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Abstract

We consider a semilinear heat equation in one space dimension, with a periodic source at the origin. We study the solution,
which describes the equilibrium of this system and we prove that, as the space variable tends to infinity, the solution becomes,
exponentially fast, asymptotic to a steady state. The key to the proof of this result is a Harnack type inequality, which we obtain
using probabilistic ideas.
© 2008 .

Résumé

On considère une équation de chaleur semilinéaire dans l’espace unidimensionnel, avec une source périodique à l’origine. On
étudie la solution qui décrit l’équilibre de ce système, et on montre que, si la variable spatiale tend vers l’infini, la solution devient
asymptotiquement équivalente à une solution stationnaire à vitesse exponentielle. On utilise une inégalité de type Harnack, qu’on
obtient par des méthodes probabilistiques.
© 2008
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1. Introduction

In the recent years there has been an increasing interest in the study of the effect of a boundary perturbation
on the long time behavior of dynamical systems described by nonlinear partial differential equations. In examples
like the Navier–Stokes [5] and Ginzburg–Landau [4] equations the boundary perturbation appears as a degenerate
random forcing in the frequency space. In these examples it is shown that there is a unique stochastic stationary state,
where there is balance between the force term and the dissipation. On the other hand very little is known about these
states. For instance, one would be interested to know how the stationary state behaves at locations “far away” from
the perturbation. To answer such a question one needs to obtain a thorough understanding of the way the nonlinear
dynamics mixes the boundary perturbation and for many models this question seems for the moment to be out of
reach.
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We will give here an example, where a satisfactory description of the behavior of the stationary state far away from
the perturbation can be given. The model we are considering is described by the one-dimensional, periodically driven
semilinear equation

ut = uxx − u2 + λ(t)δ0(x), x ∈ R, t ∈ R, (1)

where δ0(x) is the Dirac function at the origin and λ(t) is a periodic function, such that

0 < λ1 � λ(·) � λ2 < ∞, (2)

for some λ1, λ2. Condition (2) will guarantee the existence of a positive, bounded solution of Eq. (1).
The reason we study Eq. (1), in particular, is that it describes the equilibrium density of an annihilating particle

system model. Particles are born at the origin, periodically, at a rate λ(t). Subsequently, they perform independent
random walks on the Z

1, described in the continuous limit by uxx , and when two particles meet, they kill each other,
described in the continuous limit by −u2. Scaling limits for such types of models have been treated in [7].

The balance between the input term λ(t)δ0(x) and the dissipation −u2 will drive the system to a periodic, equilib-
rium state, which is proved to be unique. This state is given as the solution of (1). In fact, one can obtain the solution
of (1) in the following way.

First, prescribe some initial data, say u(T , ·) = 0, at time T < 0 and denote by uT (t, x) the solution of the initial
value problem

ut = uxx − u2 + λ(t)δ0(x), x ∈ R, t > T ,

u(T , x) = 0, x ∈ R.

We will see that as T → −∞, uT (t, x) converges pointwise to a function u(t, x), which solves Eq. (1). This justifies
that the solution of (1) describes the equilibrium state of the system. Moreover, we will see, that (1) has a unique
bounded solution, thus the equilibrium state is unique and periodic in time.

The steady states of this system are given as solutions to Eq. (1), corresponding to constant forcing λ(t) = λ0. We
will see that these solutions will have the form

u(x) = 6

(|x| + α0)2
, (3)

where the constant α0 = (24/λ0)
1/3. We will prove that, as the spatial variable tends to infinity, the solution to (1)

becomes asymptotic to a steady state solution. In other words, as we go far away from the boundary, the effect of the
boundary oscillations is averaged out and the system feels a constant boundary perturbation. Moreover, we will prove
that the speed of this convergence is exponential. More precisely, we have

Theorem 1.1. Let λ(t) be a continuous, periodic function with – without loss of generality – period equal to 1. Let
λ1, λ2, be constants such that 0 < λ1 � λ(·) � λ2 < ∞. Then there exists a number 0 < δ < 1, a positive constant C
and a positive constant α∗ – all of them independent of time – such that if u is the unique positive, C1,2(R,R \ {0}) ∩
C(R × R) solution of

ut = uxx − u2 + λ(t) δ0(x), x ∈ R, t ∈ R, (4)

then

sup
t∈R

∣∣∣∣u(t, x) − 6

(|x| + α∗)2

∣∣∣∣ � Cδ|x|,

for any x ∈ R.

The method, that we develop can also be used to prove similar results for the case that the nonlinearity −u2 is
replaced by any nonlinearity of the form −up , for p � 1, and the proof carries out with only minor modifications.
Moreover, the method works also in the case that instead of a periodic input of Dirac type, we consider other type
of periodic boundary perturbations, such as Dirichlet condition at the origin. Moreover, we stated the result in terms
of a continuous input λ(·), but the reader will realize, that the extension to a larger class of inputs, e.g. of bounded
variation, is straightforward.
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Essentially the result of Theorem 1.1 is a nonstandard boundary homogenization result, of a nonlinear operator in
an unbounded domain. The method we follow is a combination of parabolic comparison principles and probabilistic
ideas. In particular, the key of the proof is a Harnack type inequality, which we obtain using arguments from the
ergodic theory of Markov processes, and in particular what is known as Doeblin’s type argument.

