the formula St = J−1S̄t J , we deduce
from the above that if L is a time dependent anti-selfdual Lagrangian on [0, T ] × X × X∗, then so is the Lagrangian
LS(t, u,p) := L(t, Stu, S̄tp).

These observations combined with Theorem 3.1 yield the following corollary.

Corollary 3.6. Let (S̄t )t∈R be a C0-unitary group of operators associated to a skew-adjoint operator A on the Hilbert
space X∗, and let (St )t∈R be the corresponding group on X. For p > 1 and q = p

p−1 , assume that Λ : Xp,q → L
q
X∗ is

a regular map such that for some nondecreasing continuous real function w, and 0 � k < 1, it satisfies

‖ΛStx‖L
q

X∗ � k‖ẋ‖L
q

X∗ + w
(‖x‖L

p
X

)
for every x ∈ Xp,q, (90)

and ∣∣∣∣∣
T∫

0

〈
Λx(t), x(t)

〉
dt

∣∣∣∣∣ � w
(‖x‖L

p
X

)
for every x ∈ Xp,q . (91)

Let � be an anti-selfdual Lagrangian on H ×H that is bounded below with 0 ∈ Dom(�), and let L be a time dependent
anti-selfdual Lagrangian on [0, T ] × X × X∗ such that for some C > 0 and r > 1, we have

−C �
T∫

0

L
(
t, u(t),0

)
dt � C

(
1 + ‖u‖r

L
p
X

)
for every u ∈ L

p
X. (92)

The functional

I (u) =
T∫

0

[
L

(
t, Stu(t), S̄t u̇(t) + ΛStu(t)

) + 〈
ΛStu(t), Stu(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
(93)

is then selfdual on Xp,q , and if in addition it is weakly coercive on Xp,q , then it attains its minimum at u ∈ Xp,q in
such a way that I (u) = infw∈Xp,q

I (w) = 0.
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Moreover if St = S̄t on X, then v(t) = Stu(t) is a “mild solution” of{
Λv(t) + Av(t) + v̇(t) ∈ −∂̄L(t, v(t)) on [0, T ],
v(0)+S(−T )v(T )

2 ∈ −∂̄�(v(0) − S(−T )v(T )),
(94)

where being a mild solution means that for every t ∈ [0, T ],

v(t) = Stv(0) −
t∫

0

S̄t−s

{
∂̄L

(
s, v(s)

) − Λv(s)
}
ds. (95)

Proof of Corollary 3.6. Define the nonlinear map Γ : Xp,q → L
q
X∗ by Γ (u) = S∗

t ΛSt (u). This map is also regu-
lar in view of the regularity of Λ. It follows from the previous observations that the anti-selfdual Lagrangian LS

satisfies (56). It remains to show that Γ satisfies conditions (57) and (A). Indeed for x ∈ Xp,q , we have

‖Γ x‖L
q

X∗ = ∥∥S∗
t ΛStx

∥∥
L

q

X∗ = ‖ΛStx‖L
q

X∗ � k‖ẋ‖L
q

X∗ + w
(‖x‖L

p
X

)
and

∣∣∣∣∣
T∫

0

〈
Γ x(t), x(t)

〉
dt

∣∣∣∣∣ =
∣∣∣∣∣

T∫
0

〈
ΛStx(t), Stx(t)

〉
dt

∣∣∣∣∣ � w
(‖Stx‖L

p
X

) = w
(‖x‖L

p
X

)
.

Also it is easily seen that ILS,�,Γ is weakly coercive, which means that all the hypothesis in Theorem 3.1 are satisfied.
Hence there exists x ∈ Xp,q such that I (x) = 0. We now show that v(t) = Stx(t) is a mild solution of (94).

Indeed, we have

−S̄t ẋ(t) − ΛStx(t) ∈ ∂̄L
(
t, Stx(t)

)
,

hence −ẋ(t) − S̄−tΛStx(t) ∈ S̄−t ∂̄L(t, Stx(t)). By integrating between 0 and t , we get

x(t) = x(0) −
t∫

0

{
S̄−s ∂̄L

(
s, Ssx(s)

) − S̄−sΛSsx(s)
}
ds.

Substituting v(t) = Stx(t) in the above equation gives

S−t v(t) = v(0) −
t∫

0

{
S̄−s ∂̄L

(
s, v(s)

) − S̄−sΛv(s)
}
ds

and consequently

v(t) = Stv(0) − St

t∫
0

{
S̄−s ∂̄L

(
s, v(s)

) − S̄−sΛv(s)
}
ds = Stv(0) −

t∫
0

S̄t−s

{
∂̄L

(
s, v(s)

) − Λv(s)
}
ds,

which means that v(t) is a mild solution for (94).
On the other hand, it is clear that the boundary condition x(0)+x(T )

2 ∈ −∂̄�(x(0)− x(T )) translates after the change
of variables into

v(0) + S(−T )v(T )

2
∈ −∂̄�

(
v(0) − S(−T )v(T )

)
and we are done. �
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4. Application to Navier–Stokes evolutions

The most basic time-dependent anti-selfdual Lagrangians are of the form L(t, x,p) = ϕ(t, x) + ϕ∗(t,−p) where
for each t , the function x → ϕ(t, x) is convex and lower semi-continuous on X. Let now ψ : H → R ∪ {+∞} be
another convex lower semi-continuous function which is bounded from below and such that 0 ∈ Dom(ψ), and set
�(a, b) = ψ(a) + ψ∗(−b). The above principle then yields that if for some C1,C2 > 0, we have

C1
(‖x‖p

L
p
X

− 1
)
�

T∫
0

ϕ
(
t, x(t)

)
dt � C2

(‖x‖p

L
p
X

+ 1
)

for all x ∈ L
p
X,

then for every regular map Λ satisfying (57) and either one of conditions (A) or (B) in Theorem 3.1, the infimum of
the functional

I (x) =
T∫

0

[
ϕ
(
t, x(t)

) + ϕ∗(t,−ẋ(t) − Λx(t)
) + 〈

Λx(t), x(t)
〉]

dt + ψ
(
x(0) − x(T )

) + ψ∗
(

−x(0) + x(T )

2

)

on Xp,q is zero and is attained at a solution x(t) of the following equation{−ẋ(t) − Λx(t) ∈ ∂ϕ(t, x(t)) for all t ∈ [0, T ],
− x(0)+x(T )

2 ∈ ∂ψ(x(0) − x(T )).

