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Abstract

In this paper we study the geometry of null cones in smooth Einstein vacuum spacetimes. We provide the L∞ estimate for
the trace of the null second fundamental form, as well as estimates for other geometric quantities. This paper is based on the
work of Klainerman and Rodnianski [S. Klainerman, I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite
curvature flux, Invent. Math. 159 (3) (2005) 437–529; S. Klainerman, I. Rodnianski, Sharp trace theorems for null hypersurfaces on
Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (1) (2006) 164–229; S. Klainerman, I. Rodnianski, A geometric
Littlewood–Paley theory, Geom. Funct. Anal. 16 (1) (2006) 126–163].
© 2008

1. Introduction

This paper is concerned with the geometry of null cones in 3 + 1 smooth Einstein vacuum spacetimes, i.e. 3 + 1
Lorentzian manifolds (M,g) with Ricci flat metrics,

Rαβ(g) = 0.

Let p ∈ M be a fixed point and let T be a fixed timelike vector at p satisfying 〈T ,T 〉 = −1. We choose all future
null vectors Lω , ω ∈ S

2, at p such that 〈Lω,T 〉 = −1 and 〈Lω,Lω〉 = 0. For each ω ∈ S
2 let Γ (s,ω) denote the

outgoing null geodesic parametrized by the affine parameter s with the initial data Γ (0,ω) = p and d
ds

Γ (0,ω) = Lω.

The union of all these outgoing null geodesics forms a 3-D null cone starting from p which is denoted by H.
We define the vector field L by L := d

ds
Γ. Obviously L(0,ω) = Lω and L satisfies

g(L,L) = 0 and DLL = 0.

The parameter s can be regarded as a function on H verifying L(s) = 1 and s(p) = 0. We introduce the one parameter
flow Γs(ω) := Γ (s,ω). It generates a family of 2-D closed surfaces {Ss} by Ss := Γs(S

2), which form the geodesic
foliation of H. It is clear that each Ss is diffeomorphic to S

2 for s > 0 sufficiently small. By rescaling the metric g
we may assume without loss of generality that for 0 < s � 1 each slice Ss is diffeomorphic to S

2. Let Ht be the
portion of H when s varies in (0, t]. For simplicity, we still denote by H the portion H1. Every point q in H can be
parametrized by the coordinates (s,ω) for which q = Γs(ω). We then call (s,ω) the transport local coordinates.
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Let D denote the Levi-Civita connection of Einstein vacuum metric g. Let γ be the induced metric on Ss , and ∇
its induced covariant derivative. At any point q ∈ Ss ⊂ H we denote by L the null vector conjugate to L relative to the
Ss foliation, i.e. 〈L,L〉 = −2 and 〈L,X〉 = 0 for all X ∈ Tq(Ss). A smooth choice of an orthonormal frame {ea}a=1,2
in Tq(Ss) combined with L,L forms a null frame associated to the foliation.

We introduce the null components of the curvature tensor R of the spacetime metric g relative to L and L as follows
(see [2, Section 7.3] and [4, Section 3.1.2]):

αab = R(L, ea,L, eb), βa = 1

2
R(ea,L,L,L),

ρ = 1

4
R(L,L,L,L), σ = 1

4
	R(L,L,L,L),

β
a

= 1

2
R(ea,L,L,L), αab = R(L, ea,L, eb), (1.1)

where 	Rμνγ δ = 1
2εμνλτR

λτ
γ δ and εμνλτ are components of the volume element in (M,g). The total curvature flux R0

is then defined by

R0 = (‖α‖2
L2(H)

+ ‖β‖2
L2(H)

+ ‖ρ‖2
L2(H)

+ ‖σ‖2
L2(H)

+ ‖β‖2
L2(H)

) 1
2 .

The geometry of H in particular depends on the null second fundamental form

χ(X,Y ) = 〈DXL,Y 〉
with X and Y being arbitrary vector fields tangent to Ss . We will denote trχ and χ̂ the trace and traceless part of χ

respectively. Other important geometric quantities are the dual null second fundament form and the torsion

χ(X,Y ) = 〈DXL,Y 〉 and ζ(X) = 1

2
〈DXL,L〉.

We will also use trχ and χ̂ to denote the trace and traceless part of χ .
The mass aspect function μ is defined by

μ = −div ζ + 1

2
χ̂ · χ̂ − ρ + |ζ |2. (1.2)

We are now ready to state the main theorem in this paper.

Theorem 1.1. Consider an outgoing null hypersurface H in a smooth 3 + 1 Einstein vacuum spacetime (M,g),
initiating from a point p and foliated by the geodesic foliation associated to the affine parameter s with s|p = 0.
Assume that the total curvature flux R0 is sufficiently small. Then we have∥∥∥∥trχ − 2

t

∥∥∥∥
L∞

t L∞
ω

� R0

and ∥∥∥∥∥
1∫

0

|χ̂ |2 dt

∥∥∥∥∥
L∞

ω

+
∥∥∥∥∥

1∫
0

|ζ |2 dt

∥∥∥∥∥
L∞

ω

� R0,

∥∥∥∥sup
t�1

|t∇ trχ |
∥∥∥∥

L2
ω

+
∥∥∥∥sup

t�1
t

3
2 |μ|

∥∥∥∥
L2

ω

+ ‖μ‖L2(H) � R0,

N1(χ̂) + N1(ζ ) + N1

(
trχ − 2

t

)
� R0,

‖∇ trχ‖B0 + ‖t1/2μ‖B0 + ‖μ‖P 0 � R0,∥∥∥∥sup
t�1

t
1
2

∣∣∣∣trχ + 2

t

∣∣∣∣∥∥∥∥
2

+
∥∥∥∥sup

t�1
t

1
2 |χ̂ |

∥∥∥∥
2

� R0,

Lω Lω
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∥∥∥∥trχ + 2

t

∥∥∥∥
L2

t L
2
ω

+ ‖χ̂‖L2
t L

2
ω

� R0,∥∥∥∥∇L

(
trχ + 2

t

)∥∥∥∥
L2(H)

� R0,∥∥∥∥t−1/2
(

trχ + 2

t

)∥∥∥∥
B0

+ ‖t−1/2χ̂‖B0 � R0,∥∥∥∥t−1
(

trχ + 2

t

)∥∥∥∥
P 0

+ ‖t−1χ̂‖P 0 � R0.

The various norms appearing in the statement will be defined in Section 3 (see (3.3)–(3.6) and (3.20), (3.21)).
Throughout this paper we will use the notation A � B to mean A � C ·B for some appropriate universal constants C.

In [9,11,12] Klainerman and Rodnianski developed systematic methods to prove that, on truncated null hypersur-
faces initiating from a 2-D surface diffeomorphic to S

2, within the radius of injectivity, trχ can be controlled by
appropriate norms of the small initial data and small total curvature flux R0, which is one of their steps toward the
answer of the minimal local regularity of the initial data that guarantees the existence and uniqueness of local devel-
opments for Einstein vacuum equation. See [7] and [8] for the best known regularity result. For the background of the
initial data problem of Einstein vacuum equations and related results, please refer to [1,3,21,5,10]. In this work, we
extend their result to null cones in smooth Einstein vacuum spacetimes. Our result shows that trχ − 2

s
can be bounded

only by small total curvature flux before the formation of caustics or geodesic loops. This result is used in [13] to
provide the uniform lower bound on the radius of injectivity of null boundaries in Einstein vacuum spacetimes. Such
lower bound is essential in understanding the causal structure and propagation properties of solutions to the Einstein
equations, and is important in construction of a Kirchoff–Sobolev type parametric for wave equations on M (see [14]),
which is used in [15] to prove a large data break-down criterion for solutions of the Einstein vacuum equations.

We will follow the framework of [9] to prove the main theorem by the bootstrap principle. Since our null hyper-
surface H initiates from a point, many quantities behave like s−a for some number a > 0 as s → 0, we have to keep
track the weight sa in each step. Note that the Besov norm estimates (see [9, Proposition 5.11])

‖∇ · D−1F‖P 0 � ‖F‖P 0

of the 0-order Hodge operator ∇ · D−1 were used in [9, Section 6] to control the terms such as the commutator
[∇L,∇D−2]Ř, where P 0 is a certain Besov norm. However, these estimates hold true only when some additional
terms involving the L4+

s L2
ω norm of D−1F is added,1 due to the limited regularity of Gauss curvature K of each

slice Ss . The corrected versions we will present on the P 0 estimates of the 0-order Hodge operators and on some
product estimates add much complexity to the commutator estimates.

This paper is organized as follows. In Section 2, we recall the structure equations on various geometric quantities
on H and provide the results on the initial data. In Section 3 we present the complete set of bootstrap assumptions,
introduce some important norms and establish some preliminary estimates. In Section 4, we provide the L2 type
estimates and the P 0 type estimates of 0-order Hodge operators ∇ · D−1. The result on P 0 estimate, which has special
significance to Section 6, is a correction of [9, Proposition 5.11]. The proof is based on the unpublished notes of
Klainerman and Rodnianski [6]. In Section 5, we prove some important product estimates. In Section 6, we use the
results in Sections 4 and 5 to fulfill the decomposition of the commutators. Finally, in Section 7 we use the results in
previous sections to complete the proof of the main theorem.

2. Structure equations and initial data

As the starting point we state the results on the behaviors of the main geometric quantities near the vertex of the
null cone which can be obtained by local analysis, see [16] or [22, Appendix] for the proofs.

Proposition 2.1. Near the vertex of the null cone H there hold

1 In this paper we will use a+ to represent a number q > a, and a− to represent a number q < a.
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s trχ = 2 + O(s3) and s trχ → −2 as s → 0, (2.1)

χ̂ = −1

3
sU + O(s2) and χ̂ → 0 as s → 0, (2.2)

ζ = −1

6
sη + O(s2) as s → ∞ (2.3)

and

s∇ trχ, s∇χ̂ , s div ζ, s∇ζ, sμ → 0 as s → 0 (2.4)

where U is a symmetric traceless 2-tensor and η is a 1-form, both of which are finite at the vertex, depending on the
curvature tensor in (M,g).

Let γ (0) be the canonical metric on the standard 2-sphere S
2 and let

◦
γ = s−2γs . Set as = √|γs |/

√|γ (0)| and
r = r(s) = √

(4π)−1|Ss | with |Ss | being the area of Ss . Then

◦
γ = γ (0) + O(s2), s−2as → 1 and

r

s
→ 1 as s → 0. (2.5)

We call r := r(s) the radius of each leaf Ss .

We also state the structure equations of the geodesic foliation (see [2] or [9, Section 2.12] for the derivations)

d

ds
trχ = −1

2
(trχ)2 − |χ̂ |2, (2.6)

∇Lχ̂ = − trχ · χ̂ − α, (2.7)

∇L(∇ trχ) = −3

2
trχ · ∇ trχ − χ̂ · ∇ trχ − 2χ̂ · ∇χ̂ , (2.8)

∇Lζ = − trχζ − 2χ̂ · ζ − β, (2.9)
d

ds
trχ = −1

2
trχ trχ − 2 div ζ − χ̂ · χ̂ + 2|ζ |2 + 2ρ, (2.10)

∇Lχ̂ = −∇ ⊗̂ ζ − 1

2
(trχ · χ̂ + trχ · χ̂ ) + ζ ⊗̂ ζ, (2.11)

div χ̂ = 1

2
∇ trχ − 1

2
trχ · ζ − χ̂ · ζ − β, (2.12)

curl ζ = −1

2
χ̂ ∧ χ̂ + σ, (2.13)

div χ̂ = 1

2
∇ trχ − 1

2
trχζ + ζ · χ̂ + β, (2.14)

K = −1

4
trχ trχ + 1

2
χ̂ · χ̂ − ρ (2.15)

and the renormalized null Bianchi identities

∇Lβ = divα + ζ · α, (2.16)

L(ρ̌) + 3

2
trχ · ρ̌ = divβ − ζ · β + 1

2
χ̂ ·

(
∇ ⊗̂ ζ + 1

2
trχ · χ̂ − ζ ⊗̂ ζ

)
, (2.17)

L(σ̌ ) + 3

2
trχ · σ̌ = − curlβ + ζ ∧ β + 1

2
χ̂ ∧ (∇ ⊗̂ ζ − ζ ⊗̂ ζ ), (2.18)

∇Lβ̌ = −∇ρ + (∇σ)	 − 2(∇ ⊗̂ ζ ) · ζ + 3
(
ζ · ρ − ζ 	σ

) − trχβ,

+ 2ζ ·
(

−1

2
trχ · χ̂ − 1

2
trχ · χ̂ + ζ ⊗̂ ζ

)
− 4χ · χ̂ · ζ (2.19)

where K denotes the Gauss curvature of each leaf S := Ss , and

ρ̌ = ρ − 1
χ̂ · χ̂ , σ̌ = σ − 1

χ̂ ∧ χ̂ , β̌ = β + 2χ̂ · ζ,

2 2



Q. Wang / Ann. I. H. Poincaré – AN 26 (2009) 285–328 289
moreover, ∇Lπ , for any S-tangent tensor field π , is defined as in [9, Definition 2.9], i.e. the projection of DLπ on
each leaf Ss .

The transport equation for the mass aspect function μ defined by (1.2) takes the form

d

ds
μ + 3

2
trχμ = χ̂ · (∇ ⊗̂ ζ ) + 1

2
trχρ̌ + 2ζ · ∇ trχ − 4χ̂ · ζ · ζ + trχ |ζ |2 − 1

4
trχ |χ̂ |2. (2.20)

3. The bootstrap assumptions

3.1. A preliminary bootstrap assumption

As a preliminary bootstrap assumption, we require that there exists a sufficiently small positive constant 0 < Δ0 <

1/2 such that

‖V ‖L∞(H) � Δ0, (3.1)

where V (s,ω) = trχ − 2
s
. We also set V (s,ω) = trχ + 2

s
, which will be used later.

In the following we will provide some preliminary estimates under (3.1). Recall that for the induced metric γ := γs

on S := Ss , we have d
ds

γ = 2χ . Thus d
ds

as = trχas . In view of (2.5), we then get t−2at = exp(
∫ t

0 Vs ds). Therefore
for 0 < t � 1 there holds |t−2a(t,ω) − 1| � tΔ0. Thus for small Δ0 we have

1

2
t2 � a(t,ω) � 2t2. (3.2)

In view of [9, Lemma 2.26] which says dr
ds

= r
2 trχ , it is easy to check

d

ds
log

r

s
= 1

2
Vs.

Using (2.5) and integrating the above equation along any null geodesic yields r
s

= exp(s · O(Δ0)). Therefore we get

Proposition 3.1. Under the bootstrap assumption (3.1), the radius r(s) of each leaf Ss and the affine parameter s are
always comparable in the sense that | 1

r
− 1

s
| � Δ0 for 0 < s � 1.

In view of (3.2), we have for any S-tangent tensor F on H
1

2

∫
|ω|=1

∣∣F(s,ω)
∣∣ps2 dω � ‖F‖p

Lp(Ss)
� 2

∫
|ω|=1

∣∣F(s,ω)
∣∣ps2 dω,

where |F | denotes the norm of F under the induced metric γ on each leaf Ss .
For S-tangent tensor fields F on H, we introduce the following norms. For 1 � p,q � ∞ we define the L

q
t L

p
x

norm

‖F‖L
q
t L

p
x

:=
( 1∫

0

( ∫
|ω|=1

|F(s,ω)|ps2dω

) q
p

ds

) 1
q

(3.3)

and the L
p
x L∞

t norm

‖F‖L
p
x L∞

t
:=

( ∫
|ω|=1

(
sup

s
s

2
p
∣∣F(s,ω)

∣∣)p
) 1

p

. (3.4)

We also define the norms

N1(F ) := ‖t−1F‖L2
t L

2
x
+ ‖∇LF‖L2

t L
2
x
+ ‖∇F‖L2

t L
2
x

(3.5)

and

N2(F ) := ‖t−2F‖L2L2 + ∥∥t−1∇LF
∥∥

2 2 + ‖t−1∇F‖L2L2 + ‖∇∇LF‖L2L2 + ‖∇2F‖L2L2 . (3.6)

t x Lt Lx t x t x t x
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On each slice S = Ss , we have the following Sobolev inequalities for scalar functions f and tensor fields F (see [12]
for the proofs):

‖f ‖L2(S) � ‖∇f ‖L1(S) + ‖s−1f ‖L1(S), (3.7)

‖f ‖L∞(S) � ‖∇2f ‖L1(S) + ‖∇f ‖L2(S) + ‖s−2f ‖L1(S), (3.8)

‖F‖Lp(S) � ‖∇F‖1− 2
p

L2(S)
· ‖F‖

2
p

L2(S)
+ ∥∥s

2
p

−1
F

∥∥
L2(S)

, 2 � p < ∞, (3.9)

‖F‖L∞(S) � ‖∇2F‖
1
p

L2(S)

(‖∇F‖
p−2
p

L2(S)
‖F‖

1
p

L2(S)
+ s

2
p

−1‖F‖
p−1
p

L2(S)

) + ‖∇F‖L2(S). (3.10)

The following preliminary estimates will be used routinely.

Lemma 3.1. Let F be an arbitrary S-tangent tensor field on H. Then∥∥t−
1
2 F

∥∥
L∞

t L∞
ω

+ ‖t−1F‖L2
t L

∞
ω

� N2(F ),

‖F‖L4
xL∞

t
+ ‖F‖L6

t L
6
x
+ ∥∥t−1/2F

∥∥
L2

xL∞
t

� N1(F ), (3.11)∥∥t
− 1

q
− 2

p
+ 1

2 F
∥∥

L
q
t L

p
x

� N1(F ) with 2 � p < ∞,2 < q � 2p

p − 4
. (3.12)

Proof. The proof of the first inequality can be found in [2]. In the following we show the second inequality in (3.11).
Note that it suffices to prove it for scalar functions f . First

t2
∣∣f (t,ω)

∣∣4 �
t∫

0

s
∣∣f (s,ω

∣∣4
ds +

t∫
0

|f |3 · ∣∣∇Lf (s,ω)
∣∣s2 ds

�
( t∫

0

∣∣f (s,ω)
∣∣6

s2 ds

) 1
2
( t∫

0

s−2
∣∣f (s,ω)

∣∣2
s2 ds +

t∫
0

∣∣∇Lf (s,ω)
∣∣2

s2 ds

) 1
2

.

