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Abstract

We consider a sloped canal with friction that is governed by the Saint-Venant system with source term. We show that starting
sufficiently close to a stationary constant subcritical initial state, we can control the system in finite time to a state in a C1 neigh-
bourhood of any other stationary constant subcritical state by boundary control at the ends of the canal in such a way that during
the process the system state remains continuously differentiable.

Moreover, we show that if the derivative of the initial state is sufficiently small, it can be steered to every stationary constant
subcritical state in finite time.
© 2008

Résumé

On étudie un canal cylindrique incliné modélisé par les équations de Saint-Venant avec un terme source et un terme de frottement.
On montre l’existence d’un voisinage pour la norme C1 de toute partie bornée de la courbe des équilibres sous-critiques constants
tel que, étant donnés deux éléments de ce voisinage, il est possible d’aller du premier élément au second en temps fini par des
contrôles adéquats sur le bord du canal. En outre, on montre que, si la dérivée de l’état initial est suffisamment petite, on peut
amener l’état du système à tout équilibre donné, constant et sous-critique, et ceci en temps fini.
© 2008
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1. Introduction

In hydraulic engineering, the Saint-Venant system is frequently used to model water flow through a sloped canal
with friction. This system has been introduced in [4] and forms a quasilinear hyperbolic system of partial differential
equations with source term. If the slope of the canal is not zero, there exists a family of constant stationary states
where water height and velocity are such that the corresponding source term vanishes as stated by Saint-Venant: Le
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frottement est ... compensé par l’accélération due à la pente (The friction is compensated by the acceleration due to
the slope). For each water height there exists a uniquely defined corresponding velocity, such that this equilibrium
occurs.

In this paper we study the problem of exact boundary controllability in a C1 neighbourhood of the set of sub-
critical stationary constant states of the type discussed above. We show that for each bounded part of the curve of
constant subcritical equilibrium states there exists a C1 neighbourhood of this set where exact controllability holds.
Any subcritical initial state whose derivative is sufficiently small can be steered in finite time to this set where exact
controllability holds. For a discussion of the concept of exact controllability see [12].

The Saint-Venant equations with zero source term can be used to model the flow through a horizontal frictionless
canal. For this model, all constant states are stationary. The global exact boundary controllability between these states
has been analysed in [8] and the corresponding result for the more general case of quasilinear hyperbolic systems of
diagonal form has been discussed in [14]. The Saint-Venant equations with zero source term have also been considered
in [3], where a boundary feedback control in networks of open canals is defined.

In practice, often networks of open canals appear. As a model, in [10], Saint-Venant systems on a graph coupled
by interface conditions at the nodes have been analysed. The case of a star-shaped network of open canals with zero
slope and friction modelled by the Saint-Venant system with a source term has been considered in [11]. In this case
all constant states with zero velocity are stationary. In [11] exact controllability with continuously differentiable states
locally around the constant subcritical equilibrium states has been shown. The result is based upon the semi-global
existence result for C1 solutions given in [16] where it is assumed that the source term vanishes at zero.

In this paper, in contrast to [11] we also admit the case of non-zero canal slopes, where for each water height we
have exactly one non-zero velocity that yields a constant stationary state. We consider only subcritical flow that is
during the control process, we do not wish to change the type of the flow. This means that from a given subcritical
flow we want to go to another subcritical flow, so during the process the nature of the boundary conditions does not
change. This is different from [6], where controllability between sub- and supercritical states is considered for the
case without source terms.

The exact controllability of supercritical flow on tree shaped networks of not necessarily horizontal canals with
friction has been considered in [9].

A general survey on controllability of partial differential equations is given in [18]. A sensitivity calculus for related
problems of optimal boundary control has been given in [7].

2. The Saint-Venant equations

The dynamics of our system are described by the Saint-Venant equations, also called shallow water equations.
Let A denote the wetted cross section and V denote the velocity. The conservation of mass yields the equation

∂

∂t
A + ∂

∂x
(V A) = 0. (1)

The flux of momentum is modelled by the equation

∂

∂t
V + ∂

∂x

(
gH + V 2

2

)
= −S (2)

where H denotes the water height corresponding to A and g is the gravity constant. The source term S has the form

S = S(A,V ) = g
(
γ + η(A,V )

)
, (3)

where γ is the slope of the channel. If γ is negative, the channel proceeds downwards. The friction slope η(A,V )

models the friction effects due to walls. It is given by the Manning–Strickler relation

η(A,V ) = C2|V |V
(A/P (A))4/3

(4)

with a roughness constant C > 0 where P(A) is the wetted perimeter corresponding to A (see [13,5]). The quotient
A/P (A) is called the hydraulic radius.

We consider a prismatic canal with a constant rectangular cross section and width b.
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Then A = Hb and P(A) = b + 2H and we can write the Saint-Venant equations in the form

∂

∂t

(
A

V

)
+

(
V A
g
b

V

)
∂

∂x

(
A

V

)
=

(
0

−S

)
. (5)

We introduce the Riemann invariants

R+(A,V ) = V + ϕ(A), (6)

R−(A,V ) = V − ϕ(A) (7)

with ϕ(A) = 2
√

g
b
A. Hence we have

V = R+ + R−
2

, ϕ(A) = R+ − R−
2

,

so the change of coordinates to the Riemann invariants is a bijection.
In case of a continuously differentiable solution, we obtain a system in diagonal form with source term for the

Riemann invariants, namely

∂

∂t

(
R+
R−

)
+

(
λ+ 0
0 λ−

)
∂

∂x

(
R+
R−

)
=

(−S

−S

)
(8)

where

λ+ = 3

4
R+ + 1

4
R−, λ− = 1

4
R+ + 3

4
R− (9)

and S is the source term corresponding to the pair (R+,R−) that determines a unique state (A,V ). A flow is called
subcritical if λ−λ+ < 0. If λ−λ+ > 0 it is called supercritical. If λ−λ+ = 0, the state is critical.

