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Abstract

We consider the eigenvalue problem⎧⎨
⎩

−�v = λμeuλv in Ω,

‖v‖∞ = 1
v = 0 on ∂Ω,

(0.1)

where Ω is a bounded smooth domain of R
2, λ > 0 is a real parameter and uλ is a solution of{−�uλ = λeuλ in Ω,

uλ = 0 on ∂Ω

such that λ
∫
Ω euλ → 8π as λ → 0. In this paper we study the asymptotic behavior of the eigenvalues μ of (0.1) as λ → 0. Moreover

some explicit estimates for the four first eigenvalues and eigenfunctions are given.
Other related results as the Morse index of the solution uλ will be proved.

© 2007 . .

1. Introduction

Let us consider the Gelfand problem,{−�u = λeu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain of R
2 and λ > 0 is a real parameter.

Eq. (1.1) has many applications. For example it arises in the contest of the statistical Mechanics as done in [5,6]
(see also [17,9] and references therein).

Another interesting field where (1.1) appears is in the Chern–Simon–Higgs model (see for example [23] and the
references therein).
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Throughout the paper we will consider a solution uλ to (1.1) satisfying

λ

∫
Ω

euλ → 8π as λ → 0. (1.2)

The behavior of solutions of (1.1) satisfying (1.2) was largely studied by many authors. We can just mention here the
papers [8,11,12,20,22,23] as well as many others.

Condition (1.2) corresponds to study the so-called one point blowing-up solution, i.e. solutions whose maximum
is achieved exactly at one point where the solution goes to +∞.

For this class of solutions, denoted by uλ, we consider the eigenvalue problem{−�v = λμeuλv in Ω,

‖v‖∞ = 1,

v = 0 on ∂Ω

(1.3)

and we study some properties of the eigenvalues μ and of the corresponding eigenfunctions.
Problem (1.3) comes out from the eigenvalue problem related to the second derivative of the functional

F(u) = 1

2

∫
Ω

|∇u|2 − λ

∫
Ω

eu

in the Hilbert space H 1
0 (Ω). The study of the spectrum of F ′′ is crucial to calculate the Morse index of the solution uλ.

One of the result of this paper will be the computation of the Morse index of the solution uλ in some special cases.
Another interesting problem linked to (1.3) is the classical problem of the nodal line of the second eigenfunction. It

was proved by A. Melas [19] that if we consider the second eigenfunction of the Laplace operator in a planar convex
domains then its nodal line touches the boundary. This result is largely open for eigenfunctions of higher order. In
this paper we describe some properties of the nodal line of the eigenfunctions to (1.3). For example we show that, if
Ω is convex, the nodal line of the second and third eigenfunction touches the boundary. On the other hand, without
any assumption on Ω , we prove that the nodal line of the fourth eigenfunction does not touch the boundary of Ω .
Moreover, the asymptotic behavior of these eigenfunctions is described.

A crucial tool in the study the eigenvalue problem (1.3) is given by the following “limit” problem,{−�v = μ∞
(1+|x|2/8)2 v in R

2,

v ∈ L∞(R2).
(1.4)

Roughly speaking, the eigenvalues μλ of (1.3) converge to the eigenvalues μ∞ of the problem (1.4) as λ → 0
and the same happens for the corresponding eigenfunctions (up to a scale argument). This will be stated precisely in
Section 11.

The eigenfunctions of problem (1.4) can be explicitly computed using the Legendre function. In this way one can
see that any eigenvalue has multiplicity greater than 1 and the corresponding eigenfunctions can be divided in two
classes.

The first one is given by nonradial functions which go to zero at infinity and the second one is given by radial
functions which converge to a nonzero constant at infinity. These two types of limiting eigenfunctions give rise to
eigenfunctions of problem (1.3) which behave differently.

In this way we give some “global” results about the spectrum of (1.3) but the most important aim of this paper is
to study with great attention the first fourth eigenvalues.

For example we will see that the second and the third eigenfunctions of (1.3) look like the nonradial eigenfunctions
related to the eigenvalue μ∞ = 1 and the fourth eigenfunction of (1.3) looks like the radial eigenfunction related again
to μ∞ = 1.

In this case we will compute asymptotic expansions for the eigenvalues and related eigenfunction. Note that, even
in the case of the first eigenvalue, more work is needed.

The asymptotic estimate on the second and third eigenvalue enables to derive some results on the Morse index
of the solution. The first one says that if Ω is a convex domain then the Morse index of the solution uλ of (1.1) is
exactly 1 (see Corollary 2.8). Moreover, for a general domain we will derive that the Morse index of the solution uλ

is at most 2. This last result appears differently from singular problems in higher dimensions (see [1] for example).
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Finally, we observe that our results have some similarities with the corresponding in [16], where was considered
a perturbed critical Sobolev exponent in R

N for N � 3. But since in R
2 we do not have the Sobolev Embedding

Theorem and some orthogonality properties of the eigenfunctions, here the problem seems harder.
The paper is organized as follows: in Section 2 we state our main results; in Section 3 we recall some known facts

about problem (1.1); in Section 4 we consider the first eigenvalue and the first eigenfunction and in Section 5 we
give an important estimate on the second eigenvalue; in Section 6 we study the behavior of the second eigenfunction;
Section 7 is devoted to the third eigenvalue and the third eigenfunction; in Section 8 the asymptotic behavior of the
second and third eigenvalues of (1.1) is proved and, using a result of [4], we have that, for a convex domain, the Morse
index of the solution uλ is 1; in Section 9 we consider the nodal region for the second and third eigenfunctions; in
Section 10 we treat the case of the fourth eigenfunction; in Section 11 finally we get the asymptotic behavior of the
spectrum of problem (1.1).

2. Statement of the results

Let G(x,y) be the Green’s function of −� in Ω with Dirichlet boundary conditions. Then

G(x,y) = − 1

2π
log |x − y| + H(x,y), (2.1)

where H(x,y) is the regular part of the Green function. Let R(x) = H(x,x) be the Robin function of Ω .
Let us consider the solution uλ of (1.1) satisfying (1.2). For such a solution we consider the eigenvalue problem{−�v = λμeuλv in Ω,

‖v‖∞ = 1,

v = 0 on ∂Ω.

(2.2)

It is well known that problem (2.2) admits a sequence of eigenvalues μ1,λ < μ2,λ � μ3,λ � · · · . Let vi,λ be the
eigenfunction corresponding to the eigenvalue μi,λ, i.e. vi,λ solves⎧⎨

⎩
−�vi,λ = λμi,λe

uvi,λ in Ω,

‖vi,λ‖∞ = 1,

vi,λ = 0 on ∂Ω.

(2.3)

In order to state our results we recall that if xλ is a maximum point of uλ, i.e. a point such that uλ(xλ) = ‖uλ‖∞, we
have that xλ converges to a point x0 ∈ Ω (see Section 3 for details). Let

δλ =
(

1

λe‖uλ‖∞

)1/2

(2.4)

and ṽi,λ(x) = vi,λ(δλx + xλ) be the rescaled eigenfunction defined in the domain Ωλ = 1
δ λ

(Ω − xλ).
We start with some results concerning the eigenvalues and the eigenfunctions of (2.2).

Theorem 2.1. Let uλ be a solution of (1.1) which satisfies (1.2), and let μ1,λ be the first eigenvalue of (2.3) and v1,λ

be the first eigenfunction. Then

μ1,λ = − 1

2 logλ

(
1 + o(1)

); (2.5)

v1,λ

μ1,λ

→ 8πG(x, x0) in C1
loc

(
Ω̄ \ {x0}

)
λ → 0; (2.6)

ṽ1,λ → 1 in C2
loc(R

2) λ → 0. (2.7)

Theorem 2.2. In the same assumption of Theorem 2.1, we have

ṽi,λ(x) → ṽi = ai
1x1 + ai

2x2
2

as λ → 0 (2.8)

8 + |x|
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in C1
loc(R

2) for i = 2,3 and some vectors ai = (ai
1, a

i
2) 	= 0,

vi,λ(x)

δλ

→ 2π

2∑
k=1

ai
k

∂G(x, x0)

∂yk

as λ → 0 (2.9)

in C1
loc(Ω̄ \ {x0}), for i = 2,3, where (ai

1, a
i
2) are the same as in (2.8).

Theorem 2.3. Let c1 � c2 be the eigenvalues of the Hessian matrix D2R(x0) of the Robin function at x0. Then

1 − μi,λ

δ2
λ

→ 24πηi as λ → 0 (2.10)

for i = 2,3. Moreover η2 = c1 and η3 = c2, and the vector ai of (2.8) are the eigenvectors corresponding to ci−1.

Next we study some properties of the nodal line of the eigenfunctions. Let us recall that the nodal set of vi,λ is
defined as

Ni,λ = {
x ∈ Ω: vi,λ(x) = 0

}
. (2.11)

Theorem 2.4. In the same assumptions of Theorem 2.1, we have:

(i) if Ω be convex, then Ni,λ ∩ ∂Ω 	= ∅, for i = 2,3 with λ small enough;
(ii) the eigenfunctions vi,λ(x), i = 2,3, have only two nodal regions, if λ is small enough.

Now we consider the fourth eigenvalue, getting the following results:

Theorem 2.5. In the same hypothesis of Theorem 2.1 we have

ṽ4,λ → ṽ4 = b
8 − |x|2
8 + |x|2 in C1

loc(R
2) as λ → 0; (2.12)

v4,λ(x) logλ → 4πbG(x, x0) in C1
loc

(
Ω̄ \ {x0}

)
as λ → 0; (2.13)

1 − μ4,λ = − 1

logλ

(
c1 + o(1)

)
, (2.14)

where b ∈ R, b 	= 0, c0 = π
6 and c1 = 2(1−4π)

c0
< 0.

Theorem 2.6. The eigenvalue μ4,λ is simple and the corresponding eigenfunction v4,λ has only two nodal regions if
λ is small enough. Moreover the closure of the nodal set of v4,λ does not touch the boundary.

Corollary 2.7. Let xλ be the maximum point of uλ in Ω , and limxλ = x0 ∈ Ω . Then if x0 is a nondegenerate critical
point of the Robin function R(x) of Ω , denoting by m(x0) the Morse index of x0 as a critical point of R(x), we find
that the Morse index of uλ is equal to m(x0) + 1.

The previous result enable us to compute the Morse index of the solution uλ. We recall that the Morse index of a
solution uλ is the number of eigenvalue μ less than 1.

Corollary 2.8. Let Ω be a domain of R
2. Then,

(i) the Morse index of uλ in Ω is 1 or 2;
(ii) if Ω is a convex set then the Morse index of uλ in Ω is exactly one.

Our final result concerns the convergence of the whole spectrum. A crucial role is played by the limit problem (1.4).
In order to state the precise result we need to introduce long and noisy notations. For this reason we prefer to state the
results in Section 10. We just say that it will be proved that the whole spectrum converges to the corresponding one of
the “limit problem” and an analogous convergence holds for the related eigenfunctions.
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3. Preliminaries and known results

Let us recall the following known facts:

Theorem 3.1. Let uλ be a solution of (1.1) satisfying (1.2). Then if xλ is a point such that uλ(xλ) = ‖uλ‖∞, we have
that xλ converges to a point x0 ∈ Ω such that

∇R(x0) = 0, (3.1)

uλ(x) → 8πG(x, x0) in C1
loc

(
Ω̄ \ {x0}

)
, (3.2)∣∣∣∣uλ(x) − log

euλ(xλ)

(1 + 1
8λeuλ(xλ)|x − xλ|2)2

∣∣∣∣ � C in Ω̄, (3.3)

‖uλ‖∞ = −2 logλ + C0 − 8πR(x0) + o(1) as λ → 0, (3.4)

where C0 = 2 log 8 and R(x0) = H(x0, x0).

Proof. Estimates (3.1) and (3.2) are proved in [20] while estimate (3.3) is proved in [15] using a result of [18]. In [15]
it is also proved (3.4). �

Let δλ be as in (2.4). Then, from (3.4) it follows that δ2
λ → 0. Considering the rescaled function

ũλ(x) = u(δλx + xλ) − ‖uλ‖∞ (3.5)

for x ∈ Ωλ = 1
δ λ

(Ω − xλ), the estimate (3.3) gives the following

ũλ(x) � C + log
1

(1 + |x|2/8)2
in Ωλ, (3.6)

where C > 0.

Theorem 3.2. Every solution U ∈ C2(R2) of the problem{−�u = eu in R
2,∫

R2 eu < ∞,
(3.7)

is given by

Uδ,y(x) = log
8δ

(δ + |x − y|2)2
(3.8)

for any (δ, y) ∈ R
+ × R

2.