Hence, integrating on |ω| = 1, we obtain

‖f ‖L4
xL∞

t
� ‖f ‖

3
4
L6(H)

(‖s−1f ‖L2(H) + ‖∇Lf ‖L2(H)

) 1
4 . (3.13)

On the other hand, by (3.7) we have on each Ss that∫
Ss

|f |6dAs � ‖f 3‖2
L2

x
�

(∫
Ss

(|∇f | + s−1|f |)|f |2 dAs

)2

�
∫
Ss

(|∇f |2 + s−2|f |2)dAs ·
∫
Ss

|f |4 dAs.

Then integrating in s yields

‖f ‖L6(H) � ‖f ‖
2
3
L∞

t L4
x

(‖s−1f ‖L2(H) + ‖∇f ‖L2(H)

) 1
3 . (3.14)

Finally we note that

∥∥t−1/2f
∥∥

L2
xL∞

t
�

∥∥∥∥
1∫

d

ds

(
s|f |2)ds

∥∥∥∥ 1
2

L2
ω

+ ∥∥f (1)
∥∥

L2
ω
.

t
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The first term is bounded by N1(f ) by using Hölder inequality. The second term can be estimated by taking
a test function 0 � θ � 1 supported in [1/2,1] with θ(1) = 1 and vanishing identically at 0 < t � 1/2, and
supt�s�1 |θ ′(s)| < 1

1−t
. Since

∥∥f (1)
∥∥2

L2
ω

=
∫

|ω|=1

∣∣∣∣∣
1∫

1/2

d

ds

(
sθ |f |2)ds

∣∣∣∣∣dω � ‖∇Lf ‖2
L2(H)

+ ‖s−1f ‖2
L2(H)

� N1(f )2

we conclude ‖t−1/2f ‖L2
xL∞

t
� N1(f ). Combining (3.13) with (3.14), we conclude that the estimates in the second

line of (3.11) hold true. We can prove (3.12) similarly. �
3.2. The full set of bootstrap assumptions

In order to provide the full set of bootstrap assumptions, we introduce the following conventions.

• R denotes the full collection of null curvature components α, β , ρ, σ , β .
• R0 denotes the collection of the null curvature components β , ρ, σ , β .

• Ř denotes the collection of the renormalized null curvature components (ρ̌,−σ̌ ), β̌ .
• A denotes the collection V ,χ̂ , ζ , V , χ̂ .
• A denotes the collection of V , χ̂ , ζ .
• M denotes the collection ∇ trχ , μ.
• ∇A denotes the collection ∇ trχ , ∇χ̂ , ∇ζ .

The bootstrap assumptions we will rely on in this paper are

‖ trχ − 2/t‖L∞
t L∞

ω
,‖A‖L∞

ω L2
t
, N1(A),‖∇ trχ‖L2

xL∞
t

� Δ0, (BA1)

and

‖t−1/2A‖L2
xL∞

t
� Δ0, ‖∇LA‖L2(H) � Δ0 (BA2)

where 0 < R0 � Δ0 < 1
2 is a sufficiently small constant. Note that the preliminary bootstrap assumption (3.1) is a part

of (BA1).
In order to complete the proof of Theorem 1.1, by the bootstrap principle it suffices to show, under (BA1) and

(BA2), that all the inequalities in them still hold true with Δ0 replaced by Δ0/2 when 0 < R0 � Δ0 is sufficiently
small. This will be done in Section 7 after the preparations given in the next three sections.

Lemma 3.2. Under the bootstrap assumption (BA1), the metric
◦
γ ij (s) on each Ss verifies weakly spherical conditions,

i.e. relative to the transport local coordinates (s,ω1,ω2) the metric components
◦
γ ij (s) satisfy∥∥ ◦

γ ij (s) − γ
(0)
ij

∥∥
L∞

ω
� Δ0, (3.15)∥∥∂k

◦
γ ij (s) − ∂kγ

(0)
ij

∥∥
L2

ω
� Δ0, (3.16)

where Δ0 is a small constant.

Proof. Recall that relative to the transport local coordinates (s,ω1,ω2) on H, Proposition 2.1 says

lim
s→0

◦
γ ij = γ

(0)
ij and lim

s→0
∂k

◦
γ ij = ∂kγ

(0)
ij (3.17)

where i, j, k = 1,2. Recall also that the metric γ verifies d
ds

γij = 2χij with i, j = 1,2. Consequently,

d

ds

◦
γ ij = ◦

γ ijV + 2s−2χ̂ij .

Integrating this equation along any null geodesic on H and using (3.17) we derive
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∑
i,j

∥∥ ◦
γ ij − γ

(0)
ij

∥∥
L∞

t L∞
ω

�
∑
i,j

sup
t

∥∥∥∥∥
t∫

0

◦
γ ijV + s−2χ̂ij ds

∥∥∥∥∥
L∞

ω

�
(‖V ‖L∞

t L∞
ω

+ ‖χ̂‖L∞
ω L2

t

)(∑
ij

∥∥ ◦
γ ij − γ

(0)
ij

∥∥
L∞

t L∞
ω

+ 1

)
.

This gives (3.15), by using (BA1) and the smallness of Δ0.
The proof of (3.16) is similar by noting that

d

ds
∂k

◦
γ ij = ∂k

◦
γ ijV + ◦

γ ij ∂kV + 2s−2∂kχ̂ij ,

where i, j, k = 1,2. �
On each S := Ss we will use the geometric Littlewood–Paley (GLP) projections Pk introduced in [12] which take

the form

PkF :=
∞∫

0

mk(τ)U(τ)F dτ

for any tensor field F , where mk(τ) := 22km(22kτ ) for some smooth function m on [0,∞) vanishing sufficiently fast
and verifying the vanishing moment property

∞∫
0

τ k1∂k2m(τ)dτ = 0, k1 + k2 � N,

and U(τ)F is defined by the heat flow on (Ss,
◦
γ )

∂

∂τ
U(τ)F − Δ ◦

γ
U(τ)F = 0, U(0)F = F. (3.18)

One may refer to [12] for various properties of GLP projections, such as the finite band property and the Bernstein
inequalities, etc, which will be frequently used in this paper.

We will also use the notations

Fn := PnF, F�0 :=
∑
k�0

PkF and F>0 :=
∑
k>0

PkF

for any S-tangent tensor field F .
Let 0 � θ < 1, we define the Besov norm Bθ

2,1 for tensor fields F on 2-D surface S by

‖F‖Bθ
2,1

=
∑
k>0

∥∥(
2kt−1)θ

PkF
∥∥

L2
x
+ ‖t−θF‖L2

x
. (3.19)

We also define the Besov Bθ and P θ norms for S-tangent tensor fields F on H as follows:

‖F‖Bθ =
∑
k>0

∥∥(
2kt−1)θ

PkF
∥∥

L∞
t L2

x
+ ‖t−θF‖L∞

t L2
x
, (3.20)

‖F‖P θ =
∑
k>0

∥∥(
2kt−1)θ

PkF
∥∥

L2
t L

2
x
+ ‖t−θF‖L2

t L
2
x
. (3.21)

By using the heat flow (3.18), we can define the operator Λa with a � 0 such that for any S-tangent tensor fields F

ΛaF := s−a

�(−a/2)

∞∫
τ− a

2 −1e−τU(τ)F dτ.
0
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The definition of Λa extends to the range a > 0 by defining for 0 < a � 2m that

ΛaF = Λa−2m · (s−2 Id−Δγ

)m
F.

We record the basic properties of Λa in the following result (see [12,20]).

Proposition 3.2.

(i) Λ0 = Id and Λa · Λb = Λa+b for any a, b ∈ R.
(ii) For any S-tangent tensor field F and any a � 0

sa‖ΛaF‖L2(S) � ‖F‖L2(S).

(iii) For any S-tangent tensor field F and any b � a � 0

sa‖ΛaF‖L2(S) � sb‖ΛbF‖L2(S) and ‖ΛaF‖L2(S) � ‖ΛbF‖
a
b

L2(S)
‖F‖1− a

b

L2(S)
.

(iv) For any S-tangent tensor fields F and G and any 0 � a < 1∥∥Λa(F · G)
∥∥

L2(S)
� ‖ΛF‖L2(S)‖ΛaG‖L2(S) + ‖ΛaF‖L2(S)‖ΛG‖L2(S).

(v) For any S-tangent tensor field F there holds with 2 < p < ∞ and a > 1 − 2
p

‖F‖Lp(S) � ‖ΛaF‖L2(S).

(vi) For any a ∈ R and any S-tangent tensor field F

‖F‖2
Ha(S) := ‖ΛaF‖2

L2(S)
≈

∑
k�0

22kas−2a‖PkF‖2
L2(S)

+ s−2a‖P�0F‖2
L2(S)

.

Under (BA1) and (BA2) we can also derive

Proposition 3.3. Under (BA1) and (BA2), if 0 < R0 < Δ0 are sufficiently small, then for all 1
2 < a < 1 there holds

Ka := ∥∥Λ−a
(
K − s−2)∥∥

L∞
t L2

x
� Δ0.

The proof of Proposition 3.3 is a little involved. Noting that our definition of Λ−a involves s−2, by keeping track
the powers of s, the argument in the proof of Proposition 4.13 in [9] still goes through. For details please refer to
[22, Chapter 4.3].

Sometimes it is convenient to work with the Besov norms defined by the classical Littlewood–Paley (LP) projec-
tions Ek . Recall that (see [17–19]) for any scalar function f on R

2 we can define

Ekf = 1

(2π)2

∫
R2

η
(
ξ/2k

)
f̂ (ξ)eixξ dξ,

where η is a smooth function with support in the dyadic shell { 1
2 � |ξ | � 2} and satisfying

∑
k∈Z

η(2−kξ) = 1 when
ξ �= 0.

Now for any scalar function f on H, we define for any 0 � a < 1 its B̃a and P̃ a norms by

‖f ‖B̃a :=
∑
k>0

∥∥(
2kt−1)a

Ekf
∥∥

L∞
t L2

x
+ ‖t−af ‖L∞

t L2
x
, (3.22)

‖f ‖P̃ a =
∑
k>0

∥∥(
2kt−1)a

Ekf
∥∥

L2
t L

2
x
+ ‖t−af ‖L2

t L
2
x
. (3.23)

It is worthy to say a few words about this definition. Recall that the geodesic flow Γs : S
2 → Ss for each s > 0 is a

diffeomorphism. Let (Ui, η
(i)) be a finite atlas on S

2 with charts η(i) mapping Ui into the unit disc in R
2, and let {φ}

be a subordinated partition of unity on S
2. Then {φ ◦ Γ −1

s } is a partition of unity on the slice Ss for 0 < s � 1 which



294 Q. Wang / Ann. I. H. Poincaré – AN 26 (2009) 285–328
will be denoted as φs . Let η
(i)
s := η(i) ◦ Γ −1

s . The Ekf in the above definition is defined as Ek((φsf ) ◦ η
(i)
s

−1
) on

each Ss and the L2
x norms are understood to be the L2 norm on R

2.
Using Lemma 3.2, (BA1) and (BA2), we can adapt [11, Proposition 3.28] to obtain the following lemma.

Lemma 3.3. Under the bootstrap assumptions (BA1) and (BA2), there exists a finite number of vector fields {Xi}li=1
verifying the conditions{‖X, t∇0X‖L∞

t L∞
ω

� 1, ‖t∇(∇0X)‖L2
xL∞

t
� 1,∥∥(∇ − ∇0)X

∥∥
L2

xL∞
t

� Δ0, ∇LX = 0,

where ∇0 represents the covariant derivative induced by the metric s2γ (0). For appropriate S-tangent tensor F ∈
L∞

t L2
x , F ∈ Ba if and only if F · Xi ∈ Ba , and

C−1
∑

i

‖F · Xi‖Ba � ‖F‖Ba � C
∑

i

‖F · Xi‖Ba , with 0 � a < 1,

where C is a universal constant. The same results hold for the spaces P α . Moreover

N1(F ⊗̂X) + ‖F ⊗̂X‖L∞
ω L2

t
� N1(F ) + ‖F‖L∞

ω L2
t
,

where ⊗̂ stands for either a tensor product or a contraction.

Lemma 3.3 allows us to define Besov norms for arbitrary S-tangent tensor fields F on H by the classical LP
projections.

Definition 3.1. Let F be an (m,n) S-tangent tensor field on H and let F
j1j2...jm

i1i2...in
be the local components of F relative

to {Xi}li=1. We define the B̃a and P̃ a norms of F by

‖F‖B̃a =
∑

‖Fj1j2...jm

i1i2...in
‖B̃a and ‖F‖P̃ a =

∑
‖Fj1j2...jm

i1i2...in
‖P̃ a ,

where the summation is taken over all possible (i1 . . . in; j1 . . . jm).

Finally we state the following equivalence results between Ba , P a norms and B̃a , P̃ a norms, whose proof can be
found in [22].

Proposition 3.4. Under the bootstrap assumptions (BA1) and (BA2), for arbitrary S-tangent tensor fields F on H
there hold

‖F‖B̃a ≈ ‖F‖Ba and ‖F‖P̃ a ≈ ‖F‖P a

with 0 � a < 1.

4. Elliptic estimates of Hodge operators on H

In view of the structure equations given in Section 2, it is important to consider the following Hodge operators on
2-surface S diffeomorphic to the standard sphere S

2:

• The operator D1 takes any 1-form F into the pair of functions (divF, curlF).
• The operator D2 takes any symmetric traceless 2-tensor F on S into the 1-form divF .
• The operator 	D1 takes the pairs of scalar functions (ρ,σ ) into the 1-forms −∇ρ + (∇σ)	 on S.
• The operator 	D2 takes 1-forms F on S into the 2-covariant, symmetric, traceless tensors − 1

2 L̂F γ , where(
L̂F γ

)
ab

= ∇bFa + ∇aFb − (divF)γab.

For various properties of these operators please refer to [2,9].
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4.1. L2 estimates for Hodge operators

In this subsection we will give the L2 estimates for the Hodge operators on H under the bootstrap assumptions
(BA1), (BA2) and the smallness conditions on R0 and Δ0.

Proposition 4.1. The following estimates hold on each leaf S = Ss ⊂ H:

(i) The operator D1 is invertible on its range and its inverse D−1
1 takes pair of function f = (ρ,σ ) in the range of

D1 into S-tangent 1-forms F with divF = ρ, curlF = σ . Moreover∥∥∇D−1
1 f

∥∥
L2(S)

+ ∥∥s−1 D−1
1 f

∥∥
L2(S)

� ‖f ‖L2(S).

(ii) The operator D2 is invertible on its range and its inverse D−1
2 takes S-tangent 1-forms F (in the range of D2)

into S-tangent symmetric, traceless, 2-tenorfields Z with divZ = F . Moreover∥∥∇D−1
2 F

∥∥
L2(S)

+ ∥∥s−1 D−1
2 F

∥∥
L2(S)

� ‖F‖L2(S).

(iii) The operator (−�) is invertible on its range and its inverse (−�)−1 verifies the estimate∥∥∇2(−�)−1f
∥∥

L2(S)
+ ∥∥s−1∇(−�)−1f

∥∥
L2(S)

� ‖f ‖L2(S).

(iv) The operator 	D1 is invertible as an operator defined for pairs of H 1 functions with mean zero (i.e. the quotient
of H 1 by the kernel of 	D1) and its inverse 	D−1

1 takes S-tangent L2 1-forms F (i.e. the full range of 	D1) into
pair of functions (ρ,σ ) with mean zero, such that −∇ρ + (∇σ)	 = F , verifies the estimate∥∥∇	D−1

1 F
∥∥

L2(S)
� ‖F‖L2(S).

(v) The operator 	D2 is invertible as an operator defined on the quotient of H 1-vector fields by the kernel of 	D2.
Its inverse 	D−1

2 takes S-tangent 2-forms Z which is in L2 space into S tangent 1-forms F (orthogonal to the
kernel of D2), such that 	D2F = Z, verifies the estimate∥∥∇ ·	 D−1

2 Z
∥∥

L2(S)
� ‖Z‖L2(S).

As a consequence of (i)–(v), let D−1 be one of the operators D−1
1 , D−1

2 , 	D−1
1 or 	D−1

2 . By dual argument, we have
the following estimate for appropriate2 tensor fields F ,

‖D−1 divF‖L2(S) � ‖F‖L2(S).

The proof of this result is essentially the same as the proof of [9, Proposition 4.22]. Note that in our situation,
0 < s � 1, which is different from [9] where s ≈ 1. Therefore we must keep the weight s−1 in some of the estimates,
which will be crucial for later applications.

Using the formula (2.15) for the Gauss curvature K of Ss and the bootstrap assumptions (BA1) and (BA2) we can
easily obtain

Proposition 4.2. For K := K − s−2 there holds ‖K‖L2(H) � Δ0.

For later applications, we will use the renormalized Gauss curvature

Ǩ = K − r−2 (4.1)

which, in view of Proposition 3.1, Proposition 3.3 and Proposition 4.2, verifies

‖Ǩ‖L2(H) � Δ0 and Ǩα := ‖Λ−aǨ‖L2
x
� Δ0 (4.2)

for any 1
2 < a < 1.

Using Proposition 3.3 and Proposition 4.2 and following the similar argument in [9] we can obtain (see [22])

2 By “appropriate”, we mean the tensor F such that divF is in the space where D−1 is well-defined.
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Lemma 4.1. For appropriate S-tangent tensor field F there hold

N2(D−1F) � N1(F ) and N1(∇D−1F) � N1(F ).

4.2. Elliptic P σ estimates of Hodge operators on H

In this subsection we provide P σ estimates for 0-order Hodge operators. We begin with a few preliminary estimates
which are frequently used in Section 6.

Proposition 4.3. Let D be one of the operators D1, D2 and 	D1. Then for 1 < p � 2 and any S-tangent tensor F on
H there holds

‖D−1F‖L2(S) �
∥∥s

2− 2
p F

∥∥
Lp(S)

.

Proof. From (3.9) and Proposition 4.1 we infer for p′ � 2 satisfying 1
p

+ 1
p′ = 1 that

∥∥s
2
p

−2	D−1F
∥∥

Lp′
(S)

� ‖∇	D−1F‖1− 2
p′

L2(S)
‖s−1	D−1F‖

2
p′
L2(S)

+ ‖s−1 D−1F‖L2(S) � ‖F‖L2
x
.

We then complete the proof by duality. �
Lemma 4.2. Let D denote one of the Hodge operators D1, D2, 	D1 and 	D2, let D−1 denote the inverse of D. For
PkF with Pk being the GLP projections associated to the heat equation (3.18) there hold for k > 0∥∥D−1PkF

∥∥
L2

x
� 2−k‖sF‖L2

x
and

∥∥Pk D−1F
∥∥

L2
x
� 2−(2− 2

p
)k

∥∥s
2− 2

p F
∥∥

L
p
x
.