2. Some auxiliary results

We gather in this section some basic PDE and stochastic processes tools on which our analysis is based. On the
PDE side, the tools are related to the parabolic maximum or comparison principle.

We will need the following standard definition and comparison principle (see for example [6, Chapters 4 and 7]).

Definition 2.1. Let x0, T ∈ R arbitrary and consider the boundary value problem

Vt = Vxx + f (t, x,V ), x > x0, t > T ,

−aVx(t, x0) + bV (t, x0) = p(t), t > T ,

V (T , x) = q(x), x > x0, (5)

where a, b � 0 are general constants, with a +b > 0, f ∈ C1(R×R×R) and p, q continuous functions. The function
V̂ ∈ C1,2((T ,∞), (x0,∞))∩C([T ,∞), [x0,∞)), such that V̂x(t, x0) exists, for every t > T , is called a super-solution
of problem (5) if it satisfies

Vt � Vxx + f (t, x,V ), x > x0, t > T ,

−aVx(t, x0) + bV (t, x0) � p(t), t > T ,

V (T , x) � q(x), x > x0. (6)

It is called a sub-solution if the above inequalities are reversed.

The next proposition summarizes the comparison principle.

Proposition 2.2. Assume that V1(t, x),V2(t, x) ∈ C1,2((T ,∞), (x0,∞))∩C([T ,∞), [x0,∞)) are bounded, sub- and
super-solutions of the boundary value problem (5). Assume, also, that f (t, x, v) is a smooth function, such that∣∣f (

t, x, v1(t, x)
) − f

(
t, x, v2(t, x)

)∣∣ � c(t, x)
∣∣v1(t, x) − v2(t, x)

∣∣,
for some bounded, nonnegative function c(t, x), and for all functions v1, v2, such that V1(t, x) � vi(t, x) � V2(t, x),
for i = 1,2 and (t, x) ∈ (T ,∞) × (x0,∞). Then V2(t, x) � V1(t, x), for (t, x) ∈ (T ,∞) × (x0,∞).

The typical situation that we will be using this proposition is when f (t, x, v(t, x)) = −v2(t, x). Notice, also, that
in this case f (t, x, v1(t, x)) − f (t, x, v2(t, x)) = −(v1(t, x) + v2(t, x))(v1(t, x) − v2(t, x)), and the sub- and super-
solution of the problems, we will be dealing with, will be positive and bounded.

We prove in Appendix A that for each continuous λ(·), satisfying condition (2), Eq. (1) has a unique, bounded and
smooth solution. More precisely,

Proposition 2.3. Consider Eq. (1), corresponding to a continuous source term λ(·), that satisfies the bounds 0 < λ1 �
λ(·) � λ2 < ∞, for some λ1, λ2. Then there exists a unique positive and bounded, C1,2(R × R \ {0}) ∩ C(R × R)

solution u(t, x) of this equation.

The uniqueness part of this proposition is based on the following proposition, the proof of which will also be given
in Appendix A.

Proposition 2.4. Let uλ, uμ ∈ C1,2(R × R \ {0}) ∩ C(R × R) be bounded, positive solutions of (1), corresponding to
continuous inputs λ(t) and μ(t), respectively. If λ1 � λ(t) � μ(t) � λ2 for every t ∈ R, then uλ(t, x) � uμ(t, x) for
every t, x ∈ R.
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This proposition is essentially Proposition 2.2, with the only difference, that the time horizon is considered to be
doubly infinite, that is T = −∞. We include, for completeness, the proofs of these two propositions in Appendix A
since we do not want to distract the reader from the proof of the main result of Theorem 1.1. Notice that the uniqueness
of positive, bounded solutions to (1), along with the periodicity of the input λ(·), implies, that the solution to (1),
obtained by Proposition 2.3, is itself periodic, with the same period as the one of λ(·).

We now want to obtain a first representation of the solution to (1). To this end, let us first discuss the steady state
solutions of Eq. (1). These are the solutions to (1), when the input λ(t)δ0(x) is time independent. That is, when
λ(t) = λ0, for every t ∈ (−∞,∞), and λ0 a constant. As one can expect, these solutions are time independent. This
follows by the uniqueness part of Proposition 2.3. Therefore a steady state solution satisfies the equation

uxx − u2 + λ0δ0(x) = 0, x ∈ R. (7)

Eq. (7) is an ordinary differential equation, which can be solved explicitly. The only physically relevant solution turns
out to be u(x) = 6

(|x|+α0)
2 , where the constant α0 is equal to (24/λ0)

1/3. This is the explicit form of a steady state
solution.

In the time dependent case, the solution to Eq. (1) cannot be written explicitly. Nevertheless, we can write it in a
form, which is reminiscent to the form of the steady state solutions. This can be done as follows.