Proof. See Chen and Li [10]. �
In the sequel we write

U(x) = U8,0 = log
1

(1 + |x|2/8)2
.

Theorem 3.3. Let v ∈ C2(R2) be a solution of the following problem{
−�v = 1

(1+|x|2/8)2 v in R
2,

v ∈ L∞(R2).
(3.9)

Then

v(x) =
2∑

i=1

aixi

8 + |x|2 + b
8 − |x|2
8 + |x|2 (3.10)

for some ai, b ∈ R.
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Proof. See [11] or also [13] for a more detailed proof. �
Lemma 3.4. Let Ω be a smooth bounded domain of R

2. For any y ∈ Ω we have∫
∂Ω

(x − y) · ν(x)

(
∂G(x, y)

∂νx

)2

dσx = 1

2π
, (3.11)

∫
∂Ω

νi(x)

(
∂G(x, y)

∂νx

)2

dσx = −∂R(y)

∂yi

, (3.12)

∂2R(y)

∂yi∂yj

= −2
∫

∂Ω

∂G(x, y)

∂xi

∂

∂yj

(
∂G(x, y)

∂νx

)
dσx, (3.13)

2
∫

∂Ω

(x − y) · νx

∂G

∂νx

(x, y)
∂2G

∂yi∂νx

(x, y) dσx = − ∂R

∂yi

(y), (3.14)

∫
∂Ω

∂2G

∂νx∂yi

(x, y) dσx = 0 (3.15)

for i, j = 1,2.

Proof. See [15] for the proof of (3.11)–(3.13). Let us prove (3.14). Differentiating (3.11) we obtain

2
∫

∂Ω

(x − y) · νx

∂G

∂νx

(x, y)
∂2G

∂yi∂νx

(x, y) dσx =
∫

∂Ω

νi

(
∂G

∂νx

(x, y)

)2

dσx.

The claim follows from (3.12).
To prove (3.15) is sufficient to note that∫

∂Ω

∂G

∂νx

(x, y) dσx =
∫
Ω

�G(x,y) dx ≡ −1

and differentiate. �
Lemma 3.5. Let uλ be a solution of (1.1). Then the function ũλ :Ωλ = (Ω − xλ)/δλ → R,

ũλ(x) = uλ(δλx + xλ) − ‖uλ‖ (3.16)

verifies

ũλ(x) → log
1

(1 + |x|2/8)2
in C2

loc(R
2). (3.17)

Proof. The result is standard (see [15] for example). �
4. On the first eigenvalue and the first eigenfunction

Let μ1,λ be the first eigenvalue of problem (2.2) and v1,λ the corresponding eigenfunction which solves⎧⎨
⎩

−�v1,λ = λμ1,λe
uλv1,λ in Ω,

‖v1,λ‖∞ = 1,

v1,λ = 0 on ∂Ω.

(4.1)

The first eigenvalue is given by the classical (Rayleigh–Ritz) variational formula, namely

μ1,λ = inf
v∈H 1

0 (Ω)

v 	≡0

∫
Ω

|∇v|2 dx

λ
∫
Ω

euλv2 dx
. (4.2)
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Lemma 4.1. Let μ1,λ be as stated before. Then μ1,λ → 0 as λ → 0.

Proof. We want to estimate μ1,λ using formula (4.2). Consider the function uλ ∈ H 1
0 (Ω). Then, by (1.1)

μ1,λ �
∫
Ω

|∇uλ|2
λ

∫
Ω

euλu2
λ

=
∫
Ω

euλuλ∫
Ω

euλu2
λ

. (4.3)

Using the rescaled function ũλ(y) = uλ(δλy + xλ) − ‖uλ‖∞ we have

λ

∫
Ω

euλuλ = λ

∫
Ω

euλ
(
uλ − ‖uλ‖∞

) + λ‖uλ‖∞
∫
Ω

euλ (4.4)

while

λ

∫
Ω

euλu2
λ = λ

∫
Ω

euλ
(
uλ − ‖uλ‖∞

)2 + λ‖uλ‖2∞
∫
Ω

euλ + 2λ‖uλ‖∞
∫
Ω

euλ
(
uλ − ‖uλ‖∞

)
. (4.5)

Inserting (4.4) and (4.5) into (4.3), and then rescaling, we get

μ1,λ �
∫
Ωλ

eũλ ũλ + ‖uλ‖∞λ
∫
Ω

euλ∫
Ωλ

eũλ ũ2
λ + 2‖uλ‖∞

∫
Ωλ

eũλ ũλ + ‖uλ‖2∞λ
∫
Ω

euλ
. (4.6)

By the estimate (3.6), we see that

∣∣eũλ ũλ

∣∣ � C
C − log(1 + |y|2/8)2

(8 + |y|2)2
; (4.7)

∣∣eũλ ũ2
λ

∣∣ � C
(C − log(1 + |y|2/8)2)2

(8 + |y|2)2
. (4.8)

By (4.7) and (4.8), we can pass into the limit into (4.6) getting

μ1,λ � C1 + o(1) + ‖uλ‖∞(8π + o(1))

C2 + o(1) + 2‖uλ‖∞(C1 + o(1)) + (8π + o(1))‖uλ‖2∞
= 1

‖uλ‖∞
(
1 + o(1)

)
(4.9)

where C1 = ∫
R2 eUU = −16π and C2 = ∫

R2 eUU2 = 64π . The claim follows using (3.4). �
Lemma 4.2. Let μ1,λ and v1,λ be as stated before and let ṽ1,λ(x) = v1,λ(δλx +xλ). Then ṽ1,λ → c in C2

loc(R
2), where

c 	= 0 is a constant.

Proof. It is easy to see that ṽ1,λ satisfies the equation⎧⎨
⎩

−�ṽ1,λ = μ1,λe
ũλ ṽ1,λ in Ωλ,

‖ṽ1,λ‖∞ = 1,

ṽ1,λ = 0 on ∂Ωλ,

(4.10)

where Ωλ = (Ω − xλ)/δλ. From (3.6) the right-hand side of equation (4.10) is bounded in L∞. Moreover ‖ṽ1,λ‖∞ = 1
implies that |∇ṽ1,λ| is bounded in L2(R2). Then using the standard elliptic regularity theory, ṽ1,λ → v1 in C2

loc(R
2),

where v1 satisfies

�v1 = 0 in R
2, (4.11)

and since ‖ṽ1‖∞ = 1 we infer that v1 is a constant. We want to show that v1 	≡ 0. Let zλ be the points of Ωλ such that
ṽ1,λ(zλ) = 1. If v1 ≡ 0 then zλ should go to the infinity. So let us consider

v̂1,λ = ṽ1,λ

(
x

|x|2
)

,

and

ûλ = ũλ

(
x

2

)
.
|x|
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Then v̂1,λ satisfies the equation

−�v̂1,λ = 1

|x|4 μ1,λe
ûλ(x)v̂1,λ(x)

where (again by (3.3))

1

|x|4 μ1,λe
ûλ(x) � μ1,λ

1

|x|4
(

C

1 + 1/(8|x|2)
)

� Cμ1,λ

64|x|4
|x|4(8|x|2 + 1)2

� 64Cμ1,λ → 0.

Moreover ‖v̂1,λ‖∞ � 1 and v̂1,λ → 0 in C2
loc(R

2 \ {0}), so that v̂1,λ → 0 in L2(B1(0)). Since the capacity of one point
is zero, we can apply the regularity theory to v̂λ (see Theorem 8.17 in [14]) observing that

‖v̂1,λ‖L∞(B 1
2
(0)) � C‖v̂1,λ‖L2(B1(0)) → 0.

This gives a contradiction since ‖v̂λ‖L∞(B 1
2
(0)) = v̂λ(zλ) = 1. �

Remark 4.3. In Lemma 4.5 we will show that c = 1.

Lemma 4.4. Let μ1,λ be the first eigenvalue of problem (4.1). Then

μ1,λ = − 1

2 logλ(1 + o(1))
.

Proof. Multiplying Eq. (4.1) for uλ and integrating, we get∫
Ω

∇v1,λ · ∇uλ dx = λμ1,λ

∫
Ω

euλuλv1,λ dx; (4.12)

while using Eq. (1.1) we get∫
Ω

∇uλ · ∇v1,λ dx = λ

∫
Ω

euλv1,λ dx. (4.13)

Then

λ

∫
Ω

euλv1,λ dx = λμ1,λ

∫
Ω

euλuλv1,λ dx.

Rescaling both sides we have∫
Ωλ

eũλ ṽ1,λ dy = μ1,λ

∫
Ωλ

eũλ ũλṽ1,λ dy + μ1,λ‖uλ‖∞
∫
Ωλ

eũλ ṽ1,λ dy. (4.14)

Using estimate (3.6) and ‖ṽ1,λ‖∞ = 1, we can pass to the limit in (4.14) and then∫
R2

eU(y)v1(y) dy + o(1) = μ1,λ

∫
Ωλ

eũλ(y)ũλ(y)ṽ1,λ(y) dy + μ1,λ‖uλ‖∞
( ∫

R2

eU(y)v1(y) dy + o(1)

)
.

Again by estimate (4.7) and the boundedness of ‖v1,λ‖∞ we have

8πc + o(1) = μ1,λ

( ∫
R2

eU(y)U(y)v1(y) dy + o(1)

)
+ μ1,λ‖uλ‖∞

(
8πc + o(1)

)

= μ1,λ

(−16πc + o(1)
) + μ1,λ‖uλ‖∞

(
8πc + o(1)

)
.

Passing to the limit as λ → 0, we infer that limλ→0 μ1,λ‖uλ‖∞ = 1 and the lemma is proved using the esti-
mate (3.4). �
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Lemma 4.5. Let v1,λ and μ1,λ be as stated before. Then

v1,λ(x)

μ1,λ

→ 8πG(x, x0) in C1
loc

(
Ω̄ \ {x0}

)
as λ → 0. (4.15)

Proof. Let x ∈ Ω̄ \ {x0}. Using the Green’s identity formula we have from (4.1),

v1,λ(x)

μ1,λ

= λ

∫
Ω

G(x, y)euλ(y)v1,λ(y) dy

= λG(x, x0)

∫
Ω

euλ(y)v1,λ(y) dy + λ

∫
Ω

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy

= G(x,x0)

∫
Ω̃λ

eũλ(y)ṽ1,λ(y) dy + I1,λ

= 8πcG(x, x0) + o(1) + I1,λ. (4.16)

The passage into the limit is done by using the estimate (3.6) and |v1,λ| � 1.
To prove (4.15), we have to show that I1,λ → 0. We can choose ρ > 0 such that Bρ(x0) ⊂ Ω and x /∈ Bρ(x0). Then

I1,λ = λ

∫
Ω

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy

= λ

∫
Ω\Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy + λ

∫
Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy.

By estimate (3.3) and (3.4) we have

λeuλ(y)v1,λ(y) � Cλ

(cλ + 1
8 |y − xλ|2)2

.

Recalling that xλ → x0 we have that |y − xλ| � ρ
2 in Ω \ Bρ(x0), if λ is small enough. Hence we get

λ

∫
Ω\Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy � Cλ

(cλ + ρ2/32)2

∫
Ω\Bρ(x0)

[
G(x,y) − G(x,x0)

]
dy

� C′λ
(cλ + ρ2/32)2

. (4.17)

Choosing ρ = λk with k < 1
4 we get

λ

∫
Ω\Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy → 0.

On the other hand we have

λ

∫
Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v1,λ(y) dy � sup

y∈Bρ(x0)

∣∣G(x,y) − G(x,x0)
∣∣λ ∫

Bρ(x0)

euλv1,λ dy → 0

because x /∈ Bρ(x0) and λeuλ(y)v1,λ(y) ∈ L1(Ω). In this way we have that I1,λ → 0 and from estimate (4.16) we
get (4.15).