3. Stationary states for subcritical flow

In [9], supercritical stationary solutions for sloped canals with friction have been analysed. These stationary solu-
tions converge exponentially fast along the canal to constant stationary limit states for which the source term vanishes.

In this section, we analyse the behaviour of subcritical stationary solutions. For all A > 0, there exists a unique
velocity V such that the corresponding source term vanishes, that is S(A,V ) = 0, namely

V (A) = − sign(γ ),

√|γ |
C

(
A

P(A)

)2/3

= − sign(γ )

√|γ |
C(1/H + 2/b)2/3

. (10)

For a horizontal canal with friction this yields V (A) = 0.
For all A > 0 the constant states (A,V (A)) are stationary, that is they satisfy the Saint-Venant system (1), (2). If

V (A)2 < gA/b, these stationary states are subcritical. The constant stationary solutions (A,V (A)) are well-defined
for a channel of arbitrary length L. This is in contrast to a different type of stationary solutions, namely non-constant
stationary solutions that develop a singularity after a finite canal length due to the source term.

For any stationary state (1) implies that the flow rate Q = bHV is constant along the canal, hence V = Q/(bH)

and Vx = −QHx/(bH 2).
For the water height, (1), (2) yield along the canal the ordinary differential equation

Hx = − HS

gH − V 2

which can also be written as

Hx = − b2H 3

gb2H 3 − Q2
S = − gb2H 3

gb2H 3 − Q2

[
γ + C2 |Q|Q

b2H 2

(
1

H
+ 2

b

)4/3]
. (11)

For a subcritical state we have V 2 < gH which is equivalent to gb2H 3 − Q2 > 0.
Due to the source term, there exist stationary continuously differentiable solutions for which after a finite canal

length x0 a singularity occurs, since the right-hand side of (11) goes to minus infinity for x → x0 and λ−λ+ tends to
zero.
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Lemma 1. Let real numbers Q ∈ (0,∞) and H0 ∈ (0,∞) be given. Define Hcrit = (Q2/gb2)1/3. Assume that
H0 > Hcrit and that

S0 = g

[
γ + C2 |Q|Q

b2H 2
0

(
1

H0
+ 2

b

)4/3]
> 0.

Let H(x) be the solution of the initial value problem with the initial condition H(0) = H0, and the differential equa-
tion (11).

Then (A,V ) = (bH,Q/(bH)) is a subcritical stationary solution of (1), (2) that is defined on the finite interval

I = {
x � 0: H(x) > Hcrit

}
.

If I = [0, x0) then limx→x0− H ′(x) = −∞ and limx→x0− H(x) = Hcrit.
On the interval I , the source term S is strictly increasing, the function H is strictly decreasing and V (x) =

Q/(bH(x)) is strictly increasing. Let

α = g

S0

[
H0 − Hcrit + H 3

crit

2H 2
0

]
.

Then I ⊂ [0, α], that is for x � α, the solution does not exist.
Define Scrit = S(bHcrit,Q/(bHcrit)) > S0 > 0 and

β = g

Scrit
(H0 − Hcrit)

[
1 − 1

2

(
Hcrit

H0
+ H 2

crit

H 2
0

)]
> 0.

Then [0, β] ⊂ I , that is on the interval [0, β] the solution exists.

Proof. Define S(x) = S(bH(x),Q/(bH(x))). We have ∂V S(A,V ) > 0 and if V > 0 we have ∂AS(A,V ) < 0.
As long as H(x) > Hcrit, (11) implies that

S′(x) = b2H 3

gb2H 3 − Q2

[
Q

bH 2
∂V S − b∂AS

]
S

thus S′(x)/S(x) > 0, hence S is strictly increasing which implies that H is strictly decreasing.
Our assumptions imply that I is a non-empty interval. For all x ∈ I , the right-hand side of (11) is well defined and

since H is strictly decreasing, the solution exists on I . In Hcrit, the right-hand side of (11) has a singularity, which is
the reason that the solution cannot be extended beyond I .

For all x ∈ I , the ordinary differential equation (11) implies the inequality(
1 − Q2

gb2H 3

)
Hx � −S0

g
.

Integration on the interval (0, x) yields the inequality

[
H(x) − H0

] + Q2

2gb2

[
1

H 2(x)
− 1

H 2
0

]
� −S0

g
x.

Hence we have

H(x) � H0 + Q2

2gb2H 2
0

− S0

g
x

which implies that for x � α, we have H(x) � Hcrit, a contradiction, hence x /∈ I . Thus we see that I is indeed a finite
interval.

Now we prove that β is a lower bound for x0. For all x ∈ I , the ordinary differential equation (11) implies the
inequality(

1 − Q2

2 3

)
Hx � −Scrit

.

gb H g
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Integration on the interval (0, x) yields the inequality

[
H(x) − H0

] + Q2

2gb2

[
1

H 2(x)
− 1

H 2
0

]
� −Scrit

g
x.