Let α1 = (24/λ1)
1/3 and α2 = (24/λ2)

1/3, where λ1, λ2 are the lower and upper bounds of λ(t). The steady state
solutions that correspond to λ1, λ2 are 6/(|x| + α1)

2 and 6/(|x| + α2)
2, respectively. Proposition 2.4 now implies that

the solution u(t, x) of (1) satisfies the bound

6

(|x| + α1)2
� u(t, x) � 6

(|x| + α2)2
, t, x ∈ R. (8)

This allows us to write the solution to (1) implicitly in the form

u(t, x) = 6

(|x| + α(t, x))2
.

In fact, one can define the function α(t, x) in terms of u(t, x) as

α(t, x) =
√

6

u(t, x)
− |x|. (9)

This representation is very useful, since it reduces the proof of Theorem 1.1 to proving that there exists a con-
stant α∗, such that α(t, x) converges to α∗ exponentially fast and uniformly in time.

Let us close with a final remark. Because of the uniqueness of the solution of (1) and the symmetry of this equation
with respect to the origin, we have that u(t, x) = u(t,−x) for every t, x ∈ R. This symmetry implies that the input
term λ(t)δ(x) corresponds to the Neumann boundary condition ux(t,0) = − 1

2λ(t), for t ∈ R. One can easily obtain
this fact, by integrating Eq. (1) with respect to x around 0. In other words, (1) is equivalent to the Neumann boundary
value problem

ut = uxx − u2, x > 0, t ∈ R,

ux(t,0) = −1

2
λ(t), t ∈ R. (10)

From now on, we will freely interplay between these two forms of the problem.

The probabilistic framework. We now develop the probabilistic framework in which we are going to work. A good
reference for the facts stated in this paragraph, as well as the interplay between stochastic processes (in particular
Brownian motion) and elliptic and parabolic PDEs is [3] and in particular Chapter 4 of it.

Let Wx denote the Wiener measure on continuous paths {β(t): t � 0} starting from position x ∈ R, and speeded
by a factor of 2, and EWx the expectation with respect to this measure. The infinitesimal generator corresponding to
the measure Wx is ∂2/∂x2.

Let also τy := inf{t > 0: β(t) = y} be the hitting time of a level y. Its distribution under the measure Wx is given
by
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Wx(τy ∈ ds) = |x − y|√
4πs3

exp

(
−|x − y|2

4s

)
ds.

Consider, now for arbitrary x0 ∈ R and T ∈ R, the boundary value problem

Ut = Uxx − V (t, x)U, x > x0, t > T ,

U(t, x0) = U1(t), t > T ,

U(T , x) = U2(x), x > x0.

Under mild assumptions, e.g V (t, x) is C1,2((T ,∞), (x0,∞)) and nonnegative in the above domain, as well as conti-
nuity and boundedness of the functions U1, U2, a representation of the C1,2((T ,∞), (x0,∞)) ∩ C([T ,∞), [x0,∞))

solution of this problem can be given via the Feynman–Kac formula. This representation reads as

U(t, x) = EWx

[
U2

(
β(t − T )

)
exp

(
−

t−T∫
0

V
(
t − s, β(s)

)
ds

)
; τx0 � t − T

]

+ EWx

[
U1(t − τx0) exp

(
−

τx0∫
0

V
(
t − s, β(s)

)
ds

)
; τx0 < t − T

]
. (11)

A special case of the above problem, which suits better to our considerations, is the one with doubly infinite time
horizon

Ut = Uxx − V (t, x)U, x > x0, t ∈ R,

U(t, x0) = U1(t), t ∈ R.

In this case, the Feynman–Kac formula writes as

U(t, x) = EWx

[
U1(t − τx0) exp

(
−

τx0∫
0

V
(
t − s, β(s)

)
ds

)]
. (12)

The above formulae are dealing with the case of linear PDEs, while the actual problem (1), that we are dealing with,
is a nonlinear one. Nevertheless, the Feynman–Kac formula can be used to linearize it by providing a useful implicit
formula. More specifically, the solution u(t, x) of Eq. (1) satisfies, for x > 0, the equation

ut = uxx − u2.

Let x0 an arbitrary positive number. Then u(t, x) can be regarded as the solution of the boundary value problem

Ut = Uxx − u(t, x)U, x > x0, t ∈ R,

U(t, x0) = u(t, x0), t ∈ R.

Since, by Proposition 2.3 u(t, x) is nonnegative and smooth, the Feynman–Kac formula (12) can be used, with V = u

and U1(t) = u(t, x0), to provide the implicit representation of the solution u(t, x) of the above problem, as

u(t, x) = EWx

[
u(t − τx0, x0) exp

(
−

τx0∫
0

u
(
t − s, β(s)

)
ds

)]
. (13)

This formula should be thought of as a variation of constants formula, and although implicit, it will turn to be very
useful for the proof of Theorem 1.1.
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3. Proof of Theorem 1.1

Idea of the proof. To begin with, let us denote by ū(x) = sup−∞<t<+∞ u(t, x) , and by u(x) = inf−∞<t<+∞ u(x, t).
Notice that the above supremum and infimum need only to be taken over one period interval. Recall, that the solution
u(t, x) will be periodic in time, with the same period as the one of λ(·). Recall also that the function α(t, x) is given
in terms of u(t, x) by formula (9). Denote, also, for x > 0, by

ᾱ(x) :=
√

6

ū(x)
− x and α(x) :=

√
6

u(x)
− x. (14)

It is clear that

u(t, x) � ū(x) = 6/
(
x + ᾱ(x)

)2 (15)

for any x, t and this bound is optimal, in the sense that, since the supremum is taken over a finite interval, there will
be a t , such that equality holds.