The same proof applies for the derivatives of v1,λ.
Now we prove that c = 1. We already know from Lemma 4.2 that c 	= 0. Let zλ ∈ Ω such that v1,λ(zλ) = 1. This

can be done since, by the definition of v1,λ, we have v1,λ > 0 in Ω . Up to a subsequence zλ → z ∈ Ω̄ . If z 	= x0 using
equation (4.15), we have

1 = v1,λ(zλ) → 8πcG(z, x0) (4.18)

μ1,λ μ1,λ
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and this is not possible since the left-hand side goes to infinity while the right-hand side is bounded.
Hence we have that z = x0. We have the following alternative: either |zλ − xλ| > δλR for any R > 0 or zλ ∈

BδλR(xλ) for R > 0 and λ sufficiently small.
Case 1. We consider first the case where |zλ − xλ| > δλR for any R > 0. Set wλ(x) = v1,λ(rλx + xλ) − γλ

where γλ = 1
2π

μ1,λ log 1
rλ

∫
Ωλ

eũλ(y)ṽ1,λ(y) dy and rλ = |zλ − xλ|. The function wλ(x) is defined in the set Ω̂λ =
(Ω − xλ)/rλ. Since zλ → x0 we have that rλ → 0 as λ → 0 and so Ω̂λ → R

2.
Using the Green’s representation formula we can write

wλ(x) = μ1,λ

∫
Ωλ

G(rλx + xλ, δλy + xλ)e
ũλ(y)ṽ1,λ(y) dy − γλ

and by the standard decomposition of the Green’s function we get

wλ(x) = μ1,λ

∫
Ωλ

1

2π
log

1

|rλx − δλy|e
ũλ(y)ṽ1,λ(y) dy − γλ + μ1,λ

∫
Ωλ

H(rλx + xλ, δλy + xλ)e
ũλ(y)ṽ1,λ(y) dy

= 1

2π
μ1,λ

∫
Ωλ

log
1

|x − (δλ/rλ)y|e
ũλ(y)ṽ1,λ(y) dy + μ1,λ

∫
Ωλ

H(rλx + xλ, δλy + xλ)e
ũλ(y)ṽ1,λ(y) dy

= μ1,λ8πc

(
log

1

|x| + H(x0, x0) + o(1)

)
, (4.19)

where we used (3.6), and the boundedness of H(rλx + xλ, δλy + xλ) because rλx + xλ is an interior point of Ωλ.
Hence we obtain

wλ(x)

μ1,λ

→ w(x) = 8πc

(
log

1

|x| + R(x0)

)
in Cloc

(
R2 \ {0}). (4.20)

The same can be shown for the derivatives of wλ to derive the convergence in C1
loc(R

2 \ {0}).
This gives us a contradiction since we have a sequence of points ẑn = (zn − xn)/rn such that ∇wn(ẑn) = 0, which

converge to a point ẑ such that |ẑ| = 1 and ∇w(ẑ) = 0. This is a contradiction with (4.20).
Case 2. Here we assume that zλ ∈ BδλR(xλ) for some R > 0. Let z̃λ = (zλ − xλ)/δλ. Then z̃λ ∈ BR(0) and

ṽ1,λ(z̃λ) = 1. Reasoning as in the proof of Lemma 4.2 we have that ṽ1,λ → c uniformly in B2R(0) and since
ṽ1,λ(z̃λ) = 1 this implies that c = 1. �
Remark 4.6. We observe here that the proof of Lemma 4.5 implies that the maximum points of v1,λ are inside the
ball BδλR(xλ) for some R > 0 and hence they converge to x0.

Proof of Theorem 2.1. This is derived from Lemmas 4.2, 4.4 and 4.5. �
5. Estimates for the second eigenvalue

Lemma 5.1. For any eigenfunction vi,λ we have the following integral identity∫
∂Ω

∂uλ

∂xj

∂vi,λ

∂ν
dσx = λ(1 − μi,λ)

∫
Ω

euλvi,λ

∂uλ

∂xj

dx (5.1)

for j = 1,2.

Proof. Differentiating Eq. (1.1) with respect to xj we get

−�
∂uλ

∂x
= λeuλ

∂uλ

∂x
in Ω for j = 1,2. (5.2)
j j
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Multiplying (5.2) by vi,λ and integrating we get∫
Ω

∇
(

∂uλ

∂xj

)
· ∇vi,λ dx = λ

∫
Ω

euλ
∂uλ

∂xj

vi,λ dx (5.3)

while multiplying Eq. (2.3) by ∂uλ

∂xj
we have∫

Ω

∇vi,λ · ∇
(

∂uλ

∂xj

)
dx −

∫
∂Ω

∂uλ

∂xj

∂vi,λ

∂ν
dσx = λμi,λ

∫
Ω

euλvi,λ

∂uλ

∂xj

. (5.4)

Using (5.3) and (5.4) we get (5.1). �
Let uλ be a solution of (1.1) satisfying (1.2), and let xλ ∈ Ω such that uλ(xλ) = ‖uλ‖∞. By Theorem 3.1 xλ → x0 ∈

Ω , hence there exists ρ > 0 such that B(xλ,2ρ) ⊂ Ω . Let Φ̃ ∈ C∞
0 (B(0,2ρ)) such that Φ̃ = 1 in B(0, ρ); 0 � Φ̃ � 1

in B(0,2ρ) and let

Φ(x) = Φ̃(x − xλ). (5.5)

Proposition 5.2. We have

μ2,λ � 1 + Cδ2
λ, (5.6)

μ2,λ → 1. (5.7)

Proof. We estimate the second eigenvalue using again the variational formula

μ2,λ = inf
v∈H 1

0 (Ω), v 	=0, v⊥v1,λ

∫
Ω

|∇v|2
λ

∫
Ω

euλv2
. (5.8)

To this end let ψ1(x) = ∂uλ

∂x1
(x) and v = Φψ1 + a1,λv1,λ. We take

a1,λ = −λ
∫
Ω

euλΦψ1v1,λ

λ
∫
Ω

euλv2
1,λ

= −N1,λ

D1,λ

(5.9)

so that v ⊥ v1,λ in H 1
0 (Ω).

Step 1: Here we show that a1,λ = o(1). We estimate D1,λ in (5.9) as follows

D1,λ = λ

∫
Ω

euλv2
1,λ =

∫
Ωλ

eũλ ṽ2
1,λ = 8π + o(1).

This implies that D1,λ � 7π > 0 if λ is small enough. We only have to prove that N1,λ = o(1). To do this, we observe
that, since Φ = 1 on Bρ(xλ),

N1,λ = λ

∫
Ω

euλ
∂uλ

∂x1
v1,λΦ dx = λ

∫
Ω\Bρ(xλ)

euλ
∂uλ

∂x1
v1,λΦ dx + λ

∫
Bρ(xλ)

euλ
∂uλ

∂x1
v1,λ dx = I1 + I2. (5.10)

By the convergence results (3.2) and (4.15) it is easy to see that

I1 = λ

∫
Ω\Bρ(xλ)

euλ
∂uλ

∂x1
v1,λΦ dx = O(λμ1,λ) = o(1). (5.11)

To estimate I2 we use Eq. (5.1) where i = 1, i.e.

(1 − μ1,λ)λ

∫
euλ

∂uλ

∂x1
v1,λ =

∫
∂uλ

∂x1

∂v1,λ

∂νx

dσx. (5.12)
Ω ∂Ω
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Using convergence (3.2), (4.15) and (3.12) it is easy to see that∫
∂Ω

∂uλ

∂x1

∂v1,λ

∂νx

dσx = μ1,λ

(
(8π)2

∫
∂Ω

ν1

(
∂G

∂νx

(x, x0)

)2

dσx + o(1)

)
= o(μ1,λ).

By (2.5) we get that (5.12) implies

λ

∫
Ω

euλ
∂uλ

∂x1
v1,λ = λ

∫
Ω\Bρ(xλ)

euλ
∂uλ

∂x1
v1,λ + λ

∫
Bρ(xλ)

euλ
∂uλ

∂x1
v1,λ = o(μ1,λ).

Arguing as in (1.3) we get λ
∫
Ω\Bρ(xλ)

euλ ∂uλ

∂x1
v1,λ = O(λμ1,λ) and this implies that λ

∫
Bρ(xλ)

euλ ∂uλ

∂x1
v1,λ = o(μ1,λ).

This last estimate together with (5.10) and (5.11) implies that N1,λ = o(μ1,λ).
Step 2: Here we prove estimate (5.6). Recalling the definition of v we have∫

Ω

|∇v|2 =
∫
Ω

|∇Φψ1|2 + 2a1,λ

∫
Ω

∇(Φψ1) · ∇v1,λ + (a1,λ)
2
∫
Ω

|∇v1,λ|2

=
∫
Ω

|∇Φψ1|2 + 2a1,λμ1,λλ

∫
Ω

euλΦψ1v1,λ + (a1,λ)
2λμ1,λ

∫
Ω

euλv2
1,λ

=
∫
Ω

|∇Φψ1|2 − (a1,λ)
2λμ1,λ

∫
Ω

euλv2
1,λ. (5.13)

Since ψ1 solves Eq. (5.2) we have∫
Ω

|∇Φψ1|2 =
∫
Ω

ψ2
1 |∇Φ|2 + λ

∫
Ω

euλΦ2ψ2
1 .

Inserting this in (5.13) and forgetting the lower order term we can write∫
Ω

|∇v|2 =
∫
Ω

ψ2
1 |∇Φ|2 + λ

∫
Ω

euλΦ2ψ2
1 + o(1).

In a similar way we have

λ

∫
Ω

euλv2 = λ

∫
Ω

euλΦ2ψ2
1 + 2a1,λλ

∫
Ω

euλv1,λΦψ1 + (a1,λ)
2λ

∫
Ω

euλv2
1,λ

= λ

∫
Ω

euλΦ2ψ2
1 + o(1). (5.14)

Inserting (5.13) and (5.14) into (5.8) we get

μ2,λ �
λ

∫
Ω

euλΦ2ψ2
1 + ∫

Ω
ψ2

1 |∇Φ|2 + o(1)

λ
∫
Ω

euλΦ2ψ2
1 + o(1)

= 1 +
∫
Ω

ψ2
1 |∇Φ|2 + o(1)

λ
∫
Ω

euλΦ2ψ2
1 + o(1)

. (5.15)

We only have to estimate both integrals in (5.15). For the first one we use the convergence of uλ to 8πG(x, x0) in
C1

loc(Ω̄ \ {x0}), getting∫
Ω

|∇Φ|2ψ2
1 =

∫
Ω\Bρ(xλ)

|∇Φ|2ψ2
1

= (8π)2
∫

Ω\Bρ(x0)

|∇Φ|2
(

∂G(x, x0)

∂x1

)2

+ o(1) = c0 + o(1), (5.16)

where c0 > 0; while, for the second one, a simple rescaling argument leads to
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λ

∫
Ω

euλΦ2ψ2
1 = 1

δ2
λ

∫
Ωλ

eũλ(y)Φ2(δλy + xλ)

(
∂ũλ

∂y1
(y)

)2

dy

= 1

δ2
λ

(
Φ2(x0)

∫
R2

eU(y)

(
∂U

∂y1

)2

dy + o(1)

)
= 1

δ2
λ

(
4

3
π + o(1)

)
. (5.17)

Here we use estimates (A.1) and (3.6) to pass to the limit. Finally we have

μ2,λ � 1 + c0 + o(1)

(1/δ2
λ)(c1 + o(1)) + o(1)

� 1 + 2
c0

c1
δ2
λ

where c1 = 4
3π and c0/c1 > 0. So (5.6) is proved.

Step 3: In this step we prove (5.7). Let μ2 = limλ→0 μ2,λ. By (5.6) μ2 ∈ [0,1]. We assume μ2 < 1 and we reach a
contradiction. Let us consider a second eigenfunction v2,λ related to μ2,λ. Then v2,λ solves⎧⎨

⎩
−�v2,λ = λμ2,λe

uv2,λ in Ω,

‖v2,λ‖∞ = 1,

v2,λ = 0 on ∂Ω.

(5.18)

Let ṽ2,λ = v2,λ(δλx + xλ) be the rescaled function. Now ṽ2,λ solves⎧⎨
⎩

−�ṽ2,λ = μ2,λe
ũλv2,λ in Ωλ,

‖ṽ2,λ‖∞ = 1,

ṽ2,λ = 0 on ∂Ωλ.

Let us show that ∇ṽ2,λ is uniformly bounded in L2(R2). Indeed∫
R2

|∇ṽ2,λ|2 = μ2,λ

∫
Ωλ

eũλ ṽ2
2,λ � μ2,λ

∫
Ωλ

eũλ → 8πμ2.

So by the standard elliptic regularity theory we obtain that ṽ2,λ → ṽ2 in C1
loc(R

2), where ṽ2 is a solution of{−�ṽ2 = μ2
1

(1+|x|2/8)2 ṽ2 in R
2,

‖ṽ2‖∞ � 1.
(5.19)

Let us prove that ṽ2 	= 0. To do this let zλ be the point of Ωλ such that ṽ2,λ(zλ) = 1. If ṽ2 ≡ 0, then zλ should go to
infinity. Let us consider the function

v̂2,λ = ṽ2,λ

(
x

|x|2
)

.

