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Abstract
We consider the eigenvalue problem

—Av=2Ape" v in £2,

lvlloo =1 0.1
v=0 on 952,

where £2 is a bounded smooth domain of RZ, A > 0 is a real parameter and u,_ is a solution of

—Auy =reé'*  in 2,
uy =0 on 082

such that A o e"* — 8m as A — 0. In this paper we study the asymptotic behavior of the eigenvalues u of (0.1) as A — 0. Moreover
some explicit estimates for the four first eigenvalues and eigenfunctions are given.

Other related results as the Morse index of the solution u; will be proved.
© 2007 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let us consider the Gelfand problem,

J— — u 1
{ Au=re* 1in $2, (1.1

u=20 onds2,

where £2 is a smooth bounded domain of R? and A > 0 is a real parameter.

Eq. (1.1) has many applications. For example it arises in the contest of the statistical Mechanics as done in [5,6]
(see also [17,9] and references therein).

Another interesting field where (1.1) appears is in the Chern—Simon—Higgs model (see for example [23] and the
references therein).
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Throughout the paper we will consider a solution u; to (1.1) satisfying

)\/e’” — 81 asi—0. (1.2)
2

The behavior of solutions of (1.1) satisfying (1.2) was largely studied by many authors. We can just mention here the
papers [8,11,12,20,22,23] as well as many others.

Condition (1.2) corresponds to study the so-called one point blowing-up solution, i.e. solutions whose maximum
is achieved exactly at one point where the solution goes to 4-00.

For this class of solutions, denoted by u; , we consider the eigenvalue problem

—Av=2Ape" v in £2,
{”U”oo:L (1.3)
v=0 on 452
and we study some properties of the eigenvalues u and of the corresponding eigenfunctions.
Problem (1.3) comes out from the eigenvalue problem related to the second derivative of the functional

F(u)—l/|Vu|2—A/e”
T2
2

2

in the Hilbert space HO1 (£2). The study of the spectrum of F” is crucial to calculate the Morse index of the solution u;,.
One of the result of this paper will be the computation of the Morse index of the solution u, in some special cases.
Another interesting problem linked to (1.3) is the classical problem of the nodal line of the second eigenfunction. It
was proved by A. Melas [19] that if we consider the second eigenfunction of the Laplace operator in a planar convex
domains then its nodal line touches the boundary. This result is largely open for eigenfunctions of higher order. In
this paper we describe some properties of the nodal line of the eigenfunctions to (1.3). For example we show that, if
£2 is convex, the nodal line of the second and third eigenfunction touches the boundary. On the other hand, without
any assumption on £2, we prove that the nodal line of the fourth eigenfunction does not touch the boundary of £2.
Moreover, the asymptotic behavior of these eigenfunctions is described.
A crucial tool in the study the eigenvalue problem (1.3) is given by the following “limit” problem,
—Av = (H";%v in R2, (1.4)
v e L®¥(R?).

Roughly speaking, the eigenvalues ) of (1.3) converge to the eigenvalues (L, of the problem (1.4) as A — 0
and the same happens for the corresponding eigenfunctions (up to a scale argument). This will be stated precisely in
Section 11.

The eigenfunctions of problem (1.4) can be explicitly computed using the Legendre function. In this way one can
see that any eigenvalue has multiplicity greater than 1 and the corresponding eigenfunctions can be divided in two
classes.

The first one is given by nonradial functions which go to zero at infinity and the second one is given by radial
functions which converge to a nonzero constant at infinity. These two types of limiting eigenfunctions give rise to
eigenfunctions of problem (1.3) which behave differently.

In this way we give some “global” results about the spectrum of (1.3) but the most important aim of this paper is
to study with great attention the first fourth eigenvalues.

For example we will see that the second and the third eigenfunctions of (1.3) look like the nonradial eigenfunctions
related to the eigenvalue 1o, = 1 and the fourth eigenfunction of (1.3) looks like the radial eigenfunction related again
to Uoo = 1.

In this case we will compute asymptotic expansions for the eigenvalues and related eigenfunction. Note that, even
in the case of the first eigenvalue, more work is needed.

The asymptotic estimate on the second and third eigenvalue enables to derive some results on the Morse index
of the solution. The first one says that if £2 is a convex domain then the Morse index of the solution u, of (1.1) is
exactly 1 (see Corollary 2.8). Moreover, for a general domain we will derive that the Morse index of the solution u;
is at most 2. This last result appears differently from singular problems in higher dimensions (see [1] for example).
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Finally, we observe that our results have some similarities with the corresponding in [16], where was considered
a perturbed critical Sobolev exponent in RY for N > 3. But since in R? we do not have the Sobolev Embedding
Theorem and some orthogonality properties of the eigenfunctions, here the problem seems harder.

The paper is organized as follows: in Section 2 we state our main results; in Section 3 we recall some known facts
about problem (1.1); in Section 4 we consider the first eigenvalue and the first eigenfunction and in Section 5 we
give an important estimate on the second eigenvalue; in Section 6 we study the behavior of the second eigenfunction;
Section 7 is devoted to the third eigenvalue and the third eigenfunction; in Section 8 the asymptotic behavior of the
second and third eigenvalues of (1.1) is proved and, using a result of [4], we have that, for a convex domain, the Morse
index of the solution u; is 1; in Section 9 we consider the nodal region for the second and third eigenfunctions; in
Section 10 we treat the case of the fourth eigenfunction; in Section 11 finally we get the asymptotic behavior of the
spectrum of problem (1.1).

2. Statement of the results
Let G(x, y) be the Green’s function of —A in §2 with Dirichlet boundary conditions. Then

1
Gx,y)=—7_loglx —y|+ H(x, ), 2.1)

where H (x, y) is the regular part of the Green function. Let R(x) = H (x, x) be the Robin function of £2.
Let us consider the solution u;, of (1.1) satisfying (1.2). For such a solution we consider the eigenvalue problem

—Av=Aue"*v in £2,

vllec =1, (2.2)
v=0 onds2.
It is well known that problem (2.2) admits a sequence of eigenvalues @i < p2 < 3 < ---. Let v; ) be the

eigenfunction corresponding to the eigenvalue w; 3, i.e. v;,; solves

—Av;p = Aty in 82,
i lloo = 1, 2.3)
Vi = 0 on 0§2.

In order to state our results we recall that if x; is a maximum point of u,, i.e. a point such that u; (x)) = ||u) |l cc, We
have that x; converges to a point xg € §2 (see Section 3 for details). Let

| 12
&= ( Kol ) -

and v; ; (x) = v; 5 (8xx + x;) be the rescaled eigenfunction defined in the domain £2; = %/\(.Q —X;).
We start with some results concerning the eigenvalues and the eigenfunctions of (2.2).

Theorem 2.1. Let u) be a solution of (1.1) which satisfies (1.2), and let 1 ;. be the first eigenvalue of (2.3) and v
be the first eigenfunction. Then

= (1+o(D); 25
1,0, 210gA( +o(1)) (2.5)
L 8w Glx,xo) in CL(2\ {xo}) A = O; (2.6)
M1
D1a— 1 inCL.(RH) A — 0. (2.7)

Theorem 2.2. In the same assumption of Theorem 2.1, we have
aix1 + aéxz

Vi (x) > v = 8+ [x|2

ash— 0 (2.8)
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in Clloc(Rz)fori =2, 3 and some vectors a' = (a’i, aé) #0,
2

Vi X) )‘(x) Z 8G(x *o) ash— 0 (2.9)

inCL (2 \ {x0}), fori =2, 3, where (ai, aé) are the same as in (2.8).

loc

Theorem 2.3. Let ¢; < ¢ be the eigenvalues of the Hessian matrix D*R(xo) of the Robin function at xo. Then
1 — pi s
2

— 247 ash—0 (2.10)
A

fori =2,3. Moreover 1y = c1 and 13 = c», and the vector a' of (2.8) are the eigenvectors corresponding to cj_1.

Next we study some properties of the nodal line of the eigenfunctions. Let us recall that the nodal set of v; j is
defined as

N,‘,)LI{XE.QZ vi,k(x)=0}. (211)
Theorem 2.4. In the same assumptions of Theorem 2.1, we have:

() if 2 be convex, then N; ; N3 #, for i =2, 3 with A small enough;
(i) the eigenfunctions v; ;(x), i =2, 3, have only two nodal regions, if A is small enough.

Now we consider the fourth eigenvalue, getting the following results:

Theorem 2.5. In the same hypothesis of Theorem 2.1 we have

_ et -
=b Ci..R r—0; 2.12
U4 — Ua 8T 12 in C,.(R%) as A — ( )
V4. (x)logh — 4nbG(x, x0) in CIIOC(Q \ {xo}) as A — 0; (2.13)
1
1-— =—— 1 2.14
4, log? (c1 +0o(D), (2.14)

where b € R, b#0, co =% and c; = 2(1;04”) <0.
Theorem 2.6. The eigenvalue ji4.; is simple and the corresponding eigenfunction vs, ) has only two nodal regions if
A is small enough. Moreover the closure of the nodal set of va ). does not touch the boundary.

Corollary 2.7. Let x) be the maximum point of u; in §2, and limx), = xo € §2. Then if xo is a nondegenerate critical
point of the Robin function R(x) of §2, denoting by m(xo) the Morse index of xo as a critical point of R(x), we find
that the Morse index of u, is equal to m(xo) + 1.

The previous result enable us to compute the Morse index of the solution u,. We recall that the Morse index of a
solution u; is the number of eigenvalue u less than 1.

Corollary 2.8. Let 2 be a domain of R>. Then,

(1) the Morse index of u) in §2 is 1 or 2,
(i1) if §2 is a convex set then the Morse index of u;, in S2 is exactly one.