On the other hand, suppose that we fix an arbitrary x0 > 0, and let w solve the boundary problem

wt = wxx − w2, x � x0, t ∈ R,

w(t, x0) = ū(x0), t ∈ R. (16)

It is clear that u(t, x) is a subsolution of the above Dirichlet problem, since it satisfies the PDE, but also, on the
boundary, u(t, x0) � ū(x0), for every t ∈ R. Therefore, by the comparison principle, Proposition 2.2, where we con-
sider a = 0, b = 1 and T = −∞, it follows that u(t, x) � w(t, x), for any x � x0, t ∈ R. Since problem (16) is time
homogeneous, it can be solved explicitly and yields that w(t, x) = 6/(x + ᾱ(x0))

2, x � x0, t ∈ R. This implies the
bound

u(t, x) � 6/
(
x + ᾱ(x0)

)2
, x � x0, t ∈ R (17)

Consider, now, the bounds (15) and (17), when u is evaluated at x = x0 + 1, and recall that the first is optimal. We
then get that 6/(x0 + 1 + ᾱ(x0 + 1))2 � 6/(x0 + 1 + ᾱ(x0))

2, and consequently ᾱ(x0) � ᾱ(x0 + 1). In the same way,
by considering the corresponding to (15) and (17) lower bounds, u(t, x) � u(x) = 6/(x + α(x))2 for any x, t and
u(t, x) � 6/(x + α(x0))

2, for x � x0 and t ∈ R, we can get that α(x0 + 1) � α(x0). Moreover, by the definition,
ᾱ(x0) � α(t, x0) � α(x0) and, thus, we have proved the following monotonicity property:

ᾱ(x0) � ᾱ(x0 + 1) � α(t, x0 + 1) � α(x0 + 1) � α(x0). (18)

By (8), and since x0 is arbitrary, Theorem 1.1 boils down to proving that α(x) − ᾱ(x) decays exponentially fast.
Finally, by definition (14) we have that

α(x) − ᾱ(x) =
√

6√
ū(x)u(x)(

√
u(x) + √

ū(x))

(
ū(x) − u(x)

)
. (19)

Since ū(x), u(x) decay like 1/x2, Theorem 1.1 will be established once we prove that the difference ū(x) − u(x)

decays exponentially fast.
Let us denote by ρ(x) := ū(x) − u(x). In order to get the exponential decay we are going to show that there exists

a constant 0 < δ < 1, such that,

ρ(x + 1) < δρ(x), (20)

for every x large enough. This is the Harnack inequality we are after, since it implies that

supt u(t, x)

inft u(t, x)
= 1 + O

(
x2δx

)
.

for x large enough.
In order to obtain the contraction estimate (20), we will use ideas from the theory of Markov processes. In particular,

we will use a similar idea to what is known as Doeblin’s argument. This argument is used to describe the ergodic
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properties of certain Markov processes, and in a linear PDE setting it can be used to prove homogenization results
[2, Chapter 3]. Here, we develop a Doeblin’s type argument, suitable to our nonlinear setting.

Proof of (20). The proof of (20) is given through a series of lemmas. The first one shows that ρ(x) is nonincreasing
in x.

Lemma 3.1. If ρ is defined as above, and x0 > 0 is arbitrary, then for any x � x0, ρ(x) � ρ(x0).

Proof. For arbitrary t1, t2 ∈ R define the function

v(t, x) := u(t1 + t, x) − u(t2 + t, x).

Then, using the fact that u(ti + t, x), i = 1,2 satisfy (4), we have that v(t, x) will solve the boundary value problem

∂V (t, x)

∂t
= ∂2V (t, x)

∂x2
− (

u(t1 + t, x) + u(t2 + t, x)
)
V (t, x), x > x0, t ∈ R

V (t, x0) = v(t, x0), t ∈ R.

Since v(x0, t) � ū(x0) − u(x0) = ρ(x0) and(
∂

∂t
− ∂2

∂x2
+ (

u(x, t + t1) + u(x, t + t2)
))

ρ(x0) � 0,

then, ρ(x0) is a supersolution for the above Dirichlet problem and so, v(t, x) � ρ(x0), or u(t1 + t, x) − u(t2 + t, x) �
ρ(x0) . Since t1, t2 are arbitrary, it follows that ρ(x) := supt1

u(t1 + t, x) − inft2 u(t2 + t, x) � ρ(x0) for x � x0. �
The next step is to use the Feynman–Kac formula to provide a representation of the solution u(t, x). Let us recall

the definition of the hitting time τy := inf{t > 0: β(t) = y}. Also, its distribution is given by

Wx(τy ∈ ds) = |x − y|√
4πs3

exp

(
−|x − y|2

4s

)
ds.

