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Abstract

In this paper we study the geometry of null cones in smooth Einstein vacuum spacetimes. We provide the L estimate for
the trace of the null second fundamental form, as well as estimates for other geometric quantities. This paper is based on the
work of Klainerman and Rodnianski [S. Klainerman, I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite
curvature flux, Invent. Math. 159 (3) (2005) 437-529; S. Klainerman, I. Rodnianski, Sharp trace theorems for null hypersurfaces on
Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (1) (2006) 164-229; S. Klainerman, I. Rodnianski, A geometric
Littlewood—Paley theory, Geom. Funct. Anal. 16 (1) (2006) 126-163].
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the geometry of null cones in 3 4+ 1 smooth Einstein vacuum spacetimes, i.e. 3 4 1
Lorentzian manifolds (M, g) with Ricci flat metrics,

Ryp(g) =0.

Let p € M be a fixed point and let T be a fixed timelike vector at p satisfying (T, T) = —1. We choose all future
null vectors L, w € S, at p such that (L, T) = —1 and (L, L) = 0. For each w € S? let I'(s, w) denote the
outgoing null geodesic parametrized by the affine parameter s with the initial data I" (0, ) = p and %F (0, w) = L.
The union of all these outgoing null geodesics forms a 3-D null cone starting from p which is denoted by H.

We define the vector field L by L := %F. Obviously L(0, w) = L, and L satisfies

g(L,L)=0 and Dy L=0.

The parameter s can be regarded as a function on H verifying L(s) = 1 and s(p) = 0. We introduce the one parameter
flow I'y(w) := I' (s, w). It generates a family of 2-D closed surfaces {S;} by S; := FS(SZ), which form the geodesic
foliation of . It is clear that each S; is diffeomorphic to S? for s > 0 sufficiently small. By rescaling the metric g
we may assume without loss of generality that for 0 < s < 1 each slice Sy is diffeomorphic to S%. Let H; be the
portion of H when s varies in (0, ¢t]. For simplicity, we still denote by H the portion H;. Every point ¢ in H can be
parametrized by the coordinates (s, w) for which g = I';(w). We then call (s, w) the transport local coordinates.
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Let D denote the Levi-Civita connection of Einstein vacuum metric g. Let y be the induced metric on Ss, and V
its induced covariant derivative. At any point g € Sy C H we denote by L the null vector conjugate to L relative to the
Sy foliation, i.e. (L, L) = —2and (L, X) =0 for all X € T, (S,). A smooth choice of an orthonormal frame {e,},=1,2
in T, (Sy) combined with L, L forms a null frame associated to the foliation.

We introduce the null components of the curvature tensor R of the spacetime metric g relative to L and L as follows
(see [2, Section 7.3] and [4, Section 3.1.2]):

1
aab:R(L,ea,L,Eb), ﬁLl:zR(easLyévL)s
1 1
,OZZR(L,L, I_J’ L)v UzZ*R(L’Ls I:vL)’
1
éa=§R(ea’ 1_49 LvL)a gab=R(L’ea’ I_Ja eb)’ (11)

where *R vy 5 = %6 VAT RM ys and €,,,,.; are components of the volume element in (M, g). The total curvature flux R
is then defined by

1
Ro = (llell32 gy + 1811720y + 1017230 F 10172030, + 1811722 %
The geometry of H in particular depends on the null second fundamental form
x(X,Y)=(DxL,Y)

with X and Y being arbitrary vector fields tangent to S;. We will denote tr x and x the trace and traceless part of x
respectively. Other important geometric quantities are the dual null second fundament form and the torsion

1
x(X,Y)=(DxL,Y) and ¢(X)= E(DXL: L).