Then v̂2,λ solves

−�v̂2,λ = 1

|x|4 eûλ v̂2,λ. (5.20)

As in the proof of Lemma 4.2, we can show that the right-hand side of (5.20) is bounded in L∞(R2) so that |∇v̂2,λ| is
uniformly bounded in L2(R2) and v̂2,λ → 0 in C2

loc(R
2 \ {0}). Using the regularity theory we reach a contradiction as

in the proof of Lemma 4.2.
At this point we note that μ2 is an eigenvalue for problem (1.4) an ṽ2 the corresponding eigenfunction. If μ2 < 1

then μ2 = 0 and ṽ2 = 1. But we get a contradiction since v2,λ is orthogonal to v1,λ and then∫
∇v1,λ · ∇v2,λ = 0 �⇒ λ

∫
Ω

euλv1,λv2,λ = 0 �⇒
∫
Ωλ

eũλ ṽ1,λṽ2,λ = 0.

Passing to the limit we obtain∫
R2

eU(y) dy = 0,

a contradiction. Hence μ2,λ → 1. �
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Lemma 5.3. We have

ṽ2,λ → a
(2)
1 x1 + a

(2)
2 x2

8 + |x|2 + b(2) 8 − |x|2
8 + |x|2 (5.21)

in C1
loc(R

2), with (a
(2)
1 , a

(2)
2 , b(2)) 	= (0,0,0) ∈ R

3.

Proof. Arguing as in the last part of the proof of Proposition 5.2, we see that ṽ2,λ → ṽ2 in C1
loc(R

2) where ṽ2 solves{
−�ṽ2 = 1

(1+|x|2/8)2 ṽ2 in R
2,

‖ṽ2‖∞ = 1.
(5.22)

Recalling Theorem 3.3 we have

ṽ2(x1, x2) = a
(2)
1 x1 + a

(2)
2 x2

8 + |x|2 + b(2) 8 − |x|2
8 + |x|2 .

But ṽ2 ≡ 0 is not possible by Step 3 of Proposition 5.2, so (a
(2)
1 , a

(2)
2 , b(2)) 	= 0. �

6. Asymptotic behavior of the second eigenfunction

Lemma 6.1. If the number b(2) of Lemma 5.3 is different from zero then

v2,λ(x) logλ → 4πb(2)G(x, x0) in C1(ω) (6.1)

where ω is any compact set in Ω \ {x0}.

Proof. Multiplying Eq. (1.1) and (5.18) by v2,λ and uλ respectively we get

λ

∫
Ω

euλv2,λ = μ2,λλ

∫
Ω

euλuλv2,λ. (6.2)

Then

λ

∫
Ω

euλv2,λ = λμ2,λ

∫
Ω

euλ
(
uλ − ‖uλ‖∞

)
v2,λ + λ‖uλ‖∞μ2,λ

∫
Ω

euλv2,λ

= μ2,λ

∫
Ωλ

eũλ ũλṽ2,λ + λ‖uλ‖∞μ2,λ

∫
Ω

euλv2,λ

= −
∫
R2

2

(1 + |x|2|/8)2
log

(
1 + |x|2

8

)(
a

(2)
1 x1 + a

(2)
2 x2

8 + |x|2 + b(2) 8 − |x|2
8 + |x|2

)
dx + o(1)

+ λ‖uλ‖∞μ2,λ

∫
Ω

euλv2,λ.

In the last estimate we can pass to the limit since

∣∣eũλ ũλṽ2,λ

∣∣ �
∣∣∣∣ 2

(1 + |x|2/8)2
log

(
1 + |x|2

8

)∣∣∣∣ ∈ L1(R2).

So we obtain the following estimate:

λ

∫
euλv2,λ = 8πb(2) + o(1) + λ‖uλ‖∞μ2,λ

∫
euλv2,λ. (6.3)
Ω Ω



F. Gladiali, M. Grossi / Ann. I. H. Poincaré – AN 26 (2009) 191–222 205
A simple rescaling argument shows us that λ
∫
Ω

euλv2,λ → 0 as λ → 0. Inserting this into the (6.3) and recalling (3.4),
we find that

λ

∫
Ω

euλv2,λ dx = 4πb(2)

logλ

(
1 + o(1)

)
. (6.4)

Using the Green’s representation formula we can write

v2,λ(x) logλ = λ logλμ2,λ

∫
Ω

G(x, y)euλ(y)v2,λ(y) dy

= μ2,λG(x, x0)λ logλ

∫
Ω

euλ(y)v2,λ(y) dy + μ2,λλ logλ

∫
Ω

[
G(x,y) − G(x,x0)

]
euλ(y)v2,λ(y) dy

= 4πb(2)G(x, x0) + o(1) + I2,λ. (6.5)

where we used (6.4). To prove (6.1) we only have to show that

I2,λ = μ2,λλ logλ

∫
Ω

[
G(x,y) − G(x,x0)

]
euλ(y)v2,λ(y) dy = o(1). (6.6)

As in the proof of Lemma 4.5 ∀x ∈ Ω \ {x0}, we can choose ρ > 0 such that x /∈ B2ρ(x0) ⊂ Ω and we can split Ω in
two pieces Ω \ Bρ(x0) and Bρ(x0). Proceeding again as in the proof of Lemma 4.5 and using estimate (3.3), we get

μ2,λλ logλ

∫
Ω\Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v2,λ(y) dy � C′λ logλ

(cλ + ρ2/32)2
. (6.7)

Now we can consider the integral inside the ball Bρ(x0). Then

μ2,λλ logλ

∫
Bρ(x0)

[
G(x,y) − G(x,x0)

]
euλ(y)v2,λ(y) dy

� λ logλ
(
1 + o(1)

) ∫
Bρ(x0)

∣∣G(x,y) − G(x,x0)
∣∣euλ(y) dy

� Cλ logλ

∫
Bρ(x0)

∣∣∇G(x, ξ)
∣∣|y − x0|euλ(y) dy

� ρ logλ sup
y∈Bρ(x0)

∣∣∇G(x,y)
∣∣λ∫

Ω

euλ(y) dy � Cρ logλ. (6.8)

Here we used that x /∈ B2ρ(x0) and |∇G(x,y)| is uniformly bounded for y ∈ Bρ(x0). Now we can let ρ go to zero
in such a way that both (6.7) and (6.8) go to zero. We can take, for example, ρ = λk for any k < 1

4 . We proved so
far (6.6) and then (6.1) follows from (6.5). �
Lemma 6.2. For any eigenfunction vi,λ we have the following integral identity∫

∂Ω

∂vi,λ

∂ν

(
(x − y) · ∇uλ(x) + 2

)
dσ = λ(1 − μi,λ)

∫
Ω

euλvi,λ

(
(x − y) · ∇uλ + 2

)
. (6.9)

Proof. Let wλ(x) = (x − y) · ∇uλ(x) + 2 for any y ∈ R
2. Then it is easy to see that{−�wλ = λeuλwλ in Ω,

w (x) = (x − y) · ν ∂uλ + 2 on ∂Ω.
(6.10)
λ ∂ν
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Using vi,λ as a test function we have∫
Ω

∇wλ · ∇vi,λ = λ

∫
Ω

euλwλvi,λ (6.11)

while from Eq. (2.3) we get∫
Ω

∇vi,λ · ∇wλ −
∫

∂Ω

∂vi,λ

∂ν
wλ(x) dσ = λμi,λ

∫
Ω

euλvi,λwλ. (6.12)

Hence (6.9) follows. �
Proposition 6.3. We have

ṽ2,λ(x) → ṽ2 = a
(2)
1 x1 + a

(2)
2 x2

8 + |x|2 as λ → 0 (6.13)

in C1
loc(R

2), for some (a
(2)
1 , a

(2)
2 ) 	= 0.

Proof. By Lemma 5.3 we only have to prove that b(2) = 0. To do this we use the identity (6.9) for i = 2. If by
contradiction b(2) 	= 0 using Lemma 6.1 and (3.2) we can pass to the limit in the left-hand side of (6.9) getting

logλ

∫
∂Ω

∂v2,λ

∂ν
wλ(x) dσ = 4πb(2)

∫
∂Ω

(
8π(x − y) · ν ∂G(x, x0)

∂ν
+ 2

)
∂G(x, x0)

∂ν
dσ + o(1). (6.14)

Using Eq. (3.11) with y = x0 we have∫
∂Ω

(x − x0) · ν
(

∂G(x, x0)

∂ν

)2

dσ = 1

2π
, (6.15)

while using that G(x,x0) is harmonic in Ω \ {x0}, one can prove that∫
∂Ω

∂G(x, x0)

∂ν
dσ = −1. (6.16)

Now we consider the right-hand side of (6.9). A simple rescaling argument give us

λ

∫
Ω

euλv2,λwλ dx =
∫
Ωλ

eũλ(y)ṽ2,λ(y)
(
y · ∇ũλ(y) + 2

)
dy

=
∫
R2

128(8 − |y|2)
(8 + |y|2)3

(
2∑

j=1

a
(2)
j

yj

8 + |y|2 + b(2) 8 − |y|2
8 + |y|2

)
dy + o(1)

= c0b
(2)

(
1 + o(1)

)
, (6.17)

where the passage into the limit is done using estimate (3.6) and the boundedness of y · ∇ũλ(y) + 2 (see (A.1)). We
observe here that c0 = 16

3 π > 0. Inserting (6.15), (6.16) and (6.17) into (6.9), we have

(1 − μ2,λ)
(
c0b

(2) + o(1)
) = 4πb(2)

logλ

(
1 + o(1)

)
. (6.18)

Hence if b(2) 	= 0, we find

1 − μ2,λ = − 1
c1

(
1 + o(1)

)
where c1 = −8π = −3

< 0. (6.19)

logλ c0 2
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This implies that for λ small enough

1 − μ2,λ � − c1

2 logλ
. (6.20)

But from (5.6), we get

1 − μ2,λ � −Cδ2
λ, (6.21)

which implies with (6.20) that

c1

2
� Cδ2

λ logλ,

giving a contradiction since c1 < 0 while the r.h.s. goes to zero. So b(2) = 0 and the claim follows. �
Proposition 6.4. We have

v2,λ(x)

δλ

→ 2π

2∑
k=1

a
(2)
k

∂G(x, x0)

∂yk

as λ → 0 (6.22)

in C1
loc(Ω̄ \ {x0}), where (a

(2)
1 , a

(2)
2 ) is the same as in (6.13).

Proof. Using the Green’s representation formula we have

v2,λ(x) = λμ2,λ

∫
Ω

G(x, y)euλ(y)v2,λ(y) dy.

Note that ∀x ∈ Ω \ {x0} we can choose ρ > 0, ρ ∈ R such that B2ρ(x0) ⊂ Ω and x /∈ B2ρ(x0). For such a value of ρ

we can write

v2,λ(x) = λμ2,λ

∫
Ω\Bρ(x0)

G(x, y)euλ(y)v2,λ(y) dy + λμ2,λ

∫
Bρ(x0)

G(x, y)euλ(y)v2,λ(y) dy = I1 + I2. (6.23)

First we study the behavior of I1. Using the estimate (3.3) and since G(x,y) ∈ L1
y(Ω) we have

|I1| � Cλ

(cλ + ρ2)2

∫
Ω

G(x, y) dy � Cλ

(cλ + ρ2)2
. (6.24)

We can let ρ → 0 in such a way that

|I1| = o(δλ),

for example choosing ρ = λk for λ < 1
4 .

For y ∈ Bρ(x0) and x /∈ B2ρ(x0) the function G(x,y) is regular and we can expand it in Taylor series

G(x,y) = G(x,xλ) +
2∑

j=1

∂G

∂yj

(x, xλ)(y − xλ)j + 1

2

2∑
j,k=1

∂2G

∂yj∂yk

(x, ηλ)(y − xλ)j (y − xλ)k, (6.25)

where ηλ is a point between y and xλ which are both contained in Bρ(x0). To study the behavior of I2 we write

I2 = λμ2,λ

∫
Bρ(x0)

(
G(x,xλ) +

2∑
j=1

∂G

∂yj

(x, xλ)(y − xλ)j

)
euλ(y)v2,λ(y) dy

+ λμ2,λ

∫
B (x )

1

2

2∑
j,k=1

∂2G

∂yj ∂yk

(x, ηλ)(y − xλ)j (y − xλ)ke
uλ(y)v2,λ(y) dy
ρ 0
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= G(x,x0)
(
1 + o(1)

) ∫
Bλ

eũλ(y)ṽ2,λ(y) dy

+ δλ

2∑
j=1

∂G

∂yj

(x, x0)
(
1 + o(1)

)∫
Bλ

eũλ(y)ṽ2,λ(y)yj dy + Rλ, (6.26)

where Rλ = 1
2λμ2,λ

∑2
j,k=1

∫
Bρ(x0)

∂2G
∂yj ∂yk

(x, ηλ)e
uλ(y)v2,λ(y)(y − xλ)j (y − xλ)k dy and Bλ = (Bρ(x0) − xλ)/δλ.

Now we want to show that

Rλ = o(δλ).