As noted in the introduction, the boundary condition above is quite general and it includes as particular case the
more traditional ones such as initial-value problems, periodic and anti-periodic orbits. It suffices to choose �(a, b) =
ψ(a) + ψ∗(−b) accordingly.

• For the initial boundary condition x(0) = x0 for a given x0 ∈ H , we choose ψ(x) = 1
4‖x‖2

H − 〈x, x0〉.
• For periodic solutions x(0) = x(T ), ψ is chosen as:

ψ(x) =
{0 x = 0,

+∞ elsewhere.

• For anti-periodic solutions x(0) = −x(T ), it suffices to choose ψ(x) = 0 for each x ∈ H.

As a consequence of the above theorem, we provide a variational resolution to evolution equations involving
nonlinear operators such as the Navier–Stokes equation with various boundary conditions:⎧⎨

⎩
∂u
∂t

+ (u · ∇)u + f = ν
u − ∇p on Ω,

divu = 0 on [0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

(96)

where Ω is a smooth domain of R
n, f ∈ L2

X∗([0, T ]), ν > 0.
Indeed, setting X = {u ∈ H 1

0 (Ω;Rn); divv = 0}, and H = L2(Ω), we write the above problem in the form{
∂u
∂t

+ Λu ∈ −∂Φ(t, u) on [0, T ],
u(0)+u(T )

2 ∈ −∂ψ(u(0) − u(T )),
(97)

where ψ is any bounded below proper convex lower semi-continuous function on H , while the convex functional Φ

and the nonlinear operator Λ are defined by:

Φ(t,u) = ν

2

∫
Ω

3∑
j,k=1

(
∂uj

∂xk

)2

dx +
∫
Ω

〈
u(x), f (t, x)

〉
dx and Λu := (u · ∇)u. (98)

Note that Λ : X → X∗ is regular as long as the dimension N � 4. On the other hand, when Λ lifts to path space, we
have the following.
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Lemma 4.1.

(1) When N = 2, the operator Λ : X2,2 → L2
X∗ is regular.

(2) When N = 3, the operator Λ is regular from X4, 4
3

→ L
4
3
X∗ as well as from X2, 4

3
∩ L∞(0, T ;H) to L

4
3
X∗ .

Proof. First note that the three embeddings X2,2 ⊆ L2
H , X4, 4

3
⊆ L2

H , and X2, 4
3

⊆ L2
H , are compact.

Assuming that N = 3, let un → u weakly in X4, 4
3
, and fix v ∈ C1([0, T ] × Ω). We have that

T∫
0

〈
Λun, v

〉 =
T∫

0

∫
Ω

3∑
j,k=1

un
k

∂un
j

∂xk

vj dx dt = −
T∫

0

∫
Ω

3∑
j,k=1

un
k

∂vj

∂xk

un
j dx.

Therefore∣∣∣∣∣
T∫

0

〈
Λun − Λu,v

〉∣∣∣∣∣ =
∣∣∣∣∣

3∑
j,k=1

T∫
0

∫
Ω

(
un

k

∂vj

∂xk

un
j − uk

∂vj

∂xk

uj

)
dx dt

∣∣∣∣∣
� ‖v‖C1([0,T ]×Ω)

3∑
j,k=1

T∫
0

∫
Ω

∣∣un
ku

n
j − ukuj

∣∣dx dt. (99)

Also
T∫

0

∫
Ω

∣∣un
ku

n
j − ukuj

∣∣dx dt �
T∫

0

∫
Ω

∣∣un
ku

n
j − uku

n
j

∣∣dx dt +
T∫

0

∫
Ω

∣∣uku
n
j − ukuj

∣∣dx dt

�
∥∥un

j

∥∥
L2

H

∥∥un
k − uk

∥∥
L2

H
+ ‖uk‖L2

H

∥∥un
j − uj

∥∥
L2

H
→ 0. (100)

Moreover, for N = 3 we have the following standard estimate [9]∥∥Λun
∥∥

X∗ � c
∣∣un

∣∣ 1
2
H

∥∥un
∥∥ 3

2
X. (101)

Since X4, 4
3

⊆ C(0, T ;H) is continuous, we obtain

∥∥Λun
∥∥

L
4
3
X∗

� c
∣∣un

∣∣ 1
2
C(0,T ;H)

∥∥un
∥∥ 3

4

L2
X

� c
∥∥un

∥∥ 1
2

X
4, 4

3

∥∥un
∥∥ 3

4

L2
X

(102)

from which we conclude that Λun is a bounded sequence in L
4
3
X∗ , and therefore the convergence of 〈Λun, v〉 to 〈Λu,v〉

holds for each v ∈ L4
X.

Now, since X2,2 ⊆ C(0, T ;H) is also continuous, the same argument works for N = 2, the only difference being
that we have the following estimate which is better that (101),∥∥Λun

∥∥
X∗ � c

∣∣un
∣∣
H

∥∥un
∥∥

X
. (103)

To consider the case Λ : X2, 4
3

∩ L∞(0, T ;H) → L
4
3
X∗ , we note that relations (99) and (100) still hold if un → u

weakly in X2, 4
3
. We also have estimate (101). However, unlike the above, one cannot deduce (102) since we do not

have necessarily a continuous embedding from X2, 4
3

⊆ C(0, T ;H). However, if (un) is also assumed to be bounded

in L∞(0, T ;H), then we get the following estimate from (101),∥∥Λun
∥∥

L
4
3
X∗

� c
∣∣un

∣∣ 1
2
L∞(0,T ;H)

∥∥un
∥∥ 3

4

L2
X

(104)

which ensures the boundedness of Λun in L
4
3 ∗ . �
X



N. Ghoussoub, A. Moameni / Ann. I. H. Poincaré – AN 26 (2009) 223–255 245
We now prove Corollaries 1.4 and 1.5 stated in the introduction.