We will also use tr x and X to denote the trace and traceless part of x.
The mass aspect function u is defined by

. L, .
p=—dive+ 5% —p+Icl (1.2)
We are now ready to state the main theorem in this paper.
Theorem 1.1. Consider an outgoing null hypersurface H in a smooth 3 4+ 1 Einstein vacuum spacetime (M, g),

initiating from a point p and foliated by the geodesic foliation associated to the affine parameter s with s|, = 0.
Assume that the total curvature flux R is sufficiently small. Then we have

2
try —— S Ro
LPLgy
and
1 1
/|>%|2dr T /|c|2dr < Rq.
0 L 0 Ly
3
sup [tVtrx||| 4 [supr2ful| + il 204 S Ros
<1 2 i<t L2

R 2
M) +N(©)+ N (trx - ;) < Ro,
IVt xllgo + 1t 21l go + lllpo < Ro,

1
supt?
<1

+
L,

< Ro,
L2

1 ~
supr2 x|
<1 -

g+
ry 2
£ t
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2 .
trl""? +||K”L?L2 SR(L
2 w

LPLG,

2
VL<tr)( +—> <Ry,
- 1 LZ(H)

2
(g1 2)

2 N
1! (trx + —) + ||t_lx||7>o <7Ro.
277 ) po X

+ 17231l go < Ro.
BO

The various norms appearing in the statement will be defined in Section 3 (see (3.3)—(3.6) and (3.20), (3.21)).
Throughout this paper we will use the notation A < B to mean A < C - B for some appropriate universal constants C.

In [9,11,12] Klainerman and Rodnianski developed systematic methods to prove that, on truncated null hypersur-
faces initiating from a 2-D surface diffeomorphic to S?, within the radius of injectivity, tr x can be controlled by
appropriate norms of the small initial data and small total curvature flux 7%, which is one of their steps toward the
answer of the minimal local regularity of the initial data that guarantees the existence and uniqueness of local devel-
opments for Einstein vacuum equation. See [7] and [8] for the best known regularity result. For the background of the
initial data problem of Einstein vacuum equations and related results, please refer to [1,3,21,5,10]. In this work, we
extend their result to null cones in smooth Einstein vacuum spacetimes. Our result shows that tr y — % can be bounded
only by small total curvature flux before the formation of caustics or geodesic loops. This result is used in [13] to
provide the uniform lower bound on the radius of injectivity of null boundaries in Einstein vacuum spacetimes. Such
lower bound is essential in understanding the causal structure and propagation properties of solutions to the Einstein
equations, and is important in construction of a Kirchoff-Sobolev type parametric for wave equations on M (see [14]),
which is used in [15] to prove a large data break-down criterion for solutions of the Einstein vacuum equations.

We will follow the framework of [9] to prove the main theorem by the bootstrap principle. Since our null hyper-
surface H initiates from a point, many quantities behave like s ~¢ for some number a > 0 as s — 0, we have to keep
track the weight s¢ in each step. Note that the Besov norm estimates (see [9, Proposition 5.11])

IV-D~'Fllpo S IFllpo

of the 0-order Hodge operator V - D~! were used in [9, Section 6] to control the terms such as the commutator
[V, VD_Z]k, where PY is a certain Besov norm. However, these estimates hold true only when some additional
terms involving the L;H‘L(ZD norm of D! F is added,! due to the limited regularity of Gauss curvature K of each
slice Sy. The corrected versions we will present on the P° estimates of the 0-order Hodge operators and on some
product estimates add much complexity to the commutator estimates.

This paper is organized as follows. In Section 2, we recall the structure equations on various geometric quantities
on H and provide the results on the initial data. In Section 3 we present the complete set of bootstrap assumptions,
introduce some important norms and establish some preliminary estimates. In Section 4, we provide the L type
estimates and the P° type estimates of 0-order Hodge operators V - D~!. The result on P estimate, which has special
significance to Section 6, is a correction of [9, Proposition 5.11]. The proof is based on the unpublished notes of
Klainerman and Rodnianski [6]. In Section 5, we prove some important product estimates. In Section 6, we use the
results in Sections 4 and 5 to fulfill the decomposition of the commutators. Finally, in Section 7 we use the results in
previous sections to complete the proof of the main theorem.