Our final result concerns the convergence of the whole spectrum. A crucial role is played by the limit problem (1.4).
In order to state the precise result we need to introduce long and noisy notations. For this reason we prefer to state the
results in Section 10. We just say that it will be proved that the whole spectrum converges to the corresponding one of
the “limit problem” and an analogous convergence holds for the related eigenfunctions.
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3. Preliminaries and known results
Let us recall the following known facts:

Theorem 3.1. Let u; be a solution of (1.1) satisfying (1.2). Then if x),_is a point such that u) (x;) = ||u || c0, we have
that x)_converges to a point xg € §2 such that

VR(x9) =0, (3.D

u)(x) —> 8w G(x,xp) in Clloc(.(_Z \ {xo}), (3.2)
s (x1)

u; (x) — log ¢ in 2, (3.3)

i <
(14 gremr ) |x — x;|2)?

lnlloo = —2log A + Co — 8T R(xg) +0(1) asi— 0, (3.4)
where Cy = 21og8 and R(xo) = H (xo, X0).
Proof. Estimates (3.1) and (3.2) are proved in [20] while estimate (3.3) is proved in [15] using a result of [18]. In [15]
itis also proved (3.4). O

Let 6, be as in (2.4). Then, from (3.4) it follows that 8% — 0. Considering the rescaled function

i (x) =u(érx +x2) — urlloo (3.5)

forx € £2) = %A(Q — X;.), the estimate (3.3) gives the following

iy (x) < C +log n £2;, (3.6)

1
(1 + [x]?/8)?
where C > 0.

Theorem 3.2. Every solution U € C*>(R?) of the problem

—Au=¢e" in R?,
is given by
Us,y(x) =1 i (3.8)
x)=log———— .
W G P2
forany (8,y) e RT x R2,
Proof. See Chen and Li [10]. O
In the sequel we write
1
Ux)=Uso=log———.
() =Uso=log (g2
Theorem 3.3. Let v € C*(R?) be a solution of the following problem
_ -1 ) TR2
Av= gy nRY (3.9)
v e L®(R?).
Then
2 2
. 8 —
v = 4 x| (3.10)

S84 xP 8+ x|

for some a;, b € R.
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Proof. See [11] or also [13] for a more detailed proof. O

Lemma 3.4. Let 2 be a smooth bounded domain of R?. For any y € 2 we have

06, ) 1
/(X—y)'v(x)<T> de—E,
082

2
/vi(x)<30(x,y)> do_xz_aR(y)’

vy dyi
082
9?R(y) /aG(x,y) 9 <8G<x,y>>
:—2 P de’
dyidy; ox;  dy; vy
2/( ) aG( ) i (x,y)d aR()
x—y) -vy—I(x, X, oy = ——(¥),
Y xan Y 0y; vy Y ! dyi Y
R
3°G
,y)do, =0
/ S e ) o
082
fori,j=1,2.

Proof. See [15] for the proof of (3.11)—(3.13). Let us prove (3.14). Differentiating (3.11) we obtain

3G 32G 3G 2
2/<x—y)~vx§<x,y> (x,y)dox=/w<—<x,y>) do.
082

0y; vy KA dVy

The claim follows from (3.12).
To prove (3.15) is sufficient to note that

/E(Xay)dax:/AG(x,y)dxz—l

Iy
QR 2

and differentiate. O

Lemma 3.5. Let u), be a solution of (1.1). Then the function i), : $2), = (2 — x,) /8 — R,
Uy (x) = u; (8nx + x2) — llusll

verifies

i, (x) — log in C2.(R?).

1
(1+ |x[2/8)?
Proof. The result is standard (see [15] for example). O

4. On the first eigenvalue and the first eigenfunction

Let 11,5 be the first eigenvalue of problem (2.2) and v, the corresponding eigenfunction which solves

—Avyp = Apy e vy in §2,
lvialleo =1,
Ui = 0 ond52.

The first eigenvalue is given by the classical (Rayleigh—Ritz) variational formula, namely
V|2 dx
iy = inf Ja Vol

bty & fperitdx
v#£0

@3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

“.1)

4.2)
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Lemma 4.1. Let (11 5 be as stated before. Then w ; — 0as A — 0.

Proof. We want to estimate 111, using formula (4.2). Consider the function u, € HOl (£2). Then, by (1.1)

Jo V> [geu
e A [ eru? B Joeuz

(4.3)

Using the rescaled function i) (y) = u; (8, y + x;) — |4y |lcc We have

A / ety = A / ¢ (un — ez lloo) + Ml lloo / o (4.4)

2 2 2
while
2
,\/emui:A/em(,“— et lloo) +k||u;||go/eux +zx||ux||oo/em(uA — [l lloo)- 4.5)
2 2 2 2

Inserting (4.4) and (4.5) into (4.3), and then rescaling, we get

S, €+l llooh [ €

K1 < — — : (4.6)
Jo, €5+ 2lusllos [o, €™ iix + lualZh [ e
By the estimate (3.6), we see that
. C —log(1 2/8)?
|e’“ﬁ,\| < og( +|2)’|2 /8) : “.7)
@+ [y9)
; C —log(1 2/8)%)2
2| < ¢ C o+ /DY “s)
@+ 1y9)
By (4.7) and (4.8), we can pass into the limit into (4.6) getting
Ci+o() + lluplloc (87 +0(1))
TIRES = (1+o(1) (4.9)

Ca +0(1) + 2[|uz [loo(C1 +0(1) + 87 + o) [lun % llualloo
where C| = [, eV U = —167 and C5 = [p, ¢V U? = 647 The claim follows using (3.4). O

Lemma 4.2. Let w1 and vy, be as stated before and let v1 5 (x) = v1 (8, x +x3). Then vy, — c in CI%C(RZ), where
¢ # 0 is a constant.

Proof. It is easy to see that v; , satisfies the equation

—ADy = p1e" D), in £2),
01allo =1, (4.10)
U1 =0 on 082,

where §2, = (£2 — x,) /8. From (3.6) the right-hand side of equation (4.10) is bounded in L°°. Moreover |01 3 |lco = 1
implies that |V 01 ;| is bounded in L?(R?). Then using the standard elliptic regularity theory, U1, — V1 in ClzOC (R?),
where v satisfies

Av; =0 inR?, 4.11)

and since ||v1]|oo = 1 we infer that vy is a constant. We want to show that v; £ 0. Let z; be the points of §2; such that
U1,1(25) = 1. If v1 =0 then z, should go to the infinity. So let us consider

~ - X
Via =Vl 75 )
x|
x
AN ——=
|x|?

and

O3

iy =
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Then vy, satisfies the equation

1. 5

R 1
—AV L= —7 1€ 1,2 (x)

x|
where (again by (3.3))
1

. 1 C
_ ity (x) < - -
e S |x|4(1+1/(8|x|2))

cc 64|x|*
S E A RERE + 1)2

Moreover ||1 3]lco < 1 and 0y — 0 in CIZOC(]R2 \ {0}), so that ¥; , — O in L2(B;(0)). Since the capacity of one point
is zero, we can apply the regularity theory to v, (see Theorem 8.17 in [14]) observing that

<64Cuy ) — 0.

||1A11,A||L°°(Bl(0)) < C||1A}1,A||L2(Bl(o)) — 0.
2

This gives a contradiction since |0y [|Lo(p, ) =Ua(z2) =1. O
2

Remark 4.3. In Lemma 4.5 we will show that ¢ = 1.

Lemma 4.4. Let (11 5 be the first eigenvalue of problem (4.1). Then
1

M S gl +o(1))

Proof. Multiplying Eq. (4.1) for u; and integrating, we get

/Vvu~Vukdx:)\,ul,k/e”*u;hvmdx; (4.12)
2 2
while using Eq. (1.1) we get

fVuA-Vvl,kdxzkfe”*vl,xdx. (4.13)
2 2
Then

)»/e’“vudx:AMl,A/e”‘ukvl,Adx.
Q Q
Rescaling both sides we have

/ i dy = / i1, 51 5 dy + 11l oo / ¢ 515 dy. @.14)
Q}L QA QA

Using estimate (3.6) and ||91,,]lcc = 1, we can pass to the limit in (4.14) and then

[ Ommay oty =u [ Om a0y + m,umuoo( [Omeray+ 0(1)>.
R2 2, R2
Again by estimate (4.7) and the boundedness of ||v; ;|0 We have

8¢+ o(l) =m( / VDU )i (y) dy +o(1>) + p llulloo (87 + o(1))
RZ
= 1,3 (—=16mc +o(1)) + piallus lloo (87 ¢ + o(1)).

Passing to the limit as A — 0, we infer that limy_, o 1.3 l|#r]lcc = 1 and the lemma is proved using the esti-
mate (3.4). O
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Lemma 4.5. Let vy and 1 be as stated before. Then
vy, (X)
M1,

— 87 G(x,x0) in Cp($2\ {x0}) as A — 0. (4.15)

Proof. Let x € 2\ {x¢}. Using the Green’s identity formula we have from (4.1),
via(x) N
K1,

/ G(x,y)e"*Puy ; (y)dy

=G (x, x0) / Oy (y)dy + 4 f [G(x,y) = G(x, x0) ] vy 1 () dy
2 22
— G(x.x0) / O () dy + I
o
=8rcG(x, x0) +o(1) + I.;. (4.16)

The passage into the limit is done by using the estimate (3.6) and |vy | < 1.
To prove (4.15), we have to show that I ; — 0. We can choose p > 0 such that B, (xo) C £2 and x ¢ B, (x). Then

L= ?»/[G(x, y) = G(x,x0)]e" Py ;. (») dy

Q
=1 f [G(x,y) — G(x,x0) e P11 (y) dy + 1 f [G(x.y) — G(x,x0)]e"* vy 1 (y) dy.
2\ B, (x0) B, (x0)
By estimate (3.3) and (3.4) we have

CL
(ch+ gly —x D2

Recalling that x) — xo we have that |y — x;| > % in £2\ B,(x0), if A is small enough. Hence we get

1Dy 5 (y) <

Ca
0 _
A / [G(x,y) — G(x,x0)]e"* P vi 1 (y)dy < CEWSEE / [G(x,y) — G(x,x0)]dy
Q\Bp(xo) -Q\Bp(xo)
C'x

NCEY i

Choosing p = AF with k < % we get

A / [G(x. y) — Gx.10)]e vy 5 (y) dy — 0.
2\By(x0)
On the other hand we have

p / [G(x, ) = Glx, x0)]ePvia(y)dy < sup |G(x,y) = Gx, x0)[& / vy ady =0
YEB, (x0)
B, (x0) B, (x0)

because x ¢ B,(xo) and ke“*(y)vl,)\(y) € L'(£2). In this way we have that /1, — 0 and from estimate (4.16) we
get (4.15).