Proof. The first inequality can be proved by using the finite band property and Proposition 4.1. The second can be
proved by a dual argument with the help of the first one and the Sobolev inequality. �

The following result follows from the second estimate in Lemma 4.2 immediately.

Proposition 4.4. Let D−1 denote either D−1
1 , 	D−1

1 , D−1
2 , then for appropriate S-tangent tensor fields F on H and

any 1 < p � 2,

‖D−1F‖B0 �
∥∥t

2− 2
p F

∥∥
L∞

t L
p
x
. (4.3)

Moreover for 0 � θ < 1
2 and 2

2−θ
< p � 2,

‖D−1F‖P θ �
∥∥t

2− 2
p

−θ
F

∥∥
L2

t L
p
x
. (4.4)

In order to state the next result succinctly, we introduce the notation

K(1 + γ, k) := (2ks−1)(1+γ ) + 2ks−1‖K‖γ

L2
x
+ (2ks−1)1+γ (1−θ)‖K‖θγ

L2
x
,

where γ > 1/2, k ∈ N and θ is a number slightly greater than 1. For simplicity, the last terms in K(1 + γ, k) can be
ignored in applications.

Lemma 4.3. For any smooth S-tangent tensor field F and 0 � γ � 1∥∥Pk∇Λγ F
∥∥

L2
x
� K(1 + γ, k)‖F‖L2

x
and

∥∥Λγ ∇PkF
∥∥

L2
x
� K(1 + γ, k)‖F‖L2

x
.

Proof. Recall (see [12, Section 10]) the Böchner identity combined with finite band property gives for 2 � p < ∞
that ∥∥∇2PkG

∥∥
2 � 22ks−2‖PkG‖L2 + ‖K‖

p
p−1

2 (2ks−1)
p−2
p−1 ‖PkG‖L2 + 2ks−1‖K‖L2 ‖PkG‖L2 . (4.5)
Lx x Lx x x x
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By Proposition 3.2(iii), combining (4.5) with the finite band inequality, ‖∇PkG‖L2
x
� 2ks−1‖PkG‖L2

x
, we conclude

the second inequality holds true for any 0 � γ � 1. The other one follows by duality. �
Now we are ready to state the main result on the elliptic P σ estimates on Hodge operators.

Theorem 4.1. Let D denote either D1, D2 or their adjoint operators 	D1 and 	D2. Then for any S-tangent tensor
fields ξ and F satisfying Dξ = F and any 1

2 > σ � 0,

‖∇ξ‖P σ � ‖F‖P σ + Δ0‖D−1F‖q

La
t L2

x
‖F‖1−q

L2(H)
, (4.6)

where 1 − σ > q > γ0 and a > 4.

The estimate (4.6) was stated in [9] where the second term on the right-hand side is not included. The proof of the
corrected version is based on the unpublished notes of Klainerman and Rodnianski [6]. To prove Theorem 4.1, we
rely on the following two propositions.

Proposition 4.5. Let F be an S-tangent tensor field. Then for any 1 > γ > γ0 > 1
2 , where γ0 is determined by the

condition that Ǩγ0 < ∞, we have the following estimate for k,m > 0

‖Pk∇PmF‖L2(H) � 2min(m,k)2−2|m−k|∥∥t−1PmF
∥∥

L2
t L

2
x
+ 2min(m,k)2−(1−γ )max(m,k)Ǩγ0

∥∥t−γ PmF
∥∥

L2
t L

2
x

+ 2−|m−k|‖K‖γ

L2(H)
Ǩγ0‖PmF‖

L

2
1−γ
t L2

x

. (4.7)

For low frequency terms, the following estimate holds∥∥Pk∇P�0F
∥∥

L2(H)
� 2−k‖t−1P�0F‖L2(H) + 2−(1−γ )kǨγ0‖t−γ P�0F‖L2(H)

+ 2−k‖Ǩ‖γ

L2(H)
Ǩγ0‖P�0F‖

L

2
1−γ
t L2

x

. (4.8)

Proposition 4.6. Let F be an S-tangent tensor field and D be the corresponding elliptic Hodge operator. Then for
k, l > 0,∥∥Pk D−1PlF

∥∥
L2(S)

� 2−max(k,l)2−|k−l|s‖PlF‖L2(S) + 2−max(k,l)2−(1−γ )max(k,l)s2−γ Ǩγ0‖PlF‖L2(S), (4.9)

where 1 > γ > γ0 > 1
2 and γ0 is determined by the condition that Ǩγ0 < ∞.

We first give the proof of Theorem 4.1 by assuming Propositions 4.5 and 4.6.

Proof of Theorem 4.1. It suffices to consider the case σ = 0. For the case 1/2 > σ > 0, by taking q < 1 − σ we can
follow the same argument.

According to the definition of ‖∇D−1F‖P 0 and Proposition 4.1, we only need to estimate
∑
k>0

‖Pk∇D−1F‖L2(H).

Using Proposition 4.5 we have∥∥Pk∇D−1F
∥∥

L2(H)
�

∑
m

∥∥Pk∇PmD−1F
∥∥

L2(H)
+ ∥∥Pk∇

(
P�0 D−1F

)∥∥
L2(H)

= Hk + Lk.

We first estimate the high frequency terms

Hk �
∑
m

2min(m,k)2−2|m−k|∥∥t−1PmD−1F
∥∥

L2(H)
+

∑
m

2min(m,k)2−(1−γ )max(m,k)Ǩγ0

∥∥t−γ PmD−1F
∥∥

L2(H)

+ Ǩγ0‖K‖γ

L2(H)

∑
m

2−|m−k|∥∥PmD−1F
∥∥

L

2
1−γ
t L2

x

= A
(1) + Ǩγ0A

(2) + Ǩγ0‖K‖γ
2 A

(3)
.
k k L (H) k
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We first estimate the term A
(3)
k . Note by interpolation we can easily obtain with q

a
+ 1−q

2 = 1−γ
2 ,∥∥PmD−1F

∥∥
L

2
1−γ
t L2

x

�
∥∥PmD−1F

∥∥q

La
t L2

x

∥∥PmD−1F
∥∥1−q

L2(H)
,

then by Lemma 4.2,∑
k

A
(3)
k �

∑
m

2−(1−q)m‖D−1F‖q

La
t L2

x
‖tF‖1−q

L2(H)
� ‖D−1F‖q

La
t L2

x
‖tF‖1−q

L2(H)
.

Now we define

A
(1)
kl =

∑
m

2min(m,k)2−2|m−k|∥∥t−1PmD−1PlF
∥∥

L2(H)
,

A
(2)
kl =

∑
m

2min(m,k)2−(1−γ )max(m,k)
∥∥t−γ PmD−1PlF

∥∥
L2(H)

.

We use the GLP projections to decompose F and ignore the low frequency terms,3 then we infer∑
k

A
(1)
k �

∑
k,l

A
(1)
kl and

∑
k

A
(2)
k �

∑
k,l

A
(2)
kl .

Therefore, it suffices to establish the following estimates∑
k

A
(1)
kl � ‖PlF‖L2(H) and

∑
k

A
(2)
kl � ‖PlF‖L2(H). (4.10)

We estimate the term A
(1)
kl with the help of Proposition 4.6.

A
(1)
kl �

∑
m

2min(m,k)2−2|m−k|2−max(m,l)2−|m−l|‖PlF‖L2(H)

+
∑
m

2min(m,k)2−2|m−k|2−max(m,l)2−(1−γ )max(m,l)‖t1−γ PlF‖L2(H)

� 2−|l−k| ∑
m

2−2|m−k|‖PlF‖L2(H)

� 2−|l−k|‖PlF‖L2(H).

The first estimate in (4.10) now follows after summing over k. The second estimate in (4.10) can be proved similarly.
As to low frequency terms Lk , taking L2

t norm with the help of (4.8), we infer∥∥Pk∇
(
P�0 D−1F

)∥∥
L2

t L
2
x
� 2−k

∥∥t−1P�0 D−1F
∥∥

L2(H)
+ 2−(1−γ )kǨγ0

∥∥t−γ P�0 D−1F
∥∥

L2(H)

+ 2−k‖K‖γ

L2(H)
Ǩγ0

∥∥P�0 D−1F
∥∥

L

2
1−γ
t L2

x

.

By elliptic estimates and interpolation again, we can get the desired result. �
In order to give the proofs of Propositions 4.5 and 4.6, the following lemma is crucial.

Lemma 4.4. Let S be a weakly regular surface with Gauss curvature K satisfying the condition Ǩγ0 < ∞ for some
1 > γ0 > 1

2 . Then for any smooth S-tangent tensor F , 1 > γ > γ0 and k > 0, there hold∥∥Λ−γ (KF)
∥∥

L2(S)
� Ǩγ0

(‖∇F‖L2(S) + ‖t−1F‖L2(S)

)
. (4.11)

For m, l > 0 there hold∥∥Λ−γ (KPmF)
∥∥

L2(S)
� Ǩγ0 2ms−1‖PmF‖L2(S) (4.12)

3 The low frequency are the terms similar to A
(1)
kl

and A
(2)
kl

with l in the expressions replaced by � 0. These terms are actually much easier to
estimate. We omit the detail.



Q. Wang / Ann. I. H. Poincaré – AN 26 (2009) 285–328 299
and ∥∥Pm

(
KD−1PlF

)∥∥
L2(S)

� Ǩγ0 2γms−γ0‖PlF‖L2(S), (4.13)

where D is an elliptic Hodge operator.

We remark that the Ǩγ0 in Lemma 4.4 and Proposition 4.5 should be replaced by Ǩγ0 + Δ0, where the presence of
Δ0 is due to the difference r−2 − s−2 which is relatively trivial in the calculation. We can simply ignore Δ0, however,
without hurting the proof of Theorem 4.1.

Proof. We first show (4.11). It is clear that∥∥Λ−γ (K · F)
∥∥

L2
x
�

∥∥Λ−γ (Ǩ · F)
∥∥

L2
x
+ |r−2 − s−2|‖Λ−γ F‖L2

x
. (4.14)

Due to Propositions 3.1 and 3.2(ii), for any 0 < s � 1

|r−2 − s−2|‖Λ−γ F‖L2
x
� Δ0‖s−1+γ F‖L2

x
,

which obviously is a lower order term. Hence, it only remains to estimate the first term on the right-hand side of
(4.14). By Proposition 3.2∥∥Λ−γ (Ǩ · F)

∥∥2
L2

x
≈

∑
m>0

2−2mγ
∥∥sγ Pm(Ǩ · F)

∥∥2
L2

x
+ ∥∥sγ P�0(Ǩ · F)

∥∥2
L2

x
. (4.15)

In order to estimate the low frequency term sγ0‖P�0(Ǩ ·F)‖L2
x
, we use Proposition 3.2 to obtain for any appropriate S

tangent tensor field G,〈
sγ0P�0(Ǩ · F),G

〉 = 〈Ǩ · F,P�0G〉 � ‖Λ−γ0Ǩ‖L2
x
· ∥∥sγ0Λγ0(F · P�0G)

∥∥
L2

x

� Ǩγ0

(
sγ0‖Λγ0F‖L2

x
‖ΛP�0G‖L2

x
+ sγ0‖ΛF‖L2

x
‖Λγ0P�0G‖L2

x

)
� Ǩγ0‖ΛF‖L2

x
‖G‖L2

x
.

Hence∥∥sγ0P�0(Ǩ · F)
∥∥

L2
x
� Ǩγ0

(‖∇F‖L2
x
+ s−1‖F‖L2

x

)
.

In order to estimate the first term on the right-hand side of (4.15), by the GLP decomposition we write Ǩ =∑
n P 2

n Ǩ := ∑
n∈N

Ǩn + Ǩ�0, then∥∥Pm(Ǩ · F)
∥∥

L2
x
�

∑
n∈N

∥∥Pm(Ǩn · F)
∥∥

L2
x
+ ∥∥Pm(Ǩ�0 · F)

∥∥
L2

x
. (4.16)

For any 2 < p < ∞ let p∗ satisfy 1
p

+ 1
p∗ = 1

2 . We will employ the finite band property, the weak and sharp Bernstein
inequalities for the GLP projections, the Sobolev inequalities and the Young’s inequality. For the low frequency
in (4.16), we choose p such that 2

p
< γ0, then for any appropriate tensor field G〈

Pm(Ǩ�0 · F),G
〉 = 〈Ǩ�0 · F,PmG〉 � ‖Ǩ�0‖L2

x
‖F‖L

p
x
‖PmG‖

L
p∗
x

� ‖Ǩ�0‖L2
x
2

2m
p s

− 2m
p

(‖∇F‖1− 2
p

L2
x

‖s−1F‖
2
p

L2
x
+ ‖s−1F‖L2

x

)‖G‖L2
x
.

Therefore∑
m>0

2−γm
∥∥sγ Pm(Ǩ�0 · F)

∥∥
L2

x
� Δ0

(‖∇F‖L2
x
+ ‖s−1F‖L2

x

)
. (4.17)

Now it remains to estimate ‖Pm(Ǩn · F)‖L2 . When m > n, we choose p1 such that 2 < γ − γ0. Then

x p1
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∥∥Pm(Ǩn · F)
∥∥

L2
x
� 2−ms

∥∥∇(Ǩn · F)
∥∥

L2
x
� 2−ms

(‖∇Ǩn‖
L

p∗
1

x

‖F‖
L

p1
x

+ ‖Ǩn‖L∞
x

‖∇F‖L2
x

)
� 2

−m+n+ 2n
p1 ‖Ǩn‖L2

x

(‖∇F‖L2
x
+ ‖s−1F‖L2

x

) + 2−m+n‖Ǩn‖L2
x
‖∇F‖L2

x

� 2
−m+n+ 2n

p1 ‖Ǩn‖L2
x

(‖∇F‖L2
x
+ ‖s−1F‖L2

x

)
.

When m < n, choose p2 such that 1 − 2
p2

< γ − γ0. Then∥∥Pm(Ǩn · F)
∥∥

L2
x
= 2−2ns2

∥∥Pm(�Ǩn · F)
∥∥

L2
x

� 2−2ns2
∥∥Pm div(∇Ǩn · F)

∥∥
L2

x
+ 2−2ns2

∥∥Pm(∇Ǩn · ∇F)
∥∥

L2
x

� 2−2n+ms‖∇Ǩn · F‖L2
x
+ 2−2n+ 3m

4 s5/4‖∇Ǩn · ∇F‖
L

8
7
x

� 2−2n+ms‖∇Ǩn‖L
p2
x

‖F‖
L

p∗
2

x

+ 2−2n+ 3m
4 s5/4‖∇F‖L2

x
‖∇Ǩn‖

L
8
3
x

� 2
m− 2n

p2 ‖Ǩn‖L2
x
‖∇F‖

1− 2
p∗

2
L2

x
‖s−1F‖

2
p∗

2
L2

x
+ 2

3
4 (m−n)‖∇F‖L2

x
‖Ǩn‖L2

x

� 2
m− 2n

p2 ‖Ǩn‖L2
x

(‖∇F‖L2
x
+ ‖s−1F‖L2

x

)
.

Therefore, by using Proposition 3.2(vi), we obtain∑
m,n>0

2−mγ sγ
∥∥Pm(Ǩ · F)

∥∥
L2

x

�
∑

m>n>0

2
−(γ−γ0− 2

p1
)n

2(1+γ )(n−m)
∥∥sγ0 2−γ0nǨn

∥∥
L2

x

(‖∇F‖L2
x
+ ‖t−1F‖L2

x

)
+

∑
n>m>0

2
(1− 2

p2
−γ+γ0)n2(1−γ )(m−n)sγ−γ0‖2−γ0nsγ0Ǩn‖L2

x

(‖∇F‖L2
x
+ ‖s−1F‖L2

x

)
� Ǩγ0

(‖∇F‖L2(S) + ‖s−1F‖L2(S)

)
.

The proof of (4.11) is thus complete.
Now (4.12) follows by applying (4.11) to PmF and using the finite band property. In order to show (4.13), we write

Pm

(
KD−1PlF

) = Pm(ǨD−1PlF ) + (s−2 − r−2)PmD−1PlF.

Then (4.13) follows by estimating the first term as we did for ‖Pm(Ǩ · F)‖L2
x

in the above and applying Proposi-
tions 3.1 and 4.1 to the second term. �

Now we are ready to prove Propositions 4.5 and 4.6.

Proof of Proposition 4.5. We may assume F is a 1-form without loss of generality. By duality we can assume that
k � m. Then from the finite band property we have

‖Pk∇PmF‖L2
t L

2
x
� 2−2k

∥∥t2Pk�∇PmF
∥∥

L2
t L

2
x
.

We denote by R the Riemann curvature tensors on 2-surface (Ss, γ ). Then

Rabcd = (γacγbd − γadγbc)K and Rab = γabK.

Note that the commutation formula

∇a(�Fi) = �(∇aFi) + ∇c(RidacFd) − Rda∇dFi + Ridac∇cFd.

Then we have ‖Pk∇PmF‖L2L2 � A1 + A2, where

t x
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A1 := 2−2k
(∥∥t2Pk∇�PmF

∥∥
L2

t L
2
x
+ ‖Pk∇PmF‖L2

t L
2
x

)
,

A2 := 2−2k
∥∥t2Pk∇(KPmF)

∥∥
L2

t L
2
x
+ 2−2k

∥∥t2Pk(K∇PmF)
∥∥

L2
t L

2
x
.

It is easy to see

A1 � 2−2(k−m)‖Pk∇PmF‖L2
t L

2
x
+ 2−2k+m

∥∥t−1PmF
∥∥

L2
t L

2
x

� 2−2(k−m)2m
∥∥t−1PmF

∥∥
L2

t L
2
x
.

In order to estimate A2, it follows from Lemmas 4.3 and 4.4 that∥∥Pk∇(KPmF)
∥∥

L2
x
� K(1 + γ, k)

∥∥Λ−γ (KPmF)
∥∥

L2
x
� 2ms−1K(1 + γ, k)‖PmF‖L2

x
Ǩγ0 .

Thus, by a standard dual argument, we obtain for any appropriate S-tangent tensor field G〈
Pk(K · ∇PmF),G

〉 = 〈
Pm div(K · PkG),PmF

〉
�

∥∥Pm div(K · PkG)
∥∥

L2
x
‖PmF‖L2

x

� 2ks−1K(1 + γ,m)Ǩγ0‖PkG‖L2
x
‖PmF‖L2

x

� 2ms−1K(1 + γ, k)Ǩγ0‖PmF‖L2
x
‖G‖L2

x
.