2. Structure equations and initial data

As the starting point we state the results on the behaviors of the main geometric quantities near the vertex of the
null cone which can be obtained by local analysis, see [16] or [22, Appendix] for the proofs.

Proposition 2.1. Near the vertex of the null cone 'H there hold

1 n this paper we will use a+ to represent a number ¢ > a, and a— to represent a number g < a.
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strx=2+0(s3) and stry — =2 ass—0, (2.1)

2:—%su+0(s2) and 3 —0 ass—0, (2.2)

{:—%sn—f—O(sz) as s — 0o (2.3)
and

sVitry, sVy, sdive, sVe, su—>0 ass—0 2.4)

where U is a symmetric traceless 2-tensor and 1 is a 1-form, both of which are finite at the vertex, depending on the
curvature tensor in (M, g).

Let y© be the canonical metric on the standard 2-sphere S* and let Y = s72y. Set as = /Tys1/V/ |y ©| and
r=r(s) =/ (@dm)~1|Ss| with |Ss| being the area of Sg. Then
o (0) 2 -2 r
Yy=y"740(67), s a—>1 and -—1 ass — 0. (2.5)
s
We call r :=r(s) the radius of each leaf S;.

We also state the structure equations of the geodesic foliation (see [2] or [9, Section 2.12] for the derivations)

d 1 2 A2

—try =——(t - , 2.6

75 TX 2(rx) | X1 (2.6)

Vix=—trx-x —a, 2.7

3

VL(Vtrx)z—EtrX~Vtrx—f(~Vtrx—2)2-V)2, (2.8)

Vg =—trx¢ =23 -¢— B, (2.9)

d 1

d—trx=—§trxtrx—2divg“—f(-)2+2|§|2+2p, (2.10)

Py A £

N ~ 1 . . ~

VLKZ_V‘X);_E(U‘X'K‘l‘trK'X)‘l‘(@f, (2.11)
1 1

diV)?:EVtrx—Etrx-g—f(-{—ﬁ, (2.12)
1

curl;:—if(/\g—i—a, (2.13)
1 1

divX:EVtrK—Etrég—l—{«X—l—é, (2.14)
1 1

K=——tryt XX - 2.15
20X rg+2x X—0p (2.15)

and the renormalized null Bianchi identities

ViB=divae+¢-«a, (2.16)

o 3 . 1, ~ 1 R ~

L(p)+5trx'p=dWﬁ—§-/3+5x'<V®§+5tr5~x—§®§), (2.17)

. 3 . 1, ~ ~

L(a)+§trx-o:—curlﬂ—l—g‘/\ﬁ—i—ix/\(V@C—§®§), (2.18)

ViB=-Vp+ (Vo) —2(V&L) - ¢ +3(¢-p—¢*o) —trxp,

1 .1 N ~ A
+2§'<_§trX'l_gtrl'X+§®§>_4X'l'§ (2.19)
where K denotes the Gauss curvature of each leaf S := Sy, and
. ., . L, . R
P=p—5X"X, O=0—=XANX, B=B+2x-¢

2 2
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moreover, Vy, for any S-tangent tensor field r, is defined as in [9, Definition 2.9], i.e. the projection of Dym on
each leaf S;.
The transport equation for the mass aspect function p defined by (1.2) takes the form

d 3 PR 1. . 1
$M+§trx,u,=x~(V®§)+§tr)(p+2§-VtrX—4)(-C-C+trx|§|2—ztrl|x|2. (2.20)

3. The bootstrap assumptions
3.1. A preliminary bootstrap assumption
As a preliminary bootstrap assumption, we require that there exists a sufficiently small positive constant 0 < Ag <
1/2 such that
VIl ) < Ao, (3.1

where V (s, w) =try — % We also set V (s, w) =try + % which will be used later.