The same proof applies for the derivatives of vy .

Now we prove that ¢ = 1. We already know from Lemma 4.2 that ¢ # 0. Let z; € §2 such that v 3 (z)) = 1. This
can be done since, by the definition of v; ;, we have vy 3 > 0in §2. Up to a subsequence z — z € Q.1fz %+ x( using
equation (4.15), we have

1 via(@)
M1, M1,

— 8w cG(z, x0) (4.18)
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and this is not possible since the left-hand side goes to infinity while the right-hand side is bounded.

Hence we have that z = xo. We have the following alternative: either |z, — xx| > 6, R for any R > 0 or z) €
Bs, r(x3) for R > 0 and A sufficiently small.

Case 1. We c0n51der first the case where |z) — x3| > 8, R for any R > 0. Set w) (x) = v (rx + x,) — a
where y;) = 2ﬂ,u1 )\log f_Q e’“(})vl 2(»)dy and r) = |z, — x;|. The function w;, (x) is defined in the set .Q;L =

(82 — x;)/r;. Since z,, — xo we have that r, — 0 as A — 0 and so .QA — RZ,
Using the Green’s representation formula we can write

wi(xX) = w1 / G(rax + x5, 8y + x0T, (0 dy —
§25,

and by the standard decomposition of the Green’s function we get

1 1 ~ 5 ~ 5
w;y,(x) = MI,A/ —log ——————" 0§ 5 (v)dy — ya + 111 / H(rx + x5, 8,y + )€™ %) 5 (y)dy
21 [rx — 8|

2 2
1 1 - 5 (v ~
=_—u1 ;\/ — W5 () dy 4 s / H(rax 4 x5, 83 +x)e™ D5y 5 (v) dy
2 Ix — (B /ryl
25 2,
1
:,ul,)\8nc(logm +H(x0,x0)+0(1)>, 4.19)

where we used (3.6), and the boundedness of H (r,x + x;, 8,y + x;) because r)x + x; is an interior point of £2;.
Hence we obtain
wi (x)

238

— w(x) = 8nc<log % + R(x0)> in Cioc (R \ {0}). (4.20)

The same can be shown for the derivatives of w; to derive the convergence in Clloc(R2 \ {O}).

This gives us a contradiction since we have a sequence of points z, = (z, — x,)/r, such that Vw; (Z,,) = 0, which
converge to a point Z such that |Z| = 1 and Vw(z) = 0. This is a contradiction with (4.20).

Case 2. Here we assume that z, € Bs, g(x;) for some R > 0. Let Z; = (z) — x5)/8x. Then z, € Bg(0) and
U1,1(Z,) = 1. Reasoning as in the proof of Lemma 4.2 we have that U1, — ¢ uniformly in B;z(0) and since
U1,1(Z,) =1 this implies thatc=1. O

Remark 4.6. We observe here that the proof of Lemma 4.5 implies that the maximum points of v, are inside the
ball Bs, r(x;) for some R > 0 and hence they converge to xp.

Proof of Theorem 2.1. This is derived from Lemmas 4.2, 4.4 and 4.5. O
5. Estimates for the second eigenvalue

Lemma 5.1. For any eigenfunction v; ) we have the following integral identity

uy, 9
ez v“\dox_)»(l—,u,k) e, U g (5.1)
Bx] ov 0x;
052
for j=1,2.

Proof. Differentiating Eq. (1.1) with respect to x; we get

9 9
AT e T @ for j=1,2. (5.2)
0x; ax,-
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Multiplying (5.2) by v; , and integrating we get

d ad
/v( ”*) Voisdx = A /e’“ﬂvi,;\dx (5.3)
ax/' 3)6/'
2 2
while multiplying Eq. (2.3) by 3% 3'“ we have
auy, ou), dv; d
/Vv, 3 V( )dx _ [ Hr Yia do, = )»/Li,k/e”*vi,kﬂ. (5.4)
ox; dx; dv ox;
Q 2

Using (5.3) and (5.4) we get (5.1). O

Let u) be a solution of (1.1) satisfying (1.2), and let x;, € £2 such that u; (x)) = ||ux |l co- By Theorem 3.1 x; — - X0 €
£2, hence there exists p > 0 such that B(x,,20) C §2. Let é e C(‘)X’(B(O 2p)) such that é=1in B(0, p); 0< <1
in B(0,2p) and let

D(x)=D(x —x;). (5.5)

Proposition 5.2. We have

pos <1+ CB2, (5.6)
o — 1. (5.7)

Proof. We estimate the second eigenvalue using again the variational formula

2 inf f(z |Vol? 58
2.0 = 277 .
veHL (@), v£0, vlvy, A [ €22
To this end let Y1 (x) = gff (x) and v = @Yy + ay ,v1,. We take
Ao e @Yvg Nia
al,)»:_ fﬂ — :—D’ (59)
S P LA

so that v L vy ; in H] (£2).
Step 1: Here we show that a; ; = o(1). We estimate D, in (5.9) as follows

Du:x/e"kvfk:/e"kvﬁ_sn+o(1).

2 £2;

This implies that Dy , > 77 > 0 if A is small enough. We only have to prove that N1 , = o(1). To do this, we observe
that, since @ =1 on B, (x;),

u 3 F

Nuz)»/e”*—kvl LD dx = A / e S Ddx+ A / ey dx =1 + I (5.10)

’ axy dxy axy
2\B,(x2) Bp(x2)

By the convergence results (3.2) and (4.15) it is easy to see that
814)L
L1 =A a—v1 2@ dx =0(puy,n) =o(l). (5.11)
X1
2\B)(x3)

To estimate I, we use Eq. (5.1) wherei =1, i.e.

X1 8X1 81)x

814)» 314)L 81)1,)L
(1 —/Ll,)\))»/.e *a—vl =] — doy. (5.12)
2 082
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Using convergence (3.2), (4.15) and (3.12) it is easy to see that

ouy 0v G 2
N doy =1 <(87r)2/v1<8—(x,xo)> doy +0(1)> =o0(11,)-

0x1 0vy Vy
082 082

By (2.5) we get that (5.12) implies
0 0 0
A/eux—m vy = A / ey f ¢ 2y = o).
d ax; ’

X1 0xy
Q\Bp(X)L) Bp(x)»)

Arguing as in (1.3) we get )‘fQ\Bp(x,\) e”’ﬂgﬂv“ = O(Aj1,,) and this implies that Aprm) etr %Ul,k =o(i1.2)-

X1
This last estimate together with (5.10) and (5.11) implies that Ny ; =o(u1,1).
Step 2: Here we prove estimate (5.6). Recalling the definition of v we have

/|Vv|2=f|V¢>1/f1|2+2a1,x/w¢1/f1)-wl,w(al,uzﬁwl,uz
2 2 2

2

- / VoY P+ 2a1 21 20 / O DYvr s+ (a1, ki f it
2 2 2

= / IVOY1> — (a1.)*Ap1a / e,
2 2
Since ¥ solves Eq. (5.2) we have

[vone = [uiversa [ enoryi
2 2 2
Inserting this in (5.13) and forgetting the lower order term we can write

/|Vv|2=/¢f|vq§|2+A/e“*¢2w12+0(1).
2 2 2
In a similar way we have

)»/e’“vz:)\/e’“@zlplz+2a1,;h)»/e”kv1,,\¢1ﬁ1 —l—(al,,\)z)»/‘e“kv%’)\
2 2 2 2
:)\fe'”@zt/flz—i—o(l).
Q
Inserting (5.13) and (5.14) into (5.8) we get

Ao @MYi + [oUiIVeT +o(l) | Jo W3HV®> +o(1)
A fo e ®2yd 4+ o(1) A fo e @2yl +o(1)

M2 <

(5.13)

(5.14)

(5.15)

We only have to estimate both integrals in (5.15). For the first one we use the convergence of u; to 87 G(x, xg) in

Cloe (2 \ {x0}), getting

/ Vo Py? = f Vo Pyl
2 $2\B, (x3)
96 (x, x0)

2
) +o(l) =co +o(D),
axl

— 87) f |va>|2<
2\ B, (x0)

where cg > 0; while, for the second one, a simple rescaling argument leads to

(5.16)
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~ 2
Y / ¢ 2y ? = L / P25,y +xx)<8ﬂ()’)> dy
61 ayq
22
o2 ) 1 (4
(x0) dy+ o(1) 8 3;1 +0o(1) ). 5.17)
A

Here we use estimates (A.1) and (3.6) to pass to the limit. Finally we have
co +o(l)

(1/83)(c1 +o(D) +o(l)

where ¢| = %r{ and cp/c1 > 0. So (5.6) is proved.

Step 3: In this step we prove (5.7). Let uo =limy o u2,1. By (5.6) 2 € [0, 1]. We assume u < 1 and we reach a
contradiction. Let us consider a second eigenfunction vy ; related to w2 . Then vy ; solves

&)
pos <14 2C—S§
1

—Avyp = Aupjetva;  in 2,

lvzalleo =1, (5.18)
v =0 on d52.

Let 02 3 = v2.1(8xx + x3) be the rescaled function. Now v, , solves

—Abp = pa e vy, in £2y,
02,4 ll00 =1,
U2 =0 on 2.