Hence we have

H(x) + Q2

2gb2H 2
crit

> H0 + Q2

2gb2H 2
0

− Scrit

g
x

which implies that for x � β , we have H(x) > Hcrit, hence [0, β] ⊂ I . �
Remark 2. Let L > 0 be given. Lemma 1 implies that a constant flow rate Q > 0 with Scrit > 0 and a water height
HL > Hcrit with S(bHL,Q/(bHL)) > 0 determine a unique subcritical continuously differentiable stationary solu-
tion of the Saint-Venant system (1), (2) on the interval [0,L] with H(L) = HL if L < x0. For this state we have
S(bH(0),Q/(bH(0))) > 0.

Remark 3. Let L > 0 be given. Lemma 1 implies that a constant flow rate Q > 0 with Scrit > 0 and a water height
H0 > Hcrit with S(bH0,Q/(bH0)) > 0 do not determine a subcritical continuously differentiable stationary solution
of the Saint-Venant system (1), (2) on the interval [0,L] with H(0) = H0 if L � x0, for example if L � α.

4. Boundary conditions for a single canal

Let L denote the length of the canal. For subcritical flow, at both ends x = 0 and x = L of the canal a scalar
boundary condition is prescribed. In terms of the Riemann invariants, the boundary conditions have the form

x = 0 : R+(0, t) = g0(t), (12)

x = L : R−(L, t) = gL(t). (13)

The boundary controls g0, gL can only generate a continuously differentiable solution if they are continuously differ-
entiable and satisfy the C1 compatibility conditions with the initial values at t = 0.

5. Controllability results locally around the curve of constant stationary states

Now we consider the exact controllability of the system (1), (2) on a finite interval [0,L] with boundary conditions
(12), (13) from a given initial state in finite time to a desired target state such that during the process, the system has
a continuously differentiable solution.

First we present our main result, which states that in a C1-neighbourhood of the set of constant stationary subcritical
states exact controllability holds. The distance between the initial and the final state can be arbitrarily large. Only the
derivative of the initial and the target state must be sufficiently small. If the control time is chosen sufficiently large,
exact controllability holds.

Theorem 4 (Global exact controllability for sloped canals with friction). For a canal with a constant rectangular
cross section, consider the Saint-Venant system (1), (2) with the source term given by (3), (4) and boundary conditions
in characteristic form (12), (13).

For real numbers M > 0, δ > 0 and ε > 0 with δ < M define the finite time

T (δ,M) = max

{
max

{
L

|λ+(A,V )| ,
L

|λ−(A,V )|
}

: (14)

(A,V ) ∈ R2: δ � gA/b − V 2, |V | � M, A � M, S(A,V ) = 0

}
(15)

and the set of functions
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G(δ,M,ε) = {
(A,V ) ∈ C1[0,L]: For all x ∈ [0,L]:

δ � gA(x)/b − V (x)2,
∣∣V (x)

∣∣ � M, A(x) � M,
∣∣S(

A(x),V (x)
)∣∣ � ε,∣∣A′(x)

∣∣ � ε,
∣∣V ′(x)

∣∣ � ε
}
. (16)

Then for all δ, M with 0 < δ < M there exist a number ε > 0 and a time T0 > T (δ,M) such that between all initial
and final states in G(δ,M,ε) exact controllability in the time T0 is possible, that is for all (A0,V0) ∈ G(δ,M,ε) and
(A1,V1) ∈ G(δ,M,ε) there exist boundary controls g0, gL such that there exists a unique continuously differentiable
solution of the initial boundary value problem

A(x,0) = A0(x), V (x,0) = V0(x), x ∈ [0,L] (17)

(1), (2), (12), (13) ((x, t) ∈ [0,L] × [0, T0]) that satisfies the final condition

A(x,T0) = A1(x), V (x,T0) = V1(x), x ∈ [0,L]. (18)

Remark 5. The set G(δ,M,ε) defined in Theorem 4 where exact controllability holds contains constant stationary
states, but also non-constant stationary states of the type described in Lemma 1 and Remark 2.

The proof of Theorem 4 uses the following local exact controllability result that is a consequence of Theorem 3.1
from [17]. This result gives exact controllability in a C1-neighbourhood of a stationary subcritical state. For this local
exact controllability result, the control time can be fixed a priori.

Theorem 6 (Local exact controllability for sloped canals with friction). For a canal with a constant rectangular cross
section, consider the Saint-Venant system (1), (2) with the source term given by (3), (4) and boundary conditions in
characteristic form (12), (13).