In the following we will provide some preliminary estimates under (3.1). Recall that for the induced metric y := y;
on S := Sy, we have %y =2x. Thus %as =tr xay. In view of (2.5), we then get t ~2a;, = exp(f(; Vs ds). Therefore
for 0 <t < 1 there holds |t_2a (t, ) — 1| S<tAg. Thus for small Ag we have

1
Etz <alt,w) <212 (3.2)

In view of [9, Lemma 2.26] which says ‘;—g = 5ir x, it is easy to check

Using (2.5) and integrating the above equation along any null geodesic yields ¢ = exp(s - O(Ao)). Therefore we get

Proposition 3.1. Under the bootstrap assumption (3.1), the radius r (s) of each leaf S; and the affine parameter s are
always comparable in the sense that |% — %l < Agfor0<s <1,

In view of (3.2), we have for any S-tangent tensor F on 'H

1
5 / |F(s,w)|ps2da)<||F||€,,(Sj)<2 / |F (s, 0)|"s? dw,

lwl=1 lo]=1

where | F'| denotes the norm of F under the induced metric y on each leaf S;.
For S-tangent tensor fields F' on H, we introduce the following norms. For 1 < p, g < oo we define the L?Lf;
norm
1 q

1
IFllo.p :=< / ( / |F(s,w>|f’s2dw) ds) (33)

0 Mol=1

and the LY L norm

2
IF e r=< f (supw
S

|ow|=1

1

P\ 7P
F(s,w)!> : (3.4)
We also define the norms

Ni(F) =117 Fll g2 + IVLF Nl 202 + IV F 2.0 (3.5)

and

No(F) = ||t’2F||L[zL§ + ||t’1VLF||erL% + ||fIVF||erL§ +IVVLFl 202 + ||v2F||Lr2L§. (3.6)
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Oneach slice S = S, we have the following Sobolev inequalities for scalar functions f and tensor fields F (see [12]
for the proofs):

1 £ 25y S IV i) + 157 Fllis), (3.7)
1f s S ||v2f||u<s> IVl + s FllLis), (3.8)
2 2 2
2
p—2 1 p—1
» 2
IFllzoes) S ||V2F||L2(S)(||VF||L§(S)||F|| Loy 57 I L) + IV F s, (3.10)
The following preliminary estimates will be used routinely.
Lemma 3.1. Let F be an arbitrary S-tangent tensor field on 'H. Then
1 _
|72 F [ oo oo + 107 Fll 210 S N2(F),
IFllsrge + 1 Flsps + |17 2 F [ 2 o0 SN, (3.11)
|5 < ' p—
(" F||LquN/\/'1(F) with2 < p <00,2 <q < . (3.12)
p—4

Proof. The proof of the first inequality can be found in [2]. In the following we show the second inequality in (3.11).
Note that it suffices to prove it for scalar functions f. First

t

t
zz\f(t,w)\“g/s}f(s,w|4ds+/|f|3-}va(s,w)}szds
0 0

1 t t 1

! 2 2
< (/|f(s,w)’6s2ds) (/s_z‘f(s,w)’zszds+/|VLf(s,a))|2s2ds> .
0

0 0

Hence, integrating on |w| = 1, we obtain

3 1
1 sz S s (1™ Flizgy + 190 Fll2g0) . (3.13)

On the other hand, by (3.7) we have on each S that

2
/|f|6dAs SIS </(|Vfl+s]|f|)|f|2dAs)
Ss

Ss
/(Wfl L5 2fP) dA, /|f| dA,.
Ss

Then integrating in s yields

1
£l sy S ||f||LooL4(||s*1f||Lz(H) IV i) (3.14)