Let us show that V13 ; is uniformly bounded in L?(R?). Indeed

/IVfiz,/\Iz:Mz,x/e vu sz/ b — 8w pa.
R2 2

25

So by the standard elliptic regularity theory we obtain that v, — vz in CllOC (R?), where 7 is a solution of

A 1 ~ 2

{ NAU2 = U2 (l+|x|2/8)2 v2 1In R ) (519)
l92flo0 < 1.

Let us prove that v, # 0. To do this let z be the point of §2; such that v, (z,) = 1. If v =0, then z; should go to

infinity. Let us consider the function

A - X
v =V — -
20 = V20| 12

Then 07 solves

_Abyy = iy . (5.20)
P
As in the proof of Lemma 4.2, we can show that the right-hand side of (5.20) is bounded in L% (R?) so that V1o, is
uniformly bounded in LZ(RZ) and 0, — Oin C2 (R?\ {0}). Using the regularity theory we reach a contradiction as
in the proof of Lemma 4.2.
At this point we note that u; is an eigenvalue for problem (1.4) an v; the corresponding eigenfunction. If uy < 1
then ;o =0 and v, = 1. But we get a contradiction since vy ; is orthogonal to vy ; and then

/Vvl’vag,;\:O —— )»/e'”vl,;\vz,;h =0 = /(31”171,)\172,)L =0.
Q £2)

loc

Passing to the limit we obtain

/eU(y) dy =0,

R2
a contradiction. Hence pp ) — 1. O
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Lemma 5.3. We have

2 2
ai )xl +a§ )xg @) 8 — |x|?

8 + |x|? 8 + |x|?

(5.21)

GZ,A —

in CL (R2), with (a\?,a$?,b®) £ (0,0,0) € R>.

loc

Proof. Arguing as in the last part of the proof of Proposition 5.2, we see that v ; — v2 in Cll0 . (R?) where #, solves
1 ~ : 2

TrpRE 2 IR (5.22)

02lloc = 1.

—AvUy =

Recalling Theorem 3.3 we have

2 2
ai )x1 +a§ )xz @) 8 — |x|2

8+ |x|? 8+ |x|2

va(x1, X2) =
But v, = 0 is not possible by Step 3 of Proposition 5.2, so (afz), aéz), b@)£0. O
6. Asymptotic behavior of the second eigenfunction

Lemma 6.1. If the number b'® of Lemma 5.3 is different from zero then
va(x)logh — 4nbPG(x, x9) in Cl(w) (6.1)

where w is any compact set in 2 \ {xo}.
Proof. Multiplying Eq. (1.1) and (5.18) by vz, and u, respectively we get

)»/e”*vz,,\:uz,kk/e”‘uxvz,)x. (6.2)
2 2
Then

)»/eu‘vz,x=)xuz,x/€“‘(ux - IIMAIIoo)vz,x+)»||ux||oouz,x/€"‘v2,x

2 2 2
=M2,A/elhﬁk52,k+)\||MA||00M2,A/3M}”U2,)L
2 Q2
2 2 2
2 |x|2)<al X1 +ay x 8 — x| >
= — —— 1o 1 + — @ dx +o0 1
/<1+|x|2|/8>2 g( 8 8+ |2 8+ xP? @
R2
hu ez [ e vas
2
In the last estimate we can pass to the limit since
_— 2 Jx|? 1(R2
e i, v <|———=logl1+— )| €L (RY).
it ‘(1+|x|2/8>2 g( 8 )
So we obtain the following estimate:
,\/e“xvz,kzz;nb@ +o(1)+A||uk||oom,xfe“w2,k. (6.3)

2 2
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A simple rescaling argument shows us that A f o e"*vy 3 — 0as A — 0. Inserting this into the (6.3) and recalling (3.4),
we find that
4 b
)\/e’“vzxdx =7
’ log A
Q

(1+o(1)). (6.4)

Using the Green’s representation formula we can write

v2,3(x) logh = AlogAuo s f G(x,y)e"* Py ; (y)dy

2
= u2,G(x, xo)uogx/eum‘)vz,k(y) dy + pz;xlog A /[G(x, y) — G(x, x0)[e"* P vy 5 (v) dy
2 2
=47b@ G (x, x0) +0(1) + I 3. (6.5)

where we used (6.4). To prove (6.1) we only have to show that

I ;. = p2 ) log h f [G(x,y) — G(x,x0)]e"* P v 5(y) dy = o(1). (6.6)
2

As in the proof of Lemma 4.5 Vx € £2 \ {xo}, we can choose p > 0 such that x ¢ B>, (xo) C £2 and we can split £2 in
two pieces §2 \ B, (xp) and B, (xp). Proceeding again as in the proof of Lemma 4.5 and using estimate (3.3), we get

C’')log A

Alog A G(x,y) — G(x, m.0) dy < ———== . 6.7
w2, log / (66 3) = Gl x0)]e Vu2a () dy < == ©.7)
§£2\B) (x0)
Now we can consider the integral inside the ball B, (xg). Then
12,22 10g A / [Gx,y) — G(x, x0)]e"* P va 1 (y) dy
Bp(XO)
< klogk(l + 0(1)) / |G(x, y) — G(x,x0)|e’”‘(y) dy
By (x0)
< CAloga / ’VG(x, S)Ily — xole" ) dy
Bp(x())
< plogh sup |VG(x,y)|)\/e”‘(y)dy<Cplogk. (6.8)
yeBp(XO)

2

Here we used that x ¢ By, (xp) and |[VG(x, y)| is uniformly bounded for y € B, (xg). Now we can let p go to zero
in such a way that both (6.7) and (6.8) go to zero. We can take, for example, p = A for any k < %. We proved so
far (6.6) and then (6.1) follows from (6.5). O

Lemma 6.2. For any eigenfunction v; 5 we have the following integral identity

av

31),' A u
/ = (= y) - Vup (x) +2) do = A(1 — m)/e i (( =) - Vg +2). (6.9)
052 2

Proof. Let wy (x) =(x —y)-Vu,(x) +2forany y € RZ. Then it is easy to see that
{ —Aw) = re'rwy, in £2,

wy, () = (x —y) - v¥ 42 onde.

(6.10)
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Using v; ; as a test function we have

/Vw;VVv,-J:)\/e”"w;hv,-,x (6.11)
2 2

while from Eq. (2.3) we get

81),‘,)\ u
Vv - Vwy — ™ wy(x)do =Au;y | € v w;. (6.12)
2 a2 2

Hence (6.9) follows. 0O

Proposition 6.3. We have

aiz)xl + aéz)xz

S x2 ash— 0 (6.13)

g (x) = Uy =
in CllOC (Rz),for some (aiz), aéz)) #0.

Proof. By Lemma 5.3 we only have to prove that 5® = 0. To do this we use the identity (6.9) for i = 2. If by
contradiction 5® = 0 using Lemma 6.1 and (3.2) we can pass to the limit in the left-hand side of (6.9) getting

P G (x, G (x,
logA/ gz’kwl(x)do=4rrb(2)/(87r(x—y)-v (;c %0) +2> (; *0) 4o + (1), (6.14)
V v v

82

Using Eq. (3.11) with y = xo we have

3G (x,x0)\* 1
/(x—xo)-v G x) Vb (6.15)
dv 2
082
while using that G (x, x¢) is harmonic in £2 \ {x¢}, one can prove that
G (x,
/Mdaz—l. (6.16)
av
882

Now we consider the right-hand side of (6.9). A simple rescaling argument give us

)»/e”*vz,xwx dx=/e‘7‘(Y)ﬁz,x(y)(y~Vﬁx(y)+2) dy

2 25
2
128(8 — [y|?) @ Vi 28— 1Iy?
= — - a +b dy +o(1)
8+ 1y»3 ; 78+ yl? 8+ 12
=cob@ (14 0(1)), (6.17)

where the passage into the limit is done using estimate (3.6) and the boundedness of y - Viiy (y) 4+ 2 (see (A.1)). We
observe here that ¢y = 13—671 > 0. Inserting (6.15), (6.16) and (6.17) into (6.9), we have

xb®
(1 — p2,)(cob® +o0(1)) = o (1+o(D)). (6.18)
Hence if 5@ # 0, we find
Il —pop=— c1(1+0(1)) where c; =—8—7T=—§<O. (6.19)
log 1 o 2
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This implies that for A small enough
C1
2log A’

1= s < — (6.20)

But from (5.6), we get
1—poan> CSA, (6.21)
which implies with (6.20) that

! > CS% log A,
giving a contradiction since ¢; < 0 while the r.h.s. goes to zero. So b® =0 and the claim follows. O
Proposition 6.4. We have

9
v“(x) o Z @) G(x ) 0 (6.22)

in CL (2 \ {xo}), where (al(z), aéz)) is the same as in (6.13).

loc

Proof. Using the Green’s representation formula we have

2.5, (x) =Auz,x/G(x,y)e“*(”)vz,x(y)dy-
2

Note that Vx € §2 \ {xo} we can choose p > 0, p € R such that By, (xg) C 2 and x ¢ B, (xp). For such a value of p
we can write

v =i [ G eyt [ GeE i)y =h b (629
£2\B, (x0) Bp(x())
First we study the behavior of ;. Using the estimate (3.3) and since G(x, y) € L; (£2) we have
Cx Cx
hE — | Gx,y)dy< —. 6.24
In| (CHW/ G dy < s (6.24)
Q
We can let p — 0 in such a way that
[11] = 0(81),

for example choosing p = A* for A < %.
For y € B, (xp) and x ¢ By, (xp) the function G(x, y) is regular and we can expand it in Taylor series

2 2 2
G 1
G, )) =G, x)+ Y —@x)y—x)j+5 Y, ) (= x2)j(y = )k (6.25)
=1 9y, 2 k=1 9y;0yk

where 7, is a point between y and x; which are both contained in B, (xo). To study the behavior of I, we write

2
oG
Iy =2 / (G(x,xx)—kzy(x,xk)(y—xx)j)e“*(y)vz,x(y)dy
j=1

Vi
B, (x0)

2 2
1 -G
taen [ 3 T ()0 = 22) (5 = 5, () dy
B, (x0) jh=1""
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=G(x, x0)(1 +o(1)) / "M, ;5 (y)dy
B;.