The last inequality is derived by using k � m. Hence,

A2 � 2−(1−γ )k2mǨγ0

∥∥t−γ PmF
∥∥

L2
t L

2
x
+ 2m−kǨγ0‖K‖γ

L2
t L

2
x

‖PmF‖
L

2
1−γ
t L2

x

.

The proof of (4.7) is complete by combining the estimates of A1 and A2. The inequality (4.8) can be proved simi-
larly. �
Proof of Proposition 4.6. For the case k � l, we use the finite band property for GLP projections, the representation
formula � = 	D D ± K ± t−2Id and (4.13) in Lemma 4.4 to obtain∥∥Pk D−1PlF

∥∥
L2(S)

� 2−2kt2
∥∥Pk�D−1PlF

∥∥
L2(S)

� 2−2kt2
∥∥Pk

	DPlF
∥∥

L2(S)
+ 2−2kt2

∥∥Pk

(
KD−1PlF

)∥∥
L2(S)

+ 2−2k
∥∥Pk D−1PlF

∥∥
L2(S)

� 2−2k2l t‖PlF‖L2(S) + 2−2k+γ kt2−γ0Ǩγ0‖PlF‖L2(S) + 2−3kt‖PlF‖L2(S).

Then the desired estimate follows for this case.
In order to show the result for the case 0 < k < l, we note that∥∥Pk D−1(KPlF )

∥∥
L2

x
� 2γ l t−γ0Ǩγ0‖PlF‖L2

x
(4.18)

which follows from (4.13) in Lemma 4.4 by a dual argument. Similar as above, we may use the representation formula
� = D	D ± K to complete the proof. �
5. Product estimates in Besov norms

We will provide a series of product estimates in Besov norms which are of fundamental importance for the later
applications.

5.1. Non-sharp product estimates

The following non-sharp product estimates will be used in Section 6.

Proposition 5.1. For any S-tangent tensor fields F and G,

‖F · G‖P 0 � N1(F )
(∥∥t−

1
a G

∥∥
La

t L2
x
+ ∥∥t

1
2 ∇G

∥∥
L2

t L
2
x

)
with a > 4, (5.1)

‖F · G‖P 0 � N2
(
t1/2F

)‖G‖P 0, (5.2)

‖F · G‖P 0 � N1
(
t

1
2 F

)(‖∇G‖L2
t L

2
x
+ ‖G‖L∞

ω L2
t

)
. (5.3)
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Before giving the proof, we recall the notion of N1-envelopes of tensor fields introduced in [11].

Definition 5.1. For a given S-tangent tensor field F and a sufficiently small ε > 0 we define its N1-envelope (of
order ε) to be any sequence of positive real numbers N1[Fk] satisfying

N1[Fk] � 2ε|k−k′|N1[Fk′ ], for any k, k′,∑
k

N1[Fk]2 ≈ N1(F )2. (5.4)

By the same way as in [11, page 31–33], we can obtain the following result whose proof can be found in [22].

Lemma 5.1. For any smooth S-tangent tensor field F there always exists an envelope N1[Fk] such that

(i) For 2 � q � ∞, there hold the dyadic Gagliardo–Nirenberg inequalities∥∥t
− 1

2 − 1
q Fk

∥∥
L

q
t L2

x
� 2− 1

2 k− 1
q
k N1[Fk],

∥∥t−1/2Fk

∥∥
L2

xL∞
t

� 2−k/2 N1[Fk]. (5.5)

(ii) For all q with 1 � q < 2 sufficiently close to 2,∥∥t
1
2 − 1

q
+∇LFk

∥∥
L

q
t L2

x
� N1[Fk]. (5.6)

(iii) For any 2 � q < 4,∥∥t
1− 1

q ∇Fk

∥∥
L

q
t L4

x
� 2k(1− 1

q
)N1[Fk]. (5.7)

(iv) For any 2 � q < ∞,∥∥t
1
2 − 1

q Fk

∥∥
L

q
t L∞

x
� 2k( 1

2 − 1
q
)N1[Fk]. (5.8)

Remark 5.1. The above dyadic inequalities can be adapted to low frequency terms F�0 = P�0F , for instance∣∣t− 1
2 − 1

q F�0
∥∥

L
q
t L2

x
� N1(F ),

∥∥t−1/2F�0
∥∥

L2
xL∞

t
� N1(F ),∥∥t

1− 1
q ∇F�0

∥∥
L

q
t L4

x
� N1(F ), 2 � q < 4,∥∥t

1
2 − 1

q F�0
∥∥

L
q
t L∞

x
� N1(F ), 2 � q < ∞.

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. In what follows we will prove (5.1) only. (5.2) and (5.3), which have been stated in [9]
without proof, can be proved in a similar but easier way (see [22, Section 5.2]). We will frequently use Lemma 4.1,
(5.7), (5.5), (5.4) and (3.12).

We choose λ and b such that

2 � b < 4,
2

a + 2
< λ � 1, and

1 − λ

a
+ λ

2
= 1

b∗ ,

where 1
b

+ 1
b∗ = 1

2 . This is always possible for a > 4. Moreover

1

2
− λ − 1

b
< 0. (5.9)

We will use the notations

Πλ
n := ∥∥t

1
2 ∇Gn

∥∥λ

L2(H)

∥∥t−
1
a G

∥∥1−λ

La
t L2

x
, Πλ := ∥∥t

1
2 ∇G

∥∥λ

L2(H)

∥∥t−
1
a G

∥∥1−λ

La
t L2

x
.

Clearly, by interpolation and Bernstein inequality∥∥t
1
b
+ 1

2 ∇Gn

∥∥
b∗ 2 �

∥∥t
1
2 ∇Gn

∥∥λ
2

∥∥t1− 1
a ∇Gn

∥∥1−λ
a 2 � 2(1−λ)nΠλ

n (5.10)

Lt Lx L (H) Lt Lx
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and ∥∥t
1
b
− 1

2 Gn

∥∥
Lb∗

t L2
x
� 2−λnΠλ

n ,
∥∥t

1
2 + 1

b
− 2

p Gn

∥∥
Lb∗

t L
p
x

� 2(1− 2
p

−λ)n
Πλ

n . (5.11)

Similarly, we have∥∥t
1
b
+ 1

2 ∇G�0
∥∥

Lb∗
t L2

x
� Πλ,

∥∥t
1
b
− 1

2 G�0
∥∥

Lb∗
t L2

x
� Πλ. (5.12)

Now we prove (5.1). We begin with expanding F · G by GLP decomposition as

F · G = F>0 · G>0 + D(F,G),

where

D(F,G) = F�0 · G�0 + F�0 · G>0 + F>0 · G�0.

We first estimate ‖F>0 · G>0‖P 0 . Set 1
q

+ 1
q∗ = 1

2 with q < 4, by the Hölder inequality and Lemma 5.1 we obtain

‖Fm · Gn‖L2(H) � ‖Fm‖L∞
t L

q
x
‖Gn‖L2

t L
q∗
x

� 2( 1
2 − 2

q
)m2− 2n

q∗ N1[Fm]∥∥t1/2∇G
∥∥

L2
t L

2
x
.

Summing over m,n > 0 gives

‖F>0 · G>0‖L2(H) � N1(F )
∥∥t1/2∇G

∥∥
L2(H)

.

It remains to consider the following high frequency terms

Pk(F>0 · G>0) =
∑

k>n,m>0

Pk(Fm · Gn) +
∑

k<n,m

Pk(Fm · Gn) +
( ∑

n<k<m

+
∑

m<k<n

)
Pk(Fm · Gn)

= Ak
1 + Ak

2 + Ak
3.

Step 1. Estimate of Ak
1. By finite band property and the weak Bernstein inequality of GLP projections, we have∥∥Ak

1

∥∥
L2

t L
2
x
�

∑
k>n,m>0

2−2k
∥∥t2Pk�(Fm · Gn)

∥∥
L2

t L
2
x
�

∑
k>n,m>0

(
Ak

mn + 2
−3k

2 Bmn

)
(5.13)

where for m,n, k > 0,

Ak
mn = 2−2k+2 max(m,n)

∥∥Pk(Fm · Gn)
∥∥

L2
t L

2
x

and Bmn = ∥∥t
3
2 ∇Fm · ∇Gn

∥∥
L2

t L
4
3
x

.

Using (5.10) and (5.7),

Bmn �
∥∥t1− 1

b ∇Fm

∥∥
Lb

t L
4
x

∥∥t
1
2 + 1

b ∇Gn

∥∥
Lb∗

t L2
x
� 2(1− 1

b
)m+(1−λ)nN1[Fm]Πλ

n . (5.14)

As to Ak
mn, by weak Bernstein inequality, (3.12), (5.10) and (5.11)

Ak
mn � 2−2k+2 max(m,n)

∥∥t
1
2 − 1

b
− 2

q Fm

∥∥
Lb

t L
q
x

∥∥t
1
b
+ 2

q
− 1

2 Gn

∥∥
Lb∗

t L
q∗
x

� 2−2k+2 max(m,n)+( 1
2 − 1

b
− 2

q
)m2(1−λ− 2

q∗ )nN1(F )Πλ
n . (5.15)

Due to (5.9), choosing q > 2 such that 1
2 − 1

b
< 2

q
< λ, combining (5.13) with (5.14) and (5.15), we conclude∑

k>0

‖Ak
1‖L2

t L
2
x
� N1(F )

(∥∥t
1
2 ∇G

∥∥
L2

t L
2
x
+ ∥∥t−

1
a G

∥∥
La

t L2
x

)
.

Step 2. Estimate of Ak
2. Using the weak Bernstein inequality and (5.5), we have∥∥Pk(Fm · Gn)

∥∥
L2

t L
2
x
� 2

k
2
∥∥t−1/2Fm

∥∥
L∞

t L2
x
‖Gn‖L2

t L
4
x
� 2

k−m−n
2 N1[Fm]∥∥t1/2∇G

∥∥
L2

t L
2
x
.

Summing over k < m,n for the respective case, we conclude∑∥∥Ak
2

∥∥
L2

t L
2
x
� N1(F )

∥∥t
1
2 ∇G

∥∥
L2

t L
2
x
.

k>0
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Step 3. Estimate of Ak
3. We first consider the case n < k < m by using finite band property∥∥Pk(Fm · Gn)

∥∥
L2

t L
2
x
� 2−2m

∥∥t2Pk(�Fm · Gn)
∥∥

L2
t L

2
x

� 2−2m
(∥∥t2Pk∇(∇Fm · Gn)

∥∥
L2

t L
2
x
+ ∥∥t2Pk(∇Fm · ∇Gn)

∥∥
L2

t L
2
x

)
� 2−2m

(
2k

∥∥t∇Fm · Gn

∥∥
L2

t L
2
x
+ 2

k
2 Bmn

)
.

For the first term, using Hölder inequality, (3.12), (5.10) and (5.11), it can be bounded by

2−2m+k
∥∥t1− 1

b ∇Fm

∥∥
Lb

t L
4
x

∥∥t
1
b Gn

∥∥
Lb∗

t L4
x
� 2−2m+k+(1− 1

b
)m+ n

2 −λnN1[Fm]Πλ
n .

Combined with (5.14), it implies∥∥Pk(Fm · Gn)
∥∥

L2
t L

2
x
�

(
2−2m+k+(1− 1

b
)m+ n

2 −λn + 2−2m+ k
2 +(1− 1

b
)m+n−λn

)
N1[Fm]Πλ

n .

Summing over n < k < m gives∑
n<k<m

∥∥Pk(Fm · Gn)
∥∥

L2
t L

2
x
� N1(F )

(∥∥t
1
2 ∇G

∥∥
L2

t L
2
x
+ ∥∥t−

1
a G

∥∥
La

t L2
x

)
.

It remains to consider the last case m < k < n. With 1 < p < 2 and 1
p∗ + 1

2 = 1
p

, we have from the finite band
property and the weak Bernstein inequality that∥∥Pk(Fm · Gn)

∥∥
L2

x
� 2k( 2

p
−1)

t
1− 2

p ‖Fm · Gn‖L
p
x

� 2k( 2
p

−1)
t
1− 2

p ‖Fm‖L
p∗
x

‖Gn‖L2
x

� 2k( 2
p

−1)2m(1− 2
p∗ )−n‖Fm‖L2

x
‖∇G‖L2

x
.

By using (5.5) and (5.4), we infer∑
n>k>m

∥∥Pk(Fm · Gn)
∥∥

L2
t L

2
x
�

∑
n>k>m

2k( 2
p

−1)2m( 3
2 − 2

p
)−nN1[Fm]∥∥t1/2∇G

∥∥
L2(H)

� N1(F )
∥∥t

1
2 ∇G

∥∥
L2

t L
2
x
.

Therefore∑
k>0

∥∥Ak
3

∥∥
L2

t L
2
x
� N1(F )

(∥∥t
1
2 ∇G

∥∥
L2

t L
2
x
+ ∥∥t−

1
a G

∥∥
La

t L2
x

)
.

Step 4. Finally we need to show for the low frequency term D(F,G) that∥∥D(F,G)
∥∥

P 0 � N1(F )
(∥∥t

1
2 ∇G

∥∥
L2(H)

+ ∥∥t−
1
a G

∥∥
La

t L2
x

)
. (5.16)

The estimates for F�0 · G>0 and F>0 · G�0 can be derived by adapting the arguments in step 1 and step 3. While the
estimate for F�0 · G�0 can be obtained by using Bernstein inequality and Hölder inequality. We omit the details. �
5.2. Transport product estimates

The main purpose of this subsection is to provide the transport-product estimates. We will always assume the
bootstrap assumptions (BA1) and (BA2). In the following theorems, k > 0 is a given number.

Theorem 5.1. Assume that the S-tangent tensor fields W , F and G satisfy the transport equation ∇LW + k
s
W =

∇LF · G along H and lims→0 s|W | = 0. Then

‖W‖B0 � N1(F ) · (N1(G) + ‖G‖L∞
ω L2

t

)
.

Theorem 5.2. Assume that the S-tangent tensor fields W , F and G satisfy the transport equation ∇LW + k
s
W = F ·G

along H and lims→0 s|W | = 0. Then

‖W‖B0 � ‖F‖P 0

(
N1(G) + ‖G‖L∞

ω L2
t

)
.



Q. Wang / Ann. I. H. Poincaré – AN 26 (2009) 285–328 305
Theorem 5.3. For any pair of S-tangent tensor fields G and W such that W satisfies the transport equation of the
form ∇LW + k

s
W = F along H, there holds

‖G · W‖P 0 �
(

lim
s→0

‖W‖B0
2,1(S) + ‖F‖P 0

)(
N1(G) + ‖G‖L∞

ω L2
t

)
.

The proof of these results can be carried out by using the reduction argument given in [11, Lemma 4.13]), that is, it
is enough to prove these results for the scalar transport equations, with W being a scalar function. After this reduction,
the results follow immediately from the sharp trace inequalities which in our situation take the following forms.

Proposition 5.2. For any S-tangent tensor fields F and G of the same type, there holds∥∥∥∥∥t−1

t∫
0

s∇LF · Gds

∥∥∥∥∥
B0

� N1(F )N1(G), (5.17)

and for any scalar functions F and G there hold∥∥∥∥∥t−1

t∫
0

sF · Gds

∥∥∥∥∥
B0

�
(

N1(G) + ‖G‖L∞
ω L2

t

)‖F‖P 0, (5.18)

∥∥∥∥∥t−1G ·
t∫

0

sF ds

∥∥∥∥∥
P 0

�
(

N1(G) + ‖G‖L∞
ω L2

t

)‖F‖P 0 . (5.19)

One can follow essentially the method in [11] to complete the proof. One can also find a proof in [22] by combining
the GLP theory and classical LP theory through an equivalence argument. We thus omit the proof.

Theorem 5.4. Let F be an S-tangent tensor field which admits a decomposition of the form ∇F = ∇LP + E with
tensor fields P and E of the same type. If |s0−F | and |s∇F | are uniformly bounded when s → 0, then

‖F‖L∞
ω L2

t
� N1(F ) + N1(P ) + ‖E‖P 0 .

Proof. We set ϕ(t) = ∫ t

0 |F |2 ds, then ∇Lϕ = |F |2. Due to [9, Proposition 5.1] we have

‖ϕ‖L∞(H) � ‖∇ϕ‖B0 + ‖t−1ϕ‖L∞
t L2

x
. (5.20)

It is easy to see

‖t−1ϕ‖L∞
t L2

x
� ‖F‖L∞

ω L2
t
· ‖t−1F‖L2

t L
2
x
. (5.21)

We now estimate ‖∇ϕ‖B0 . In view of the commutation formula [∇L,∇]ϕ = −χ · ∇ϕ, we know ∇ϕ satisfies the
transport equation

∇L∇ϕ + 1

s
∇ϕ = 2F · ∇F − 1

2
V · ∇ϕ − χ̂ · ∇ϕ. (5.22)

In order to apply Theorem 5.1 and Theorem 5.2, we need to show lims→0 s|∇ϕ| = 0. By the weakly spherical regular-
ity of (S,

◦
γ ) proved in Lemma 3.2, we only need to show lims→0

∂ϕ
∂ωi

= 0 under the transport coordinate (s,ω1,ω2),
where i = 1,2. Note that

∂ϕ

∂ωi

= 2

t∫
0

〈∇ ∂
∂ωi

F,F
〉
ds,

we infer∣∣∣∣ ∂ϕ

∂ωi

∣∣∣∣� ∣∣∣∣
t∫ 〈∇ ∂

∂ωi

F,F
〉
ds

∣∣∣∣ � sup
0<s�t

|s0−F | · |s∇ ∂
∂ωi

F |
∣∣∣∣∣

t∫
s−1+ ds

∣∣∣∣∣. (5.23)
0 0
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From the conditions on F , we conclude | ∂ϕ
∂ωi

| → 0 as s → 0.
Now we substitute the decomposition ∇F = ∇LP + E into (5.22) and use Theorem 5.1 and Theorem 5.2 to

conclude

‖∇ϕ‖B0 �
(

N1(P ) + ‖E‖P 0

)(
N1(F ) + ‖F‖L∞

ω L2
t

) + (
N1(A) + ‖A‖L∞

ω L2
t

)‖∇ϕ‖P 0 .

This inequality, together with (BA1) and the fact ‖∇ϕ‖P 0 � ‖∇ϕ‖B0 yield

‖∇ϕ‖B0 �
(

N1(F ) + ‖F‖L∞
ω L2

t

)(
N1(P ) + ‖E‖P 0

)
.