Let (Ā(x),V (x)) ∈ C1[0,L] × C1[0,L] be given such that 0 < gĀ(x)/b − V (x)2 and Q = Ā(x)V (x) is constant
and

∂

∂x

(
g

Ā(x)

b
+ V (x)2

2

)
= −S

(
Ā(x),V (x)

)

for all x ∈ [0,L]. Define the finite time

T (Ā,V ) = max

{
max

x∈[0,L]
L

|λ+(Ā(x),V (x))| , max
x∈[0,L]

L

|λ−(Ā(x),V (x))|
}

(19)

and the set of functions

Γ (ε) = {
(A,V ) ∈ C1[0,L]: For all x ∈ [0,L]: 0 < gA(x)/b − V (x)2,

‖V − V ‖1 � ε, ‖A − Ā‖1 � ε
}

(20)

where ‖ · ‖1 stands for the C1-norm.
Then for all T0 > T (Ā,V ) there exists a number ε > 0 such between all initial and final states in Γ (ε) exact

controllability in the time T0 is possible, that is for all (A0,V0) ∈ Γ (ε) and (A1,V1) ∈ Γ (ε) there exist boundary
controls g0 gL such that there exists a unique continuously differentiable solution of the initial boundary value problem
(17), (1), (2), (12), (13) ((x, t) ∈ [0,L] × [0, T0]) that satisfies the final condition (18).

Proof of Theorem 6. For continuously differentiable states, we can write (1), (2) in the diagonal form (8). In order to
apply the local exact controllability result Theorem 3.1 from [17], we transform the system to a system with a source
term that vanishes at zero. Let (R+,R−) denote the Riemann invariants corresponding to the subcritical stationary
state (Ā,V ) and (λ̄+, λ̄−) = (λ+(Ā,V ),λ−(Ā,V )) the corresponding eigenvalues. We transform the system to a
system of the functions (r+, r−) with r+ = R+ − R+, r− = R− − R−. Let s(r+, r−) = S(R+ + r+,R− + r−) denote
the source term S corresponding to the state (R+ + r+,R− + r−). Define the transformed source term

F(x, t, r+, r−) = − ∂
(

R+
R

)
−

(
λ̄+ + λ+(r+, r−) 0

0 λ̄ + λ (r , r )

)
∂

(
R+
R

)
−

(
s(r+, r−)

s(r , r )

)
.

∂t − − − + − ∂x − + −
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Then F(x, t,0,0) = 0. We insert R+ = R+ + r+, R− = R− + r− in (8) and due to the definition of F for (r+, r−) we
obtain the quasi-linear hyperbolic system

∂

∂t

(
r+
r−

)
+

(
λ̄+ + λ+(r+, r−) 0

0 λ̄− + λ−(r+, r−)

)
∂

∂x

(
r+
r−

)
= F(x, t, r+, r−). (21)

For the representation of the system matrix we have used the linearity of λ+ and λ− as functions of the Riemann
invariants, see (9).

Theorem 3.1 from [17] yields the following statement: For all T0 > T (Ā,V ) there exists a number ε > 0 such
that for all states in (C1[0,L])2 with C1-norm less than ε, exact controllability between these states in time T0 with
a unique continuously differentiable solution of the system equation (21) is possible by boundary controls in the
boundary conditions (12), (13).

Due to our transformation of variables, this ε-neighbourhood of (0,0) corresponds to an ε-neighbourhood with
respect to the C1-norm of the constant stationary state given by (R+,R−). Since this neighbourhood contains only
subcritical states, the condition 0 < gA(x)/b − V (x)2 holds which completes the proof. �
Remark 7. For the proof of Theorem 6 it is important that Theorem 3.1 in [17] allows that the eigenvalues and the
source term depend explicitly on x. The results in [15] and also in [1] assume that the eigenvalues and the source
term do not depend explicitly on x. A result analogous to Theorem 6 for the case of one-sided control follows from
Theorem 3.2 in [17].

Proof of Theorem 4. First we observe that for all (A,V ) feasible in (15), we have the inequality

min
{|λ+|, |λ−|} �

√
gA/b − |V | = (gA/b) − V 2

√
gA/b + |V |

� δ√
gM/b + M

hence

max

{
1

|λ+(A,V )| ,
1

|λ−(A,V )|
}

�
√

gM/b + M

δ
< ∞,

thus the time T (δ,M) is finite.
The condition T0 > T (δ,M) is necessary for the exact boundary controllability of our hyperbolic system on account

of the finite speed of wave propagation.
Let T1 > T (δ,M) be given.
Define the set

K = {
(A,V ) ∈ R2: δ � gA/b − V 2, |V | � M, A � M, S(A,V ) = 0

}
. (22)

Then the set K is compact. For each (A,V ) ∈ K , we have T1 > T (A,V ) with T (A,V ) as defined in (19). Hence for
each (A,V ) ∈ K , we can apply Theorem 6 that implies the existence of a number ε(A,V ) > 0 such that between all
initial and final states in Γ (ε(A,V )) exact controllability in the time T1 is possible.

Define ε(A,V ) = min{1/(3L),1/3}ε(A,V ). For (A,V ) ∈ K define the open neighbourhood

U (A,V ) =
{
(a, v) ∈ R2: v2 < g

a

b
, |v − V | < ε(A,V ), |a − A| < ε(A,V )

}
.