+5x2—<x w01+ 0(0) [ 524003, dy + R, (6.26)
Jj=1 B;.

2 Y
where Ry = 3420 35 4t [, ) a6 1€ 0200 = 30 (6 = 2 dy and By, = (By(x0) — x:)/63.
Now we want to show that

R)L = O((S}L).

We observe that since y and x; € B, (xg) then also 1, € B,(xp). Moreover since x ¢ B3, (xg) we have
92 G
(x,m)| < sup (x,2)|=C

‘ayjay 2€B,(x0). j.k=1,210Yj0Vk
Using that |vp; (y)| < 1 and p2 3 =14 o(1) we get

RI<Ch [ ey —nPdy<Co, [ Olyiay. 6.27)

B (x0) By,

Letting p going to zero we obtain that R, = 0(3;).
Gluing together (6.23), (6.24), (6.26), and (6.27) we derive

vz,x(x)=G(x,XO)(1+0(1))/€ﬁ*(y)52,x(y)dy
B;.
2

9G .
8.5, @0 (1 +o(h) / O 5. (y)y; dy +0(83). (6.28)
=1 B,

In order to prove (2.9) we have to estimate y; = f B, e () 02, (y) dy. We will show that

Ya =0(85).
We prove this by contradiction. So let us suppose that llmk_>o ‘S‘ =c with ¢ € R, ¢ < 0o. From (6.28) we derive
2
v2,3.(x) G
;— =G(x,x0)+cy ay; 550 0%y, ()yjdy +o(1), (6.29)
A
j=1

Note that BA — R? and we can pass into the limit in (6.29) using (3.6). We also observe that v>(y) =
2 2
(af )yl —i—az yz)/(8 +y» = —% Z?:] a,ﬁ )%y(ky). Then (6.29) becomes

2

2
1%) )L(X) c G U®) (2) aUu
—— =G, x) - 5 —(x,XO)/e V) a4 s—yjdy+o(l)

Y 4;8)1] 1; k E J

=G(x.x0) — - (x XO)/ZG(Z)—y/ dy +o(1)

1 596 @ [ umsi
:G(x,xo)—l—zc;a(x,xo);ak /e (y)Slidy—i—o(l)

R2

2
3G
=G(x,x0)+2ncZa§-2)W(x,xo)+0(l). (6.30)
j=1 !
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In a similar way one can prove the convergence in C1(£2 \ {xo}).
Now to estimate 1 — 2, we use identity (5.1) evaluated in v ; i.e.

814)L 31)2,)L

3

doy = (1 — pas) | €™ vas—® dx. 6.31)
dx; ov 0x;

082 2

Let us consider first the Lh.s. of (6.31). Passing to the limit we get

ouy 0 G G
2 2020 dox=m<8n / —(x,xo>—<x,xo>dox)

0x; ov 0x; ov
82 ! ! 082 / *
2
G (x, x0) 9 2 0G (x, x0)
+]/)L(87T/Tj5(2ﬂczak T dax +0(V)\)
982 k=1
9G 2
=y|8m | vj| —(x,x0) | dox
oVy
082
2
2 ) aG(X,X()) d 8G(X,X0)
+)/)L(167T cZak / %, o ov doy | +o(y)
k=1 5
R (2)3 R(XO)
=7V —87T—(x0)_ (1)
( dy; ; 0xpx;j
32 R(x
—n( 87 CZ @ (°)+ (1)) (6.32)

where we use the identities (3.12), (3.13) and that xg is a critical point of R(y). For the right-hand side of (6.31) we
have

d 1 ou
A/e”*vzxﬂdx_— et 52;\ﬂdy

ij 5A 8yj
Q Q/\.
4 64y; a] y1+a§2)y2d (1+ (1)) (6.33)
=—— y 0 ; .
A @+1y»H> 841y
R

where the passage into the limit is done using the estimate (see (A.1)

3Lt)L
e U2 AT

dyj
Hence (6.33) becomes

314)L ?) kaj
A Yrpy )y —=dx = — 256 dy(1+o(1
/'e A5 x = ( E (8 y |2)4 ( ( ))

X

4 -
m V2,3l 00-

Xj
Q
_ 1 __a<z>+0(1) (6.34)
35, 3/ '
Putting together (6.31), (6.32) and (6.34) we obtain
2
92 R(x ) 1
(2) 0 2)
8 D)=1- —|—= 1, 6.35
n( nc; “xer T )) ( uz,u&( 7a; +o( )) (6.35)
and finally

(1= p2,) =247 cnd (1 +o(D), (6.36)
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— 2 (2) 92R(x) (@) ; @)
where n = (Q_j_; a; )/a;” for j such thata;™ # 0.

Oxp X
Now we consider the Pohozaev identity (6.9) computed at the point x;. Using (6.30) and passing into the limit in
the Lh.s. of (6.9) we find

9

/ P22 ((x = x3) - Vur (x) + 2) do
vy

052

0G
= / W(x,xo)(Sn(x —x0) - VG (x, x0) + 2) doy
X
Y]

2 2
0°G
+ yﬂncZa;z) / —(x, x0) (87T(x —x0) - VG(x, x0) + 2) +o(y5.)

=l 9 e2d
:2yk(l +0(1)). (6.37)
In the last passage we used (3.11), (3.12) and (3.15). Concerning the r.h.s. of (6.9) a simple scaling argument gives
A f " v ((x —x2) - Vi, +2) dx = / NGy, (M(y - Vit +2)dy = o(1). (6.38)
Q2 2

In (6.38) we can pass to the limit using estimate (3.6), (A.1) and the boundedness of vy ;. Putting together (6.37) and
(6.38) we obtain

2y (1+0(1) = (1 — pa.)o(1). (6.39)
Comparing (6.36) and (6.39) we have
2y, (1 +o(1)) = 24mcyansro(1) (1 + o(1))

which is impossible.
We have shown so far that y, /8, — 0. Then from (6.28) and (6.30) we have

V2, (x)
)

2 3G
—2n Zaf’a—(x, xo)+o(l). O
- Vj
j=1

Lemma 6.5. We have
1 — po5 = 24783 (1+0(1)), (6.40)

2
where n = (Zizl a,iz) m)/aﬁz) for j such that aj.z) #0.

Oxg X

Proof. We estimate the behavior of (1 — u2,,) using (6.31). The proof is the same as before using (6.22) instead
of (6.30). Then we obtain

1 — pa s =24mn83 1+ o(1)) (6.41)

— (2 @Ry ,,@) ; ©)
where n = (Q_j_; a; Txex )/a;” for j such thata;” #0. O

7. Estimates for the third eigenvalue and the third eigenfunction

Proposition 7.1. We have

pis < 1+C83, (7.1)
3 — 1. (7.2)
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Proof. To estimate the third eigenvalue we use the analogous of formula (5.8), i.e

Vol?
inf f9|7|2
VEH(82), v#£0, vL{v) 5,20} )‘frz ey

3,0

(7.3)

Let ¥ (x) = by 3"‘ (xX) + by 5t 3”* 2(x) where b= (b1, by) € R?, b #0and b L a® in R2, Where a® is the same as
Proposition 6.3. To simplify the notation we suppose here a =0 and we let Yp(x) =
follows in the same way.

= ax % (x). The general case
To estimate the third eigenvalue we chose v = @Y + aj ) v1,5 + a2, v2.5, Where

Ao et Dypu; N;
am:_fg_‘ﬂiz,xz_ i.2 fori=1,2
A fgetvr, Di,

in such a way that v L vy, and v L vy in H(} (£2). We already know that a; , = o(1) (see the proof of Proposi-
tion 5.2). To estimate ay ; we observe, for the moment, that

2
~ a, "X 1 2) 2
Dy, = [ %92 —>/eU 2 = —(a?)x.
29)“ / 2,)\ 8+|x|2 ( 2 )
25

12
R2

For what concerns N3 ; we can write down it in the following way

a a a
N“=x/e”k<pﬂu“=x / e / e M =L+ 1. (7.4)
’ axy axy 7 oxy ~

2 2\Bp(x3) By (x3.)
As in the proof of Proposition 5.2 it is easy to see that I}

= O(A4,). Rescaling we can write
1 oy, . 1 @ yiy2 )
L =— 25 —4a ————dy—+o(l) ).
275 / oxy M7 6A< CEATTA
By () 2
S

(7.5)
This proves that §;, (az,;»)2 =o(1).

Reasoning as we did in (5.13), we can find

/|Vv|2=/|V‘1’1ﬂ2|2—(al,x)2lm,xf€ 02, — (a23) x/m/e“*viA
2 2 2 2

=/w22|va>|2+x/e%2w§—(al,uzxm,kfe 2, — (azz) x/m/ w2
2

ey ;.
Q Q
In the same way,

)»/e’”vzz)\/e’“q)zl//zz—(aly)\)z)»/e”'\vlz)\ (az,k)zk/eulv%’)\.
2 2 I?)

2
Inserting (7.6) and (7.7) in (7.3) we obtain

(7.6)
2

(7.7)

T Jo W3IVO* + (1 — p1)(a1)?h [ e of, + (1 -
A

b [g e @23 — (@)?h [ et

w2,)(a2,) Afg e,
and forgetting lower order terms we have

(7.8)
— (@2,3)%A [ e UZ,A

s Jo W3IVOI* + (1 — p2;)(a2.)A [ e v3, +o(1) 79
Fos [ € ®2YF — (az,)? [ e v3 , +o(1) '
Using that 8 (a2, 2)2 =o(1) and estimate (6.40) we have

(1 — ) (a2,)*A / e (2,2)? = 24} (a2,1)* 5 (a<2))2n(1+o<1>)=o(1>
2
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Finally using (5.16) and (5.17) we have
co+o(l)

3y <1 + 82
o1+ 82(az.)2 +o(1)

<1+2952 (7.10)
C1

3G(x XO))Z

where ¢| = 371 and co = (871) fQ\B o) |V<D| ( . Moreover it is easy to see that 1 > limpus ; > limu; ) =

1,sothat uz; — 1. O

Proof of Theorem 2.2. It follows from Propositions 6.3 and 6.4 for i = 2.