Proof of Corollary 1.4. By the preceding lemma, one can verify that the operator Λ : X2,2 → L2
X∗ satisfies conditions

(23) and (24). Therefore the infimum of the functional

I (u) =
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)

on X2,2 is zero and is attained at a solution u(t) of (96). �
Proof of Corollary 1.5. We start by considering the following functional on the space X4, 4

3
.

Iε(u) :=
T∫

0

[
Φε

(
t, u(t)

) + Φ∗
ε

(
t,−u̇(t) − (u · ∇)u(t)

)]
dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)

where Φε(t, u) = Φ(t,u) + ε
4‖u‖4

X . In view of the preceding lemma, the operator Λu := (u · ∇)u and Φε satisfy all
properties of Theorem 3.1. In particular, we have the estimate

‖Λu‖X∗ � c|u|1/2
H ‖u‖3/2

X for every u ∈ X. (105)

It follows from Theorem 3.1, that there exists uε ∈ X4, 4
3

with Iε(uε) = 0. This implies that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂uε

∂t
+ (uε · ∇)uε + f (t, x) = ν
uε + div(ε‖uε‖2∇uε) − ∇pε on [0, T ] × Ω,

divuε = 0 on [0, T ] × Ω,

uε = 0 on [0, T ] × ∂Ω,

−uε(0)+uε(T )
2 = ∂̄�(uε(0) − uε(T )).

(106)

Now, we show that (uε)ε is bounded in X2, 4
3
. Indeed, multiply (106) by uε to get

d

dt

|uε(t)|2
2

+ ν
∥∥uε(t)

∥∥2
X

+ ε
∥∥uε(t)

∥∥4
X

= 〈
f (t), uε(t)

〉
� ν

2

∥∥uε(t)
∥∥2

X
+ 2

ν

∥∥f (t)
∥∥2

X∗

so that

d

dt

|uε(t)|2
2

+ ν

2

∥∥uε(t)
∥∥2

X
+ ε

∥∥uε(t)
∥∥4

X
� 2

ν

∥∥f (t)
∥∥2

X∗ . (107)

Integrating (107) over [0, s] (s < T ), we obtain

|uε(s)|2
2

− |uε(0)|2
2

+ ν

2

s∫
0

∥∥uε(t)
∥∥2

X
+ ε

s∫
0

∥∥uε(t)
∥∥4

X
� 2

ν

s∫
0

∥∥f (t)
∥∥2

X∗ . (108)

On the other hand, it follows from (106) that �(uε(0) − uε(T ),
uε(0)+uε(T )

2 ) = |uε(T )|2
2 − |uε(0)|2

2 . Considering this
together with (108) with s = T , we get

�

(
uε(0) − uε(T ),

uε(0) + uε(T )

2

)
+ ν

2

T∫
0

∥∥uε(t)
∥∥2

X
+ ε

T∫
0

∥∥uε(t)
∥∥4

X
� 2

ν

T∫
0

∥∥f (t)
∥∥2

X∗ . (109)

Since � is bounded from below and is coercive in both variables, it follows from the above that (uε)ε is bounded
in L2

X , that (uε(T ))ε and (uε(0))ε are bounded in H , and that ε
∫ T

0 ‖uε(t)‖4 is also bounded. It also follows from
(108) coupled with the boundedness of (uε(0))ε , that uε is bounded in L∞(0, T ;H). Estimate (105) combined with
the boundedness of (uε)ε in L∞(0, T ;H) ∩ L2

X implies that (Λuε)ε is bounded in L
4/3
X . We also have the estimate∥∥ν
uε + div

(
ε
∥∥uε‖2∇uε

)‖X∗ � ν‖uε‖X + ε‖uε‖3
X
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which implies that ν
uε + div(ε‖uε‖2∇uε) is bounded in L
4/3
X∗ .

It also follows from (106) that for each v ∈ L4
X , we have

T∫
0

〈
∂uε

∂t
, v

〉
dt =

T∫
0

〈−(uε · ∇)uε − f (t, x) + ν
uε + div
(
ε‖uε‖2∇uε

)
, v

〉
dt. (110)

Since the right-hand side is uniformly bounded with respect to ε, so is the left-hand side, which implies that ∂uε

∂t
is

bounded in L
4/3
X∗ . Therefore, there exists u ∈ X2,4/3 such that

uε ⇀ u weakly in L2
X, (111)

∂uε

∂t
⇀

∂uε

∂t
weakly in L

4/3
X∗ , (112)

div
(
ε‖uε‖2∇uε

)
⇀ 0 weakly in L

4/3
X∗ , (113)

uε(0) ⇀ u(0) weakly in H, (114)

uε(T ) ⇀ u(T ) weakly in H. (115)

Letting ε approach to zero in (110), it follows from (111)–(115) that

T∫
0

〈
∂u

∂t
, v

〉
dt =

T∫
0

〈−(u · ∇)u − f (t, x) + ν
u,v
〉
dt. (116)

Also it follows from (114), (115) and (106) and the fact that ∂̄� is maximal monotone that

−u(0) + u(T )

2
∈ ∂̄�

(
u(0) − u(T )

)
. (117)

(116) and (117) yield that u is a weak solution of⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t

+ (u · ∇)u + f (t, x) = ν
u − ∇p on [0, T ] × Ω,

divu = 0 on [0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

−u(0)+u(T )
2 ∈ ∂̄�(u(0) − u(T )) on Ω .

(118)

Now we prove inequality (32). Since Iε(uε) = 0, a standard argument (see the proof of Theorem 3.1) yields that
I (u) � lim infε Iε(uε) = 0, thereby giving that

Iε(u) :=
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)
� 0.