Finally we note that

1

d
”t_l/zf”L;Lfc < H/ £(S|f|2) ds

t

+] D 2
L2 @



Q. Wang / Ann. I. H. Poincaré — AN 26 (2009) 285-328 291

The first term is bounded by Nj(f) by using Holder inequality. The second term can be estimated by taking
a test function 0 < 6 < 1 supported in [1/2,1] with 6(1) = 1 and vanishing identically at 0 < ¢ < 1/2, and
sup, <1 10'(5)] < ﬁ Since

lrolf, = |

|w|=1

1

d 2
/a(s9|f| )ds

1/2

do SIVLFI 20 + 157 T2 SN

we conclude [r~1/2 £ L2L° < Ni(f). Combining (3.13) with (3.14), we conclude that the estimates in the second
line of (3.11) hold true. We can prove (3.12) similarly. O

3.2. The full set of bootstrap assumptions

In order to provide the full set of bootstrap assumptions, we introduce the following conventions.

R denotes the full collection of null curvature components «, 8, p, o, E .
Ry denotes the collection of the null curvature components g, p, o, B.

R denotes the collection of the renormalized null curvature components (0, —0), ,é
A denotes the collection V,x, ¢, V, x. h
A denotes the collection of V, x, ¢. N

M denotes the collection Vtr x, u.

V A denotes the collection Vtrx, Vx, V¢.

The bootstrap assumptions we will rely on in this paper are
ey =2/t zgores 1Al ooy 2 N1(A). IVt X[l 12100 < Ao, (BAD)
and

17 2 All 20 < Ao, VLAl 2 < Ao (BA2)

where 0 < Rp < Ap < % is a sufficiently small constant. Note that the preliminary bootstrap assumption (3.1) is a part
of (BA1).

In order to complete the proof of Theorem 1.1, by the bootstrap principle it suffices to show, under (BA1) and
(BA2), that all the inequalities in them still hold true with Ag replaced by Ag/2 when 0 < Ro < Ag is sufficiently
small. This will be done in Section 7 after the preparations given in the next three sections.

Lemma 3.2. Under the bootstrap assumption (BA1), the metric Vi j(s) on each S verifies weakly spherical conditions,

[e]
i.e. relative to the transport local coordinates (s, w1, wz) the metric components Y ; (s) satisfy
° 0
176 ) =75 oo < Ao, (3.15)

[0 () = 07, | 12 < Ao, (3.16)

where Ag is a small constant.

Proof. Recall that relative to the transport local coordinates (s, wi, w2) on H, Proposition 2.1 says

limy; =y and lim Vi = oy (3.17)
s—=0 J s—0 J

where i, j, k =1, 2. Recall also that the metric y verifies j—syi 7 =2yx;j with i, j =1, 2. Consequently,

L =PV +2573
—Vij=VYij S Xij-
ds 15} L] Xl[

Integrating this equation along any null geodesic on H and using (3.17) we derive
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t
/ﬁjjv +S_2)2,‘j ds
0

o

Yij — Vi;O) “L,OOLZO < Z S‘tlp
i,j

2

i,j

L

o

Vij — Viﬁ'O) ”L?QLS)O + 1)'

SV izere + 12 ||L§L;)(Z
ij
This gives (3.15), by using (BA1) and the smallness of Ag.
The proof of (3.16) is similar by noting that
d
ds
where i, j,k=1,2. O

WVij = WViV + ViV + 2520 Kij.

On each § := §s we will use the geometric Littlewood—Paley (GLP) projections Py introduced in [12] which take
the form

PkF:=/mk(t)U(r)th
0

22k

for any tensor field F', where my(7) := 22k (2%k 1) for some smooth function m on [0, 00) vanishing sufficiently fast

and verifying the vanishing moment property

o0
/r"l *2m(t)dt =0, ki +k» <N,
0

and U (7) F is defined by the heat flow on (S, Jj)
ad
a—U(t)F— A;U(r)F:O, UOF=F. (3.18)
T