Having estimate (7.1) for the third eigenvalue, it is possible to repeat the proofs of Lemmas 5.3 and 6.1 and
Propositions 5.2 and 6.3 substituting vy ; with v, and pj ; with u3 ;. This gives us the results of Propositions 6.3
and 6.4 for the third eigenfunction and hence the claim follows fori =3. O

8. Asymptotic behavior of the eigenvalues

Lemma 8.1. If vy and v3 ; are two eigenfunctions of (2.2) corresponding to 2. and W3 ;, then the corresponding
vector a'® and a® defined in (2.8) are orthogonal in R?.

Proof. By assumption f_q Vua, - Vs, dx =0. Using Eq. (2.3) we get

i A / e vy v3dx =0
2
and rescaling

/ et 62,A53,A dx =0.

2,
Passing to the limit, using estimate (3.6), we get

2 2 3
a% )y1 —l—aé )Y2 af )y1 —l—az yz

2
2) 3 Yuyi
dy=0 = 64 ————dy=0;
/<1+|y|2|/8>2 8+ yI2 S+y2 2 4y Y
RZ

24
= R

and this implies

Za,32>a,g3> _o.

Hence the vector a®® and a® are orthogonal in R>. O

Proof of Theorem 2.3. As in the proof of Proposition 6.4 we estimate the rate of (1 — p; ) using the identity (5.1).
The proof is the same as before using (2.9) instead of (6.30). Then we obtain

1 — i =247 n:83 (1 4+ 0(1)) (8.1)
where n; = (Zk 14 (Z) asz(;‘)))/a;i) for j such that a;i) £0.
Consequently we have
2
9’R
Z l((z) (xo0) — pia® 82)
P XX J

which holds both if a(l) # 0 or a =0 by (8.1). From (8.2) we get that »; is an eigenvalue of DZR(x()) where D?

denotes the Hessian matrlx of R(x) at the point xo, and a¥) the corresponding eigenvector. Since by Lemma 8.1 the
eigenvectors a are orthogonal, the numbers 7; are the 2 eigenvalues cy, ¢y of D?R(x¢). In particular 1, = ¢1 and
n3 = ¢ from the fact that o ) < p3zp. O
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9. Qualitative properties of the eigenfunctions

Lemma 9.1. Let {z,} € C'(R?) be a sequence of functions such that
2

Xk LA 2
in —> dem mn ClOC(R )
k=1

where d = (dy, d») € R? with d # 0. Then, denoting by Zi={xe R2: z, > 0} and Z;, ={x¢€ R2: z, <0}, we have
that for any R > 0, the sets Z,7 N Br and Z,; N Bg are both connected and nonempty for n sufficiently large and
Br = {x € R%: |x| < R}.

Proof. See [16], Lemma 6.1 for an analogous proof in dimension N > 3. O

Proof of Theorem 2.4. The proof of part (i) of the theorem is very similar to the one of Theorem 1.4 in [16] and we
do not report it. So let us concentrate on part (ii).

Using the convergence of v; ; as in (2.8), and Lemma 9.1, we can state that there exist only two nodal sets for v; ;
inside the ball B(0, R) for any R > 0 if A is small enough. This implies that v; ; has two nodal regions inside the ball
B(x), 8, R) for any R > 0 if A is small enough and i =2, 3.

By the Courant Nodal Line Theorem we can infer that v, ; has only two nodal regions in £2. It remains to con-
sider U3\

We argue by contradiction. So let us suppose there exists a third nodal region D, C §2. D, should be an open,
connected set. We can suppose v3; > 0 in D;, and by continuity of v3; we know that v3 3 =0 on 0D, C Q.
Choosing R > 0 such that fRZ\BR(O) VWM dy < %” (where C is the constant in (3.3)), we have that )\fDA et =
fljA e < Cf]RZ\BR(O) eV < 4m, where l~),\ = (D) — x;) /8, . If D, is simply connected, we can apply a result of [2]
finding that the maximum principle holds in D, for the operator —A — Le**. Even if we do not know anything about
the regularity of d D,, we can infer, using for example [3], that the first eigenvalue for the operator —A — Ae"* in D;,
is strictly positive. But v3 ; has only one sign in D, so it should be the first eigenfunction for —A — Ae** in D, , and
then the first eigenvalue should be zero, contradicting what we previously got.

It remains to consider the case where D, is not simply connected. By definition, a simply connected set contains
the inside of each Jordan curve in it. Then we can find a Jordan curve, say y,, contained in D and some points inside
of it not belonging to Dj,. Let us call Z, C £2 the inside of y, and V, := {x € Z; s.t. v3,, <0} C Z,. Now we can
consider two different cases.

Firstly we suppose that there exists at least one point in V), such that v3 ; < 0. This is not possible because it would
imply that there exists another nodal region inside Z,, contradicting the Courant Nodal Line Theorem.

Secondly, if v3; =0 in V), then v3 ), solves —Av3 ) = Ae**v3, > 0in Z;, v3, 2 0 in Z; and v3; > 0 on
0Z, = y,. This is not possible from the Strong Maximum Principle (see [21], for example). O

Remark 9.2. Following the proof of Lemma 4.5 one can prove even for i = 2, 3 that the maximum and minimum
points of v; ; in £2 lie inside the ball B(x,, 6, R) for some R > 0 and they both converge to xp.

10. On the fourth eigenvalue and the fourth eigenfunction

Proof of Theorem 2.5. Using the variational characterization of the eigenvalues we have

, [o IVv|?dx
M4y = inf P — (10.1)
Ve HL(Q), v£0, vL{v15,025,03,) * [ €* V7 dx
Suppose B(xg, 1) C §2 and let us define the function
A 1 if |x — x| < 85,
D(x)= log;alloglx—xﬂ if 6, <|x —x)| <1, (10.2)
0 if [x — x| > 1,

0<®d(x)<1,and @ € CO(R).
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Let 40 =(x —x3) - Vup +2and v =>4 ) +ayv1,n +azv2,x +az vz . We take

Jo € @Yavin  Niy

@y = — B e T 10.3
1,4 fg eluviz,k D; » ( )

in such a way that v L {vy;,v2,3,v3,2} in HOl (£2). Moreover 9 > D; > ¢; > 0fori =1,2,3, while

Nij = x/eukvi‘kqﬁlp“ = / NGS5y + )00 (v - Vit (y) +2) dy

Q 2,
_8—|y|?
=2 [ VD5 —"dy+o(l).
[ g dy ot
R2
Set v; =1limj 0 v; 5. From Theorem 2.1 and Theorem 2.2 it is easy to see that
8 — 2
er(y)ﬁi |y|2 dy =0
8+ Iyl

R2

fori =1,2,3sothata;; =o(l) fori =1,2,3.
Using that v; ; and v; ; are orthogonal in Hé (£2) if i # j, we have
3 3

/|VU|2 = / |V 1 |* + 20 Zai,xﬂi,xfe'“vi,x@llu,x +/\Z(ai,x)2m,A/€“vi2,A-

o o i=1 o i=1 o
Noting that Afg et vizk < 97 if A is small enough, while A f_Q el vi,;\qgwém =o0o(1), we can write

2 _ - 2

[ 1veR = [ 1v@uss ot

2 2
Finally since 4, solves the linearized equation in 2, we have

f|Vv|2=Afe”*q321//f’A+/1//iAIV<1A5|2+0(1). (10.4)

2 2 2
In a similar way we get

,\/euwz,\/e“m%zwfj+o(1). (10.5)

Q Q
Inserting (10.4) and (10.5) into (10.1) we have

Jo ¥, IV®* +o(1)
Afg etmqﬁ%bik + 0(1)'

Let us estimate the last two integrals.

paa <14

,\/g“ézwik=/eh(y)(d3(31y+m))2(y'Vﬁx(y)+2)2dy
Q2 25
_ | ., u» 2 _
—/e (y-VU») +2)"dy+o(1) =c; +0o(l),
R2

where ¢; = %n. To pass to the limit we use the fact that |y - Viz; (y)] < C in £2;, (see (A.1)) and the estimate (3.6).
Finally
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1 2
/ vii=gons [ e e s
2N{12]x—x1|>68,}
1 1 - 2
2:\B1(0)

where KAZA ={ye 2, st |yl < %x}' Then we have

Saf—

A

n 1 1
2 2
Vo|"< —=2aC | -d 10.7
/‘”“' "< Gogo ™™ /r g (10.9
2 1

2nC 1 2nC
=——log- =— —
(log8;)2 "~ 6 log 8y,
We have shown so far that ¢4 3 <14 0(1) and hence p4 3 — 1 as A — 0.

(10.8)

Arguing as in the proof of Lemma 5.3 we observe that 34 3 — “lgﬁ:lzzxz +b g +:x}2 in C} (R?), with (a1, as, b) #

(0,0,0) € R3. Here we want to show that (a;, a») = 0 so that b # 0, proving (2.12). Let fori =2,3 a') = (a{i), aéi))
be as in (2.8). The eigenfunctions vy ; and v; ; are orthogonal in HO1 (£2) for i =2, 3. Then by using Lemma 8.1 we

loc

have that the vector (a1, ap) is orthogonal to a® = (afz), aéz)) and a® = (aig), af')), which are both different from
zero and orthogonal. This implies (a;, a2) = (0, 0).
We proved that b # 0. Then we can apply Lemma 6.1 getting

v45.(x)logh — 4mbG(x, x0) in C'(w) (10.9)
for any compact set @ in £2 \ {xo}. As in the last part of the proof of Proposition 6.4 we have, from (6.19)

1
1-— =— 1 10.10
Hap=—po (c140(D)) (10.10)
whereclzz(lc;(f’”<0andc0:%. O

Proof of Theorem 2.6. We argue by contradiction. Let us suppose there exist at least two solutions vi , and vf )
corresponding to the eigenvalue w4 ;. Then vi , and vZ ,, are orthogonal in HOl (£2). Hence the rescaled functions

. . 2 .
Uy, = b z;mz and b' # 0 fori =1, 2. So we have

U®) B —1y*?