Let us also recall Eq. (13), which provides the formula

u(t, x) = EWx

[
u(t − τy, y) exp

(
−

τy∫
0

u
(
t − r, β(r)

)
dr

)]
. (21)

This formula is valid for any y > 0, but we will be choosing y to be less than x.
Let us rewrite the formula, by conditioning with respect to the hitting time, as

EWx

[
u(t − τy, y) exp

(
−

τy∫
0

u
(
t − r, β(r)

)
dr

)]

= EWx

[
EWx

[
u(t − τy, y) exp

(
−

τy∫
0

u
(
t − r, β(r)

)
dr

) ∣∣∣∣ τy

]]

=
∞∫

0

u(t − s, y)EWx

[
exp

(
−

s∫
0

u
(
t − r, β(r)

)
dr

) ∣∣∣∣ τy = s

]
Wx(τy ∈ ds)

:=
∞∫

0

u(t − s, y)g(s; t) ds

=
t∫

u(s, y)g(t − s; t) ds, (22)
−∞
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where the measure g(s; t) ds (we have made explicit the dependence on t , but suppressed the one on u, x and y), that
appears in the above formula is equal to

g(s; t) ds := EWx

[
exp

(
−

τy∫
0

u
(
t − r, β(r)

)
dr

) ∣∣∣∣ τy = s

]
Wx(τy ∈ ds). (23)

Let us finally write

gt (s) := g(t − s; t), (24)

and then write, by (22), the representation of u as

u(t, x) =
t∫

−∞
u(s, y)gt (s) ds.

Having this representation, the proof of the main estimate will follow the lines of Doeblin’s argument [2, Chapter 3].
In our case there is an extra difficulty in applying this argument, because of the fact that the density gt (s) depends
on u, and, moreover, the total mass,

t∫
−∞

gt (s) ds = EWx

[
exp

(
−

τy∫
0

u
(
t − s, β(s)

)
ds

)]
, (25)

is not constant in time.
Let us denote the difference in masses between different times by

m(t1, t2) :=
t1∫

−∞
gt1(s) ds −

t2∫
−∞

gt2(s) ds. (26)

For the rest of the section the densities gt (s) and the mass difference m(t1, t2) will correspond to y = x − 1.

Lemma 3.2. Let us define

gt1t2(s) := gt1(s) − gt2(s),

I+ := {
s ∈ (−∞, t1): gt1t2(s) � 0

}
,

and

I− := (−∞, t1) \ I+.

Then, for arbitrary 0 � t1, t2 � 1, x > 1, we have that

u(t1, x) − u(t2, x) �
(
ū(x − 1) − u(x − 1)

)∫
I+

gt1t2(s) ds + u(x − 1)m(t1, t2).

Proof. Without loss of generality suppose that t1 < t2. By the representation (22) we have that

u(t1, x) − u(t2, x) =
t1∫

−∞
u(s, x − 1)gt1(s) ds −

t2∫
−∞

u(s, x − 1)gt2(s) ds

=
t1∫

u(s, x − 1)gt1t2(s) ds −
t2∫

u(s, x − 1)gt2(s) ds
−∞ t1
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=
∫
I+

u(s, x − 1)gt1t2(s) ds +
∫

(−∞,t1)\I+

u(s, x − 1)gt1t2(s) ds −
t2∫

t1

u(s, x − 1)gt2(s) ds

� ū(x − 1)

∫
I+

gt1t2(s) ds + u(x − 1)

∫
(−∞,t1)\I+

gt1t2(s) ds −
t2∫

t1

u(s, x − 1)gt2(s) ds. (27)

Notice that∫
(−∞,t1)\I+

gt1t2(s) ds =
t1∫

−∞
gt1t2(s) ds −

∫
I+

gt1t2(s) ds

=
t1∫

−∞
gt1(s) ds −

t1∫
−∞

gt2(s) ds −
∫
I+

gt1t2(s) ds

=
t1∫

−∞
gt1(s) ds −

t2∫
−∞

gt2(s) ds +
t2∫

t1

gt2(s) ds −
∫
I+

gt1t2(s) ds. (28)

Substitution of (28) into (27) gives us

u(t1, x) − u(t2, x) �
(
ū(x − 1) − u(x − 1)

)∫
I+

gt1t2(s) ds + u(x − 1)

t2∫
t1

gt2(s) ds

−
t2∫

t1

u(s, x − 1)gt2(s) ds + u(x − 1)m(t1, t2),

where recall that m(t1, t2) was defined in (26). The result now follows by noticing that u(s, x − 1) � u(x − 1) and,
therefore, the second line in the last inequality is negative. �
Lemma 3.3. There exists a 0 < δ1 < 1 such that, for x large enough, we have

sup
0�t1,t2�1

∫
I+

gt1t2(s) ds � δ1.

Proof. First, by the definition of gt and since the solution u is positive, we see, by (25), with y = x − 1, that
t∫

−∞
gt (s) ds = EWx

[
exp

(
−

τx−1∫
0

u
(
t − s, β(s)

)
ds

)]
� 1.