Combining the above inequality with (5.20) and (5.21), we get

‖F‖2
L∞

ω L2
t
�

(
N1(F ) + ‖F‖L∞

ω L2
t

)(
N1(P ) + ‖E‖P 0

) + ‖F‖L∞
ω L2

t
· ‖t−1F‖L2

t L
2
x

which implies the desired result. �
In Theorem 5.4, we require F to satisfy certain initial conditions. Note that we will only apply this theorem to χ̂

and ζ to derive their L∞
ω L2

t estimates. For F = χ̂ and ζ , in view of Proposition 2.1, there hold |s0−F | → 0 and
|s∇F | → 0 when s → 0. Thus the initial conditions in Theorem 5.4 are satisfied. In Section 7 where the calculations
for ‖χ̂‖L∞

ω L2
t

and ‖ζ‖L∞
ω L2

t
are carried out, we will not mention the initial condition any more.

6. Error estimates

In this section, we study various kinds of error terms which arise from commuting ∇L with Hodge operators. Recall
that we have introduced the conventions R, Ř, R0, A, A and ∇A in Section 3. Then the null Bianchi equations (2.17),
(2.18) and (2.19) can be symbolically written as

L(ρ̌,−σ̌ ) = D1β + s−1Ř + A · R̄, (6.1)

∇Lβ̌ = 	D1(ρ,σ ) + s−1Ř + A · R̄, (6.2)

where

R̄ := R0 + ∇A + A · A + s−1A.

It follows easily from (BA1) and (BA2) that

‖R̄‖L2(H) � R0 + Δ0. (6.3)

We will also use the commutation formulas given in [9, Proposition 2.16] which symbolically can be written as

[∇L,∇]F = (A + s−1) · ∇F + (A + s−1) · A · F + β · F (6.4)

for any S-tangent tensor field F . When F are scalar functions, the right-hand side is simply (A + s−1) · ∇F .
In the remaining parts of this paper, we will employ the following conventions:

• Ř denotes either the pair (ρ̌,−σ̌ ) or β̌

• D−1Ř denotes either D−1
1 (ρ̌,−σ̌ ) or 	D−1

1 β̌

• D−2Ř denotes either D−1
2 · D−1

1 (ρ̌,−σ̌ ) or D−1
1 · 	D−1

1 β̌

• D−1∇LŘ denotes either 	D−1
1 ∇Lβ̌ or D−1

1 L(ρ̌,−σ̌ )

• C0(Ř) denotes [∇L, D−1
1 ](ρ̌,−σ̌ ) or [∇L, 	D−1

1 ]β̌
• D−2 · ∇LŘ denotes D−1

2 · D−1
1 ∇L(ρ̌,−σ̌ ) or D−1

1 · 	D−1
1 ∇Lβ̌

• D−1 · C0(Ř) denotes D−1
2 · [∇L, D−1

1 ](ρ̌,−σ̌ ) or D−1
1 · [∇L, 	D−1

1 ]β̌

In this section we will consider the commutators

C(Ř) = (
C1(Ř),C2(Ř),C3(Ř)

)
(6.5)

given in [9, Definition 6.3] which, by the above conventions, can be written symbolically as
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C1(Ř) = ∇ · D−1 · [∇L, D−1]Ř,

C2(Ř) = ∇ · [∇L, D−1] · D−1Ř,

C3(Ř) = [∇L,∇] · D−2Ř.

Corresponding to (6.1) and (6.2), we introduce the error terms

Err := D−1
1 ∇L(ρ̌,−σ̌ ) − β and Ẽrr := 	D−1

1 ∇Lβ̌ − (ρ,σ ). (6.6)

Let

F1 := (Err, Ẽrr).

Then symbolically F1 has the form

F1 = D−1(s−1Ř + A · R̄)
.

Consequently we infer from (6.1) and (6.2) the symbolic expressions

D−1∇LŘ = R0 + F1. (6.7)

By using (4.4) with θ = 0 and p = 2, Proposition 4.1 and the Hölder inequality we infer that

‖F1‖P 0 � Δ2
0 + R0. (6.8)

Now we are ready to state the main results in this section. The first one is

Proposition 6.1. For the error terms C0(Ř), C1(Ř), C2(Ř) and C3(Ř) there hold∥∥C0(Ř)
∥∥

P 0 � Δ2
0 + R0, (6.9)∥∥C1(Ř)

∥∥
P 0 � Δ2

0 + R0, (6.10)

C2(Ř) = ∇ · D−1(β · D−2Ř
) + err, (6.11)

C3(Ř) = β · D−2(Ř) + err (6.12)

with

‖err‖P 0 � Δ2
0 + R0.

We remark that the terms ∇ · D−1(β · D−2Ř) and β · D−2Ř in C2(Ř) and C3(Ř) cannot be bounded in P 0 norm.
The next main result provides tools to deal with such terms.

Proposition 6.2. All the commutators C(Ř) can be expressed as follows

C(Ř) = ∇LP + E,

where P and E are tensors verifying

N1(P ) + ‖E‖P 0 � Δ2
0 + R0.

We mention that the above two results have been proved in [9]. The proofs in [9], however, rely on the following
Hodge-elliptic P 0 estimate and product estimate (see [9, (196),(190)])

‖∇ · D−1F‖P 0 � ‖F‖P 0, and ‖F · G‖P 0 � N1(F ) · (‖∇G‖L2
t L

2
x
+ ‖G‖L2

t L
2
x

)
,

for appropriate tensor fields F and G. Unfortunately, these inequalities are not quite accurate since some terms were
missed. Instead we will use the corrected versions (4.6) and (5.1). The presence of the terms in La

t L
2
x norms in these

corrected inequalities requires us to modify the proof in [9, Section 6.12] by establishing La
t L

2
x estimates for some

commutators, which add much complexity.
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6.1. Proof of Proposition 6.1: Part I

We first note that by (3.11), the Hölder inequality and the Sobolev inequality, we can obtain from (BA1) and (BA2)
that {‖s−1A‖L2(H),‖∇A‖L2(H),‖A‖L∞

t L4
x
,‖A‖L6

t L
6
x
,‖∇ trχ‖L2

xL∞
t

� Δ0,

‖A · A‖L2(H),‖A · A‖
L2+

t L2
x
� Δ2

0,‖∇LA‖L2
t L

2
x
� Δ0,

(6.13)

In this subsection, with the help of Propositions 4.3 and 4.4, we will prove (6.9), (6.11) and (6.12).
We first prove (6.9). We use (6.4) to write

C0(Ř) = D−1((A + s−1)(∇ · D−1Ř
) + (

A + s−1) · A · D−1Ř + β · D−1Ř
)
. (6.14)

Then, by using (4.4) with θ = 0 and p = 4
3 , Proposition 4.1 and the Hölder inequality we can estimate the various

terms in the above equation to get∥∥C0(Ř)
∥∥

P 0 � Δ2
0 + R0 + Δ0 · N1

(
D−1Ř

)
. (6.15)

By the definition of N1(D−1Ř) and Proposition 4.1 it follows that

N1(D−1Ř) � R0 + Δ2
0 + ∥∥D−1∇LŘ

∥∥
L2

t L
2
x
+ ∥∥C0(Ř)

∥∥
L2

t L
2
x
.

While it follows from (6.7) and (6.8) that∥∥D−1∇LŘ
∥∥

L2
t L

2
x
� Δ2

0 + R0.

Combining the above three inequalities and using the smallness of Δ0 we obtain (6.9).
In the above proof, together with Lemma 4.1 we have actually verified the following

Proposition 6.3.∥∥D−1∇LŘ
∥∥

L2
t L

2
x
� R0 + Δ2

0, (6.16)∥∥[∇L, D−1]Ř∥∥
L2

t L
2
x
� R0 + Δ2

0, (6.17)

N1
(

D−1Ř
)
� R0 + Δ2

0, (6.18)

N1
(∇ · D−2Ř

)
� R0 + Δ2

0, N2
(

D−2Ř
)
� R0 + Δ2

0. (6.19)

In order to prove (6.11) and (6.12), we first use (6.4) to write

C2(Ř) = ∇ · [∇L, D−1]
g

D−1Ř + ∇ · D−1(β · D−2Ř
)
, (6.20)

C3(Ř) = [∇L,∇]g · D−2Ř + β · D−2Ř (6.21)

where

[∇L,∇]gF := (A + s−1) · ∇F + (A + s−1) · A · F,[∇L, D−1]
g
F := D−1((A + s−1) · ∇D−1F + (A + s−1) · A · D−1F

)
are the “good” parts in the corresponding commutators consisting of those terms not involving the curvature β . Then
the proof can be complete by using (6.18) and the following result.

Lemma 6.1. For appropriate S-tangent tensor field F , there hold∥∥[∇L,∇]g D−1F
∥∥

P 0 � N1(F ) and
∥∥∇ · [∇L, D−1]

g
F

∥∥
P 0 � N1(F ). (6.22)
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Proof. Noting that the simple inequality

‖F‖P 0 � ‖t∇F‖L2(H) + ‖F‖L2(H)

for any S-tangent tensor field F . By Proposition 5.1 with a > 4 and Lemma 4.1 we then have∥∥[∇L,∇]g D−1F
∥∥

P 0 � N1(∇D−1F)
(∥∥t

1
2 ∇A

∥∥
L2

t L
2
x
+ ∥∥t−

1
a A

∥∥
La

t L2
x

)
+ ‖t−1∇D−1F‖P 0 + N2(D−1F)

(‖A · A‖P 0 + ∥∥t−
1
2 A

∥∥
P 0

)
� N1(∇D−1F) + N2(D−1F)

� N1(F ).

This proves the first inequality. In order to prove the second inequality, in view of (4.6), it suffices to show for
appropriate S-tangent tensor fields F there holds4∥∥[∇L, D−1]

g
F

∥∥
La

t L2
x
� N1(F ) with 4 < a < ∞, (6.23)

which can be proved, by using Proposition 4.3 with p = 4/3, Proposition 4.1, (3.11), (6.13) and Lemma 4.1, as
follows:∥∥[∇L, D−1]

g
F

∥∥
La

t L2
x
�

∥∥t1/2A · ∇D−1F
∥∥

La
t L

4/3
x

+ ∥∥t1/2A · A · D−1F
∥∥

La
t L

4/3
x

+ ∥∥t−1 D−1∇D−1F
∥∥

La
t L2

x
+ ∥∥t−1/2A · D−1F

∥∥
La

t L
4/3
x

� ‖A‖La
t L2

x

∥∥∇ · D−1F
∥∥

L∞
t L4

x
+ ‖A · A‖La

t L2
x

∥∥D−1F
∥∥

L∞
t L4

x

+ ∥∥∇D−1F
∥∥

La
t L2

x
+ ‖A‖La

t L2
x

∥∥t−1/2 D−1F
∥∥

L∞
t L4

x

� N2
(

D−1F
) + N1

(∇D−1F
)

� N1(F ). �
6.2. Proof of Proposition 6.1: Part II

In order to complete the proof of Proposition 6.1, it remains only to prove (6.10). Observe that C1(Ř) can be
written symbolically in the form

C1(Ř) = ∇ · D−1C0(Ř).

We then obtain from the Hodge-elliptic estimate (4.6), (6.9) and (6.17) that∥∥C1(Ř)
∥∥

P 0 �
∥∥C0(Ř)

∥∥
P 0 + Δ0

∥∥D−1C0(Ř)
∥∥q

La
t L2

x

∥∥C0(Ř)
∥∥1−q

L2(H)

� Δ2
0 + R0 + Δ0

∥∥D−1C0(Ř)
∥∥q

La
t L2

x

(
Δ2

0 + R0
)1−q

,

where γ0 < q < 1 and 4 < a < ∞.
We will complete the proof of (6.10) by establishing the following

Proposition 6.4. For 4 < a < ∞ there holds∥∥t−
1
a D−1C0(Ř)

∥∥
La

t L2
x
� Δ2

0 + R0.

Before proving Proposition 6.4, let us state the following two useful results.

Proposition 6.5. Let D−1 denote either D−1
1 or 	D−1

1 . Then for any S-tangent tensor fields F and G on H there holds∥∥t−
1
a D−1(F · ∇G)

∥∥
La

t L2
x
� N1(F )N1(G), with 4 < a < ∞.

4 We will improve the right-hand side of (6.23) to be N1(D−1F) in the next section.
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Proof of Proposition 6.5. By the GLP decomposition we first write

t−
1
a D−1(F · ∇G) = t−

1
a D−1(F>0 · ∇G>0) + L(F,G)

where L(F,G) denotes low frequency terms. For the high frequency terms, we use the GLP decomposition again and
ignore the low frequency part

∑
l�0 Pl , we only need to consider I = ∑

l,m,n>0 Ilnm, where

Ilnm := ∥∥t−
1
a Pl D−1(PnF · ∇PmG)

∥∥
La

t L2
x
.

We will estimate such terms by considering several cases. When l < m < n, by using Lemma 4.2 we obtain

Ilnm � 2l( 2
p

−2)
∥∥t

2− 2
p

− 1
a PnF · ∇PmG

∥∥
La

t L
p
x

(6.24)

where 2 > p > 1 is sufficiently close to 1.
Let p∗ be such that 1

p∗ + 1
2 = 1

p
. By using Lemma 5.1 and the Sobolev inequality it is easy to derive that∥∥t

−( 2
p∗ + 1

a
− 1

2 )
PnF

∥∥
La

t L
p∗
x

� 2n( 1
2 − 1

a
− 2

p∗ )N1[Fn], (6.25)∥∥t1/2∇PmG
∥∥

L∞
t L2

x
� 2

m
2 N1[Gm]. (6.26)

Using both of them together with Hölder inequality, it follows from (6.24) that

Ilnm � 2(−2+ 2
p

)l+ m−n
2 +(1− 1

a
− 2

p∗ )nN1[Fn]N1[Gm].
Thus we can obtain∑

0<l<m<n

Ilnm � N1(F )N1(G)

as long as 1 − 1
a

− 2
p∗ < 0, which is possible when p is sufficiently close to 1.

When m < l < n, by using Lemma 4.2 with 4/3 < p < 2, (6.25), (6.26), and defining p∗ by 1
p∗ + 1

2 = 1
p

we obtain

Ilnm � 2−(2− 2
p

)l
∥∥t

2− 2
p

− 1
a PnF · ∇PmG

∥∥
La

t L
p
x

� 2−(2− 2
p

)l
∥∥t1/2∇PmG

∥∥
L∞

t L2
x

∥∥t
3
2 − 2

p
− 1

a PnF
∥∥

La
t L

p∗
x

� 2( m
2 − l

2 )+( 2
p

− 3
2 )l+( n

2 − n
a
− 2n

p∗ )N1[Gm]N1[Fn].
We can choose p sufficiently close to 4/3 so that 3

2 − 2
p

− 1
a

< 0. Then we have∑
0<m<l<n

Ilnm � N1(G)N1(F ).

When l < n < m, we note that

PnF · ∇PmG = ∇(PnF · PmG) − ∇PnF · PmG,

thus we need to consider the two terms

I 1
lnm := ∥∥t−

1
a Pl D−1(∇PnF · PmG)

∥∥
La

t L2
x

I 2
lnm := ∥∥t−

1
a Pl D−1∇(PnF · PmG)

∥∥
La

t L2
x
.

Observe that by the same method for establishing
∑

0<l<m<n Ilnm, we can obtain∑
0<l<n<m

I 1
lnm � N1(F )N1(G).

For I 2 we have from Proposition 4.1, (5.5) and (5.8) that
lnm
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I 2
lnm �

∥∥t−
1
a (PnF · PmG)

∥∥
La

t L2
x

�
∥∥t

−( 1
a′ − 1

2 )
PnF

∥∥
La′

t L∞
x

∥∥t
(− 1

a′′ − 1
2 )

PmG
∥∥

La′′
t L2

x

� 2n( 1
2 − 1

a′ )−m( 1
a′′ + 1

2 )N1[Fn]N1[Gm]
where 1

a′ + 1
a′′ = 1

a
. Summing over l < n < m gives∑

0<l<n<m

I 2
lnm � N1(F )N1(G).

When m > l > n, we can follow exactly the same way as for the case l < n < m to obtain∑
0<n<l<m

Ilnm � N1(F )N1(G).

Finally when l > m and l > n, we derive by Lemma 4.2, (6.26) and (5.8) that

Ilnm � 2−l
∥∥t1− 1

a PnF · ∇PmG
∥∥

La
t L2

x

� 2−l
∥∥t

1
2 − 1

a PmG
∥∥

La
t L∞

x

∥∥t1/2∇PnF
∥∥

L∞
t L2

x

� 2−l+ n
2 +m( 1

2 − 1
a
)N1[Fn]N1[Gm],

which yields∑
l>m,l>n

Ilnm � N1(F )N1(G).

Thus we conclude I � N1(F )N1(G).

It remains to show∥∥L(F,G)
∥∥

La
t L2

x
� N1(F )N1(G)

for low frequency term L(F,G), which can be done similarly. Since the argument is much easier, we omit the de-
tails. �
Lemma 6.2. For S-tangent tensor fields F on H there hold∥∥t−εΛ−ε D−1

1 F
∥∥

L2
x
� ‖F‖L1

x
, (6.27)∥∥t−εΛ−ε	D−1

1 F
∥∥

Lb
t L

2
x
� ‖F‖

Lb+
t L1

x
(6.28)

where 1 � b < ∞ and 0 < ε � 1.

Proof of Lemma 6.2. To show (6.28), by duality and ignoring lower order terms, we only need to show for appropriate
tensor field G,∥∥t−ε D−1

1 PkΛ
−εG

∥∥
L∞

x
� 2−εk

(
1 + ‖tK‖θ

L2
x

)‖G‖L2
x
, (6.29)

where 0 < θ < 1 is close to 0, then summing over k > 0 and integrating in t .
We decompose D−1

1 PkΛ
−εG using

∑
l P

2
l = Id. Since Pl D−1

1 PkΛ
−εG are not scalar functions, to which we

cannot apply sharp Bernstein inequality, we use the following curvature dependent estimates, ([12, Section 10])

‖PlH‖L∞
x

� 2l t−1(1 + 2−θl‖tK‖θ
L2

x

)‖PlH‖L2
x
, l > 0 (6.30)

and

‖P�0H‖L∞
x

� t−1(1 + ‖tK‖θ
L2

x

)‖H‖L2
x
. (6.31)

From (6.31), we infer∥∥t−εP�0 D−1
1 PkΛ

−εG
∥∥ ∞ � 2−εk−k

(
1 + ‖tK‖θ

2

)‖PkG‖L2 . (6.32)

Lx Lx x
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When l > 0, it follows from (6.30) that∥∥Pl D−1
1 PkΛ

−εG
∥∥

L∞
x

� 2l t−1(1 + 2−θl‖tK‖θ
L2

x

)∥∥Pl D−1
1 PkΛ

−εG
∥∥

L2
x
.