One may refer to [12] for various properties of GLP projections, such as the finite band property and the Bernstein
inequalities, etc, which will be frequently used in this paper.
We will also use the notations

Fy:=P,F, F<o:=) PF and F.o:i=Y PF
k<0 k>0

for any S-tangent tensor field F.
Let 0 <6 < 1, we define the Besov norm Bg’ | for tensor fields F on 2-D surface S by
k,—1\0 —6
||F||B§11=Z||(21 ) PkF||L%+||t Fllza. (3.19)
k>0

We also define the Besov B? and P? norms for S-tangent tensor fields F on H as follows:

1Flg =Y (2";*1)"PkF||L§,OL§ + 17O F e 2, (3.20)
k>0

1Fllpe = D125 PeF | a2 + 107 Fll s (3.21)
k>0

By using the heat flow (3.18), we can define the operator A% with @ < 0 such that for any S-tangent tensor fields F

0
—a
A“F::F(S_ia/z)/r_f_le_rU(t)Fdr.
0
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The definition of A% extends to the range a > 0 by defining for 0 < a < 2m that
AYF = A7 (s721d—4,)"F.

We record the basic properties of A? in the following result (see [12,20]).
Proposition 3.2.

(i) A°=1d and A - A’ = A°*? forany a,b € R.
(ii) For any S-tangent tensor field F and any a <0

Sa||AaF||L2(S) 5 ||F||L2(s)-

(iii) For any S-tangent tensor field F and any b > a >0
-

SUNWA“F | 125y SSPNAPFll 2y and | A“Fll 25 S 1APF)? 12(5)"

P I F
(iv) For any S-tangent tensor fields F and G and any 0 < a < 1

H Aa(F -G) ”LZ(S) 5 ||AF||L2(S)||AQG||L2(S) + ||AaF||L2(s)||AG||L2(S)~

(v) For any S-tangent tensor field F there holds with2 < p <oocanda > 1 — %
IFlLrs) S NAYF | L2cs)-
(vi) For any a € R and any S-tangent tensor field F

2 2 ~ 2 —2, 2 —2, 2
IF I3gags) = N AFllT2 i)~ Y 2% 2 PeF 7o 5 + 5 IP<0F 1172
k=0

Under (BA1) and (BA2) we can also derive

Proposition 3.3. Under (BA1) and (BA2), if 0 < Rg < Ag are sufficiently small, then for all % < a < 1 there holds

<
LPL2 ~ Ao.

Ky i=[a7(k =577
The proof of Proposition 3.3 is a little involved. Noting that our definition of A~ involves s~2, by keeping track
the powers of s, the argument in the proof of Proposition 4.13 in [9] still goes through. For details please refer to
[22, Chapter 4.3].
Sometimes it is convenient to work with the Besov norms defined by the classical Littlewood—Paley (LP) projec-
tions Ey. Recall that (see [17-19]) for any scalar function f on R? we can define

Enf = / n(6/24) F€)e de,

R2

(27)?

where 7 is a smooth function with support in the dyadic shell {% < |€] <2} and satisfying D ;. n(27%&) = 1 when
£#0.

Now for any scalar function f on H, we define for any 0 < a < 1 its 3% and P norms by

£l = D@5 Eif | oo o + 107 Fllper2s (3.22)
k>0

1l = 2N Q™) Euf oz + 167 Fllizez- (323)
k>0

It is worthy to say a few words about this definition. Recall that the geodesic flow I : S? — S, foreach s > 0is a
diffeomorphism. Let (U;, 7)) be a finite atlas on S? with charts n") mapping U; into the unit disc in R?, and let {¢)}
be a subordinated partition of unity on S?. Then {¢ o Fs_l} is a partition of unity on the slice S; for 0 < s < 1 which
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. X =1
will be denoted as ¢;. Let ngl) = n(’) o F;l. The Ej f in the above definition is defined as Ej((¢s f) o ngl) ) on
each S; and the Li norms are understood to be the L2 norm on R2.