We observe that since y and xλ ∈ Bρ(x0) then also ηλ ∈ Bρ(x0). Moreover since x /∈ B2ρ(x0) we have∣∣∣∣ ∂2G

∂yj∂yk

(x, ηλ)

∣∣∣∣ � sup
z∈Bρ(x0), j,k=1,2

∣∣∣∣ ∂2G

∂yj∂yk

(x, z)

∣∣∣∣ = C.

Using that |v2,λ(y)| � 1 and μ2,λ = 1 + o(1) we get

|Rλ| � Cλ

∫
Bρ(x0)

euλ |y − xλ|2 dy � Cρδλ

∫
Bλ

eũλ(y)|y|dy. (6.27)

Letting ρ going to zero we obtain that Rλ = o(δλ).
Gluing together (6.23), (6.24), (6.26), and (6.27) we derive

v2,λ(x) = G(x,x0)
(
1 + o(1)

) ∫
Bλ

eũλ(y)ṽ2,λ(y) dy

+ δλ

2∑
j=1

∂G

∂yj

(x, x0)
(
1 + o(1)

)∫
Bλ

eũλ(y)ṽ2,λ(y)yj dy + o(δλ). (6.28)

In order to prove (2.9) we have to estimate γλ = ∫
Bλ

eũλ(y)ṽ2,λ(y) dy. We will show that

γλ = o(δλ).

We prove this by contradiction. So let us suppose that limλ→0
δλ

γλ
= c with c ∈ R, c < ∞. From (6.28) we derive

v2,λ(x)

γλ

= G(x,x0) + c

2∑
j=1

∂G

∂yj

(x, x0)

∫
Bλ

eũλ(y)ṽ2,λ(y)yj dy + o(1). (6.29)

Note that Bλ → R
2 and we can pass into the limit in (6.29) using (3.6). We also observe that ṽ2(y) =

(a
(2)
1 y1 + a

(2)
2 y2)/(8 + |y|2) = − 1

4

∑2
j=1 a

(2)
k

∂U(y)
∂yk

. Then (6.29) becomes

v2,λ(x)

γλ

= G(x,x0) − c

4

2∑
j=1

∂G

∂yj

(x, x0)

∫
R2

eU(y)
2∑

k=1

a
(2)
k

∂U

∂yk

yj dy + o(1)

= G(x,x0) − c

4

2∑
j=1

∂G

∂yj

(x, x0)

∫
R2

2∑
k=1

a
(2)
k

∂eU(y)

∂yk

yj dy + o(1)

= G(x,x0) + 1

4
c

2∑
j=1

∂G

∂yj

(x, x0)

2∑
k=1

a
(2)
k

∫
R2

eU(y)δ
j
k dy + o(1)

= G(x,x0) + 2πc

2∑
a

(2)
j

∂G

∂yj

(x, x0) + o(1). (6.30)

j=1



F. Gladiali, M. Grossi / Ann. I. H. Poincaré – AN 26 (2009) 191–222 209
In a similar way one can prove the convergence in C1(Ω̄ \ {x0}).
Now to estimate 1 − μ2,λ we use identity (5.1) evaluated in v2,λ i.e.∫

∂Ω

∂uλ

∂xj

∂v2,λ

∂ν
dσx = λ(1 − μ2,λ)

∫
Ω

euλv2,λ

∂uλ

∂xj

dx. (6.31)

Let us consider first the l.h.s. of (6.31). Passing to the limit we get∫
∂Ω

∂uλ

∂xj

∂v2,λ

∂νx

dσx = γλ

(
8π

∫
∂Ω

∂G

∂xj

(x, x0)
∂G

∂νx

(x, x0) dσx

)

+ γλ

(
8π

∫
∂Ω

∂G(x, x0)

∂xj

∂

∂ν

(
2πc

2∑
k=1

a
(2)
k

∂G(x, x0)

∂yk

)
dσx

)
+ o(γλ)

= γλ

(
8π

∫
∂Ω

νj

(
∂G

∂νx

(x, x0)

)2

dσx

)

+ γλ

(
16π2c

2∑
k=1

a
(2)
k

∫
∂Ω

∂G(x, x0)

∂xj

∂

∂yk

∂G(x, x0)

∂ν
dσx

)
+ o(γλ)

= γλ

(
−8π

∂R

∂yj

(x0) − 8π2c

2∑
k=1

a
(2)
k

∂2R(x0)

∂xkxj

+ o(1)

)

= γλ

(
−8π2c

2∑
k=1

a
(2)
k

∂2R(x0)

∂xkxj

+ o(1)

)
, (6.32)

where we use the identities (3.12), (3.13) and that x0 is a critical point of R(y). For the right-hand side of (6.31) we
have

λ

∫
Ω

euλv2,λ

∂uλ

∂xj

dx = 1

δλ

∫
Ωλ

eũλ ṽ2,λ

∂ũλ

∂yj

dy

= − 4

δλ

∫
R2

64yj

(8 + |y|2)3

a
(2)
1 y1 + a

(2)
2 y2

8 + |y|2 dy
(
1 + o(1)

); (6.33)

where the passage into the limit is done using the estimate (see (A.1)∣∣∣∣eũλ ṽ2,λ

∂ũλ

∂yj

∣∣∣∣ � C
64

(8 + |y|2)2
‖ṽ2,λ‖∞.

Hence (6.33) becomes

λ

∫
Ω

euλv2,λ

∂uλ

∂xj

dx = 1

δλ

(
−256

2∑
k=1

a
(2)
k

∫
R2

ykyj

(8 + |y|2)4
dy

(
1 + o(1)

))

= 1

δλ

(
−π

3
a

(2)
j + o(1)

)
. (6.34)

Putting together (6.31), (6.32) and (6.34) we obtain

γλ

(
−8π2c

2∑
k=1

a
(2)
k

∂2R(x0)

∂xkxj

+ o(1)

)
= (1 − μ2,λ)

1

δλ

(
−π

3
a

(2)
j + o(1)

)
, (6.35)

and finally

(1 − μ2,λ) = 24πcηδλγλ

(
1 + o(1)

)
, (6.36)
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where η = (
∑2

k=1 a
(2)
k

∂2R(x0)
∂xkxj

)/a
(2)
j for j such that a

(2)
j 	= 0.

Now we consider the Pohozaev identity (6.9) computed at the point xλ. Using (6.30) and passing into the limit in
the l.h.s. of (6.9) we find∫

∂Ω

∂v2,λ

∂νx

(
(x − xλ) · ∇uλ(x) + 2

)
dσx

= γλ

∫
∂Ω

∂G

∂νx

(x, x0)
(
8π(x − x0) · ∇G(x,x0) + 2

)
dσx

+ γλ2πc

2∑
j=1

a
(2)
j

∫
∂Ω

∂2G

∂νxyj

(x, x0)
(
8π(x − x0) · ∇G(x,x0) + 2

) + o(γλ)

= 2γλ

(
1 + o(1)

)
. (6.37)

In the last passage we used (3.11), (3.12) and (3.15). Concerning the r.h.s. of (6.9) a simple scaling argument gives

λ

∫
Ω

euλv2,λ

(
(x − xλ) · ∇uλ + 2

)
dx =

∫
Ωλ

eũλ(y)ṽ2,λ(y)(y · ∇ũ + 2) dy = o(1). (6.38)

In (6.38) we can pass to the limit using estimate (3.6), (A.1) and the boundedness of v2,λ. Putting together (6.37) and
(6.38) we obtain

2γλ

(
1 + o(1)

) = (1 − μ2,λ)o(1). (6.39)

Comparing (6.36) and (6.39) we have

2γλ

(
1 + o(1)

) = 24πcγληδλo(1)
(
1 + o(1)

)
which is impossible.

We have shown so far that γλ/δλ → 0. Then from (6.28) and (6.30) we have

v2,λ(x)

δλ

= 2π

2∑
j=1

a
(2)
j

∂G

∂yj

(x, x0) + o(1). �

Lemma 6.5. We have

1 − μ2,λ = 24πηδ2
λ

(
1 + o(1)

)
, (6.40)

where η = (
∑2

k=1 a
(2)
k

∂2R(x0)
∂xkxj

)/a
(2)
j for j such that a

(2)
j 	= 0.

Proof. We estimate the behavior of (1 − μ2,λ) using (6.31). The proof is the same as before using (6.22) instead
of (6.30). Then we obtain

1 − μ2,λ = 24πηδ2
λ

(
1 + o(1)

)
(6.41)

where η = (
∑2

k=1 a
(2)
k

∂2R(x0)
∂xkxj

)/a
(2)
j for j such that a

(2)
j 	= 0. �

7. Estimates for the third eigenvalue and the third eigenfunction

Proposition 7.1. We have

μ3,λ � 1 + Cδ2
λ, (7.1)

μ3,λ → 1. (7.2)
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Proof. To estimate the third eigenvalue we use the analogous of formula (5.8), i.e.

μ3,λ = inf
v∈H 1

0 (Ω), v 	=0, v⊥{v1,λ,v2,λ}

∫
Ω

|∇v|2
λ

∫
Ω

euλv2
. (7.3)

Let ψ2(x) = b1
∂uλ

∂x1
(x) + b2

∂uλ

∂x2
(x) where b = (b1, b2) ∈ R

2, b 	= 0 and b ⊥ a(2) in R
2, where a(2) is the same as

Proposition 6.3. To simplify the notation we suppose here a
(2)
1 = 0 and we let ψ2(x) = ∂uλ

∂x1
(x). The general case

follows in the same way.
To estimate the third eigenvalue we chose v = Φψ2 + a1,λv1,λ + a2,λv2,λ, where

ai,λ = −λ
∫
Ω

euλΦψ2vi,λ

λ
∫
Ω

euλv2
i,λ

= −Ni,λ

Di,λ

for i = 1,2

in such a way that v ⊥ v1,λ and v ⊥ v2,λ in H 1
0 (Ω). We already know that a1,λ = o(1) (see the proof of Proposi-

tion 5.2). To estimate a2,λ we observe, for the moment, that

D2,λ =
∫
Ωλ

eũλ ṽ2
2,λ →

∫
R2

eU

(
a

(2)
2 x2

8 + |x|2
)2

= 1

12

(
a

(2)
2

)2
π.

For what concerns N2,λ we can write down it in the following way

N2,λ = λ

∫
Ω

euλΦ
∂uλ

∂x1
v2,λ = λ

∫
Ω\Bρ(xλ)

euλΦ
∂uλ

∂x1
v2,λ + λ

∫
Bρ(xλ)

euλ
∂uλ

∂x1
v2,λ = I1 + I2. (7.4)

As in the proof of Proposition 5.2 it is easy to see that I1 = O(λδλ). Rescaling we can write

I2 = 1

δλ

∫
B ρ

δλ

(0)

eũλ
∂ũλ

∂x1
ṽ2,λ = 1

δλ

(
−4a

(2)
2

∫
R2

y1y2

(8 + |y|2)4
dy + o(1)

)
. (7.5)

This proves that δλ(a2,λ)
2 = o(1).

Reasoning as we did in (5.13), we can find∫
Ω

|∇v|2 =
∫
Ω

|∇Φψ2|2 − (a1,λ)
2λμ1,λ

∫
Ω

euλv2
1,λ − (a2,λ)

2λμ2,λ

∫
Ω

euλv2
2,λ

=
∫
Ω

ψ2
2 |∇Φ|2 + λ

∫
Ω

euλΦ2ψ2
2 − (a1,λ)

2λμ1,λ

∫
Ω

euλv2
1,λ − (a2,λ)

2λμ2,λ

∫
Ω

euλv2
2,λ. (7.6)

In the same way,

λ

∫
Ω

euλv2 = λ

∫
Ω

euλΦ2ψ2
2 − (a1,λ)

2λ

∫
Ω

euλv2
1,λ − (a2,λ)

2λ

∫
Ω

euλv2
2,λ. (7.7)

Inserting (7.6) and (7.7) in (7.3) we obtain

μ3,λ � 1 +
∫
Ω

ψ2
2 |∇Φ|2 + (1 − μ1,λ)(a1,λ)

2λ
∫
Ω

euλv2
1,λ + (1 − μ2,λ)(a2,λ)

2λ
∫
Ω

euλv2
2,λ

λ
∫
Ω

euλΦ2ψ2
2 − (a1,λ)2λ

∫
Ω

euλv2
1,λ − (a2,λ)2λ

∫
Ω

euλv2
2,λ

(7.8)

and forgetting lower order terms we have

μ3,λ � 1 +
∫
Ω

ψ2
2 |∇Φ|2 + (1 − μ2,λ)(a2,λ)

2λ
∫
Ω

euλv2
2,λ + o(1)

λ
∫
Ω

euλΦ2ψ2
2 − (a2,λ)2λ

∫
Ω

euλv2
2,λ + o(1)

. (7.9)

Using that δλ(a2,λ)
2 = o(1) and estimate (6.40) we have

(1 − μ2,λ)(a2,λ)
2λ

∫
euλ(v2,λ)

2 = 24πηδ2
λ(a2,λ)

2 1

12
(a

(2)
2 )2π

(
1 + o(1)

) = o(1).
Ω



212 F. Gladiali, M. Grossi / Ann. I. H. Poincaré – AN 26 (2009) 191–222
Finally using (5.16) and (5.17) we have

μ3,λ � 1 + δ2
λ

c0 + o(1)

c1 + δ2
λ(a2,λ)2 + o(1)

< 1 + 2
c0

c1
δ2
λ (7.10)

where c1 = 4
3π and c0 = (8π)2

∫
Ω\Bρ(x0)

|∇Φ|2( ∂G(x,x0)
∂x1

)2. Moreover it is easy to see that 1 � limμ3,λ � limμ2,λ =
1, so that μ3,λ → 1. �
Proof of Theorem 2.2. It follows from Propositions 6.3 and 6.4 for i = 2.