Using (4.9) we have∥∥t−εPl D−1
1 PkΛ

−εG
∥∥

L∞
x

� 2−εk2−|l−k|(1 + 2−θl‖tK‖θ
L2

x

)‖PkG‖L2
x
.

Summing the above inequality over l, k > 0, combined with (6.32), gives (6.29).
To show (6.27), the difference is that Pl

	D−1
1 PkΛ

−εG are scalar functions, to which, instead of using the inequal-
ities (6.30) and (6.31), we employ the sharp Bernstein inequality ([12, Section 10]) which does not involve ‖K‖L2

x
.

Thus we can derive that∥∥t−εPl
	D−1

1 PkΛ
−εG

∥∥
L∞

x
� 2−|k−l|−εk‖PkG‖L2

x
. (6.33)

Summing over l and k, we obtain∥∥t−ε	D−1
1 Λ−εG

∥∥
L∞

x
� ‖G‖L2

x
. (6.34)

Then (6.27) follows by a standard dual argument. �
Note that by using Proposition 3.2(iii), for appropriate S-tangent tensor fields F on H,∥∥tα−1Λα	D−1F

∥∥
L2

x
� ‖F‖L2

x
with 0 � α � 1, (6.35)

By duality, the above estimate implies the following inequality for any appropriate S-tangent tensor field F on H

‖tα−1 D−1ΛαF‖L2
x
� ‖F‖L2

x
. (6.36)

With its aid, we infer from Lemma 6.2 the following result.

Corollary 6.1. Let F be an appropriate S-tangent tensors on H. Then on each leaf St there holds∥∥D−1
2 D−1

1 F
∥∥

L2
x
� ‖tF‖L1

x
. (6.37)

Moreover, on H there holds∥∥D−1
1

	D−1
1 F

∥∥
Lb

t L
2
x
� ‖tF‖

Lb+
t L1

x
(6.38)

where 1 � b < ∞.

Let D be one of the operators D1, 	D1 or D2. We will use Proposition 6.5, Lemma 6.2 to estimate the error type
terms in the following result.

Proposition 6.6. For S-tangent tensors G on H verifying N1(G) < ∞, set

E1(G) := s−1 D−1(A · G) or D−1(A · A · G),

E2(G) := D−1(A · ∇G), E3 := D−1(A · A · A), E4 := s−1 D−1(A · A),

where for E3, D denote either D1 or 	D1. The following estimates hold∥∥t−
1
a E1(G)

∥∥
La

t L2
x
+ ∥∥t−

1
a E2(G)

∥∥
La

t L2
x
� Δ0 N1(G)∥∥t−εΛ−ε E3

∥∥
La

t L2
x
+ ∥∥t−

1
a E4

∥∥
La

t L2
x
+ ∥∥t−1 D−1 E3

∥∥
La

t L2
x
� Δ2

0

where 4 < a < ∞,0 < ε � 1.
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Proof. For E1(G) = D−1(A · A · G), we can use Proposition 4.3 to get∥∥t−
1
a E1(G)

∥∥
La

t L2
x
�

∥∥t
1
2 − 1

a A · A · G∥∥
La

t L
4/3
x

� ‖A‖2
L∞

t L4
x
‖G‖La

t L4
x
� Δ2

0 N1(G).

When E1(G) = s−1 D−1(A · G), by Proposition 4.1 and (3.12)∥∥t−1− 1
a D−1(A · G)

∥∥
La

t L2
x
�

∥∥t−
1
a A · G∥∥

La
t L2

x
�

∥∥t−
1
a A

∥∥
La

t L4
x
‖G‖L∞

t L4
x

� N1(A)N1(G) � Δ0 N1(G).

For E2(G), we infer from Proposition 6.5 that∥∥t−
1
a E2(G)

∥∥
La

t L2
x
� N1(G)N1(A) � Δ0 N1(G).

In order to estimate E3, we use (6.28) and the simple inequality∥∥t−
1
a F

∥∥
La

t L
p
x

� ‖∇LF‖L1
t L

p
x

+ ‖t−1F‖L1
t L

p
x

with p � 1 (6.39)

combined with the Leibnitz rule, Hölder inequality and (6.13) to get∥∥t−εΛ−ε E3
∥∥

La
t L2

x
� ‖A · A · A‖La+

t L1
x
�

∥∥∇L(A · A · A)
∥∥

L1
t L

1
x
+ ∥∥t

1
a+ −1A · A · A∥∥

L1
t L

1
x

� ‖∇LA‖L2
t L

2
x
‖A · A‖L2

xL2
t
+ ‖∇LA‖L2

t L
2
x
‖A · A‖L2

t L
2
x
+ Δ3

0

� Δ3
0.

For E4, we use Proposition 4.3 with p > 1 sufficiently close to 1 together with Hölder inequality to get∥∥t−
1
a E4

∥∥
La

t L2
x
�

∥∥t
1− 2

p
− 1

a A · A∥∥
La

t L
p
x

�
∥∥t

3
2 − 2

p
− 1

a A
∥∥

La
t L

p∗
x

‖t−1/2A‖L∞
t L2

x
,

where 1
p

= 1
2 + 1

p∗ . By (3.12), ‖t 3
2 − 2

p
− 1

a A‖La
t L

p∗
x

� N1(A), we obtain ‖t− 1
a E4‖La

t L2
x

� Δ2
0. In view of the inequal-

ity (6.36), we have ‖t−1 D−1 E3‖La
t L2

x
� Δ2

0. �
By analyzing the expression of β and C0(F ) := [∇L, D−1]F ,5 we have

Corollary 6.2. The following inequalities hold for any S-tangent tensor F ,∥∥t−
1
a D−1(β · F)

∥∥
La

t L2
x
� N1(F )Δ0, (6.41)∥∥t−

1
a C0(F )

∥∥
La

t L2
x
� N1

(
t−

1
2 D−1F

)
(6.42)

where 4 < a < ∞.

Proof. Using Codazzi equation (2.12), i.e. β = ∇A + A · A + s−1A, we infer

D−1(β · F) = E1(F ) + E2(F ).

Whence (6.41) follows from Proposition 6.6.
Similarly, using (6.4) we can write

C0(F ) = E1(D−1F) + E2(D−1F) + t−1 D−1∇D−1F.

For the last term, using Proposition 4.1, we infer∥∥t−1− 1
a D−1∇D−1F

∥∥
La

t L2
x
�

∥∥t−1− 1
a D−1F

∥∥
La

t L2
x
� N1

(
t−

1
2 D−1F

)
.

5 Using Proposition4.4 and Hölder inequality, we can get the simple result∥∥C0(F )
∥∥
L1

t L2
x

� ‖F‖
L2(H)

. (6.40)
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The desired estimate then follows from Proposition 6.6. �
Proof of Proposition 6.4. Combining Proposition 4.3, (6.42) and (6.18) we derive∥∥t−

1
a D−1C0(Ř)

∥∥
La

t L2
x
�

∥∥t1− 1
a C0(Ř)

∥∥
La

t L2
x
� N1

(
t

1
2 D−1Ř

)
� Δ2

0 + R0

as desired. �
6.3. La

t L
2
x estimates for D−1EG

1

For arbitrary S-tangent tensor field F , we denote by EG
1 either [∇L, D−1

1 ](ρ̌,−σ̌ ) · F or Err · F . In what follows,
we establish La

t L
2
x estimates for D−1EG

1 , which are important for the Hodge-elliptic P 0 estimates involved in the
decomposition procedure in Section 6.5.

Proposition 6.7. Denote by D either D1 or D2, for appropriate S-tangent tensor fields F , the following estimates
hold ∥∥t−

1
a D−1(Err · F)

∥∥
La

t L2
x
�

(
Δ2

0 + R0
)

N2(F ) (6.43)∥∥t−
1
a D−1([∇L, D−1

1

]
(ρ̌,−σ̌ ) · F )∥∥

La
t L2

x
� Δ0 N1(F ). (6.44)

where Err is defined in (6.6) and 4 < a < ∞.

In order to prove Proposition 6.7, we may use the error type terms introduced in Proposition 6.6 to rewrite (6.6) as

Err = D−1
1

(
s−1Ř

) + E1(A) + E2(A) + E3 + E4. (6.45)

We first assume the following lemma which will be used to treat the term E3.

Lemma 6.3. Let D denote one of the operators D1, D2 or 	D1. For appropriate S-tangent tensor fields W and F

there holds∥∥D−1(W · F)
∥∥

La
t L2

x
�

∥∥t
3
2 −εΛ−εW

∥∥
La

t L2
x

N2(F ), (6.46)

where 0 < ε < 1.

Proof of Proposition 6.7. (6.44) can be obtained by using Proposition 4.3 and (6.42) as follows,∥∥t−
1
a D−1(C0(Ř) · F )∥∥

La
t L2

x
�

∥∥t
1
2 − 1

a C0(Ř)
∥∥

La
t L2

x
‖F‖L∞

t L4
x
� N1(F )Δ0.

In the same manner, we can easily check∥∥t−
1
a D−1(E1(A) · F )∥∥

La
t L2

x
+ ∥∥t−

1
a D−1(E2(A) · F )∥∥

La
t L2

x
+ ∥∥t−

1
a D−1(E4 · F)

∥∥
La

t L2
x
� Δ2

0 N1(F ).

Thus to prove (6.43), in view of (6.45), we only need to show∥∥t−
1
a D−1((D−1

1

(
t−1Ř

) + E3
) · F )∥∥

La
t L2

x
� N2(F )

(
Δ2

0 + R0
)
.

Using Proposition 4.3, we infer∥∥t−1− 1
a D−1(D−1

1 Ř · F )∥∥
La

t L2
x
�

∥∥t−
1
2 − 1

a D−1
1 Ř · F∥∥

La
t L

4/3
x

�
∥∥D−1

1 Ř
∥∥

L∞
t L4

x

∥∥t−
1
2 − 1

a F
∥∥

La
t L2

x

� N1
(

D−1
1 Ř

)
N1(F ).

Using Lemma 6.3 and Proposition 6.6, we derive∥∥t−
1
a D−1(E3 · F)

∥∥
La

t L2
x
�

∥∥t
1
2 − 1

a t1−εΛ−ε E3
∥∥

La
t L2

x
N2(F ) � Δ2

0 N2(F ).

The proof is thus complete. �
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Proof of Lemma 6.3. We will show (6.46) by using GLP decomposition. For simplicity, we ignore the low frequency
terms. Note that D−1(W · F) = ∑

k,n∈Z
Pk D−1(Wn · F). After dropping the low frequency terms, we consider the

following terms

I =
∑

0<k<n

∥∥Pk D−1(Wn · F)
∥∥

L2
x
, II =

∑
0<n�k

∥∥Pk D−1(Wn · F)
∥∥

L2
x
.

By using Lemma 4.2, Proposition 4.1 and the finite band property we have∥∥Pk D−1(Wn · F)
∥∥

L2
x
� 2−2n

∥∥t2Pk D−1(�Wn · F)
∥∥

L2
x

� 2−2n
(∥∥t2Pk D−1 div(∇Wn · F)

∥∥
L2

x
+ ∥∥t2Pk D−1(∇Wn · ∇F)

∥∥
L2

x

)
� 2−2n

(∥∥t2∇Wn · F∥∥
L2

x
+ 2( 2

p
−2)k

∥∥t
4− 2

p ∇Wn · ∇F
∥∥

L
p
x

)
.

Then by the finite band property and (3.11) we obtain with 1
p∗ + 1

2 = 1
p

and 1 < p � 4/3∥∥Pk D−1(Wn · F)
∥∥

L2
x
� 2−2n+n+εn

∥∥2−εnt
3
2 Wn

∥∥
L2

x

∥∥t−
1
2 F

∥∥
L∞

x

+ 2−2n+( 2
p

−2)k+n+εn
∥∥2−εnt

3
2 Wn

∥∥
L2

x

∥∥t
3
2 − 2

p ∇F
∥∥

L
p∗
x

.

Summing over 0 < k < n, we conclude for 0 < ε < 1,

I �
∥∥t

3
2 −εΛ−εW‖L2

x

(∥∥t−
1
2 F

∥∥
L∞

x
+ ∥∥t

3
2 − 2

p ∇F
∥∥

L
p∗
x

)
.

Taking L1
t norm of I , noting ‖t 3

2 − 2
p ∇F‖L∞

t L
p∗
x

� N2(F ) and using (3.11), we infer

‖I‖La
t
� N2(F )

∥∥t
3
2 −εΛ−εW

∥∥
La

t L2
x
. (6.47)

As to II, by the finite band property and (3.11) we infer for k � n > 0∥∥Pk D−1(Wn · F)
∥∥

L2
x
� 2−k‖tWn · F‖L2

x
� 2−k

∥∥t
3
2 Wn

∥∥
L2

x

∥∥t−
1
2 F

∥∥
L∞

x

� 2−k+εn
∥∥2−nεt

3
2 Wn

∥∥
L2

x

∥∥t−
1
2 F

∥∥
L∞

x
.

Summing over k > n > 0, then taking L1
t norm and using (3.11) we conclude for 0 < ε < 1,

‖II‖La
t
�

∥∥t
3
2 −εΛ−εW

∥∥
La

t L2
x

N2(F ).

Combine the estimates of I and II, we get (6.46) as desired. �
6.4. La

t L
2
x estimates for ∇LD−2Ř

We will establish the following result which will be used in the next subsection.

Proposition 6.8. The following estimate holds∥∥t−
1
a ∇LD−2Ř

∥∥
La

t L2
x
� R0 + Δ2

0,

where 4 < a < ∞.

To prove Proposition 6.8, we will rely on the following estimate of D−1F1, which will be justified at the end of
this subsection.6

6 By D−1F1, we denote either D−1
2 Err or 	D−1

1 Ẽrr.
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Proposition 6.9. For F1 = (Err, Ẽrr) with Err and Ẽrr given by (6.6), there holds∥∥t−
1
a D−1F1

∥∥
La

t L2
x
� Δ2

0 + R0, (6.48)

where 4 < a < ∞.

Using Hodge-elliptic P σ estimate (4.6), Proposition 6.9 and (6.8), we can obtain

Corollary 6.3. For F1 = (Err, Ẽrr) there holds∥∥∇ · D−1F1
∥∥

P 0 � Δ2
0 + R0. (6.49)

Now we will show Proposition 6.8 by assuming Proposition 6.9 first.

Proof of Proposition 6.8. In view of the formula

∇LD−2Ř = [∇L, D−1]D−1Ř + D−1[∇L, D−1]Ř + D−2∇LŘ,

we only need to show∥∥t−
1
a
[∇L, D−1]D−1Ř

∥∥
La

t L2
x
� Δ2

0 + R0, (6.50)∥∥t−
1
a D−1[∇L, D−1]Ř∥∥

La
t L2

x
� Δ2

0 + R0, (6.51)∥∥t−
1
a D−2∇LŘ

∥∥
La

t L2
x
� Δ2

0 + R0. (6.52)

By using the fact that N1(t
− 1

2 D−2Ř) � N2(D−2Ř) � Δ2
0 + R0, (6.50) follows from (6.42) with F = D−1Ř. (6.51)

was proved in Proposition 6.4. Thus it only remains to prove (6.52).
We first verify (6.52) for the case D−2∇LŘ = D−1

2 D−1
1 ∇L(ρ̌, σ̌ ). It is clear that∥∥∇LD−1β

∥∥
L1

t L
2
x
�

∥∥[∇L, D−1]β∥∥
L1

t L
2
x
+ ∥∥D−1∇Lβ

∥∥
L1

t L
2
x
.

Applying (6.40) to the commutator and applying (2.16) and Proposition 4.3 to the other term, we obtain
‖∇LD−1β‖L1

t L
2
x
� Δ2

0 + R0. Then by (6.48) and (6.39), we obtain∥∥t−
1
a D−1(Err + β)

∥∥
La

t L2
x
� Δ2

0 + R0.

In view of the expression Err = D−1
1 ∇L(ρ̌,−σ̌ ) − β , (6.52) is proved in this case.

Next, for the case Ř = β̌ , we estimate the La
t L

2
x norm of the term D−2∇Lβ̌ . Using

	D−1
1 ∇Lβ̌ = (ρ,σ ) + Ẽrr,

we obtain∥∥t−
1
a D−2∇Lβ̌

∥∥
La

t L2
x
�

∥∥t−
1
a D−1

1

(
(ρ̌, σ̌ ) + Ẽrr

)∥∥
La

t L2
x
+ ∥∥t1− 1

a E4
∥∥

La
t L2

x
.

By Proposition 6.6, the second term is bounded by Δ2
0. The first term is bounded by∥∥t−

1
a D−1Ř

∥∥
La

t L2
x
+ ∥∥t−

1
a D−1Ẽrr

∥∥
La

t L2
x
.

It is bounded by Δ2
0 + R0 by using the inequality ‖t− 1

a D−1Ř‖La
t L2

x
� N1(t

1
2 D−1Ř), (6.18) and (6.48). We conclude

‖D−2∇Lβ̌‖La
t L2

x
� Δ2

0 + R0. �
We will rely on the following two results to prove Proposition 6.9.
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Lemma 6.4. Let D−1 denote one of the operators D−1
1 , D−1

2 or 	D−1
1 . For any appropriate S-tangent tensor field G

there holds∥∥D−1(Ǩ · G)
∥∥

La
t L2

x
� Ǩγ0 N1(G) with 4 < a < ∞, (6.53)

where γ0 > 1/2 is close to 1
2 .

Proof of Lemma 6.4. Set Ωnl := Pl D−1(Ǩ · PnG), it suffices to prove∑
l,n>0

‖Ωnl‖La
t L2

x
� Ǩγ0 N1(G).

We first consider the case n > l > 0, by (4.18) we have

‖Ωnl‖L2
x
� t−γ 2γ n‖PnG‖L2

x
Ǩγ0 with γ > γ0.

Due to (5.5), we infer for γ > γ0 that

‖Ωnl‖La
t L2

x
� 2n(γ− 1

2 − 1
a
)N1[Gn]Ǩγ0 .

Since γ < 1
2 + 1

a
can be achieved when γ > γ0 > 1

2 are sufficiently close to 1
2 , we obtain∑

n>l

‖Ωnl‖La
t L2

x
� N1(G)Ǩγ0 .