On the other hand it follows from (117) that �(u(0) − u(T ),−u(0)+u(T )
2 ) = |u(T )|2

2 − |u(0)|2
2 . This together with the

above inequality gives

|u(T )|2
2

+
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − (u · ∇)u(t)
)]

dt � |u(0)|2
2

. �

Corollary 4.2. In dimension N = 3, there exists for any given α with |α| < 1, a weak solution of the equation solutions:⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t

+ (u · ∇)u + f (t, x) = ν
u − ∇p on [0, T ] × Ω,

divu = 0 on [0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

u(0) = αu(T ).
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Proof. For each α with |α| < 1 there exists λ > 0 such that α = λ−1
λ+1 . Now consider �(a, b) = ψλ(a)+ψ∗

λ (−b) where

ψλ(a) = λ
4 |a|2. �

Navier–Stokes evolutions driven by their boundary: We now consider the following evolution equation.⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t

+ (u · ∇)u + f = ν
u − ∇p on [0, T ] × Ω,

divu = 0 on [0, T ] × Ω,

u(t, x) = u0(x) on [0, T ] × ∂Ω,

u(0, x) = αu(T , x) on Ω

(119)

where
∫
∂Ω

u0 · ndσ = 0, ν > 0 and f ∈ L
p
X∗ . Assuming that u0 ∈ H 3/2(∂Ω) and that ∂Ω is connected, Hopf’s

extension theorem again yields the existence of v0 ∈ H 2(Ω) such that

v0 = u0 on ∂Ω, divv0 = 0 and
∫
Ω

n∑
j,k=1

uk

∂v0
j

∂xk

uj dx � ε‖u‖2
X for all u ∈ X, (120)

where V = {u ∈ H 1(Ω;Rn); divu = 0}. Setting v = u + v0, then solving (119) reduces to finding a solution in
the path space X2,2 corresponding to the Banach space X = {u ∈ H 1

0 (Ω;Rn); divv = 0} and the Hilbert space
H = L2(Ω) for

∂u

∂t
+ (u · ∇)u + (

v0 · ∇)
u + (u · ∇)v0 ∈ −∂Φ(u),

u(0) − αu(T ) = (α − 1)v0, (121)

where Φ(t,u) = ν
2

∫
Ω

∑3
j,k=1(

∂uj

∂xk
)2 dx + 〈g,u〉, and where

g := f − ν
v0 + (
v0 · ∇)

v0 ∈ L
p
V ∗ .

In other words, this is an equation of the form

∂u

∂t
+ Λu ∈ −∂Φ(t, u) (122)

where Λu := (u · ∇)u + (v0 · ∇)u + (u · ∇)v0 is the nonlinear regular operator N = 2 or N = 3.

Now recalling the fact that the component Bu := (v0 ·∇)u is skew-symmetric, it follows from Hopf’s estimate that

C‖u‖2
V � Φ(t,u) + 〈Λu,u〉 � (ν − ε)‖u‖2 + 〈g,u〉 for all u ∈ X.

As in Corollary 1.5 we have the following.

Corollary 4.3. Assume N = 3, and let � be an anti-selfdual Lagrangian on H × H that is coercive in both variables.
Then, there exists u ∈ X2, 4

3
such that

I (u) =
T∫

0

[
Φ

(
t, u(t)

) + Φ∗(t,−u̇(t) − Λu(t)
) + 〈

u(t),Λu(t)
〉]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)
� 0

and u is a weak solution of (119).

To obtain the boundary condition given in (121) that is u(0) − αu(T ) = (α − 1)v0, consider �(a, b) = ψλ(a) +
ψ∗

λ (−b) where α = λ−1
λ+1 and ψλ(a) = λ

4 |a|2 − 4〈a, v0〉.

5. Schrödinger and other nonlinear evolutions

5.1. Initial-value Schrödinger evolutions

Consider the following nonlinear Schrödinger equation
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iut + 
u − |u|r−1u = −i∂̄L(t, u), (t, x) ∈ [0, T ] × Ω, (123)

where Ω is a bounded domain in R
N , and L is a time dependent anti-selfdual Lagrangian on [0, T ] × H 1

0 (Ω) ×
H−1(Ω). Eq. (123) can be rewritten as

ut + Λu = −∂̄L(t, u), (t, x) ∈ [0, T ] × Ω,

where Λu = −i
 + i|u|r−1u. We can then deduce the following existence.

Theorem 5.1. Suppose 1 � r � N
N−2 . Let p = 2r and assume that L satisfies

−C �
T∫

0

L
(
t, u(t),0

)
dt � C

(
1 + ‖u‖r

L
p

H1
0

)
for every u ∈ L

p

H 1
0
[0, T ]. (124)

〈
∂̄L(t, u),−
u + |u|r−1u

〉
� 0 for each u ∈ H 2(Ω). (125)

Let u0 ∈ H 2(Ω) and �(a, b) = 1
4‖a‖2

H − 〈a,u0〉 + ‖b − u0‖2
H , then the following functional

I (u) =
T∫

0

[
L

(
u(t), u̇(t) + Λu(t)

) + 〈
Λu(t), u(t)

〉]
dt + �

(
u(0) − u(T ),

u(T ) + u(0)

2

)
(126)

attains its minimum at v ∈ Xp,q in such a way that I (v) = infu∈Xp,q
I (u) = 0 and{

v̇(t) − i
v(t) + i|v(t)|r−1v(t) = −∂̄L(t, v(t)) on [0, T ],
v(0) = u0.

(127)

Proof. Let X = H 1
0 (Ω) and H = L2(Ω). Taking into account Theorem 1.3, we just need to verify (23), (24) and prove

that I satisfies the selfdual Palais–Smale condition on Xp,q . Note that (24) follows from the fact that 〈Λu,u〉 = 0. To
prove (23), note that

‖Λu‖H−1 = ∥∥−
u + |u|r−1u
∥∥

H−1 � ‖ − 
u‖H−1 + C
∥∥|u|r−1u

∥∥
Lq(Ω)

= ‖u‖H 1
0

+ C‖u‖r
Lrq .