Using Lemma 3.2, (BA1) and (BA2), we can adapt [11, Proposition 3.28] to obtain the following lemma.

Lemma 3.3. Under the bootstrap assumptions (BA1) and (BA2), there exists a finite number of vector fields {X; }521
verifying the conditions

IX, 1VoX ez ST, 1V (Xl S 1,
[(V=VoX|,2 0 S A0 ViX =0,

where Vg represents the covariant derivative induced by the metric s>y©). For appropriate S-tangent tensor F
LfoLi, F eB%ifand only if F - X; € B, and

CT' Y IF - Xillge <IFllpe <C Y IF - Xillge, with0<a <1,
i i

where C is a universal constant. The same results hold for the spaces P*. Moreover
NIF®X) +IIF & Xl poor2 SN(F) + I Fll o2,

where & stands for either a tensor product or a contraction.

Lemma 3.3 allows us to define Besov norms for arbitrary S-tangent tensor fields F' on H by the classical LP
projections.

Definition 3.1. Let F be an (m, n) S-tangent tensor field on 7 and let Fl{ lli 21,,]m be the local components of F relative
to {X,'}ﬁzl. We define the B¢ and P* norms of F by

J1J2- J1j2-Ji
IFlge =Y NF25m g and  [[Fllpe =D IF2 5 5,

where the summation is taken over all possible (i1 ...i,; j1... jm)-

Finally we state the following equivalence results between 3%, P¢ norms and 3, P¢ norms, whose proof can be
found in [22].

Proposition 3.4. Under the bootstrap assumptions (BA1l) and (BA2), for arbitrary S-tangent tensor fields F on 'H
there hold

IFllge ®NFllBe  and ||Fllp. = F|pa
with0<a < 1.

4. Elliptic estimates of Hodge operators on H

In view of the structure equations given in Section 2, it is important to consider the following Hodge operators on
2-surface S diffeomorphic to the standard sphere S?:

The operator D) takes any 1-form F into the pair of functions (div F, curl F).

The operator D, takes any symmetric traceless 2-tensor F' on § into the 1-form div F'.

The operator *D; takes the pairs of scalar functions (p, o) into the 1-forms —Vp + (Vo)* on S.

The operator *D, takes 1-forms F on S into the 2-covariant, symmetric, traceless tensors — %Epy, where

(LFY) = VoFa+ VaFy — (div F)yap.

For various properties of these operators please refer to [2,9].
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4.1. L? estimates for Hodge operators

In this subsection we will give the L? estimates for the Hodge operators on H under the bootstrap assumptions
(BA1), (BA2) and the smallness conditions on Rg and Ayp.

Proposition 4.1. The following estimates hold on each leaf S = Sy C 'H.:

(i) The operator D is invertible on its range and its inverse Dl_l takes pair of function f = (p, o) in the range of
D1 into S-tangent 1-forms F with div F = p, curl F = o. Moreover

” VD1_1f||L2(S) + ”S_lpl_lf ||L2(S) S ||f||L2(S)'

(ii) The operator D; is invertible on its range and its inverse D, ! takes S -tangent 1-forms F (in the range of D»)
into S-tangent symmetric, traceless, 2-tenorfields Z with div Z = F. Moreover

||VD2_1F”L2(S) + |S71'D2_1F||L2(S) SIF N L2cs)-

(iii) The operator (—A) is invertible on its range and its inverse (—A)~! verifies the estimate
2 —1 —1 -1
IV2(=2) f||L2(S) +[s7V(=a) f||L2(S) SNz s)-

(iv) The operator *Dy is invertible as an operator defined for pairs of H' functions with mean zero (i.e. the quotient
of H' by the kernel of *D) and its inverse *Dfl takes S-tangent L* 1-forms F (i.e. the full range of *Dy) into
pair of functions (p, o) with mean zero, such that —V p + (Vo )* = F, verifies the estimate