Next, we consider the case 0 < n < l. Combine (4.12) with the fact that for S-tangent tensor fields F∥∥Pl D−1Λγ F
∥∥

L2
x
� 2(−1+γ )l t1−γ ‖F‖L2

x
,

we infer

‖Ωnl‖L2
x
� 2(−1+γ )l+nt−γ ‖PnG‖L2

x
Ǩγ0 .

Since γ < 1
2 + 1

a
, following the same treatment as for the case n > l we derive∑

n<l

‖Ωnl‖La
t L2

x
�

∑
n<l

2(−1+γ )l+ n
2 − n

a N1[Gn]Ǩγ0 � N1(G)Ǩγ0 . �

Lemma 6.5. For S-tangent tensor fields G, the following estimate holds∥∥[∇L, D−1
1

	D−1
1

]
G

∥∥
L1

t L
2
x
�

∥∥	D−1
1 G

∥∥
L2

t L
p
x

with p > 2. (6.54)

Proof of Lemma 6.5. In this proof and the next one, we denote by D−2 the operator D−1
1

	D−1
1 . In view of[∇L, D−2]G = C0

(
	D−1

1 G
) + D−1

1 C0(G),

it suffices to estimate ‖C0(
	D−1

1 G)‖L1
t L

2
x

and ‖D−1
1 C0(G)‖L1

t L
2
x
. From (6.40) it follows∥∥C0

(
	D−1

1 G
)∥∥

L1
t L

2
x
�

∥∥	D−1
1 G

∥∥
L2

t L
2
x
. (6.55)

Then we can obtain (6.54) by combining (6.55) with the following estimate∥∥D−1
1 C0(G)

∥∥
L1

t L
2
x
�

∥∥	D−1
1 G

∥∥
L2

t L
p
x
, (6.56)

where p > 2.
In order to prove (6.56), we use the commutation formula [∇L,∇]ϕ = χ · ∇ϕ for scalar function to write

D−1
1 C0(G) = D−2((A + s−1)∇	D−1

1 G
)
.

Noting that by Proposition 4.3 and Proposition 4.1,∥∥D−2(t−1∇	D−1G
)∥∥

1 2 �
∥∥	D−1G

∥∥
1 2 ,
1 Lt Lx 1 Lt Lx
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it remains to estimate ‖D−2(A · ∇	D−1
1 G)‖L1

t L
2
x
. Clearly, we have the following identity.

D−2(A · ∇	D−1
1 G

) = D−2(∇(
A · 	D−1

1 G
) − ∇A · 	D−1

1 G
)
. (6.57)

The first term of (6.57) can be estimated by using Proposition 4.3 and Proposition 4.1 as follows∥∥D−2∇(
A · 	D−1

1 G
)∥∥

L1
t L

2
x
�

∥∥tA · 	D−1
1 G

∥∥
L1

t L
2
x
� ‖A‖L2

t L
p∗
x

∥∥t	D−1
1 G

∥∥
L2

t L
p
x

� Δ0
∥∥	D−1

1 G
∥∥

L2
t L

p
x
,

where 1
p

+ 1
p∗ = 1

2 and p is close to 2. To derive the last inequality, we employed Sobolev inequality ‖A‖L2
t L

p∗
x

�
‖∇A‖L2

t L
2
x
+ ‖t−1A‖L2

t L
2
x
� Δ0.

Using Proposition 4.3, we infer∥∥D−1
1

	D−1
1

(∇A · 	D−1
1 G

)∥∥
L1

t L
2
x
�

∥∥t
2− 2

p 	D−1
1 G · ∇A

∥∥
L1

t L
p∗
x

� Δ0
∥∥	D−1

1 G
∥∥

L2
t L

p
x
,

where 1
p

+ 1
2 = 1

p∗ and p∗ is close to 1. Thus (6.56) is proved. �
Now we are ready to prove Proposition 6.9.

Proof of Proposition 6.9. By letting F = 1 in (6.43), we can obtain ‖t− 1
a D−1

2 Err‖La
t L2

x
� Δ2

0 + R0. Thus we only

need to consider D−1
1 Ẽrr.

Recall that

Ẽrr = 	D−1
1

(
s−1β̌ + A · (∇A + A · A + s−1A

)) + 	D−1
1

(
ζ · ρ − ζ 	σ + V · β)

. (6.58)

By Proposition 6.6, we have∥∥t−
1
a D−2(A · (∇A + t−1A + A · A))∥∥

La
t L2

x
� Δ2

0 with 4 < a < ∞, (6.59)

which allows us to renormalize the curvature terms ρ, σ and β . It remains to estimate the following three terms:

U = ∥∥t−
1
a D−2(ζ · ρ̌)

∥∥
La

t L2
x
, V = ∥∥t−

1
a D−2(ζ 	σ̌ )

∥∥
La

t L2
x
, W = ∥∥t−

1
a D−2(V β̌)

∥∥
La

t L2
x
.

By (2.13), clearly σ̌ = curl ζ . Thus we obtain V = ‖t− 1
a D−1 E2(ζ )‖La

t L2
x
� N1(ζ )2.

Now we consider the term U . By (2.15), we have

U �
∥∥t−

1
a D−2((Ǩ + r−2 − s−2) · ζ )∥∥

La
t L2

x
+ ∥∥t−

1
a D−2(A · (A · A + t−1A

))∥∥
La

t L2
x
. (6.60)

By using (6.59) the second term on the right-hand side of (6.60) can be bounded by Δ2
0. Due to (6.53), Proposition 3.1

and Proposition 4.1, the first term can be bounded by (Ǩγ0 + Δ0)N1(ζ ), whence U � Δ2
0 follows.

To estimate W , using (6.39), it suffices to show∥∥∇LD−2(V β̌)
∥∥

L1
t L

2
x
� Δ2

0 + R0. (6.61)

Note that∥∥∇LD−2(V β̌)
∥∥

L1
t L

2
x
�

∥∥D−2∇L(V β̌)
∥∥

L1
t L

2
x
+ ∥∥[∇L, D−2](V β̌)

∥∥
L1

t L
2
x
= W1 + W2.

First, by (6.54) and (6.39), we can estimate W2 as follows

W2 �
∥∥	D−1

1 (V β̌)
∥∥

L2
t L

2+
x

� ‖V β̌‖L2
t L

2
x
+ ∥∥t0−D−1

1 (V β̌)
∥∥

L2
t L

2
x
� Δ0 R0,

where we employed Proposition 4.3 to obtain the last inequality.
It remains to prove W1 = ‖D−2∇L(V β̌)‖L1

t L
2
x
� Δ2

0 + R0. Set

W (1) = ∥∥D−2(∇LV · β̌)
∥∥

1 2 , W (2) = ∥∥D−2(V · ∇Lβ̌)
∥∥

1 2 ,
1 Lt Lx 1 Lt Lx
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clearly W1 � W (1)
1 + W (2)

1 .
By (6.38), we infer

W (1)
1 �

∥∥t∇LV · β̌∥∥
L1+

t L1
x
� ‖β̌‖L2

t L
2
x
‖t∇LV ‖

L2+
t L2

x
.

According to (2.6), t∇LV ≈ A + tA · A, by (6.13), ‖t∇LV ‖
L2+

t L2
x
� Δ0. Thus W (1)

1 � Δ0 R0.
Finally, using (6.2) we deduce

W (2)
1 �

∥∥D−1
1

	D−1
1

(
V · 	D1(ρ,σ )

)∥∥
L1

t L
2
x
+ ∥∥t−1 D−2(V · Ř)

∥∥
L1

t L
2
x
+ ∥∥D−1

1
	D−1

1

(
V · (A · R̄)

)∥∥
L1

t L
2
x
. (6.62)

The last term on the right-hand side of (6.62), in view of (6.38), can be bounded by

‖tV · A · R̄‖
L1+

t L1
x
� ‖tV · A‖

L2+
t L2

x
‖R̄‖L2

t L
2
x
� Δ2

0 + R0.

The second term can be treated similarly. At last, we estimate the first term on the right-hand side of (6.62) with the
help of the formula

	D1
(
V (ρ,σ )

) = V 	D1(ρ,σ ) − ρ∇V + (σ∇V )	. (6.63)

Using (6.38), we obtain∥∥D−1
1

	D−1
1

(−ρ∇V + (σ∇V )	
)∥∥

L1
t L

2
x
� ‖tρ∇V ‖

L1+
t L1

x
+ ∥∥t (σ∇V )	

∥∥
L1+

t L1
x

� R0‖∇V ‖L∞
t L2

x
� R0Δ0.

Combined with∥∥D−1
1

	D−1
1

	D1
(
V (ρ,σ )

)∥∥
L1

t L
2
x
�

∥∥tV (ρ,σ )
∥∥

L1
t L

2
x
� Δ0 R0,

which is obtained by Proposition 4.3, we conclude∥∥D−1
1

	D−1
1

(
V 	D1(ρ,σ )

)∥∥
L1

t L
2
x
� Δ0 R0.

Therefore, W (2)
1 � Δ2

0 + R0. We complete the proof of Proposition 6.9. �
6.5. Decomposition and correction estimates for C2(Ř) and C3(Ř).

In this section we will prove Proposition 6.2. To this end, according to Proposition 6.1, it remains to consider the
“bad” terms β · D−2Ř and ∇ · D−1(β · D−2Ř). We establish the following result which, together with (6.19) and
Proposition 6.8, immediately completes the proof of Proposition 6.2.

Theorem 6.1. Assume that F is an S-tangent tensor field of appropriate order on H verifying N2(F ) < ∞ and

‖t− 1
a ∇LF‖La

t L2
x
< ∞ with 4 < a < ∞. Then we have

(i) There exists a 1-form E0 such that7

β = ∇L · D−1Ř + E0 with ‖E0‖P 0 � Δ2
0 + R0. (6.64)

(ii) There exists a decomposition β · F = ∇LP + E, where P and E are tensor fields of the same type as β · F with
the estimates

N1(P ) � Δ0 N2(F ), ‖E‖P 0 � Δ0 · (N2(F ) + ‖t− 1
a ∇LF‖La

t L2
x

)
. (6.65)

(iii) There exist tensors P̄ and Ē verifying (6.65) so that

∇ · D−1(β · F) = ∇LP̄ + Ē. (6.66)

7 In Theorem 6.1 and the following proofs, Ř = (ρ̌,−σ̌ ) and C0(Ř) = [∇L, D−1
1 ](ρ̌,−σ̌ ), since the other case in our convention will not come

up here.
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Proof. In view of (6.6), we have

β = ∇L · D−1Ř + C0(Ř) + Err. (6.67)

This proves (i) by noting that E0 := Err + C0(Ř) satisfies ‖E0‖P 0 � Δ2
0 + R0 in view of (6.8) and (6.9).

Now we prove (ii). We have from (6.67) that

β · F = (∇LD−1
1 Ř + Err + C0(Ř)

) · F = ∇L

(
D−1

1 Ř · F ) + EB
1 + EG

1 ,

where

EB
1 := −D−1

1 Ř · ∇LF and EG
1 := (

Err + C0(Ř)
) · F.

By (5.2), (6.9) and (6.8) we obtain∥∥EG
1

∥∥
P 0 � N2(F )

(‖Err‖P 0 + ‖C0(Ř)‖P 0

)
� Δ0 N2(F ).

By (5.1) and (6.18) we have∥∥EB
1

∥∥
P 0 � N1(D−1Ř)

(∥∥t−
1
a ∇LF

∥∥
La

t L2
x
+ ∥∥t

1
2 ∇∇LF

∥∥
L2

t L
2
x

)
�

(
R0 + Δ2

0

)(
N2(F ) + ∥∥t−

1
a ∇LF

∥∥
La

t L2
x

)
. (6.68)

Now we set

P1 := D−1
1 Ř · F and E1 := EB

1 + EG
1 , (6.69)

from the above estimates we have

‖E1‖P 0 � Δ0
(

N2(F ) + ∥∥t−
1
a ∇LF

∥∥
La

t L2
x

)
.

In order to estimate N1(P1), let us estimate ‖E1‖L2(H) first. By using Hölder’s inequality and Sobolev inequalities,
we can obtain∥∥EB

1

∥∥
L2(H)

= ∥∥D−1Ř · ∇LF
∥∥

L2(H)
� ‖D−1Ř‖L∞

t L4
x
‖∇LF‖L2

t L
4
x

� N1(D−1Ř)
(‖∇∇LF‖L2(H) + ∥∥t−

1
2 ∇LF

∥∥
L2(H)

)
,

and by using ‖EG
1 ‖L2(H) � ‖EG

1 ‖P 0 we can obtain ‖EG
1 ‖L2(H) � Δ0 N2(F ). Therefore

‖E1‖L2(H) � Δ0 N2(F ). (6.70)

Now we show

N1(P1) � N2(F )(Δ0 + R0). (6.71)

With the help of ∇LP1 = β · F − E1 and (6.70) we can estimate ‖∇LP1‖L2
t L

2
x

as follows

‖∇LP1‖L2
t L

2
x
� ‖β · F‖L2

t L
2
x
+ ‖E1‖L2

t L
2
x
� (R0 + Δ0)N2(F ).

Similar to [9, Section 6.12], we get ‖∇P1‖L2
t L

2
x
� (Δ2

0 + R0)N2(F ). Therefore (ii) is proved.
Finally we prove (iii) by using the iteration procedure in [9, Section 6.12]. Let P0 := DF , then we can apply (ii) to

construct iteratively two sequences of S-tangent tensor fields {Pi} and {Ei} such that

β · D−1Pi−1 = ∇LPi + Ei (6.72)

and

N1(Pi) � CΔ0 N2
(

D−1Pi−1
)
,

‖Ei‖P 0 � CΔ0
(

N2
(

D−1Pi−1
) + ∥∥t−

1
a ∇LD−1Pi−1

∥∥
La

t L2
x

)
.

Such Pi and Ei can be constructed as in the proof of (ii), in particular, P1 and E1 are given by (6.69).
By using Lemma 4.1 it is easy to see that

N1(Pk) � (CΔ0)
k N2

(
D−1P0

) = (CΔ0)
k N2(F ). (6.73)

Moreover we have
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Proposition 6.10. For {Pk}∞k=1 and {Ek}∞k=1 there hold∥∥t−
1
a ∇LD−1Pk

∥∥
La

t L2
x
� Δ0

(
N2

(
D−1Pk−1

) + ∥∥∇LD−1Pk−1
∥∥

La
t L2

x

)
, (6.74)∥∥∇ · D−1Ek

∥∥
P 0 � ‖Ek‖P 0 + Δ0

(
N2

(
D−1Pk−1

) + ∥∥∇LD−1Pk−1
∥∥

La
t L2

x

)
. (6.75)

We will prove this result at the end of this section. We observe that (6.74) and Lemma 4.1 clearly imply

‖Ek‖P 0 � (CΔ0)
k
(

N2(F ) + ∥∥t−
1
a ∇LF

∥∥
La

t L2
x

)
. (6.76)

We note that

∇ · D−1(β · D−1Pk

) = ∇ · D−1(∇LPk+1 + Ek+1)

= ∇L

(∇ · D−1Pk+1
) + [∇ · D−1,∇L

]
Pk+1 + ∇ · D−1Ek+1

= ∇L

(∇ · D−1Pk+1
) + β · D−1Pk+1 + ∇ · D−1(β · D−1Pk+1

)
+ [∇L,∇ · D−1]

g
Pk+1 + ∇ · D−1Ek+1

where, for any appropriate S-tangent tensor field F ,[∇L,∇ · D−1]
g
F = [∇L,∇]g D−1F + ∇ · [∇L, D−1]

g
F.

This together with the definition of Pk and Ek implies

∇D−1(β · F) = ∇LP̄k + ∇ · D−1(∇LPk) + Ēk,

where

P̄k = ∇ · D−1(P1 + · · · + Pk−1) + P2 + · · · + Pk.

Ēk = [∇ · D−1,∇L

]
g
(P1 + · · · + Pk−1) + ∇ · D−1(E1 + · · · + Ek) + E2 + · · · + Ek.

It follows from (6.73), (6.75), (6.76) and (6.22) that

N1(P̄k − P̄j ) � N2(F )
∑

j+1�m�k

(CΔ0)
m � Δ0 N2(F ),

and

‖Ēk − Ēj‖P 0 �
(

N2(F ) + ∥∥t−
1
a ∇LF

∥∥
La

t L2
x

) ∑
j+1�m�k

(CΔ0)
m

� Δ0
(

N2(F ) + ∥∥t−
1
a ∇LF

∥∥
La

t L2
x

)
.

Therefore {P̄k} forms a Cauchy sequence relative to the norm N1(·), while {Ēk} forms a Cauchy sequence relative to
the P 0 norm. Denote by P̄ and Ē their corresponding limits, we have

N1(P̄ ) � Δ0 N2(F ) and ‖Ē‖P 0 � Δ0
(

N2(F ) + ∥∥t−
1
a ∇LF

∥∥
La

t L2
x

)
.

We also observe that for sufficiently small Δ0,∥∥∇D−1(β · F) − ∇LP̄k − Ēk

∥∥
L2

t L
2
x
= ∥∥∇ · D−1(∇LPk)

∥∥
L2

t L
2
x
� N1(Pk).

Letting k → +∞, we get∥∥∇D−1(β · F) − ∇LP̄ − Ē
∥∥

L2
t L

2
x
= 0.

Hence ∇D−1(β · F) = ∇LP̄ + Ē. This completes the proof of (iii).
Now we conclude this section by proving Proposition 6.10. We first prove (6.75). By using (4.6) we have∥∥∇D−1Ek

∥∥
0 � ‖Ek‖P 0 + Δ0

∥∥D−1Ek

∥∥q
a 2 ‖Ek‖1−q

2 ,
P Lt Lx L (H)
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where 4 < a < ∞ and 1 > q > γ0. Thus it suffices to show for 4 < a < ∞ that∥∥t−
1
a D−1Ek

∥∥
La

t L2
x
� Δ0

(
N2

(
D−1Pk−1

) + ∥∥∇LD−1Pk−1
∥∥

La
t L2

x

)
. (6.77)

By the construction of Pk and Ek , it suffices to show it for k = 1. To this end, in view of E1 = EG
1 + EB

1 , we can
complete the proof by using Proposition 6.7 and the estimate∥∥t−

1
a D−1EB

1

∥∥
La

t L2
x
�

∥∥t
1
2 − 1

a EB
1

∥∥
La

t L
4/3
x

�
∥∥D−1

1 Ř
∥∥

L∞
t L4

x
‖∇LF‖La

t L2
x

�
(
Δ2

0 + R0
)‖∇LF‖La

t L2
x

which follows from Proposition 4.3 and Hölder inequality.
In order to prove (6.74), we first note that∥∥t−

1
a ∇LD−1Pk

∥∥
La

t L2
x
� ‖t− 1

a
[∇L, D−1]Pk‖La

t L2
x
+ ‖t− 1

a D−1∇LPk‖La
t L2

x
. (6.78)

By using (6.42), the first term on the right-hand side of (6.78) can be estimated as∥∥t−
1
a C0(Pk)

∥∥
La

t L2
x
� N1

(
t−

1
2 D−1Pk

)
� N2

(
t

1
2 D−1Pk

)
� N1(Pk),

while by using (6.72), (6.77) and (6.41), the second term can be estimated as∥∥t−
1
a D−1∇LPk

∥∥
La

t L2
x
�

∥∥t−
1
a D−1(β · D−1Pk−1 − Ek

)∥∥
La

t L2
x

�
∥∥t−

1
a D−1(β · D−1Pk−1

)∥∥
La

t L2
x
+ ∥∥t−

1
a D−1Ek

∥∥
La

t L2
x

� Δ0
(

N2
(

D−1Pk−1
) + ∥∥∇LD−1Pk−1

∥∥
La

t L2
x

)
.