Also recall that∫
I+

gt1t2(s) ds =
∫
I+

gt1(s) ds −
∫
I+

gt2(s) ds =
t1∫

−∞
gt1(s) ds −

∫
I−

gt1(s) ds −
∫
I+

gt2(s) ds. (29)

Let us denote by Wx(s;x − 1) the density of the measure Wx(τx−1 ∈ ds). Then (29) can be bounded above by

1 −
∫
I−

gt1(s) ds −
∫
I+

gt2(s) ds = 1 −
∫
I−

EWx
[
e− ∫ τx−1

0 u
(
t1−r,β(r)

)
dr

∣∣ τx−1 = t1 − s
]
Wx(t1 − s;x − 1) ds

−
∫

EWx
[
e− ∫ τx−1

0 u
(
t2−r,β(r)

)
dr

∣∣ τx−1 = t2 − s
]
Wx(t2 − s;x − 1) ds. (30)
I+
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So, in order to derive the statement of the proposition, it suffices to bound from below the sum of the two integrals
in (30), by a positive number.

By (8), we have that u(t, x) � 6/(x + α2)
2, for any x > 0 and t ∈ R. Therefore, for r � τx−1, and when the

Brownian motion starts from x, we have that β(r) � x − 1 and so u(t1 − r, β(r)) � 6/(x − 1 + α2)
2. This implies,

that the first integral in (30) is bounded below by∫
I−

e
− 6

(x−1+α2)2
(t1−s)

Wx(t1 − s;x − 1) ds �
∫

I−∩(−2,−1)

e
− 6

(x−1+α2)2
(t1−s)

Wx(t1 − s;x − 1) ds

and similarly for the second one. It can be checked that for any c > 0, e−csWx(s;x − 1) is decreasing for s � 1, and
since t1, t2 ∈ [0,1], we see that the last integrand is bounded below by e−18/(x−1+α2)2

Wx(3;x − 1) � ε, for some
positive ε, uniformly in x, whenever x is large enough. In the same way we can bound the second integral in (30)
from below, and hence estimate their sum by

ε
∣∣I− ∩ (−2,−1)

∣∣ + ε
∣∣I+ ∩ (−2,−1)

∣∣ � ε.

Thus, we see that we can choose δ1 to be 1 − ε. �
Remark. The proof of this lemma shows also that the number δ1 that appears here, as well as in Theorem 1.1, does
not depend on λ(·). In other words the exponential decay rate depends only on the dynamics of the system.

Lemma 3.4. For the mass difference m(t1, t2) between arbitrary times 0 � t1, t2 � 1, the following bound holds:

m(t1, t2) � (x − 1 + α1)
2 ln

(
x + α1

x − 1 + α1

)(
ū(x − 1) − u(x − 1)

)
,

where α1 is the constant that appears in (8).

Proof. By (23) we have that m(t1, t2) is equal to

EWx

[
exp

(
−

τx−1∫
0

u
(
t1 − r, β(r)

)
dr

)]
− EWx

[
exp

(
−

τx−1∫
0

u
(
t2 − r, β(r)

)
dr

)]

� EWx

[
exp

(
−

τx−1∫
0

u
(
β(r)

)
dr

)]
− EWx

[
exp

(
−

τx−1∫
0

ū
(
β(r)

)
dr

)]
. (31)

Denote by f (x;x − 1) and f̄ (x;x − 1), respectively, the first and the second terms of (31). We can replace x − 1

with an arbitrary x0 < x and note, by an application of the Feynman–Kac formula, that f (x;x0) and f̄ (x;x0) solve,
respectively, the equations

f xx − uf = 0, x > x0,

and

f̄xx − ūf̄ = 0, x > x0,

with boundary condition on x0: f (x0;x0) = f̄ (x0;x0) = 1. Subtract the equations to get that

(f − f̄ )xx + ūf̄ − uf = 0,

or

(f − f̄ )xx − u(f − f̄ ) + (ū − u)f̄ = 0.

Since f (x;x0) − f̄ (x;x0) equals to 0 on x = x0, we get, again, by the Feynman–Kac formula for equations with a
source term (see [3] in the case of a continuous source, and [1, Section 2.6], in the case of a Dirac), that

(f − f̄ )(x;x0) = EWx

[ τx0∫ (
(ū − u)f̄

)(
β(s)

)
exp

(
−

s∫
u
(
β(r)

)
dr

)
ds

]
.

0 0
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By Lemma 1, this is

� ρ(x0)E
Wx

[ τx0∫
0

f̄
(
β(s);x0

)
exp

(
−

s∫
0

u
(
β(r)

)
dr

)
ds

]
< ρ(x0)E

Wx

[ τx0∫
0

f̄
(
β(s);x0

)
ds

]
. (32)

In order to bound the last quantity let us first get a bound for f̄ . Again we can use the bounds in (8) to bound ū(β(r))

below by 6/(β(r) + α1)
2, and get that

f̄ (x;x0) � EWx

[
exp

(
−

τx0∫
0

6

(β(r) + α1)2
dr

)]
.