Since p � 2, we have qr � 2r � 2N
N−2 . It follows from the Sobolev inequality and the above that

‖Λu‖H−1 � ‖u‖H 1
0

+ C‖u‖r

H 1
0

from which we obtain

‖Λu‖L
q

H−1
� ‖u‖L

q

H1
0

+ C‖u‖r

L
rq

H1
0

� C
(‖u‖L

p

H1
0

+ ‖u‖r

L
p

H1
0

)
.

To show that I satisfies the selfdual Palais–Smale condition, we assume that (un)n ∈ Xp,q is such that{−u̇n(t) + i
un(t) − i|un(t)|r−1un(t) = − 1
n
‖un‖p−2
un + ∂̄L(un(t)) on [0, T ],

un(0) = u0.
(128)

Since u0 ∈ H 2(Ω), it is standard that at least un ∈ H 2(Ω). Now multiply both sides of the above equation by 
un(t)−
|un(t)|r−1un(t) and taking into account (125) we have〈

u̇n(t),−
un(t) + ∣∣un(t)
∣∣r−1

un(t)
〉
� 0

from which we obtain

1

2

∥∥un(t)
∥∥2

H 1
0

+ 1

r + 1

∥∥un(t)
∥∥r+1 � 1

2

∥∥u(0)
∥∥2

H 1
0

+ 1

r + 1

∥∥u(0)
∥∥r+1

which once combined with (128), gives the boundedness of (un)n in Xp,q . �
Here are two typical examples for anti-selfdual Lagrangians satisfying the assumptions of the above theorem
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• L(u,p) = ϕ(u) + ϕ∗(−p) where ϕ = 0 which leads to a solution of:{
iv̇(t) + 
v(t) − |v(t)|r−1v(t) = 0 on [0, T ],
v(0) = u0.

• L(u,p) = ϕ(u) + ϕ∗(a.∇u − p) where ϕ(u) = 1
2

∫
Ω

|∇u|2 dx and a is a vector field on Ω with compact support.
In this case we have a solution for{

iv̇(t) + 
v(t) − |v(t)|r−1v(t) = −ia.∇v + i
v(t) on [0, T ],
v(0) = u0.

5.2. Variational resolution for a Fluid driven by −i
2

Consider the problem of finding periodic type solutions for the following equation⎧⎨
⎩

∂u
∂t

+ (u · ∇)u − i
2u + f = ν
u − ∇p on Ω ⊂ R
n,

divu = 0 on Ω,

u = 0 on ∂Ω,

(129)

where u = (u1, u2) and where the operator i
2 is defined in the following way:

i
2u = (

2u2,−
2u1

)
with Dom

(
i
2) = {

u ∈ H 1
0 (Ω); 
u ∈ H 1

0 (Ω) and u = 
u = 0 on ∂Ω
}
.

Theorem 5.2. Let (St )t∈R be the C0-unitary group of operators associated to the skew-adjoint operator i
2. Assuming
N = 2, f in L2

X∗([0, T ]), and � is an anti-selfdual Lagrangian on H ×H that is bounded from below, then the infimum
of the functional

I (u) =
T∫

0

[
Φ

(
t, Stu(t)

) + Φ∗(t,−St u̇(t) − ΛStu(t)
)]

dt + �

(
u(0) − u(T ),

u(0) + u(T )

2

)

on X2,2 is zero and is attained at u(t) in such a way that v(t) = Stu(t) is a solution of (129) that satisfies the
time-boundary condition:

−v(0) + S(−T )v(T )

2
∈ ∂̄�

(
v(0) − S(−T )v(T )

)
. (130)

Moreover, u verifies the following “energy identity”:

∥∥u(t)
∥∥2

H
+ 2

t∫
0

[
Φ

(
t, Stu(t)

) + Φ∗(t,−St u̇(t) − ΛStu(t)
)]

dt = ∥∥u(0)
∥∥2

H
for every t ∈ [0, T ]. (131)

In particular, with appropriate choices for the boundary Lagrangian �, the solution v can be chosen to verify either
one of the following boundary conditions:

• an initial value problem: v(0) = v0 where v0 is a given function in H ;
• a periodic orbit: v(0) = S(−T )v(T );
• an anti-periodic orbit: v(0) = −S(−T )v(T ).

Proof. The duality map between X and X∗ is J = −
 and is therefore linear and symmetric. Also we have St = eit
2

and therefore StJ = JSt . The result follows from Corollary 3.6 and the remarks preceding it. �
6. A general nonlinear selfdual variational principle for weakly coercive functionals

In this section, we isolate the general variational principle behind the proofs of the last section. We shall actually
extend the nonlinear selfdual variational principle mentioned in the introduction (Theorem 1.1) in two different ways.
First, and as has already been noted in [5], the hypothesis of regularity on the operator Λ in Theorem 1.1 can be
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weakened (see Definition 6.1 below). More importantly, we shall also relax the coercivity condition (9) that proved
prohibitive in the case of evolution equations.

We start with the following weaker notion for regularity.

Definition 6.1. A map Λ : D(Λ) ⊂ X → X∗ is said to be pseudo-regular if whenever (xn)n is a sequence in X such
that xn ⇀ x weakly in X and lim supn〈Λxn,xn − x〉 � 0, then lim infn〈Λxn,xn〉 � 〈Λx,x〉 and Λxn ⇀ Λx weakly
in X∗.

It is clear that regular operators are necessarily pseudo-regular operators.
The following is an extension of Theorem 1.1.