Therefore (6.74) is proved. �
7. Proof of main result, Theorem 1.1

In this section, we prove the main result, Theorem 1.1, based on the bootstrap principle. In addition to (BA1) and
(BA2), we also make the following auxiliary bootstrap assumption

‖A · A‖P 0 � Δ2
0.

In order to complete the proof of Theorem 1.1, it suffices to show that all the inequalities in (BA1), (BA2) and (BA3)
still hold with Δ0 replaced by Δ0/2 when 0 < R0 < Δ0 are sufficiently small.

7.1. Estimates for trχ and χ̂

Step 1. Recall (2.6) and Proposition 2.1, for V := trχ − 2
s

we have

∇LV = −2

s
V − 1

2
V 2 − |χ̂ |2 and V = O(s) as s → 0. (7.1)

Integrate the equation along any null geodesic and using (BA1), we obtain∥∥∥∥trχ − 2

t

∥∥∥∥
L∞

t L∞
ω

� ‖χ̂‖2
L∞

ω L2
t
+ ‖V ‖2

L∞
ω L2

t
� Δ2

0. (7.2)

Moreover, by using (BA1), (3.11) and the Hölder inequality, we also get from (7.1) that

‖∇LV ‖L2
xL∞

t
� ‖t−1V ‖L2

xL∞
t

+ ‖V 2‖L2
xL∞

t
+ ‖|χ̂ |2‖L2

xL∞
t

� Δ2
0. (7.3)

Step 2. Estimates for ∇ trχ . First we have from (5.2) that

β = D−1L(ρ̌,−σ̌ ) + F1 with F1 = Err.
1



Q. Wang / Ann. I. H. Poincaré – AN 26 (2009) 285–328 323
This together with (2.12) gives

χ̂ = −D−1
2 D−1

1 ∇L(ρ̌,−σ̌ ) + D−1
2 F1 + D−1

2

(∇ trχ + A · A + s−1ζ
)
.

Set D−2 = D−1
2 D−1

1 and D−1 = D−1
2 , we obtain after taking covariant derivatives

∇χ̂ = −∇ · D−2∇L(Ř) + F + ∇ · D−1M, (7.4)

where F = ∇ · D−1(F1 + A · A + s−1ζ ) and M = ∇ trχ .
We claim that

‖F‖P 0 � Δ2
0 + R0. (7.5)

Indeed, by (6.49), Theorem 4.1, the non-sharp product estimate, Propositions 6.6, 4.1, (3.11) and the bootstrap as-
sumptions we have

‖F‖P 0 � ‖s−1ξ‖P 0 + Δ2
0 + R0.

It remains to estimate ‖s−1ζ‖P 0 . In view of (1.2) and (2.13), we have the Hodge system

div ζ = −μ − ρ̌ + |ζ |2, curl ζ = σ̌ . (7.6)

Thus it follows from Proposition 4.1 that

‖s−1ζ‖P 0 � ‖∇ζ‖L2(H) + ‖t−1ζ‖L2(H) � ‖μ‖L2(H) + ‖Ř‖L2(H) + ‖A · A‖L2(H)

� ‖μ‖L2 + Δ2
0 + R0. (7.7)

In order to estimate ‖μ‖L2(H), we use (2.20), which symbolically can be written as

d

ds
μ + 3

s
μ = χ̂ · ∇ ⊗̂ ζ + 1

s
Ř + A · R̄.

Using lims→0 sμ = 0 given in Proposition 2.1, and integrating the above equation in s, we derive

‖μ‖L2(H) � ‖t−2

t∫
0

s3(A · ∇A + s−1Ř + A · R̄)
ds‖L2

t L
2
ω

� ‖t (A · ∇A + A · R̄)‖L2
ωL1

t
+ ‖Ř‖L2

t L
2
x

� ‖A‖L∞
ω L2

t
‖∇A‖L2

t L
2
x
+ ‖Ř‖L2(H) + ‖A‖L∞

ω L2
t
‖R̄‖L2(H) � Δ2

0 + R0.

Therefore ‖s−1ξ‖P 0 � Δ2
0 + R0, and the claim (7.5) is proved.

Now we come back to (7.4). By using the notations in (6.5), we can write

∇ · D−2∇L(Ř) = ∇L

(∇ · D−2Ř
) + C(Ř)

where, by Proposition 6.2, there exist tensors P ′ and E′ so that C(Ř) = ∇LP ′ + E′ and N1(P
′) + ‖E′‖P 0 � Δ2

0.
Thus (7.4) becomes

∇χ̂ = ∇LP + ∇ · D−1M + E (7.8)

where P = ∇ · D−2Ř + P ′ and E = F + E′, both of which satisfy, by using Corollary 6.19 and (7.5),

N1(P ) + ‖E‖P 0 � Δ2
0 + R0.

By combining (7.8) with (2.8) we obtain

∇LM + 3

s
M = A · (∇LP + ∇ · D−1M + E

) − 3

2
V · M.

Since Proposition 2.1 implies lims→0 sM = 0, we can apply Theorem 5.1, Theorem 5.2, (BA1) and (7.10) to obtain

‖M‖B0 �
(

N1(P ) + ‖∇ · D−1M‖P 0 + ‖E‖P 0 + Δ2
0

)(
N1(A) + ‖A‖L∞

ω L2
t

)
� Δ0

(‖∇ · D−1M‖P 0 + Δ2
0 + R0

)
. (7.9)
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Thus we need to estimate ‖∇ · D−1M‖P 0 . To this end, using lims→0 sM = 0 we derive from (2.8) that

‖M‖L2
xL∞

t
�

∥∥∥∥∥t−3

t∫
0

s3A · ∇Ads

∥∥∥∥∥
L2

xL∞
t

� ‖∇A · A‖L2
xL1

t
� Δ2

0,

while, by Proposition 4.3 we have

‖D−1M‖La
t L2

x
� ‖tM‖La

t L2
x
� ‖M‖L2

xL∞
t

� Δ2
0.

Therefore we infer from Theorem 4.1 that

‖∇ · D−1M‖P 0 � ‖M‖P 0 + Δ2
0. (7.10)

Since ‖M‖P 0 � ‖M‖B0, we obtain from (7.9) and (7.10) that

‖M‖B0 � Δ0
(‖M‖B0 + Δ2

0 + R0
)
. (7.11)

Using the smallness of Δ0 we get

‖M‖B0 + ‖M‖P 0 + ‖∇ · D−1M‖P 0 � Δ2
0 + R0. (7.12)

From the above argument, by setting Ẽ = E + ∇ · D−1M we obtain from (7.8) the decomposition

∇χ̂ = ∇LP + Ẽ and N1(P ) + ‖Ẽ‖P 0 � Δ2
0 + R0. (7.13)

Step 3. Estimates for N1(χ̂) and ‖χ̂‖L∞
ω L2

t
. In order to estimate N1(χ̂), we first use Proposition 4.1 and (2.12) to

get

‖t−1χ̂‖L2
t L

2
x
+ ‖∇χ̂‖L2

t L
2
x
� ‖β‖L2

t L
2
x
+ ‖∇ trχ‖L2

t L
2
x
+ ‖A · A‖L2

t L
2
x
+ ‖t−1ζ‖L2

t L
2
x

� R0 + Δ2
0.

We then use (2.7) to obtain

‖∇Lχ̂‖L2
t L

2
x
� ‖V · χ̂‖L2

t L
2
x
+ ‖t−1χ̂‖L2

t L
2
x
+ R0 � Δ2

0 + R0.

Therefore

N1(χ̂) � R0 + Δ2
0. (7.14)

Using Theorem 5.4, (7.13) and (7.14) we have

‖χ̂‖L∞
ω L2

t
� N1(χ̂) + N1(P ) + ‖Ẽ‖P 0 � Δ2

0 + R0. (7.15)

In view of (7.2), (7.3), (7.12), (7.14) and (7.15), we verify for small R0 that the bootstrap assumptions (BA1) for
trχ and χ̂ hold true with Δ0 replaced by Δ0/2.

7.2. Estimates for μ and ∇ζ

We first decompose ∇ζ as we did for ∇χ̂ . By using (7.6) and (2.19) we derive symbolically that

ζ = D−1
1 · J · 	D−1

1

(
∇Lβ̌ + 1

s
R0

)
+ D−1

1 · J · F1 − D−1
1 (μ,0) + D−1

1 (A · A).

where J is the involution (ρ,σ ) → (−ρ,σ ), R0 = β and F1 = Ẽrr is given by (6.6). Set D−2 = D−1
1 · J · 	D−1

1 and

D−1 = D−1
1 , by using (6.5) we get

∇ζ = ∇L

(∇ · D−2β̌
) + C(Ř) + ∇ · D−1M + F + 1

s
∇D−2R0

where M = (μ,0) and F = ∇ · D−1(F1 + A · A). By (7.5) we have ‖F‖P 0 � Δ2
0 + R0. In view of Proposition 6.2,

we can write ∇ζ , for some tensors P and E, in the form

∇ζ = ∇LP + ∇ · D−1M + E with N1(P ) + ‖E‖P0 � Δ2
0 + R0. (7.16)
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Using (2.20) we see that M satisfies

d

ds
M + 3

s
M = A · (∇LP + ∇ · D−1M + E

) + s−1ρ̌ + V · ρ̌ + A · (A · A + M).

While by using (6.2), (BA3), and noting that ‖[∇L,	 D−1
1 ]Ř‖P 0 � Δ2

0 + R0, we can find two tensors p′ :=	 D−1
1 β̌

and e′ such that

(ρ̌, σ̌ ) = ∇Lp′ + e′ with N1(p
′) + ‖e′‖P 0 � Δ2

0 + R0. (7.17)

Thus there exist two tensors P̃ and Ẽ such that

∇LM + 3

s
M = A · ∇LP̃ + 1

s
(∇Lp′ + e′) + A · (∇ · D−1M + Ẽ

)
. (7.18)

with

N1(P̃ ) � R0 + Δ2
0 and ‖Ẽ‖P 0 � R0 + Δ2

0 + ‖M‖P 0 .

We first claim that∥∥∥∥∥ 1

t3

t∫
0

s2∇Lp′ ds

∥∥∥∥∥
P 0

,

∥∥∥∥∥ 1

t3

t∫
0

s2e′ ds

∥∥∥∥∥
P 0

� Δ2
0 + R0. (7.19)

Indeed, for the first term in 7.19, we recall that p′ =	 D−1
1 β̌ , then

lim
s→0

‖s−1p′‖B0
2,1

� N1(p
′) � Δ2

0 + R0,‖s−1p′‖P 0 � N1(p
′) � R0 + Δ2

0. (7.20)

Applying Proposition 3.4 to the first term in (7.19), with the help of (7.20) we derive∥∥∥∥∥ 1

t2

t∫
0

s2∇Lp′ ds

∥∥∥∥∥
P 0

�
∑
k>0

∥∥∥∥∥Ek

1

t2

t∫
0

s2∇Lp′ ds

∥∥∥∥∥
L2

t L
2
ω

+
∥∥∥∥∥ 1

t2

t∫
0

s2∇Lp′ ds

∥∥∥∥∥
L2

t L
2
ω

�
∑
k>0

{∥∥∥Ek

(
p′ − lim

s→0
p′)∥∥∥

L2
t L

2
ω

+
∥∥∥∥∥Ekt

−2

t∫
o

sp′ ds

∥∥∥∥∥
L2

t L
2
ω

}
+ ‖∇Lp′‖L2

t L
2
x

�
∑
k>0

‖Ekp
′‖L2

t L
2
ω

+
∑
k>0

∥∥∥∥∥ 1

t2

t∫
0

sEkp
′ ds

∥∥∥∥∥
L2

t L
2
ω

+ lim
s→0

‖s−1p′‖
B̃0

2,1
+ ‖∇Lp′‖L2

t L
2
x

� ‖t−1p′‖P 0 + ‖∇Lp′‖L2
t L

2
x
+ lim

s→0
‖s−1p′‖B0

2,1
� R0 + Δ2

0.

The second term in (7.19) can be estimated similarly.
By the definition of μ, Proposition 4.3 and Proposition 6.6, we have for 4 < a < ∞,

‖D−1μ‖La
t L2

x
�

∥∥D−1(ρ̌ + A · A + div ζ )
∥∥

La
t L2

x

� N1(D−1Ř) + N1(ζ ) + ‖t E4‖La
t L2

x
� Δ2

0 + R0.

Thus, in view of (4.6), ‖∇ · D−1M‖P 0 � ‖M‖P 0 + Δ2
0 + R0. Now we can apply Proposition 5.2 to (7.18) to get

‖M‖P 0 �
(‖M‖P 0 + Δ2

0 + R0
)
Δ0 + Δ2

0 + R0.

Since R0 � Δ0 < 1/2, we conclude that

‖M‖P 0,‖∇ · D−1M‖P 0,‖M‖L2(H) � Δ2
0 + R0. (7.21)

Following the same manner as above, we can get

‖t1/2μ‖B0 � Δ2
0 + R0. (7.22)
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Using (2.20) and noting sμ → 0 as s → 0, we can easily get

‖t1/2M‖L2
xL∞

t
� R0 + Δ2

0. (7.23)

Similar to the estimates for N1(χ̂) and ‖χ̂‖L∞
x L2

t
, we may use (2.9), (7.7) and (7.16) to derive that

N1(ζ ) + ‖ζ‖L∞
x L2

t
� R0 + Δ2

0. (7.24)

In view of (7.21)–(7.24) we verify for small R0 that the bootstrap assumptions (BA1) and (BA2) for ζ and μ hold
true with Δ0 replaced by Δ0/2.

7.3. Estimates for trχ and χ̂

It follows from (2.10) that

d

ds
V + 1

s
V = −1

2
V · V + 2μ + 1

s
V + 4ρ̌. (7.25)

Recall that lims→0 sV (s,ω) = 0 given in Proposition 2.1, we infer

‖V ‖L2
ωL2

t
�

∥∥∥∥∥1

t

t∫
0

s

{
V · V + ρ̌ + μ + 1

s
V

}
ds

∥∥∥∥∥
L2

t L
2
ω

� ‖tV · V ‖L2
t L

2
ω

+ ‖t ρ̌‖L2
t L

2
ω

+ ‖V ‖L2
t L

2
ω

+ ‖μ‖L2
t L

2
x
� Δ2

0 + R0

and

‖t−1/2V ‖L2
xL∞

t
�

∥∥∥∥∥ 1

t1/2

t∫
0

s

{
V · V + ρ̌ + μ + 1

s
V

}
ds

∥∥∥∥∥
L2

ωL∞
t

� ‖tV · V ‖L2
t L

2
ω

+ ‖ρ̌‖L2
xL2

t
+ ‖V ‖L2

t L
2
ω

+ ‖μ‖L2
t L

2
x
� Δ2

0 + R0.

Recall also the decomposition (7.17), we may use Proposition 3.4 and (BA3), ignoring the low frequency terms, to
get

‖t−1V ‖P 0 �
∑
k>0

∥∥∥∥∥Ek

1

t

t∫
0

V + sμ + sV · V + s(∇Lp′ + e′) ds

∥∥∥∥∥
L2

t L
2
ω

� ‖t−1p′‖P 0 + ‖e′‖P 0 + ‖t−1V ‖P 0 + ‖V · V ‖P 0 + ‖μ‖P 0

� Δ2
0 + R0.

Similarly we can obtain

‖t−1/2V ‖B0 � Δ2
0 + R0.

From (7.25) it is easy to see

‖∇LV ‖L2(H) � Δ2
0 + R0.

Using (2.11) we can derive

‖t−1/2χ̂‖L2
xL∞

t
� ‖∇ζ‖L2(H) + ‖ζ‖L∞

ω L2
t
+ ‖A · A‖L2(H) + ‖t−1A‖L2(H) � Δ2

0 + R0,

‖t−1χ̂‖L2(H) � ‖∇ζ‖L2(H) + ‖ζ‖L∞
ω L2

t
+ ‖A · A‖L2(H) + ‖t−1A‖L2(H) � Δ2

0 + R0

and

‖∇Lχ̂‖L2(H) � Δ2
0 + R0.
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In order to derive the Besov norms of χ̂ , we employ (7.16) to (2.11) to get

∇Lχ̂ + 1

s
χ̂ = −(∇LP + E) − 1

2

(
V · χ̂ + V · χ̂ − 2

s
χ̂

)
+ ζ ⊗̂ ζ. (7.26)

With the help of lims→0 |χ̂ | = 0 given by Proposition 2.1, integrating the above equation in s, and using Proposi-
tion 3.4 and Lemma 3.3, we obtain∥∥t−

1
2 χ̂

∥∥
B0 � ‖A · A‖P̃ 0 + ‖s−1χ̂‖P̃ 0 + ‖E‖P̃ 0 + ‖t−1P‖P̃ 0 + ‖t−1/2P‖B̃0

� Δ2
0 + R0.

Similarly, we can obtain

‖t−1χ̂‖P 0 � Δ2
0 + R0.

The above argument shows that for small R0 the bootstrap assumptions (BA2) for trχ and χ̂ hold true with Δ0
replaced by Δ0/2.

It remains to show the justification of (BA3). By following the argument in [9, p. 524] we can obtain

‖A · A‖P 0 � Δ3
0 + Δ0 R0 � 1

2
Δ2

0,

provided that R0 is sufficiently small relative to Δ0. We omit the details.
The proof of Theorem 1.1 is therefore complete.
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