The right-hand side of the above inequality, which we denote by h(x;x0), solves the equation hxx − 6
(x+α1)

2 h = 0,

x > x0 with boundary condition h(x0;x0) = 1. This equation can be solved and gives us h(x;x0) = ((x0 + α1)/

(x + α1))
2. Thus,

EWx

[ τx0∫
0

f̄
(
β(s);x0

)
ds

]
� EWx

[ τx0∫
0

(
x0 + α1

β(s) + α1

)2

ds

]
= (x0 + α1)

2 ln

(
x + α1

x0 + α1

)
, (33)

where the last equality follows, since the right-hand side expectation solves the equation

h̄xx + (
(x0 + α1)/(x + α1)

)2 = 0,

for x � x0 and h̄(x0) = 0. The result now follows if we set x0 = x − 1 in (33) and plug the resulting bound in (32) and
subsequently in (31). �
Proposition 3.5. For x large enough, there is a 0 < δ < 1 such

ρ(x) � δ ρ(x − 1).

Proof. The proof follows immediately by substitution of the estimates in Lemmas 3.3 and 3.4 into the estimate in
Lemma 3.2, and noticing that, for all x large enough, u(x − 1) · (x − 1 + α1)

2 ln((x + α1)/(x − 1 + α1)) < δ − δ1 for
δ, such that 0 < δ1 < δ < 1. �
Proof of Theorem 1.1. Proposition 3.5 and relations (18) and (19) imply that there exists a positive number α∗ and a
positive constant C1, such that

sup
t

∣∣α(t, x) − α∗
∣∣ � C1x

3δx, (34)

for any x large enough, positive. Therefore, we obtain, that

sup
t

∣∣∣∣u(t, x) − 6

(x + α∗)2

∣∣∣∣ = sup
t

∣∣∣∣ 6

(x + α(t, x))2
− 6

(x + α∗)2

∣∣∣∣
= sup

t

6(2x + α(t, x) + α∗)
(x + α(t, x))2(x + α∗)2

sup
t

∣∣α(t, x) − α∗
∣∣

� Cδx,

by (34), with a positive constant C. This completes the proof of Theorem 1.1. �
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Appendix A. Existence and uniqueness of the dynamics

Proof of Proposition 2.4. We start by proving a preliminary estimate.
Let u2(t, x) = 6/(|x|+α2)

2 be the solution to (1), corresponding to the input λ2. Subtracting the equations satisfied
by u,u2 we obtain

(u − u2)t = (u − u2)xx − (u + u2)(u − u2) + (
λ(t) − λ2(t)

)
δ0(x), t ∈ R, x ∈ R. (35)

For any σ > −∞, we view u − u2 as the solution of the initial value problem

Vt = Vxx − (u + u2)V + (
λ(t) − λ2(t)

)
δ0(x), t > σ, x ∈ R,

V (σ, x) = u(σ, x) − u2(σ, x), x ∈ R.

We can use a slightly different version of the Feynman–Kac formula, namely when the equation has a source term, to
write the solution to the above equation as

u(t, x) − u2(t, x) = EWx

t−σ∫
0

(
λ(t − s) − λ2(t − s)

)
δ0

(
β(s)

)
e− ∫ s

0 (u+u2)
(
t−r,β(r)

)
dr ds

+ EWx
[
(u − u2)

(
σ,β(t − σ)

)
e− ∫ t−σ

0 (u+u2)
(
t−r,β(r)

)
dr

]
. (36)

A good reference for equations with source terms and their relation with the Feynman–Kac formula is [3, Chapter 4]
for continuous source, or [1, Section 2.6] for Dirac source. Let us briefly clarify the appearance of the Dirac term
in the first integral. One can work with such Feynman–Kac formulae in one dimension, as if the Dirac term was a
mollified version of it. Formally, δ0(β(s)) denotes what is defined to be the local time of Brownian motion at zero.
For details one can refer to [1, Section 2.6].

Going back to the proof, we have, that since u, u2 are bounded and positive and u2(x) = 6/(|x| + α2)
2, we can

bound the second term in the above relation by CEWx [exp{− ∫ t−σ

0
6

(|β(r)|+α2)2
dr}], and it is a routine to see that

it converges to zero, as σ tends to negative infinity. To argue for this, let us, first, bound 6/(|β(r)| + α2)
2 below

by C11{|β(r)|<1} and then bound CEWx [exp{− ∫ t−σ

0
6

(|β(r)|+α2)2
dr}] above by CEWx [exp{−C1

∫ t−σ

0 1{|β(r)|<1} dr].
Since one-dimensional Brownian motion is recurrent we have that

∫ t−σ

0 1{|β(r)|<1} dr tends almost surely to infinity
as σ tends to negative infinity. We can, therefore, use the dominated convergence theorem to obtain the claim.