Theorem 6.2. Let L be an anti-selfdual Lagrangian on a reflexive Banach space X such that 0 ∈ Dom(L). Let
Λ : D(Λ) ⊂ X → X∗ be a bounded pseudo-regular map such that Dom1(L) ⊂ D(Λ) and〈

∂̄L(x) + Λx,x
〉
� −C

(‖x‖ + 1
)

for large ‖x‖. (132)

Then for any λ > 0, the selfdual functional

Iλ(x) = L(x,Λx + λJx) + 〈Λx + λJx,x〉
attains its infimum at xλ ∈ X in such a way that Iλ(xλ) = infx∈X Iλ(x) = 0, and xλ is a solution of the differential
inclusion

0 ∈ Λxλ + λJxλ + ∂̄L(xλ). (133)

In particular, if the functional IL,Λ satisfies the selfdual Palais–Smale condition, then there exists a solution for the
equation

0 ∈ Λx + ∂̄L(x). (134)

Remark 6.3. Theorem 6.2 is an extension of Theorem 1.1 which claims that the same conclusion holds under the
following stronger coercivity assumption.

lim‖x‖→+∞HL(0,−x) + 〈Λx,x〉 = +∞. (135)

Indeed, in order to show that condition (135) is stronger than both (132) and the selfdual Palais–Smale condition, note
that for each (x,p) ∈ X × X∗,

L(x,p) = sup
{〈y,p〉 − HL(x, y); y ∈ X

}
� −HL(x,0) � HL(0,−x),

in such a way that if ‖xn‖ → +∞, then

lim
n→+∞L

(
xn,Λxn + 1

n
Jxn

)
+ 〈xn,Λxn〉 + 1

n
‖xn‖2 � lim

n→+∞HL(0,−xn) + 〈Λxn,xn〉 = +∞.

Moreover, we have for large ‖x‖,〈
∂̄L(x) + Λx,x

〉 = L
(
x, ∂̄L(x)

) + 〈Λx,x〉 � HL(0,−x) + 〈Λx,x〉 � −C
(‖x‖ + 1

)
.

For the proof of Theorem 6.2, we shall need the following lemma

Lemma 6.4. Let L be an anti-selfdual Lagrangian on a reflexive Banach space X, let Λ : D(Λ) ⊆ X → X∗ be a
pseudo-regular map and let F : D(F) ⊆ X → X∗ be a regular map. Assume (xn)n is a sequence in D(Λ) ∩ D(F)

such that xn ⇀ x and Λxn ⇀ p for some x ∈ X and p ∈ X∗. If 0 ∈ Λxn + Fxn + ∂̄L(xn) for each n ∈ N, then
necessarily 0 ∈ Λx + Fx + ∂̄L(x).
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Proof. We have

lim sup
n

〈Λxn,xn − x〉 � lim
n→∞〈Λxn,−x〉 + lim sup

n

{−L(xn,Λxn + Fxn) − 〈Fxn, xn〉
}

= 〈p,−x〉 − lim inf
n

{
L(xn,Λxn + Fxn) + 〈Fxn, xn〉

}
. (136)

Since L is weakly lower semi-continuous and F is regular, we have

L(x,p + Fx) + 〈Fx,x〉 � lim inf
n

{
L(xn,Λxn + Fxn) + 〈Fxn, xn〉

}
which together with (136) imply

lim sup
n

〈Λxn,xn − x〉 � 〈p,−x〉 − L(x,p + Fx) − 〈Fx,x〉
= 〈p + Fx,−x〉 − L(x,p + Fx).

L being an anti-selfdual Lagrangian, we have L(x,p + Fx) � 〈p + Fx,−x〉, and therefore

lim sup
n

〈Λxn,xn − x〉 � 0.

Now since Λ is pseudo-regular, we have p = Λx and lim infn〈Λxn,xn〉 � 〈Λx,x〉. It follows that

L(x,Λx + Fx) + 〈Λx + Fx,x〉 � lim inf
n

L(xn,Λxn + Fxn) + 〈Λxn + Fxn, xn〉 = 0.

On the other hand, since L is an anti-selfdual Lagrangian, we have the reverse inequality L(x,Λx + Fx) + 〈Λx +
Fx,x〉 � 0 which implies that the latter is equal to zero. �
Proof of Theorem 6.2. Let w(r) = sup{‖Λu‖∗ + 1; ‖u‖ � r}, set Fu := w(‖u‖)Ju, and consider L2

λ to be the
λ-regularization of L with respect to the second variable, i.e.

L2
λ(x,p) := inf

{
L(x, q) + ‖p − q‖2∗

2λ
+ λ

2
‖x‖2; q ∈ X∗

}
.

Since 0 ∈ Dom(L), the Lagrangian L and consequently L2
λ and therefore HL2

λ
(0, .) are bounded from below. Also we

have

lim‖x‖→+∞HL2
λ
(0,−x) + 〈Λx + εFx,x〉 = +∞,

since 〈Λx + εFx,x〉 � −w(‖x‖)‖x‖ + εw(‖x‖)‖x‖2.

It follows from Theorem 1.1 that there exists xε,λ such that

L2
λ(xε,λ,Λxε,λ + εFxε,λ) + 〈Λxε,λ + εFxε,λ, xε,λ〉 = 0

which means that Λxε,λ + εFxε,λ ∈ −∂̄L2
λ(xε,λ), and in other words, Λxε,λ + εFxε,λ + λJxε,λ ∈ −∂̄L(xε,λ). This

together with (132), imply 〈εFxε,λ + λJxε,λ, xε,λ〉 � C‖xε,λ‖, thereby giving

εw
(‖xε,λ‖

)‖xε,λ‖2 + λ‖xε,λ‖2 � C‖xε,λ‖,
which in turn implies that (Fxε,λ)ε and (xε,λ)ε are bounded. Since now Λ is a bounded operator, we get that Λxε,λ is
bounded in X∗. Suppose, up to a subsequence, xε,λ ⇀ xλ and Λxε,λ ⇀ pλ. It follows from Lemma 6.4 that for every
λ > 0, we have

L(xλ,Λxλ + λJxλ) + 〈Λxλ + λJxλ, xλ〉 = 0.

(xλ)λ is therefore a selfdual Palais–Smale sequence, hence it is bounded in X and consequently it converges weakly
– up to a subsequence – to x̄ ∈ X. Again, since Λ is a bounded operator, Λxλ is also bounded in X∗, and again
Lemma 6.4 yields L(x̄,Λx̄) + 〈Λx̄, x̄〉 = 0, which means that −Λx̄ ∈ ∂̄L(x̄). �
Remark 6.5. Note that, we do not really need that Λ is a bounded operator, but a weaker condition of the form
‖Λx‖ � CH(0, x) + w(‖x‖) for some nondecreasing function w and some constant C > 0.
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Let now A : D(A) ⊂ X → X∗ be a closed linear operator on a reflexive Banach space X, and consider XA to be
the Banach space D(A) equipped with the norm ‖x‖A = ‖x‖X + ‖Ax‖X∗ . We have the following consequence.