Having estimate (7.1) for the third eigenvalue, it is possible to repeat the proofs of Lemmas 5.3 and 6.1 and
Propositions 5.2 and 6.3 substituting v2,λ with v3,λ and μ2,λ with μ3,λ. This gives us the results of Propositions 6.3
and 6.4 for the third eigenfunction and hence the claim follows for i = 3. �
8. Asymptotic behavior of the eigenvalues

Lemma 8.1. If v2,λ and v3,λ are two eigenfunctions of (2.2) corresponding to μ2,λ and μ3,λ, then the corresponding
vector a(2) and a(3) defined in (2.8) are orthogonal in R

2.

Proof. By assumption
∫
Ω

∇v2,λ · ∇v3,λ dx = 0. Using Eq. (2.3) we get

μi,λλ

∫
Ω

euλv2,λv3,λ dx = 0

and rescaling∫
Ωλ

eũλ ṽ2,λṽ3,λ dx = 0.

Passing to the limit, using estimate (3.6), we get∫
R2

1

(1 + |y|2|/8)2

a
(2)
1 y1 + a

(2)
2 y2

8 + |y|2
a

(3)
1 y1 + a

(3)
2 y2

8 + |y|2 dy = 0 ⇒ 64
2∑

h,l=1

a
(2)
h a

(3)
l

∫
R2

yhyl

(8 + |y|2)4
dy = 0;

and this implies

2∑
h=1

a
(2)
h a

(3)
h = 0.

Hence the vector a(2) and a(3) are orthogonal in R
2. �

Proof of Theorem 2.3. As in the proof of Proposition 6.4 we estimate the rate of (1 − μi,λ) using the identity (5.1).
The proof is the same as before using (2.9) instead of (6.30). Then we obtain

1 − μi,λ = 24πηiδ
2
λ

(
1 + o(1)

)
(8.1)

where ηi = (
∑2

k=1 a
(i)
k

∂2R(x0)
∂xkxj

)/a
(i)
j for j such that a

(i)
j 	= 0.

Consequently we have

2∑
k=1

a
(i)
k

∂2R(x0)

∂xkxj

= ηia
(i)
j (8.2)

which holds both if a
(i)
j 	= 0 or a

(i)
j = 0 by (8.1). From (8.2) we get that ηi is an eigenvalue of D2R(x0) where D2

denotes the Hessian matrix of R(x) at the point x0, and a(i) the corresponding eigenvector. Since by Lemma 8.1 the
eigenvectors a(i) are orthogonal, the numbers ηi are the 2 eigenvalues c1, c2 of D2R(x0). In particular η2 = c1 and
η3 = c2 from the fact that μ2,λ � μ3,λ. �



F. Gladiali, M. Grossi / Ann. I. H. Poincaré – AN 26 (2009) 191–222 213
9. Qualitative properties of the eigenfunctions

Lemma 9.1. Let {zn} ∈ C1(R2) be a sequence of functions such that

zn →
2∑

k=1

dk

xk

(8 + |x|2) in C1
loc(R

2)

where d = (d1, d2) ∈ R
2 with d 	= 0. Then, denoting by Z+

n = {x ∈ R
2: zn > 0} and Z−

n = {x ∈ R
2: zn < 0}, we have

that for any R > 0, the sets Z+
n ∩ BR and Z−

n ∩ BR are both connected and nonempty for n sufficiently large and
BR = {x ∈ R

2: |x| < R}.

Proof. See [16], Lemma 6.1 for an analogous proof in dimension N � 3. �
Proof of Theorem 2.4. The proof of part (i) of the theorem is very similar to the one of Theorem 1.4 in [16] and we
do not report it. So let us concentrate on part (ii).

Using the convergence of ṽi,λ as in (2.8), and Lemma 9.1, we can state that there exist only two nodal sets for ṽi,λ

inside the ball B(0,R) for any R > 0 if λ is small enough. This implies that vi,λ has two nodal regions inside the ball
B(xλ, δλR) for any R > 0 if λ is small enough and i = 2,3.

By the Courant Nodal Line Theorem we can infer that v2,λ has only two nodal regions in Ω . It remains to con-
sider v3,λ.

We argue by contradiction. So let us suppose there exists a third nodal region Dλ ⊂ Ω . Dλ should be an open,
connected set. We can suppose v3,λ > 0 in Dλ, and by continuity of v3,λ we know that v3,λ = 0 on ∂Dλ ⊂ Ω̄ .
Choosing R > 0 such that

∫
R2\BR(0)

eU(y) dy < 4π
C

(where C is the constant in (3.3)), we have that λ
∫
Dλ

euλ =∫
D̃λ

eũλ � C
∫

R2\BR(0)
eU < 4π , where D̃λ = (Dλ − xλ)/δλ . If Dλ is simply connected, we can apply a result of [2]

finding that the maximum principle holds in Dλ for the operator −� − λeuλ . Even if we do not know anything about
the regularity of ∂Dλ, we can infer, using for example [3], that the first eigenvalue for the operator −� − λeuλ in Dλ

is strictly positive. But v3,λ has only one sign in Dλ so it should be the first eigenfunction for −� − λeuλ in Dλ , and
then the first eigenvalue should be zero, contradicting what we previously got.

It remains to consider the case where Dλ is not simply connected. By definition, a simply connected set contains
the inside of each Jordan curve in it. Then we can find a Jordan curve, say γλ, contained in Dλ and some points inside
of it not belonging to Dλ. Let us call Zλ ⊂ Ω the inside of γλ and Vλ := {x ∈ Zλ s.t. v3,λ � 0} ⊂ Zλ. Now we can
consider two different cases.

Firstly we suppose that there exists at least one point in Vλ such that v3,λ < 0. This is not possible because it would
imply that there exists another nodal region inside Zλ, contradicting the Courant Nodal Line Theorem.

Secondly, if v3,λ ≡ 0 in Vλ, then v3,λ solves −�v3,λ = λeuλv3,λ � 0 in Zλ, v3,λ � 0 in Zλ and v3,λ > 0 on
∂Zλ = γλ. This is not possible from the Strong Maximum Principle (see [21], for example). �
Remark 9.2. Following the proof of Lemma 4.5 one can prove even for i = 2,3 that the maximum and minimum
points of vi,λ in Ω lie inside the ball B(xλ, δλR) for some R > 0 and they both converge to x0.

10. On the fourth eigenvalue and the fourth eigenfunction

Proof of Theorem 2.5. Using the variational characterization of the eigenvalues we have

μ4,λ = inf
v∈H 1

0 (Ω), v 	=0, v⊥{v1,λ,v2,λ,v3,λ}

∫
Ω

|∇v|2 dx

λ
∫
Ω

euλv2 dx
. (10.1)

Suppose B(x0,1) ⊂ Ω and let us define the function

Φ̂(x) =
{1 if |x − xλ| < δλ,

1
log δλ

log |x − xλ| if δλ < |x − xλ| < 1,

0 if |x − xλ| > 1,

(10.2)

0 � Φ̂(x) � 1, and Φ̂ ∈ C0(Ω).
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Let ψ4,λ = (x − xλ) · ∇uλ + 2 and v = Φ̂ψ4,λ + a1,λv1,λ + a2,λv2,λ + a3,λv3,λ. We take

ai,λ = −
∫
Ω

euλΦ̂ψ4vi,λ∫
Ω

euλv2
i,λ

= −Ni,λ

Di,λ

(10.3)

in such a way that v ⊥ {v1,λ, v2,λ, v3,λ} in H 1
0 (Ω). Moreover 9π > Di,λ > ci > 0 for i = 1,2,3, while

Ni,λ = λ

∫
Ω

euλvi,λΦ̂ψ4,λ =
∫
Ωλ

eũλ(y)Φ̂(δλy + xλ)ṽi,λ(y)
(
y · ∇ũλ(y) + 2

)
dy

= 2
∫
R2

eU(y)ṽi

8 − |y|2
8 + |y|2 dy + o(1).

Set ṽi = limλ→0 ṽi,λ. From Theorem 2.1 and Theorem 2.2 it is easy to see that∫
R2

eU(y)ṽi

8 − |y|2
8 + |y|2 dy = 0

for i = 1,2,3 so that ai,λ = o(1) for i = 1,2,3.
Using that vi,λ and vj,λ are orthogonal in H 1

0 (Ω) if i 	= j , we have

∫
Ω

|∇v|2 =
∫
Ω

|∇Φ̂ψ4,λ|2 + 2λ

3∑
i=1

ai,λμi,λ

∫
Ω

euλvi,λΦ̂ψ4,λ + λ

3∑
i=1

(ai,λ)
2μi,λ

∫
Ω

euλv2
i,λ.

Noting that λ
∫
Ω

euλv2
i,λ � 9π if λ is small enough, while λ

∫
Ω

euλvi,λΦ̂ψ4,λ = o(1), we can write∫
Ω

|∇v|2 =
∫
Ω

|∇Φ̂ψ4,λ|2 + o(1).

Finally since ψ4,λ solves the linearized equation in Ω , we have∫
Ω

|∇v|2 = λ

∫
Ω

euλΦ̂2ψ2
4,λ +

∫
Ω

ψ2
4,λ|∇Φ̂|2 + o(1). (10.4)

In a similar way we get

λ

∫
Ω

euλv2 = λ

∫
Ω

euλΦ̂2ψ2
4,λ + o(1). (10.5)

Inserting (10.4) and (10.5) into (10.1) we have

μ4,λ � 1 +
∫
Ω

ψ2
4,λ|∇Φ̂|2 + o(1)

λ
∫
Ω

euλΦ̂2ψ2
4,λ + o(1)

.

Let us estimate the last two integrals.

λ

∫
Ω

euλΦ̂2ψ2
4,λ =

∫
Ωλ

eũλ(y)
(
Φ̂(δλy + xλ)

)2(
y · ∇ũλ(y) + 2

)2
dy

=
∫
R2

eU(y)
(
y · ∇U(y) + 2

)2
dy + o(1) = c1 + o(1),

where c1 = 32
3 π . To pass to the limit we use the fact that |y · ∇ũλ(y)| � C in Ωλ, (see (A.1)) and the estimate (3.6).

Finally
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∫
Ω

ψ2
4,λ|∇Φ̂|2 = 1

(log δλ)2

∫
Ω∩{1�|x−xλ|>δλ}

1

|x − xλ|2
(
(x − xλ) · ∇uλ + 2

)2
dx

= 1

(log δλ)2

∫
Ω̂λ\B1(0)

1

|y|2
(
y · ∇ũλ(y) + 2

)2
dy, (10.6)

where Ω̂λ = {y ∈ Ωλ s.t. |y| < 1
δ λ

}. Then we have

∫
Ω

ψ2
4,λ|∇Φ̂|2 � 1

(log δλ)2
2πC

1
δ λ∫

1

1

r
dr (10.7)

= 2πC

(log δλ)2
log

1

δ λ
= − 2πC

log δλ

→ 0. (10.8)

We have shown so far that μ4,λ � 1 + o(1) and hence μ4,λ → 1 as λ → 0.