Thus, passing to the limit σ → −∞ in (36) – using the monotone convergence theorem to deal with the first term
– we obtain that

u(t, x) − u2(t, x) = EWx

∞∫
0

(
λ(t − s) − λ2(t − s)

)
δ0

(
β(s)

)
e− ∫ s

0 (u+u2)
(
t−r,β(r)

)
dr ds. (37)

Since λ(·) � λ2 we obtain that u � u2. In the same way we can obtain a similar lower bound on u, and so we get that

6

(|x| + α1)2
� u(t, x) � 6

(|x| + α2)2
, t ∈ R, x ∈ R. (38)

We can now use the preliminary bound (38), to compare two solutions uλ,uμ corresponding to sources λ(·),μ(·),
such that λ1 � λ(·) � μ(·) � λ2. In the same way as (36) we obtain that

uλ(t, x) − uμ(t, x) = EWx

t−σ∫
0

(
λ(t − s) − μ(t − s)

)
δ0

(
β(s)

)
e− ∫ s

0 (uλ+uμ)
(
t−r,β(r)

)
dr ds

+ EWx
[
(uλ − uμ)

(
σ,β(t − σ)

)
e− ∫ t−σ

0 (uλ+uμ)
(
t−r,β(r)

)
dr

]
. (39)

Using, now, the same argument as the one employed to obtain (37), along with (38), we can pass to the limit σ → ∞,
to obtain
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uλ(t, x) − uμ(t, x) = EWx

∞∫
0

(
λ(t − s) − μ(t − s)

)
δ0

(
β(s)

)
e− ∫ s

0 (uλ+uμ)
(
t−r,β(r)

)
dr ds.

So the fact that λ(·) � μ(·) immediately implies that uλ � uμ, which establishes the desired comparison. �
Proof of Proposition 2.3. Clearly, the uniqueness of positive, bounded solutions to Eq. (1) is implied by Proposi-
tion 2.4. Let us now prove the existence of the solution.

As we have already mentioned in the introduction, we want to think of the solution as the equilibrium state of the
system governed by the same dynamics, but starting from some initial state, which for simplicity we will consider it
to be zero. In other words we will construct the solution of problem (1) as the limit, as τ → −∞, of the solution of
the problem

ut = uxx − u2 + λ(t)δ0(x), x ∈ R, t > τ,

u(τ, x) = 0, x ∈ R. (40)

It will be convenient to think of problem (1) as a Neumann boundary problem, as in (10). Similarly, the analogue
Neumann problem for (40) is

ut = uxx − u2, x > 0, t > τ,

ux(t,0) = −1

2
λ(t), t > τ,

u(τ, x) = 0, x > 0. (41)

Using the standard Perron iteration method (e.g. [6, Chapters 2 and 7]), one can show that problem (41) has a unique,
C1,2((τ,∞) × R+) ∩ C([τ,∞), [0,∞)) solution, bounded below and above, respectively, by the sub- and super-
solutions 0 and 6/(x + α2)

2, to problem (41) – recall that α2 = (24/λ2)
1/3. Let us denote by u(τ), the symmetric

extension around 0, of the solution to (41), obtained by the Perron’s method. Clearly, u(τ) is a solution to (40).

Let us denote by g(t, x; s, y) with t > s and x, y > 0, the Green’s function for the generator − ∂
∂t

+ ∂2

∂x2 with
Neumann boundary conditions, i.e.

g(t, x; s, y) = 1√
4π(t − s)

(
exp

(
− (x − y)2

4(t − s)

)
+ exp

(
− (x + y)2

4(t − s)

))
,

and by gc(t, x; s, y) = e−c(t−s)g(t, x; s, y), the Green’s function for the generator − ∂
∂t

+ ∂2

∂x2 − c, also with Neumann
boundary conditions. Consider c to be an arbitrary, positive number.

In order to guarantee, that the integrals below are convergent, we add and subtract from the right-hand side of the
first equation in (41) the quantity c u. We can now use the variation of constants formula to write for t > τ and x > 0,

u(τ)(t, x) = 1

2

t∫
τ

λ(s)gc(t, x; s,0) ds +
t∫

τ

∫
R+

(−(
u(τ)

)2 + cu(τ)
)
(s, y) gc(t, x; s, y) dy ds. (42)

Let us note that the mapping τ → u(τ)(t, x) is nonincreasing, for any arbitrary t, x. Indeed, consider the solutions
u(τ1), u(τ2) for τ1 > τ2. In the domain x > 0, t > τ1, u(τ1) satisfies (41) with initial condition 0, while in the same
domain u(τ2) satisfies the same problem, but with initial condition u(τ2)(τ1, x) � 0. Hence, by the comparison prin-
ciple, Proposition 2.2, it follows that for any t > τ1 > τ2, and x > 0, u(τ2)(t, x) � u(τ1)(t, x). This monotonicity
implies that, as τ → −∞, u(τ)(t, x) converges to a bounded and positive function u(t, x). Passing now to the limit,
τ → −∞, in (42) we see, by dominated convergence, that u(t, x) also satisfies (42), where the lower bound τ in the
time integrals is replaced by negative infinity. Standard arguments now (see [6, Chapter 2]) imply that u(t, x) is a
C1,2(R × R+) ∩ C(R × [0,∞)) function and it satisfies the equation ut = uxx − u2, for any t ∈ R, x ∈ R+, as well as
the boundary condition ux(t,0) = −1/2λ(t), for t ∈ R. Extending now this function symmetrically around the origin
we obtain a solution to (1), with the desired regularity properties. �
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