10.11
@ +1y1»)? ( )

/Vv}")h'VviA=0 = /e”kv}uvi)\=0 = ble/e
2 2 R2

and this gives a contradiction since b’ # 0. Then p4,;, is simple.

—|yl
8+ly |2

in Bg(0) and negative in R? \ Bg(0). Hence assuming b > 0 (the same argument applies if b < 0), by the Cloc
convergence we have

To prove that v4 3 has only two nodal regions, if A is small enough, we observe that the function & is positive

U4 >0 in B4(0) if A is small enough,
and hence

v (x) >0 1in B(x,,46,) C £2.
In the same way

v4,(x) <0 ondB(x;,168,) C £2.

To show that v4 3 (x) < 0in 2 \ B(x;, 165;) we argue by contradiction. So let us suppose there exists a third nodal
region D, inside this domain. Then v4; > 0in D, and v4 3 =0 on dD;.
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Let us consider the points z; € D; such that v4 3 (z3) = maxp, v4,; and Vv ;(z5) =0 for all L. Up to a subse-
quence the points z; converge to a point z € £2. We have the two following cases.

Case 1. We suppose z # xo. Then we can use the convergence in (6.1) to get a contradiction. We have
v4,,.(z2) logA <0 for A < 1. Passing to the limit we have 0 > v4 3 (z;) logA — 47bG (2, x9) = 0. This would imply
that G(z, xo) = 0 and therefore z € 0§2. But this is not possible since 0 = |Vv4 5 (z3) logA| = 47b|VG(z, x0)| # 0
from the Hopf Maximum Principle.

Case 2. Let us suppose that z = xp. We already know that z; € £2 \ B(x;, 16§,). In this case we consider the
function ¢, defined in the proof of Lemma 4.5, where r; = |z) — x,|. Reasoning as in the proof of Lemma 4.5, using
the Green’s representation formula we have

1 1 _
— 1 () 5 d
) = M4,A/ O T oyl g (y) dy
§25,

s [ HOw 00 0y + 3¢V (0)dy, (10.12)
§2;,
Reasoning as in the proof of Lemma 6.1 we have that

- 4rb
(0 5 dv = 1 1
/6 U4.(y) dy 1ng( +o(1))
2,

and hence we can multiply (10.12) by log A getting

—&.(x)logh = %log %4nb+4an(xo)+o(l). (10.13)
Repeating the same argument for the first derivatives we can show that the convergence is CllOC (R?\ {0}). This gives
us a contradiction since we have a sequence of points Z; = (z; — x)/r, such that V¢, (Z;) = 0 and which converges
to a point Z with |Z| = 1. This is inconsistent with formula (10.13).

This proves also that the nodal line of v4 ; does not touch the boundary of £2.

Hence if v4; has more than two nodal regions, there should be in the annulus A, = B(x;,48,) \ B(x,, 165,) a
nodal region D, such that Dj C A;.

If in D, the function vy is positive, we take the maximum points z, of v4, in D, such that

v4(z2) >0, Vug(za) =0, z)€A;.
Rescaling and passing to the limit, we have that the points zZ, = (z) — x,)/8, converge to a point z € R? such that
8 — |z 8 —|z|?
o0 =4 and V< @B>=o
8+ |z 8+ 1Z]

which is impossible.
If in D, the function vy ; is negative considering the minimum points of v4 ; in D, rescaling as before and passing
to the limit, we would get a point Z € R? such that

8 — Iz 8 — |z
<o pI<ie and V< @B)=o
8 +1z| 8+ 1zl

which is again a contradiction. O

Remark 10.1. A consequence of Theorem 2.6 is that the maximum and the minimum point of v4 ; both converge
to xg.

Proof of Corollary 2.7. If x( is a nondegenerate critical point of R(x) in £2 then both the eigenvalues ¢ and ¢, of
the Hessian matrix D?R (x0) are different from zero. By (2.10) each eigenvalue ¢; < 0 implies that u; 3 > 1, for A
small enough. Moreover, (2.14) implies that (4 ; > 1, for A small enough. Hence, denoting by m(xp) the Morse index
of x¢ as a critical point of the Robin function R(x), we find that the Morse index of u; is exactly m(xg) + 1. O
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Proof of Corollary 2.8. Using a result of [4], we know that the Robin function R(x) satisfies the equation AR =
—4e72R in 2 and R(x) — —oo for x — 3£2. This implies that at least one eigenvalue of the Hessian matrix of R
in x is strictly negative. Then the Morse index of u, is less or equal to 2 and this proves (i).

Using a result of [4] we know that in a convex domain of R2 both the eigenvalues of the Hessian matrix of the
Robin function in an interior point are negative. This implies that the Morse index of u; in a convex domain is 1 and
so (ii) is proved. O

A
Ae'r

11. About the spectrum of the operator —

In this section we want to give an explicit description of the eigenvalue of

—Av=Aue" v in £2,
{”v”oo:lv (11.1)
v=0 on 452,

where A — 0. First we want to observe that due to the compactness of the operator —A~! into the weighted space
szA (£2) (with w; = €"*), the spectrum of the operator is a sequence of nonnegative values which go to the infinity.
A crucial tool in our study is the spectrum of the problem
A — 64 2
Av = CRipmz? In R-,
v e L®(R?).
We look for solutions in the space W = {v: |Vv| € L*(R?), v € L®(R?)}. Here again we have that due to the

compactness and the autoadjointness of the operator —A~! into the space L%V(Rz) where W = eV, the spectrum is a
sequence of nonnegative values that goes to infinity. We can state the following:

(11.2)

Theorem 11.1. The eigenvalues of problem (11.2) are the numbers c,, = ”(”TH) forn=0,1,2,.... Each eigenvalue c,
has multiplicity 2n + 1 and the eigenfunctions are Y, (9)P,;"(§;:i)f0r m e N, m < n, where Y,,(0) = Asin(mb) +

B cos(m6) and P)' are the associated Legendre functions.

Proof. We look for solutions of (11.2) of the type v = R(r)Y (8). Eq. (11.2) in radial coordinates becomes

1 (rR'(nNY®)) — iR(r)Y”(e)) = —CR(r)Y(Q) (11.3)
ror r2 (8 4+ r2)2
with the conditions
R'(0)=0 i.e. regular in the origin,
R(r) =0(1) at infinity i.e. regular at infinity, (11.4)
Y(0) =Y (2km) periodicity conditions.

Separating variables, letting v 7 0, we get the two following equations

Y'©0)+kY(©0)=0, Y(@O)=Y(O+2kn),
FIR'() + ghs R0 — 5R(r) =0,
R'(0)=0, R(r)=0(1) atinfinity.

The first equation (in 6), has the solutions, for k > 0:

Y (0) = Acos(wb) + B sin(wd)

with @? = k. The periodicity conditions then imply that @ = m for m € Z. Thus the eigenvalues are k = m? for
m € Z \ {0}, and the eigenspace is two dimensional, spanned by the functions sin(m@), cos(mf).

If £ < 0, we do not have any periodic solutions.

So we have shown that Eq. (11.3) has solutions Y,,(8) = A cos(m6) + B sin(m6) for k = m? and m € Ny.

We are left with the study of the radial part of Eq. (11.3) with k = m?, i.e.

Loro) +—2  rey— ™ Ry =0 115
(rRO) + gz RO — Z RO =0. (-

r
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Setting & = g;—:i, Eq. (11.5) becomes

3 dR m?
—((1-6)—)-——=R 2cR(&)=0 11.6
ag(( §)8§> [ RO +2RE) (11.6)
for —1 < & < 1. The boundary condition reads as R(1) and R(—1) bounded.

Eq. (11.6) is the classical Legendre equation. By well-known results (see for example [7]), the eigenvalue prob-
lem (11.6) with the condition that R(£) is bounded in £ = —1 and & = 1 has solutions only for 2c =n(n + 1), n € Ny.
These solutions are exactly the Legendre associated functions

PME) = (=1)"(1 =" PP™ (&), (11.7)
where (m) denotes the m derivative. To avoid the trivial solution R =0, we let m < n. In (11.7) P, are the Legendre
polynomials

aﬂ
2'p! Q€™

Py(§) = (€ -1)" (11.8)
It is easy to see that each eigenvalue ¢, = w has n 4 1 multiplicity.

Moreover we recall that the Legendre associated functions span the space of polynomials in [—1, 1]. Hence one
can prove that Eq. (11.6) cannot have any other eigenvalues different from c,,. We proved so far that problem (3.9) has
eigenvalues ¢, = w with multiplicity 2n 4 1 for n € N and each eigenvalue ¢, has eigenfunctions Y, (0) P} (§)
form=0,...,n. O

For reader’s convenience we write down some eigenvalues ¢, and the corresponding eigenfunctions V}":

co=0 VO=1,
2
X1 1 X2 1 8 —x|
=1 Vlzi, V =7, V = s
‘1 PZ85 a2 278+ T8 p
3 2@, @ kP
P7 @+ 2 2T 8+
2 2

V2o Xi{— x5 2 XX

PR+ T @+

p2 3@l

5_2<@+4n%> 2’
Following this kind of notation we call ¢, the eigenvalue and Vl" with/ =1, ..., 2n+ 1, the associated eigenfunctions.
We observe that for each value of n there is one radial eigenfunction (it corresponds to the case m = 0 in the previous
notation), and that the eigenfunctions go to zero for |x| — oo except for the radial one which is bounded. We call
V3,41 the n-related radial eigenfunction.