Arguing as in the proof of Lemma 5.3 we observe that ṽ4,λ → a1x1+a2x2
8+|x|2 + b

8−|x|2
8+|x|2 in C1

loc(R
2), with (a1, a2, b) 	=

(0,0,0) ∈ R
3. Here we want to show that (a1, a2) = 0 so that b 	= 0, proving (2.12). Let for i = 2,3 a(i) = (a

(i)
1 , a

(i)
2 )

be as in (2.8). The eigenfunctions v4,λ and vi,λ are orthogonal in H 1
0 (Ω) for i = 2,3. Then by using Lemma 8.1 we

have that the vector (a1, a2) is orthogonal to a(2) = (a
(2)
1 , a

(2)
2 ) and a(3) = (a

(3)
1 , a

(3)
2 ), which are both different from

zero and orthogonal. This implies (a1, a2) = (0,0).
We proved that b 	= 0. Then we can apply Lemma 6.1 getting

v4,λ(x) logλ → 4πbG(x, x0) in C1(ω) (10.9)

for any compact set ω in Ω̄ \ {x0}. As in the last part of the proof of Proposition 6.4 we have, from (6.19)

1 − μ4,λ = − 1

logλ

(
c1 + o(1)

)
(10.10)

where c1 = 2(1−4π)
c0

< 0 and c0 = π
6 . �

Proof of Theorem 2.6. We argue by contradiction. Let us suppose there exist at least two solutions v1
4,λ and v2

4,λ

corresponding to the eigenvalue μ4,λ. Then v1
4,λ and v2

4,λ are orthogonal in H 1
0 (Ω). Hence the rescaled functions

ṽi
4,λ → bi 8−|y|2

8+|y|2 and bi 	= 0 for i = 1,2. So we have∫
Ω

∇v1
4,λ · ∇v2

4,λ = 0 �⇒
∫
Ω

euλv1
4,λv

2
4,λ = 0 �⇒ b1b2

∫
R2

eU(y) (8 − |y|2)2

(8 + |y|2)2
dy = 0 (10.11)

and this gives a contradiction since bi 	= 0. Then μ4,λ is simple.

To prove that v4,λ has only two nodal regions, if λ is small enough, we observe that the function 8−|y|2
8+|y|2 is positive

in B8(0) and negative in R
2 \ B8(0). Hence assuming b > 0 (the same argument applies if b < 0), by the C1

loc
convergence we have

ṽ4,λ > 0 in B4(0) if λ is small enough,

and hence

v4,λ(x) > 0 in B(xλ,4δλ) ⊂ Ω.

In the same way

v4,λ(x) < 0 on ∂B(xλ,16δλ) ⊂ Ω.

To show that v4,λ(x) < 0 in Ω \ B(xλ,16δλ) we argue by contradiction. So let us suppose there exists a third nodal
region Dλ inside this domain. Then v4,λ > 0 in Dλ and v4,λ = 0 on ∂Dλ.



216 F. Gladiali, M. Grossi / Ann. I. H. Poincaré – AN 26 (2009) 191–222
Let us consider the points zλ ∈ Dλ such that v4,λ(zλ) = maxDλ v4,λ and ∇v4,λ(zλ) = 0 for all λ. Up to a subse-
quence the points zλ converge to a point z ∈ Ω̄ . We have the two following cases.

Case 1. We suppose z 	= x0. Then we can use the convergence in (6.1) to get a contradiction. We have
v4,λ(zλ) logλ � 0 for λ < 1. Passing to the limit we have 0 � v4,λ(zλ) logλ → 4πbG(z, x0) � 0. This would imply
that G(z,x0) = 0 and therefore z ∈ ∂Ω . But this is not possible since 0 = |∇v4,λ(zλ) logλ| → 4πb|∇G(z,x0)| 	= 0
from the Hopf Maximum Principle.

Case 2. Let us suppose that z = x0. We already know that zλ ∈ Ω \ B(xλ,16δλ). In this case we consider the
function ζλ defined in the proof of Lemma 4.5, where rλ = |zλ − xλ|. Reasoning as in the proof of Lemma 4.5, using
the Green’s representation formula we have

ζλ(x) = 1

2π
μ4,λ

∫
Ωλ

log
1

|x − (δλ/rλ)y|e
ũλ(y)ṽ4,λ(y) dy

+ μ4,λ

∫
Ωλ

H(rλx + xλ, δλy + xλ)e
ũλ(y)ṽ4,λ(y) dy. (10.12)

Reasoning as in the proof of Lemma 6.1 we have that∫
Ωλ

eũλ(y)ṽ4,λ(y) dy = 4πb

logλ

(
1 + o(1)

)

and hence we can multiply (10.12) by logλ getting

−ζλ(x) logλ = 1

2π
log

1

|x|4πb + 4πbR(x0) + o(1). (10.13)

Repeating the same argument for the first derivatives we can show that the convergence is C1
loc(R

2 \ {0}). This gives
us a contradiction since we have a sequence of points ẑλ = (zλ − xλ)/rλ such that ∇ζλ(ẑλ) = 0 and which converges
to a point ẑ with |ẑ| = 1. This is inconsistent with formula (10.13).

This proves also that the nodal line of v4,λ does not touch the boundary of Ω .
Hence if v4,λ has more than two nodal regions, there should be in the annulus Aλ = B(xλ,4δλ) \ B(xλ,16δλ) a

nodal region Dλ such that D̄λ ⊂ Aλ.
If in Dλ the function v4,λ is positive, we take the maximum points zλ of v4,λ in Dλ such that

v4,λ(zλ) > 0, ∇v4,λ(zλ) = 0, zλ ∈ Aλ.

Rescaling and passing to the limit, we have that the points z̃λ = (zλ − xλ)/δλ converge to a point z̃ ∈ R
2 such that

8 − |z̃|2
8 + |z̃|2 � 0, |z̃| > 4, and ∇

(
8 − |z̃|2
8 + |z̃|2

)
= 0

which is impossible.
If in Dλ the function v4,λ is negative considering the minimum points of v4,λ in Dλ, rescaling as before and passing

to the limit, we would get a point z̃ ∈ R
2 such that

8 − |z̃|2
8 + |z̃|2 � 0, |z̃| � 16, and ∇

(
8 − |z̃|2
8 + |z̃|2

)
= 0

which is again a contradiction. �
Remark 10.1. A consequence of Theorem 2.6 is that the maximum and the minimum point of v4,λ both converge
to x0.

Proof of Corollary 2.7. If x0 is a nondegenerate critical point of R(x) in Ω then both the eigenvalues c1 and c2 of
the Hessian matrix D2R(x0) are different from zero. By (2.10) each eigenvalue ci < 0 implies that μi,λ > 1, for λ

small enough. Moreover, (2.14) implies that μ4,λ > 1, for λ small enough. Hence, denoting by m(x0) the Morse index
of x0 as a critical point of the Robin function R(x), we find that the Morse index of uλ is exactly m(x0) + 1. �
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Proof of Corollary 2.8. Using a result of [4], we know that the Robin function R(x) satisfies the equation �R =
−4e−2R in Ω and R(x) → −∞ for x → ∂Ω . This implies that at least one eigenvalue of the Hessian matrix of R

in x0 is strictly negative. Then the Morse index of uλ is less or equal to 2 and this proves (i).
Using a result of [4] we know that in a convex domain of R

2 both the eigenvalues of the Hessian matrix of the
Robin function in an interior point are negative. This implies that the Morse index of uλ in a convex domain is 1 and
so (ii) is proved. �
11. About the spectrum of the operator − �

λeuλ

In this section we want to give an explicit description of the eigenvalue of{−�v = λμeuλv in Ω,

‖v‖∞ = 1,

v = 0 on ∂Ω,

(11.1)

where λ → 0. First we want to observe that due to the compactness of the operator −�−1 into the weighted space
L2

wλ
(Ω) (with wλ = euλ ), the spectrum of the operator is a sequence of nonnegative values which go to the infinity.

A crucial tool in our study is the spectrum of the problem{
−�v = c 64

(8+|x|2)2 v in R
2,

v ∈ L∞(R2).
(11.2)

We look for solutions in the space W = {v: |∇v| ∈ L2(R2), v ∈ L∞(R2)}. Here again we have that due to the
compactness and the autoadjointness of the operator −�−1 into the space L2

W(R2) where W = eU , the spectrum is a
sequence of nonnegative values that goes to infinity. We can state the following:

Theorem 11.1. The eigenvalues of problem (11.2) are the numbers cn = n(n+1)
2 for n = 0,1,2, . . . . Each eigenvalue cn

has multiplicity 2n + 1 and the eigenfunctions are Ym(θ)P m
n ( 8−r2

8+r2 ) for m ∈ N , m � n, where Ym(θ) = A sin(mθ) +
B cos(mθ) and P m

n are the associated Legendre functions.

Proof. We look for solutions of (11.2) of the type v = R(r)Y (θ). Eq. (11.2) in radial coordinates becomes

−1

r

∂

∂r

(
rR′(r)Y (θ)

) − 1

r2
R(r)Y ′′(θ) = 64c

(8 + r2)2
R(r)Y (θ) (11.3)

with the conditions⎧⎨
⎩

R′(0) = 0 i.e. regular in the origin,

R(r) = O(1) at infinity i.e. regular at infinity,

Y (0) = Y(2kπ) periodicity conditions.
(11.4)

Separating variables, letting v 	= 0, we get the two following equations⎧⎪⎨
⎪⎩

Y ′′(θ) + kY (θ) = 0, Y (θ) = Y(θ + 2kπ),
1
r
(rR′(r))′ + 64c

(8+r2)2 R(r) − k

r2 R(r) = 0,

R′(0) = 0, R(r) = O(1) at infinity.

The first equation (in θ ), has the solutions, for k � 0:

Y(θ) = A cos(ωθ) + B sin(ωθ)

with ω2 = k. The periodicity conditions then imply that ω = m for m ∈ Z. Thus the eigenvalues are k = m2 for
m ∈ Z \ {0}, and the eigenspace is two dimensional, spanned by the functions sin(mθ), cos(mθ).

If k < 0, we do not have any periodic solutions.
So we have shown that Eq. (11.3) has solutions Ym(θ) = A cos(mθ) + B sin(mθ) for k = m2 and m ∈ N0.
We are left with the study of the radial part of Eq. (11.3) with k = m2, i.e.

1(
rR′(r)

)′ + 64c

2 2
R(r) − m2

2
R(r) = 0. (11.5)
r (8 + r ) r
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Setting ξ = 8−r2

8+r2 , Eq. (11.5) becomes

∂

∂ξ

((
1 − ξ2)∂R

∂ξ

)
− m2

1 − ξ2
R(ξ) + 2cR(ξ) = 0 (11.6)

for −1 � ξ � 1. The boundary condition reads as R(1) and R(−1) bounded.
Eq. (11.6) is the classical Legendre equation. By well-known results (see for example [7]), the eigenvalue prob-

lem (11.6) with the condition that R(ξ) is bounded in ξ = −1 and ξ = 1 has solutions only for 2c = n(n+ 1), n ∈ N0.
These solutions are exactly the Legendre associated functions

P m
n (ξ) = (−1)m(1 − ξ2)m/2P (m)

n (ξ), (11.7)

where (m) denotes the m derivative. To avoid the trivial solution R ≡ 0, we let m � n. In (11.7) Pn are the Legendre
polynomials

Pn(ξ) = 1

2nn!
∂n

∂ξn

(
ξ2 − 1

)n
. (11.8)

It is easy to see that each eigenvalue cn = n(n+1)
2 has n + 1 multiplicity.

Moreover we recall that the Legendre associated functions span the space of polynomials in [−1,1]. Hence one
can prove that Eq. (11.6) cannot have any other eigenvalues different from cn. We proved so far that problem (3.9) has
eigenvalues cn = n(n+1)

2 with multiplicity 2n + 1 for n ∈ N and each eigenvalue cn has eigenfunctions Ym(θ)P m
n (ξ)

for m = 0, . . . , n. �
For reader’s convenience we write down some eigenvalues cn and the corresponding eigenfunctions V n

l :

c0 = 0 V 0 = 1,

c1 = 1 V 1
1 = x1

8 + |x|2 , V 1
2 = x2

8 + |x|2 , V 1
3 = 8 − |x|2

8 + |x|2 ,

c2 = 3 V 2
1 = x1(8 − |x|2)

(8 + |x|2)2
, V 2

2 = x2(8 − |x|2)
(8 + |x|2)2

,

V 2
3 = x2

1 − x2
2

(8 + |x|2)2
, V 2

4 = x1x2

(8 + |x|2)2
,

V 2
5 = 3

2

(
(8 − |x|2)
(8 + |x|2)

)2

− 1

2
.

Following this kind of notation we call cn the eigenvalue and V n
l with l = 1, . . . ,2n+1, the associated eigenfunctions.