Corollary 6.6. Let A : D(A) ⊂ X → X∗ be a closed linear operator on a reflexive Banach space X with a dense
domain, and let Λ be a map from D(A) into X∗ that induces a pseudo-regular operator Λ : XA → X∗

A, and such that

u → 〈u,Λu + Au〉 is bounded from below. (137)

Suppose L is an anti-selfdual Lagrangian on X × X∗ that satisfies the following conditions:

For each p ∈ Dom2(L), the functional x → L(x,p) is continuous on X, (138)

x → L(x,0) is bounded on the unit ball of X. (139)

Then for any λ > 0, there exists uλ ∈ XA such that:

0 ∈ Λuλ + Auλ + λ(J + A∗A)uλ + ∂̄L(uλ). (140)

Proof. Note first that XA ⊆ X ⊆ X∗ ⊆ X∗
A. We first show that the Lagrangian

M(u,p) :=
{

L(u,p), p ∈ X∗,
+∞ p ∈ X∗

A \ X∗

is an anti-selfdual Lagrangian on XA ×X∗
A. Indeed, if q ∈ X∗, use the fact that XA is dense in X and that the functional

x → L(x,p) is continuous on X to write

M∗(q, v) = sup
{〈u,q〉 + 〈v,p〉 − M(u,p); (u,p) ∈ XA × X∗

A

}
= sup

{〈u,q〉 + 〈v,p〉 − L(u,p); (u,p) ∈ XA × X∗}
= L∗(q, v) = L(−v,−q) = M(−v,−q).

If now q ∈ X∗
A \ X∗, then there exists {xn}n ⊆ XA with ‖xn‖X � 1 such that 〈xn, q〉 → +∞ as n → ∞. Since

{L(xn,0)}n is bounded, It follows that

M∗(q, v) = sup
{〈u,q〉 + 〈v,p〉 − M(u,p); (u,p) ∈ XA × X∗}

� sup
{〈xn, q〉 − L(xn,0)

}
= +∞ = M(−v,−q).

To verify condition (132) of Theorem 6.2, we note that〈
∂̄L(u) + Λu + Au,u

〉
�

〈
∂̄L(0), u

〉 + 〈Λu + Au,u〉 � −C
(
1 + ‖u‖X

)
� −C

(
1 + ‖u‖XA

)
.

We have used the fact that ∂̄L is maximal monotone and that 〈Λu + Au,u〉 is bounded from below. Now apply
Theorem 6.2 to the Lagrangian M, the pseudo-regular operator Λ+A and the duality map J +A∗A to conclude. �
Corollary 6.7. Let the operators A, Λ and the space XA be as in Corollary 6.6 and let ϕ be a proper convex lower
semi-continuous function that is both coercive and bounded in X. Assume also the following conditions:

‖Λu‖X∗ � k‖Au‖X∗ + w
(‖u‖X

)
for some constant 0 < k < 1 and a nondecreasing function w. (141)

Then there exists a solution x̄ ∈ XA to the equation

0 ∈ Λx + Ax + ∂ϕ(x), (142)

which can be obtained by minimizing the functional I (x) = ϕ(x) + ϕ∗(−Λx − Ax) + 〈x,Λx + Ax〉.

Proof. It is an immediate consequence of Corollary 6.6 applied to the Lagrangian L(x,p) = ϕ(x)+ϕ∗(−p). We only
need to prove that the functional I is weakly coercive on XA. For that, suppose {xn}n ⊆ XA is such that ‖xn‖XA

→ ∞,

we show that
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ϕ(xn) + ϕ∗
(

−Λxn − Axn − 1

n
Jxn

)
+ 〈xn,Λxn + Axn〉 + 1

n
‖xn‖X → ∞.

Indeed if not, and since 〈xn,Λxn+Axn〉+ 1
n
‖xn‖X is bounded from below, we have ϕ(xn)+ϕ∗(−Λxn−Axn− 1

n
Jxn)

is bounded from above. The coercivity of ϕ on X ensures the boundedness of {‖xn‖X}n. Now we show that {xn} is
actually bounded in XA. In fact, since ϕ is bounded on X we have that ϕ∗ is coercive in X∗ and in result∥∥∥∥Λxn + Axn + 1

n
Jxn

∥∥∥∥
X∗

� C

for some constant C > 0. It follows from (141) and the above that

‖Axn‖X∗ �
∥∥∥∥Λxn + Axn + 1

n
Jxn

∥∥∥∥
X∗

+
∥∥∥∥Λxn + 1

n
Jxn

∥∥∥∥
X∗

� C + ‖Λxn‖X∗ + 1

n
‖Jxn‖X∗

� C + k‖Axn‖X∗ + w
(‖xn‖X

) + 1

n
‖xn‖X.

Hence (1−k)‖Axn‖X∗ � C+w(‖xn‖X)+ 1
n
‖xn‖X , and therefore ‖Axn‖X∗ is bounded which results the boundedness

of {xn} in XA. �
We can also give a variational resolution for certain nonlinear systems.