Then due to the definition of Γ (ε(A,V )), between all constant states in U (A,V ) exact controllability in the time T1
is possible. We have the inclusion

K ⊂
⋃

(A,V )∈K

U (A,V )

so the sets U (A,V ) form an open cover of K . Since the set K is compact, there exists a finite subcover {U (Ai,Vi): i ∈
{1, . . . , n}} such that for the open set

K̂ =
n⋃

i=1

U (Ai,Vi) (23)

we have K ⊂ K̂ .
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For i ∈ {1, . . . , n} let εi = ε(Ai,Vi) and ε0 = mini∈{1,...,n} εi .
The equation S(A,V ) = 0 in the definition of the set K implies that for all (A,V ) ∈ K , we have V = V (A) as

defined in (10). In particular this yields for all i ∈ {1, . . . , n} the equation Vi = V (Ai) and we have

K = {(
A,V (A)

) ∈ R2: δ � gA/b − V (A)2,
∣∣V (A)

∣∣ � M, A � M
}
. (24)

Theorem 6 and the definition of Γ (ε(A,V )) imply that for all ε ∈ (0, ε0) we have exact controllability in the finite
time T0 = nT1 between all initial and final states in the set

M0 =
n⋃

i=1

{
(A,V ) ∈ C1[0,L]: For all x ∈ [0,L]: 0 < gA(x)/b − V (x)2,

∣∣V (x) − Vi

∣∣ � ε(Ai,Vi),

∣∣A(x) − Ai

∣∣ � ε(Ai,Vi),
∣∣A′(x)

∣∣ � ε,
∣∣V ′(x)

∣∣ � ε
}
. (25)

This follows since starting from any initial state in M0, we can go in time T1 to a constant state (A,V ) ∈ K that is
contained in the intersection of the current neighbourhood U (Ai,Vi) and another neighbourhood in the finite subcover.
By going at most n − 2 times from such a constant state to another constant state in K , in this way after at most n − 1
steps we can reach a constant state in K in the neighbourhood that contains the desired final state. In the last step we
go from this constant state to the desired final state.

If the elements of K̂ are interpreted as constant states, we have K̂ ⊂ M0.
For all (A,V ) ∈ K , we have A ∈ [bδ/g,M].
If γ = 0, we have V (A) = 0 and

S(A,V ) = gC2

(A/P (A))4/3
V |V |,

hence |S(A,V )| � ε implies |V | � √
ε

(A/P (A))2/3√
gC

, thus |V − V (A)| = O(
√

ε).

If γ 
= 0, we have V (A) 
= 0 and sign(V (A)) = − sign(γ ). In particular, all Vi have the same sign and

κ = min
A∈[bδ/g,M]

∣∣V (A)
∣∣ > 0.

We assume that in this case ε(A,V ) is chosen less than or equal to κ/2. Then for all (A,V ) ∈ K , the sign of V is the
same and |V | � κ/2.

In this case by the mean value theorem we have

∣∣S(A,V )
∣∣ = ∣∣S(A,V ) − S

(
A,V (A)

)∣∣ = 2|W | gC2

(A/P (A))4/3

∣∣V − V (A)
∣∣

for some W between V and V (A). Thus if γ 
= 0 the inequality |S(A,V )| � ε implies the inequality

∣∣V − V (A)
∣∣ � ε

κ

(A/P (A))4/3

gC2
= O(ε).

Let (A,V ) ∈ G(δ,M,ε). Define the numbers A0 = A(0) and V0 = V (A0). On account of |S(A0,V (0))| � ε we
have |V0 − V (0)| = O(

√
ε) and we can choose ε > 0 so small that |V0| � sup

(a,v)∈K̂
|v| > M and

(A0,V0) ∈ K̂ (26)

with K̂ as in (23). The definition of K̂ implies that there exists an index i ∈ {1, . . . , n} with |A0 − Ai | � εi and
|V0 − Vi | � εi .

Hence if ε ∈ (0, ε0) is chosen sufficiently small, using the definition of the set G(δ,M,ε) we obtain the inequalities∣∣A(x) − Ai

∣∣ �
∣∣A(x) − A(0)

∣∣ + ∣∣A(0) − Ai

∣∣ � Lεi + εi � ε(Ai,Vi)

and ∣∣V (x) − Vi

∣∣ �
∣∣V (x) − V (0)

∣∣ + ∣∣V (0) − V0
∣∣ + |V0 − Vi |

� Lεi + O(
√

ε) + εi � ε(Ai,Vi).

With the other constraints in the definition of the set G(δ,M,ε) this implies (A,V ) ∈ M0, hence G(δ,M,ε) ⊂ M0,
and the assertion follows. �
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6. Controllability results for states with small derivatives

Now we start from an arbitrary constant subcritical state and show that it is possible to reach in finite time the set
G(δ,M,ε) from Theorem 4 with a continuously differentiable state. This implies that exact controllability in finite
time from any constant subcritical state to a state in a neighbourhood of a constant stationary state is possible.

For this purpose we consider a canal of infinite length with a constant subcritical initial state. The corresponding
Cauchy problem has a continuously differentiable solution for all t � 0, that can be computed explicitly (see the proof
of Lemma 8). For this solution, with increasing t , the source term converges to zero. (For canals with non-zero slope
this decay is exponential; for horizontal canals this is not the case.) This implies that in finite time, the source term
becomes arbitrarily small. The boundary trace of the state yields control functions that drive the system to a state with
arbitrarily small source terms.

Lemma 8. Let (Ā,V ) ∈ R2 be given. Assume that γ = 0 or sign(V ) = − sign(γ ).
Then there exists a unique continuously differentiable solution of the initial value problem

A(x,0) = Ā, V (x,0) = V , x ∈ R (27)

(1), (2) ((x, t) ∈ R ×[0, ∞)). For all (x, t) ∈ R ×[0,∞) we have A(x, t) = Ā and Vx(x, t) = 0, that is V is indepen-
dent of x and in finite time the absolute value of the source term s(t) = S(Ā,V (t)) becomes arbitrarily small.