Now we come back to problem (2.2). Let u; be the eigenvalue and v; the associated eigenfunction. Set v; (y) =

v;i (81y + x3). We want to show that v; converge to the ith eigenfunction of problem (11.2) (considered with its
multiplicity). In this way any eigenfunction of the limiting problem will be the limit of a rescaled eigenfunction of
problem (2.2), and vice-versa. In order to prove this we write any i € N in the following way

n

i=> Q2k+1)+1, (11.9)
k=0

for some n € N and [, € N with 0 <[, < 2n + 3. It is easy to check that for any number i there exist a unique n and
1, for which (11.9) holds;

Theorem 11.2. Let i € N. Writing i as in (11.9), we find that any eigenvalue wu; of (2.2) converges to the eigenvalue
cn+1 of (11.2). Moreover v;(y) converges in ClloC (R2) 10 the sum leiﬁ aj VI"'H where a; € R are not all zero, and

an+1 are the eigenfunctions of (11.2) related to the eigenvalue c, 1.
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Proof. To sake of simplicity we prove the result just for ¢y, in the cases i =5 and i = 9. Indeed any other eigenvalue
can be handled in the same way and the proof of cases i =6, 7, 8 in ¢; is the same as in i =5.

Casei =5withn=2andl, =1 in (11.9). Let V2 be any eigenfunction of (11.2) related to the eigenvalue c;
different from V52. Hence V?Z is not radial and V2 — 0 for |x] = oo. Let ¥(x) = Vi((x — x3)/85) and @ be a cut
off function centered in x; as defined in Section 5.5. We want to estimate the eigenvalue ps using the well known
formula

Vol?
ns,5 = inf JoIVY (11.10)

Ve HL(Q), v vy pvaz) & [ €402

To this end let us consider the function v = @y 4 Zj’:l a;jv; , where a; € R will be chosen so that v is orthogonal

to {v1,a, ..., v4,1}. Using the orthogonality of the eigenfunctions v; ;, vj fori # j in HO1 (£2), we derive from (2.2)
that

L[ et v @y dx
Ao e“kviy)\dx

ap = (11.11)

fork=1,...,4. Since vg ; # 0 we know that f_Q el v,% ,, = b > 0, while rescaling the numerator we get

A f e Dy s (x) dx = / IV B (S5 y + x)Tea (0) dy
2 £2;,
= & (xp) / OVI3) i (y)dy + o(1),
]RZ

where vy = limy_ o Ug,. Here we note that the passage into the limit is done using estimate (3.6) and that vy ;, v?
and @ are uniformly bounded in R?. Finally by the orthogonality of the functions V2 and #; with k < 4 we get

ar =o(l). (11.12)

With this choice of v we have

4 4
2
/|Vv|2dx=f|wpq>)| +2Zaj/v1)j,x-v<wq>)+ > ajak/w,-,k-wk,k.
2 Q =l g jik=1 o
Using Eq. (2.2) and the orthogonality of v;; and v if j # k we have

4 4
[vekax= [wver+ [anetv 2y apu [ e+ Y atu [l
2 2 2 j=1 j=1

2 2

Since & [, e" v @Y = —a; (A [o e”*vi/\) =o0(1) we get
f|Vv|2dx=/¢2|vq>|2+f(—A¢)<p2¢+o(1).
2 2 2

In the same way we have

4 4
)»/e’“vz:)L/e’“cb%pz+2Zajk/e“kvj,kw¢—i—Za?A/e“*vik
2 2 =19 =@

=,\/e“kcb21/f2+o(1).
2
Some computation proves that ¥ solves

1
—AY = —cpe
4 52 2

U((X*XA)/(S/\)w‘
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So using @2y as a test function we get

1

/|Vv|2= ¢2|V¢>|2—|—a—zczfeu(("*xk)/&)wzd)zdx+0(1).
A

2 2

Rescaling and passing to the limit we get

/|Vv| fw Vo +c2/ VOV (V2(1) 20255y + x2) dx + o(1)

2,
/w Vo |? +sz U (v2(3))* + o(1), (11.13)
RZ

where the passage into the limit is done using that ¢V € L' (R?) and V2 and @ are uniformly bounded.
Similarly, rescaling and passing to the limit we get

)\/e”*v2:/e';*(y)(Vz(y))z(Dz(S;Ly +x3)dy 4 o(1)
Q 2,
:er(y)(V2(y))2dy+0(1). (11.14)
RZ

Finally we estimate

/|v<p|21p2dx. (11.15)

Recalling that ¥ is bounded, |[V®@|> € L1(£2) and V? — 0 as |x| — oo, we can pass to the limit in (11.15) getting
fg |V(D|21p2dx =o(1). We are now ready to estimate the eigenvalue u; . From (11.10), (11.13) and (11.14) we get

_ JolVuP e Jo VPIVOI +o(1)
HSES G g e Jer PO (V202 +o(1)
Setting s = limy o s, we have proved that pus < c2 =3.

Let us prove that us = co = 3. Let vs5, be the eigenfunction related to the eigenvalue us; and let U5, =
v5,,.(8,y + x;). Then vs ; solves

34 o(1). (11.16)

—Abs ) = ps e s, in 25,
1055 llc0 =1, (11.17)
U5, =0 on 9£2;.

Let us show that s, is uniformly bounded in the space W. Indeed

/|V55,A|2:MS,A/€MU5A Ms,\/ — 87 5.
R2 2

25

So by standard elliptic regularity theory we have that vs ; — vs in Clloc (R?), where ©s € W is a solution of

~ 1 ~ . 2
{_AUS = Us ez ys IR (11.18)

[Vslloo < 1.

Let us prove that 05 # 0. Let z; be the point of §2; such that vs ; (z)) = 1. If v5 =0 then z, should go to infinity. Let
us consider the function

X
) =0
5= Vs e )
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Then 05, solves

—AfJS’)L = ﬁemﬁik

and, as in the proof of Lemma 4.2, we have [, | Vs ;|? is uniformly bounded and 95, — 0 in CZ_(R*\ {0}). By
the regularity theory we reach a contradiction as in the proof of Lemma 4.2. From Eq. (11.18) one has that 5 is an
eigenvalue of problem (3.9) and vs is a related eigenfunction. However, since vs ; is orthogonal in HOl (£2) to v for
each j <5, we have that s > 4 and then pus = 3. As we remarked cases i = 6, 7, 8 can be handled in the same way.

Case i =9 withn =2 and I, =5 in (11.9). By the previous step we have that v;  — 215:1 af Vl2 fori =5,6,7,8
and some coefficient a’ € R’. Note that the coefficient a/ are orthogonal to the previous ones in R>. Let b be a vector
in RS which is not zero and which is orthogonal to a’ for Jj=35,...,8.If bs, the last component of vector b, is zero,
we can reason as before getting the result. Now we analyze the case b5 # 0. We want to estimate the eigenvalue g
with formula (11.10), where v = @w + Zaj v;,» where & is as defined in (10.2), ¥ = 215:1 b; Vlz((x — x,)/6) with
b as chosen before. Reasoning as in the first part of the proof, using the orthogonality of ¢/ and b in R>, we get
aj=o(1) for j=1,...,8. We can argue as before getting

[o V2IV®|? +o(1)
A fo e d2y2 +o(1)

Mmooy <3+

Recalling the proof of Theorem 2.5, using the fact that Vz2 are uniformly bounded in R? we get that the denominator
c

is strictly positive while the numerator goes to zero as — 5

. This proves the Theorem fori =5,...,9. O
Appendix A

A.1. Uniform boundedness of % in §2;,

Lemma A.1. Let u; be as defined before. We have

iy,
8)6,'

<—  in$2;. (A.1)

Proof. Let £2 be such that B(xg, 1) C §£2. We know by (3.2) that u; (x) - 87 G(x, xp) in C'(£2 \ B(xp, 1)). Hence
we have

C

~
|x — x|

iy,
Bxi

G (x, xy) <
axi

<C

X

' for x € £2 \ B(xg,2).
2\B(x0.3)

Recalling that i) (y) = u (8, y + x5) — |4l @ simple computation shows us that
RI7PY
ay;

for y € £2; \ B(0, l)

Now we need to estimate the first derivatives just for x € B(0, % ,). To this end, using the Green’s representation
formula, we get

Ju C
() =8 —(8ry +x2) < —
ox; ]

oy,

a -
(x) =85 / S-G@x+x, 8y + x3)e" Y dy.
Xi
2,

0x;

From the standard decomposition of G (x, y), we can write

i, L (&&= a0y oH
=5 h g S /
ox; (x) A 3%|x—y|26 yto s
£2;,

" &x + x5, 6.y + x;)e ) dy. (A2)
1
2,



222 FE Gladiali, M. Grossi / Ann. 1. H. Poincaré — AN 26 (2009) 191-222

Since H is a harmonic function we have that
VH(x,y)<CsupVH(x,y)=C sup VH(x,y) =C sup o —y)2
yenR yed 2 ye X =yl
Then,

1 —
VH(Gx +x0,6y +x,) <C sup — > —y)

yea, Orlx — Jx —yP?

On the other hand since y € 9£2; and x € B(0, “) we get that SUPyeh e, ‘x y\l ~§, > 0as A —0,Vx € B0, “)
We turn back to the (A.2), getting
8uA(X) / IZ;L(y) dy + sup / i (y) dy
0w 277 |x — Y| yea, |x =yl
1
— / —eU@) dy +0(8;) < C/ 55 dy +0(8,). (A.3)
wJ |x—yl A lx — yI@8+1yl*)
) R

Note that for x € £2; we have §; <

C
< —.
lx — Y@+ x5~ |x]

and
IXI

Then the claim follows. O
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