We observe that for each value of n there is one radial eigenfunction (it corresponds to the case m = 0 in the previous
notation), and that the eigenfunctions go to zero for |x| → ∞ except for the radial one which is bounded. We call
V n

2n+1 the n-related radial eigenfunction.
Now we come back to problem (2.2). Let μi be the eigenvalue and vi the associated eigenfunction. Set ṽi (y) =

vi(δλy + xλ). We want to show that ṽi converge to the ith eigenfunction of problem (11.2) (considered with its
multiplicity). In this way any eigenfunction of the limiting problem will be the limit of a rescaled eigenfunction of
problem (2.2), and vice-versa. In order to prove this we write any i ∈ N in the following way

i =
n∑

k=0

(2k + 1) + ln, (11.9)

for some n ∈ N and ln ∈ N with 0 � ln < 2n + 3. It is easy to check that for any number i there exist a unique n and
ln for which (11.9) holds;

Theorem 11.2. Let i ∈ N. Writing i as in (11.9), we find that any eigenvalue μi of (2.2) converges to the eigenvalue
cn+1 of (11.2). Moreover ṽi (y) converges in C1

loc(R
2) to the sum

∑2n+3
l=1 alV

n+1
l where al ∈ R are not all zero, and

V n+1 are the eigenfunctions of (11.2) related to the eigenvalue cn+1.
k
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Proof. To sake of simplicity we prove the result just for c2, in the cases i = 5 and i = 9. Indeed any other eigenvalue
can be handled in the same way and the proof of cases i = 6,7,8 in c2 is the same as in i = 5.

Case i = 5 with n = 2 and l2 = 1 in (11.9). Let V 2 be any eigenfunction of (11.2) related to the eigenvalue c2
different from V 2

5 . Hence V 2 is not radial and V 2 → 0 for |x| → ∞. Let ψ(x) = V 2((x − xλ)/δλ) and Φ be a cut
off function centered in xλ as defined in Section 5.5. We want to estimate the eigenvalue μ5 using the well known
formula

μ5,λ = inf
v∈H 1

0 (Ω), v⊥{v1,λ,...,v4,λ}

∫
Ω

|∇v|2
λ

∫
Ω

euλv2
. (11.10)

To this end let us consider the function v = Φψ + ∑4
j=1 ajvj,λ, where aj ∈ R will be chosen so that v is orthogonal

to {v1,λ, . . . , v4,λ}. Using the orthogonality of the eigenfunctions vi,λ, vj,λ for i 	= j in H 1
0 (Ω), we derive from (2.2)

that

ak = −λ
∫
Ω

euλvk,λΦψ dx

λ
∫
Ω

euλv2
k,λ dx

(11.11)

for k = 1, . . . ,4. Since vk,λ 	≡ 0 we know that
∫
Ω

euλv2
k,λ → bk > 0, while rescaling the numerator we get

λ

∫
Ω

euλΦψvk,λ(x) dx =
∫
Ωλ

eũλ(y)V 2(y)Φ(δλy + xλ)ṽk,λ(y) dy

= Φ(x0)

∫
R2

eU(y)V 2(y)ṽk(y) dy + o(1),

where ṽk = limλ→0 ṽk,λ. Here we note that the passage into the limit is done using estimate (3.6) and that vk,λ, V 2

and Φ are uniformly bounded in R
2. Finally by the orthogonality of the functions V 2 and ṽk with k � 4 we get

ak = o(1). (11.12)

With this choice of v we have∫
Ω

|∇v|2 dx =
∫
Ω

∣∣∇(ψΦ)
∣∣2 + 2

4∑
j=1

aj

∫
Ω

∇vj,λ · ∇(ψΦ) +
4∑

j,k=1

ajak

∫
Ω

∇vj,λ · ∇vk,λ.

Using Eq. (2.2) and the orthogonality of vj,λ and vk,λ if j 	= k we have

∫
Ω

|∇v|2 dx =
∫
Ω

ψ2|∇Φ|2 +
∫
Ω

(−�ψ)Φ2ψ + 2
4∑

j=1

ajλμj,λ

∫
Ω

euλvj,λψΦ +
4∑

j=1

a2
j λμj,λ

∫
Ω

euλv2
j,λ.

Since λ
∫
Ω

euλvj,λΦψ = −aj (λ
∫
Ω

euλv2
j,λ) = o(1) we get∫

Ω

|∇v|2 dx =
∫
Ω

ψ2|∇Φ|2 +
∫
Ω

(−�ψ)Φ2ψ + o(1).

In the same way we have

λ

∫
Ω

euλv2 = λ

∫
Ω

euλΦ2ψ2 + 2
4∑

j=1

ajλ

∫
Ω

euλvj,λψΦ +
4∑

j=1

a2
j λ

∫
Ω

euλv2
j,λ

= λ

∫
Ω

euλΦ2ψ2 + o(1).

Some computation proves that ψ solves

−�ψ = 1

δ2
c2e

U((x−xλ)/δλ)ψ.

λ
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So using Φ2ψ as a test function we get∫
Ω

|∇v|2 =
∫
Ω

ψ2|∇Φ|2 + 1

δ2
λ

c2

∫
Ω

eU((x−xλ)/δλ)ψ2Φ2 dx + o(1).

Rescaling and passing to the limit we get∫
Ω

|∇v|2 =
∫
Ω

ψ2|∇Φ|2 + c2

∫
Ωλ

eU(y)
(
V 2(y)

)2
Φ2(δλy + xλ) dx + o(1)

=
∫
Ω

ψ2|∇Φ|2 + c2

∫
R2

eU(y)
(
V 2(y)

)2 + o(1), (11.13)

where the passage into the limit is done using that eU ∈ L1(R2) and V 2 and Φ are uniformly bounded.
Similarly, rescaling and passing to the limit we get

λ

∫
Ω

euλv2 =
∫
Ωλ

eũλ(y)
(
V 2(y)

)2
Φ2(δλy + xλ) dy + o(1)

=
∫
R2

eU(y)
(
V 2(y)

)2
dy + o(1). (11.14)

Finally we estimate∫
Ω

|∇Φ|2ψ2 dx. (11.15)

Recalling that ψ is bounded, |∇Φ|2 ∈ L1(Ω) and V 2 → 0 as |x| → ∞, we can pass to the limit in (11.15) getting∫
Ω

|∇Φ|2ψ2 dx = o(1). We are now ready to estimate the eigenvalue μi,λ. From (11.10), (11.13) and (11.14) we get

μ5,λ �
∫
Ω

|∇v|2
λ

∫
Ω

euλv2
= c2 +

∫
Ω

ψ2|∇Φ|2 + o(1)∫
R2 eU(y)(V 2(y))2 + o(1)

= 3 + o(1). (11.16)

Setting μ5 = limλ→0 μ5,λ we have proved that μ5 � c2 = 3.
Let us prove that μ5 = c2 = 3. Let v5,λ be the eigenfunction related to the eigenvalue μ5,λ and let ṽ5,λ =

v5,λ(δλy + xλ). Then ṽ5,λ solves⎧⎨
⎩

−�ṽ5,λ = μ5,λe
ũλ ṽ5,λ in Ωλ,

‖ṽ5,λ‖∞ = 1,

ṽ5,λ = 0 on ∂Ωλ.

(11.17)

Let us show that ṽ5,λ is uniformly bounded in the space W . Indeed∫
R2

|∇ṽ5,λ|2 = μ5,λ

∫
Ωλ

eũλ ṽ2
5,λ � μ5,λ

∫
Ωλ

eũλ → 8πμ5.

So by standard elliptic regularity theory we have that ṽ5,λ → ṽ5 in C1
loc(R

2), where ṽ5 ∈ W is a solution of{
−�ṽ5 = μ5

1
(1+|x|2/8)2 ṽ5 in R

2,

‖ṽ5‖∞ � 1.
(11.18)

Let us prove that ṽ5 	= 0. Let zλ be the point of Ωλ such that ṽ5,λ(zλ) = 1. If ṽ5 ≡ 0 then zλ should go to infinity. Let
us consider the function

v̂5,λ = ṽ5,λ

(
x

2

)
.
|x|
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Then v̂5,λ solves

−�v̂5,λ = 1

|x|4 eûλ v̂5,λ

and, as in the proof of Lemma 4.2, we have
∫

R2 |∇v̂5,λ|2 is uniformly bounded and v̂5,λ → 0 in C2
loc(R

2 \ {0}). By
the regularity theory we reach a contradiction as in the proof of Lemma 4.2. From Eq. (11.18) one has that μ5 is an
eigenvalue of problem (3.9) and ṽ5 is a related eigenfunction. However, since v5,λ is orthogonal in H 1

0 (Ω) to vj,λ for
each j < 5, we have that μ5 > μ4 and then μ5 = 3. As we remarked cases i = 6,7,8 can be handled in the same way.

Case i = 9 with n = 2 and l2 = 5 in (11.9). By the previous step we have that ṽi,λ → ∑5
l=1 ai

l V
2
l for i = 5,6,7,8

and some coefficient ai ∈ R
5. Note that the coefficient aj are orthogonal to the previous ones in R

5. Let b be a vector
in R

5 which is not zero and which is orthogonal to aj for j = 5, . . . ,8. If b5, the last component of vector b, is zero,
we can reason as before getting the result. Now we analyze the case b5 	= 0. We want to estimate the eigenvalue μ9,λ

with formula (11.10), where v = Φ̂ψ +∑
ajvj,λ where Φ̂ is as defined in (10.2), ψ = ∑5

l=1 blV
2
l ((x − xλ)/δλ) with

b as chosen before. Reasoning as in the first part of the proof, using the orthogonality of aj and b in R
5, we get

aj = o(1) for j = 1, . . . ,8. We can argue as before getting

μ9,λ � 3 +
∫
Ω

ψ2|∇Φ̂|2 + o(1)

λ
∫
Ω

euλΦ̂2ψ2 + o(1)
.

Recalling the proof of Theorem 2.5, using the fact that V 2
l are uniformly bounded in R

2 we get that the denominator
is strictly positive while the numerator goes to zero as − C

log δλ
. This proves the Theorem for i = 5, . . . ,9. �

Appendix A

A.1. Uniform boundedness of ∂ũλ

∂xi
in Ωλ

Lemma A.1. Let ũλ be as defined before. We have∣∣∣∣∂ũλ

∂xi

∣∣∣∣ � C

|x| in Ωλ. (A.1)

Proof. Let Ω be such that B(x0,1) ⊂ Ω . We know by (3.2) that uλ(x) → 8πG(x, x0) in C1(Ω̄ \ B(x0,1)). Hence
we have∣∣∣∣∂ũλ

∂xi

∣∣∣∣ � C sup
Ω\B(x0,

1
2 )

∣∣∣∣∂G(x, xλ)

∂xi

∣∣∣∣ � C

|x − xλ| for x ∈ Ω \ B(x0,2).

Recalling that ũλ(y) = uλ(δλy + xλ) − ‖uλ‖∞ a simple computation shows us that

∂ũλ

∂yj

(y) = δλ

∂uλ

∂xj

(δλy + xλ) � C

|y|
for y ∈ Ωλ \ B(0, 2

δλ
).

Now we need to estimate the first derivatives just for x ∈ B(0, 2
δ λ

). To this end, using the Green’s representation
formula, we get

∂ũλ

∂xi

(x) = δλ

∫
Ωλ

∂

∂xi

G(δλx + xλ, δλy + xλ)e
ũλ(y) dy.

From the standard decomposition of G(x,y), we can write

∂ũλ

∂xi

(x) = δλ

1

2π

∫
δλ(x − y)i

δ2
λ|x − y|2 eũλ(y) dy + δλ

∫
∂H

∂xi

(δλx + xλ, δλy + xλ)e
ũλ(y) dy. (A.2)
Ωλ Ωλ
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Since H is a harmonic function we have that

∇H(x,y) � C sup
y∈Ω

∇H(x,y) = C sup
y∈∂Ω

∇H(x,y) = C sup
y∈Ω

(x − y)

|x − y|2 .

Then,

∇H(δλx + xλ, δλy + xλ) � C sup
y∈∂Ωλ

1

δ λ

(x − y)

|x − y|2 .

On the other hand since y ∈ ∂Ωλ and x ∈ B(0, 2
δ λ

) we get that supy∈∂Ωλ

x−y

|x−y|2 ∼ δλ → 0 as λ → 0, ∀x ∈ B(0, 1
δ λ

).
We turn back to the (A.2), getting∣∣∣∣∂ũλ(x)

∂xi

∣∣∣∣ � 1

2π

∫
Ωλ

1

|x − y|e
ũλ(y) dy + sup

y∈∂Ωλ

1

|x − y|
∫
Ωλ

eũλ(y) dy

� 1

2π

∫
Ωλ

1

|x − y|e
U(y) dy + O(δλ) � C

∫
R2

1

|x − y|(8 + |y|2)2
dy + O(δλ). (A.3)

Note that for x ∈ Ωλ we have δλ � 1
|x| and∫

R2

1

|x − y|(8 + |x|2)2
� C

|x| .

Then the claim follows. �
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