If γ 
= 0, the function |s(t)| decays exponentially fast.

Proof. Let V (t) be the solution of the initial value problem

V (0) = V , ∂tV (t) = −S
(
Ā,V (t)

) = −g

(
γ + C2|V (t)|V (t)

(Ā/P (Ā))4/3

)
. (28)

Then for (Ā,V ) Eq. (1) holds and Eq. (2) is also valid. Since the initial condition (27) is also valid, this yields the
desired solution of the initial value problem in Lemma 8.

Define the constant

ρ = C

(Ā/P (Ā))2/3
> 0.

Then (10) implies the equation V1 := V (Ā) = − sign(γ )
√|γ |

ρ
and we can write the ordinary differential equation in

(28) in the form

V ′(t) = gρ2[|V1|V1 − ∣∣V (t)
∣∣V (t)

]
.

Case 1. If V = V1, we have S(Ā,V ) = 0 and V (t) = V for all t > 0.

Case 2. Now we consider the case that V1 
= 0 which occurs if γ 
= 0.

Case 2a. If V /V1 ∈ (1,∞), let c1 > 0 be such that coth(c1) = V /V1. Then for all t � 0 we have

V (t) = V1 coth
(
c1 + gρ2|V1|t

)
.

Case 2b. If V /V1 ∈ [0,1), let c1 � 0 be such that tanh(c1) = V /V1. Then for all t � 0 we have

V (t) = V1 tanh
(
c1 + gρ2|V1|t

)
.

Case 3. Now we consider the case that V1 = 0 that is we have a horizontal canal where γ = 0. Then V1 = 0 and
V ′(t) = −gρ2|V (t)|V (t).

Case 3a. If V > 0, we have

V (t) = 1
2

.

(1/V ) + gρ t
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Case 3b. If V < 0, we have

V (t) = 1

(1/V ) − gρ2t
. �

Theorem 9 (Exact controllability for constant initial states). For a canal with a constant rectangular cross section,
consider the Saint-Venant system (1), (2) with the source term given by (3), (4) and boundary conditions in character-
istic form (12), (13).

Let (Ā,V ) ∈ R2 be given such that 0 < gĀ/b − V 2. Let V1 = V (Ā). Assume that 0 < gĀ/b − V 2
1 .

Assume that γ = 0 or sign(V ) = − sign(γ ).
If γ 
= 0, for ε > 0, define the finite time

T (Ā,V , ε) = 1

gρ2|V1| sinh−1
( |V1|√gρ√

ε

)
. (29)

If γ = 0 and V 
= 0, for ε > 0, define the finite time

T (Ā,V , ε) = max

{
0,

1√
gρ

√
ε

− 1

gρ2|V |
}
. (30)

Then for all T0 > T (Ā,V , ε) there exist boundary controls g0, gL such that there exists a unique continuously
differentiable solution (Ā,V (t)) of the initial boundary value problem (27), (1), (2), (12), (13) ((x, t) ∈ [0,L] ×
[0, T0]) that satisfies the final condition (Ā,V (T0)) ∈ {(A,V ) ∈ C1[0,L]: For all x ∈ [0,L]: 0 < gA(x)/b − V (x)2,
|S(A(x),V (x))| � ε, A′(x) = 0, V ′(x) = 0}.

Hence for δ = min{gĀ/b − V 2, gĀ/b − V 2
1 } and M = max{Ā, |V |, |V1|} we have (Ā,V (T0)) ∈ G(δ,M,ε) with

the set of functions G(δ,M,ε) defined in Theorem 4.

Proof of Theorem 9. Lemma 8 implies that for the given constant initial state (Ā,V ) the solution of the initial value
problem (27), (1), (2) exists on R × [0,∞). The proof of Lemma 8 shows that the values of V (x, t) are between V

and V1, hence since 0 < gĀ/b − V 2 and 0 < gĀ/b − V 2
1 the state remains subcritical for all t � 0.

If γ 
= 0 for all T0 > T (Ā,V , ε) and all c1 > 0 we have

1

cosh2(c1 + gρ2|V1|T0)
� 1

sinh2(c1 + gρ2|V1|T0)
� ε

V 2
1 gρ2

and with Cases 2a and 2b from the proof of Lemma 8, this implies |V ′(T0)| < ε.
If γ = 0 for all T0 > T (Ā,V , ε) we have

1

(1/|V |) + gρ2T0
<

√
ε√

gρ
,

hence since this is Case 3 in the proof of Lemma 8,

∣∣V ′(T0)
∣∣ = gρ2

((1/|V |) + gρ2T0)2
< ε.

On account of (28), we have |V ′(t)| = |S(Ā, V (t))|, hence |S(Ā, V (T0))| < ε.
Since A(x, t) = Ā, we have ∂xA(x, t) = 0 and since V (x, t) = V (t), we have ∂xV (x, t) = 0 With the control

functions

g0(t) = V (t) + ϕ(Ā), gL(t) = V (t) − ϕ(Ā)

the solution of the initial boundary value problem (27), (1), (2), (12), (13) satisfies the terminal conditions given in
Theorem 9. �

In Theorem 9 we have seen that it is possible to drive the system from a constant subcritical initial state to a set
G(δ,M,ε) where exact controllability holds. In Theorem 10 we show that this can also be done if the derivatives of
the initial state are sufficiently small.
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Theorem 10 (Exact controllability for initial states with small derivatives). For a canal with a constant rectangular
cross section, consider the Saint-Venant system (1), (2) with the source term given by (3), (4) and boundary conditions
in characteristic form (12), (13).