Corollary 6.8. Let ϕ be a bounded convex lower semi-continuous function on X1 × X2, let A : X1 → X∗
2 be any

bounded linear operator, let B1 : X1 → X∗
1 (resp., B2 : X2 → X∗

2) be two positive linear operators. Let Yi :=
{x ∈ Xi; Bix ∈ X∗

i }, i = 1,2. Assume Λ := (Λ1,Λ2) : Y1 × Y2 → Y ∗
1 × Y ∗

2 is a pseudo-regular operator such that

lim‖x‖X1 +‖y‖X2 →∞
ϕ(x, y) + 〈B1x, x〉 + 〈B2y, y〉 + 〈Λ(x,y), (x, y)〉

‖x‖X1 + ‖y‖X2

= +∞,

and ∥∥(Λ1,Λ2)(x, y)
∥∥

X∗
1×X∗

2
� k

∥∥(B1,B2)(x, y)
∥∥

X∗
1×X∗

2
+ w

(∥∥(x, y)
∥∥

X1×X2

)
for some continuous and nondecreasing function w, and some constant 0 < k < 1. Then for any (f, g) ∈ Y ∗

1 × Y ∗
2 ,

there exists (x̄, ȳ) ∈ Y1 × Y2 which solves the following system{−Λ1(x, y) − A∗y − B1x + f ∈ ∂1ϕ(x, y),

−Λ2(x, y) + Ax − B2y + g ∈ ∂2ϕ(x, y).

The solution is obtained as a minimizer on Y1 × Y2 of the functional

I (x, y) = ψ(x, y) + ψ∗(−A∗y − B1x − Λ1(x, y),Ax − B2y − Λ2(x, y)
) + 〈B1x, x〉 + 〈B2y, y〉

+ 〈
Λ(x,y), (x, y)

〉
,

where

ψ(x, y) = ϕ(x, y) − 〈f,x〉 − 〈g, y〉.

Proof. Consider the following ASD Lagrangian (see [4])

L
(
(x, y), (p, q)

) = ψ(x, y) + ψ∗(−A∗y − p,Ax − q).

Setting B := (B1,B2), Corollary 6.7 yields that I (x, y) = L((x, y),Λ(x, y) + B(x, y)) + 〈Λ(x,y) + B(x, y), (x, y)〉
attains its minimum at some point (x̄, ȳ) ∈ Y1 × Y2 and that the minimum is 0. In other words,
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0 = I (x̄, ȳ)

= ψ(x̄, ȳ) + ψ∗(−A∗ȳ − B1x̄ − Λ1(x̄, ȳ),Ax̄ − B2ȳ − Λ2(x̄, ȳ)
) + 〈

Λ(x̄, ȳ) + B(x̄, ȳ), (x̄, ȳ)
〉

= ψ(x̄, ȳ) + ψ∗(−A∗ȳ − B1x̄ − Λ1(x̄, ȳ),Ax̄ − B2ȳ − Λ2(x̄, ȳ)
)

+ 〈(
Λ1(x̄, ȳ) + B1x̄ − A∗ȳ,Λ2(x̄, ȳ) + B2ȳ + Ax̄

)
, (x̄, ȳ)

〉
from which follows that{−A∗y − B1x − Λ1(x, y) ∈ ∂1ϕ(x, y) − f,

Ax − B2y − Λ2(x, y) ∈ ∂2ϕ(x, y) − g.
�

6.1. A variational resolution for doubly nonlinear coupled equations

Let b1 : Ω → Rn and b2 : Ω → Rn be two compactly supported smooth vector fields on the neighborhood of a
bounded domain Ω of Rn. Consider the Dirichlet problem:{


v + b1 · ∇u = |u|p−2u + um−1vm + f on Ω,

−
u + b2 · ∇v = |v|p−2v − umvm−1 + g on Ω,

u = v = 0 on ∂Ω .
(143)

We can use Corollary 6.7 to get

Theorem 6.9. Assume f,g in Lp , 2 � p, that div(b1) � 0 and div(b2) � 0 on Ω , and 1 � m <
p−1

2 . Let X =
{u ∈ H 1

0 (Ω); u ∈ Lp(Ω) and 
u ∈ Lq(Ω)} and consider on X × X the functional

I (u, v) = Ψ (u) + Ψ ∗(b1 · ∇u + 
v − um−1vm
) + Φ(v) + Φ∗(b2 · ∇v − 
u + umvm−1)

+ 1

2

∫
Ω

div(b1)|u|2 dx + 1

2

∫
Ω

div(b1)|v|2 dx

where

Ψ (u) = 1

p

∫
Ω

|u|p dx +
∫
Ω

f udx and Φ(v) = 1

p

∫
Ω

|v|p dx +
∫
Ω

gv dx

are defined on Lp(Ω) and Ψ ∗ and Φ∗ are their Legendre transforms in Lq(Ω). Then there exists (ū, v̄) ∈ X ×X such
that

I (ū, v̄) = inf
{
I (u, v); (u, v) ∈ X × X

} = 0,

and (ū, v̄) is a solution of (143).

Proof. Let A = 
, XA = X and X1 = Lp(Ω). Φ and Ψ are continuous and coercive on X1. We need to verify
condition (141) in Corollary 6.7. Indeed, by Hölder’s inequality for q = p

p−1 � 2 we obtain∥∥umvm−1
∥∥

Lq(Ω)
� ‖u‖m

L2mq(Ω)
‖v‖(m−1)

L2(m−1)q (Ω)

and since m <
p−1

2 we have 2mq < p and therefore∥∥umvm−1
∥∥

Lq(Ω)
� C

(‖u‖2m
Lp(Ω) + ‖v‖2(m−1)

Lp(Ω)

)
. (144)

Also since q � 2,

‖b1 · ∇u‖Lq(Ω) � C‖b1‖L∞(Ω)‖∇u‖L2(Ω)

� C‖b1‖L∞(Ω)

(∫
〈−
u,u〉dx

) 1
2

� C‖b1‖L∞(Ω)‖u‖
1
2
Lp(Ω)‖
u‖

1
2
Lq(Ω)

� k‖
u‖Lq(Ω) + C(k)‖b1‖2
L∞(Ω)‖u‖Lp(Ω) (145)
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for some 0 < k < 1. Hence condition (141) follows from (144) and (145). �
Also, it is also easy to verify that the nonlinear operator Λ : X × X → Lq(Ω) × Lq(Ω) defined by

Λ(u,v) = (−um−1vm + b1 · ∇u,umvm−1 + b2 · ∇v
)

is regular. It is worth noting that there is no restriction on the power p in the previous example, that is p can well be
beyond the critical Sobolev exponent.
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