Let (Ā,V ) ∈ R2 be given such that 0 < gĀ/b − V 2. Let V1 = V (Ā). Assume that 0 < gĀ/b − V 2
1 .

Assume that γ = 0 or sign(V ) = − sign(γ ).
For ε > 0, define the finite time T (Ā,V , ε) as in Theorem 9. Let the numbers δ > 0 and M > 0 be defined as in

Theorem 9.
Then for all T0 > T (Ā,V , ε) there exists a number ε8 > 0 such that for all initial states (A8(x),V8(x)) with

max
x∈[0,L]

{∣∣A8(x) − Ā
∣∣, ∣∣V8(x) − V

∣∣, ∣∣A′
8(x)

∣∣, ∣∣V ′
8(x)

∣∣} � ε8 (31)

there exist boundary controls g0, gL that generate a unique continuously differentiable solution (A(x, t),V (x, t)) of
the initial boundary value problem

A(x,0) = A8(x), V (x,0) = V8(x), x ∈ [0,L] (32)

(1), (2), (12), (13) ((x, t) ∈ [0,L] × [0, T0]) that satisfies the final condition (A(·, T0),V (·, T0)) ∈ G(δ/2,M + 1,2ε)

with the set of functions G as defined in Theorem 4.

Proof of Theorem 10. For continuously differentiable states, we can write (1), (2) in the diagonal form (8). Let
(R+(t),R−(t)) denote the Riemann invariants corresponding to the subcritical state (Ā,V (t)) described in Theorem 9
and (λ̄+(t), λ̄−(t)) = (λ+(Ā,V (t)), λ−(Ā,V (t))) the corresponding eigenvalues. We transform the system (8) to a
system of the functions (r+, r−) with r+ = R+ − R+, r− = R− − R−. Let s(t, r+, r−) = S(R+(t) + r+,R−(t) + r−)

denote the source term S corresponding to the state (R+ + r+,R− + r−). Let

S(t) = S
(
R+(t),R−(t)

)
.

We have

∂

∂t

(
R+(t)

R−(t)

)
=

(−S(t)

−S(t)

)
.

Define the transformed source term

F(t, r+, r−) =
(

S(t) − s(t, r+, r−)

S(t) − s(t, r+, r−)

)
.

We insert R+ = R+ + r+, R− = R− + r− in (8) and due to the definition of F for (r+, r−) we obtain the quasi-linear
hyperbolic system

∂

∂t

(
r+
r−

)
+

(
λ̄+(t) + λ+(r+, r−) 0

0 λ̄−(t) + λ−(r+, r−)

)
∂

∂x

(
r+
r−

)
= F(t, r+, r−). (33)

Since the source term does not depend explicitly on x, for the space derivative of the source term, we have

∂xF (t, r+, r−) = 0.

Hence we can apply Theorem 3.II from [2] which yields the following statement: There exists numbers ε7 > 0 and
N7 > 0 such that if

max
{∣∣∂xr+(x,0)

∣∣, ∣∣∂xr−(x,0)
∣∣: x ∈ (−∞,∞)

}
� ε7,

the solution of the Cauchy problem with given r+(x,0), r−(x,0) for x ∈ (−∞,∞), (33) exists in (−∞,∞) ×[0, T0]
and satisfies the inequality

max
{∣∣∂xr+(x, T0)

∣∣, ∣∣∂xr−(x, T0)
∣∣: x ∈ (−∞,∞)

}
� N7ε7.

Moreover, Theorem 3.IV implies that ε7 can be chosen such that

max
{∣∣r+(x, T0)

∣∣, ∣∣r−(x, T0)
∣∣: x ∈ [0,L]} � 2 max

{∣∣r+(x,0)
∣∣, ∣∣r−(x,0)

∣∣: x ∈ (−∞,∞)
}
.
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So we see that if the C1-norm of (r+(x,0), r−(x,0)) is sufficiently small, the solution of the Cauchy prob-
lem exists on R × [0, T0] and the C1-norm of (r+(x, T0), r−(x, T0)) on [0,L] can be made arbitrarily small so
(r+(·, T0)|[0,L], r−(·, T0)|[0,L]) is in a C1-neighbourhood of zero.

Due to our transformation of variables, this C1-neighbourhood of (0,0) corresponds to a C1-neighbourhood of the
constant state given by (R+(T0),R−(T0)), the Riemann invariants corresponding to the constant state (Ā,V (T0)) ∈
G(δ,M,ε). Transforming everything back to (A,V ) variables we see that if the C1-neighbourhood of (Ā,V (T0))

containing (A(·, T0),V (·, T0)) is small enough, we have (A(·, T0),V (·, T0)) ∈ G(δ/2,M + 1,2ε) which yields the
assertion. We obtain the controls g0 and gL as the boundary traces

g0(t) = R+(0, t) = R+(t) + r+(0, t),

gL(t) = R−(L, t) = R−(t) + r−(L, t). �
7. Example: Exact control to a state with small derivative

In this section we give an example where we have an initial state that can be chosen such that the maximum norm
of its derivative is arbitrarily large. We give a number δ > 0 such that for all ε > 0 we find a number M and boundary
controls that steer the system in the finite time to a state in the set G(δ, M, ε) as defined in Theorem 4 where exact
controllability holds. This example only works because for the source term S(A,V ) we have SA(A,V ) > 0 if V > 0.

Lemma 11. Let real numbers Ā0 ∈ (0,∞) and V be given. Assume that V > 0, γ < 0, S0 = S(Ā0,V ) > 0 and
δ = gā0/b − V 2 > 0. Let a0(z) be the solution of the initial value problem with the initial condition a0(0) = Ā0 and
the differential equation

a′
0(z) = (b/g)S

(
a0(z),V

)
.

Then a0 is defined for all z � 0 and limz→∞ a′
0(z) = 0 and limz→∞ S(a0(z),V ) = 0. Let a1 > 0 be such that

S(a1,V ) = 0 and

μ0 = 4

3

b2C2V 2

a2
1

(
2

b

)1/3

.

Then we have

0 � S
(
a0(z),V

)
� S0 exp(−μ0z). (34)

Let g0(t) = V +ϕ(a0(L+V t)), gL(t) = V −ϕ(a0(V t)). A unique continuously differentiable solution of the initial
boundary value problem

A(x,0) = a0(L − x), V (x,0) = V (35)

(1), (2), (12), (13) exists for (x, t) ∈ [0,L] × [0,∞) and is given by

A(x, t) = a0(L − x + V t), V (x, t) = V .

Let ε > 0 be given. Then for all

T0 � max

{
− 1

V μ0
ln

(
ε

S0

)
,− 1

V μ0
ln

(
g ε

bS0

)}

we have (A(·, T0),V (·, T0)) ∈ G(δ,M,ε) where M = max{V ,a0(V T0 + L)}.

Proof. Let I denote the maximal interval where the solution exists. We have S(a0(0),V ) > 0. Suppose that for some
z0 ∈ I , we have S(a0(z0),V ) = 0. Then from this point, the solution remains constant, a′

0(z) = 0 for z � z0. This
implies that for all z ∈ I , we have S(a0(z),V ) � 0. Thus a0 is increasing on I , hence s(z) = S(a0(z),V ) is decreasing
on I . Moreover, for all z ∈ I we have a0(z) � Ā0. Since γ < 0, the inequality s(z) � 0 implies that there exists a1 > 0
with S(a1,V ) = 0 and for all z � 0 we have a0(z) � a1. We have

S(a0,V ) = g

[
γ + C2V 2

(
2 + b

)4/3]

b a0
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hence

SA

(
a0(z),V

) = −gC2V 2 4

3

(
2

b
+ b

a0(z)

)1/3
b

a0(z)2

� −4

3
gC2V 2

(
2

b

)1/3
b

a2
1

.

Therefore for all z ∈ I we have

s′(z) = SA

(
a0(z),V

)
a′

0(z) = b

g
SA

(
a0(z),V

)
s(z)

� −4

3
b2C2V 2

(
2

b

)1/3
s(z)

a2
1

= −μ0s(z).

This inequality implies that for all z ∈ I , we have 0 � s(z) � S0 exp(−μ0z). This in turn implies that 0 � a′
0(z) �

S0 exp(−μ0z). This implies that the solution exists for all z � 0, that is I = [0,∞) and that both a′
0(z) and s(z)

converge to zero exponentially fast.
Now we consider the functions A(x, t) = a0(L − x + V t), V (x, t) = V . Then the initial conditions (35) and the

boundary conditions (12), (13) with g0, gL as defined in Lemma 11 hold. We have

∂

∂x
(V A) = −V a′

0(L − x + V t),
∂

∂t
A = V a′

0(L − x + V t),

hence (1) holds. Now we check whether (2) is valid. We have

∂

∂t
V + ∂

∂x

(
gH + V 2

2

)
= g

∂

∂x

a0(L − x + V t)

b
= −S

(
a0(L − x + V t),V

)

hence (2) holds. If T0 is as stated in Lemma 11 we have

S0 exp(−μ0V t) � ε, (b/g)S0 exp(−μ0V t) � ε

and with (34) this implies |S(A(x,T0),V )| � ε and |Ax(x,T0)| = |a′
0(L − x + V T0)| � ε.

Since a0 is increasing, for all x ∈ [0,L] we have |A(x,T0)| � |a0(V T0 + L)| � M and for all z � 0 we have
gĀ0(z)/b − V 2 � δ.

Hence (A(·, T0),V (·, T0)) ∈ G(δ,M,ε). �
8. Conclusion

In sloped canals, the influence of the boundary friction is essential for the dynamics of the water flow. In nature,
often states that are close to constant equilibrium states are observed. In this paper, we have shown that between
subcritical states of this type, exact controllability in finite time with a continuously differentiable solution of the
system is possible. This result complements previous results for frictionless horizontal canals. In the analysis of
the case with non-zero source term, the curve of constant stationary states where the source term vanishes plays a
central role: In a C1 neighbourhood of this curve, exact controllability is possible. This neighbourhood contains also
stationary states that are not constant. Let us call this neighbourhood the set of exact controllability.

Subcritical states that are not in this set but have sufficiently small derivatives can be steered to this set of exact
controllability in finite time. At the end of the paper, we give an example of states with arbitrarily large derivatives
that can be steered to this set in finite time with a state of travelling wave type.
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