” V*D;]F” L2(S) S ||F||L2(S)'

(V) The operator *Dy is invertible as an operator defined on the quotient of H'-vector fields by the kernel of *D.
Its inverse *D; ! takes S-tangent 2-forms Z which is in L* space into S tangent 1-forms F (orthogonal to the
kernel of D), such that *Dy F = Z, verifies the estimate

v D2_lZ||L2(S) SIZI2s)-

As a consequence of ()—(v), let D~' be one of the operators Dl_l, D, l *Dl_l or*Dy I By dual argument, we have
the following estimate for appropriate* tensor fields F,
D™ div Fll 25y S 1Fll2s)-
The proof of this result is essentially the same as the proof of [9, Proposition 4.22]. Note that in our situation,
0 < s < 1, which is different from [9] where s = 1. Therefore we must keep the weight s~ ! in some of the estimates,
which will be crucial for later applications.

Using the formula (2.15) for the Gauss curvature K of Ss and the bootstrap assumptions (BA1) and (BA2) we can
easily obtain

Proposition 4.2. For K := K — 572 there holds || K || 2(3¢) S Ao.

For later applications, we will use the renormalized Gauss curvature
K=K-r2 (4.1)
which, in view of Proposition 3.1, Proposition 3.3 and Proposition 4.2, verifies

1Kl 200 S A0 and Ko :=[A7K 12 S Ao 4.2)

for any % <a<l.
Using Proposition 3.3 and Proposition 4.2 and following the similar argument in [9] we can obtain (see [22])

2 By “appropriate”, we mean the tensor F such that div F is in the space where D1 is well-defined.
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Lemma 4.1. For appropriate S-tangent tensor field F there hold
No(DVFY SNU(F) and N{(VD'F) <N (F).

4.2. Elliptic P° estimates of Hodge operators on H

In this subsection we provide P? estimates for 0-order Hodge operators. We begin with a few preliminary estimates
which are frequently used in Section 6.

Proposition 4.3. Let D be one of the operators D1, Dy and *D,. Then for 1 < p < 2 and any S-tangent tensor F on
'H there holds

—1 < -2
1D~ Fllags S s Fll o).
Proof. From (3.9) and Proposition 4.1 we infer for p’ > 2 satlsfylng + / =1 that

2_
|s? 2D F| g SIVDT R |—1*D F|| +ls™ D Fllags) SIFI 2.

() ~
We then complete the proof by duality. O

LZ(S) L2(S)

Lemma 4.2. Let D denote one of the Hodge operators Dy, D>, *D; and *Da, let D~ denote the inverse of D. For
Py F with Py being the GLP projections associated to the heat equation (3.18) there hold for k > 0

[D7 PeF |y S27HIsFllz and | PD7VF|, S27 0PN TR E] .

Proof. The first inequality can be proved by using the finite band property and Proposition 4.1. The second can be
proved by a dual argument with the help of the first one and the Sobolev inequality. O

The following result follows from the second estimate in Lemma 4.2 immediately.

Proposition 4.4. Let D~ denote either Dy ! , *Dy D2 , then for appropriate S-tangent tensor fields F on 'H and
any 1 < p <2,
-1 2-2
ID™'Fligo < ||t nFHLOOLp. (4.3)
Moreover for 0 <0 < 5 and <p<2,
D Flpo < ||t27‘9F|| _— (4.4)
PO S L2LY

In order to state the next result succinctly, we introduce the notation

K +y. b= @s™HI) 1 25K, + @0 ™) 02K,

where y > 1/2, k € N and 6 is a number slightly greater than 1. For simplicity, the last terms in K (1 + y, k) can be
ignored in applications.

Lemma 4.3. For any smooth S-tangent tensor field F and 0 < y < 1
| PVAYF, SKA+y. OIFl 2 and [AYVPF |, SKA+y. OIF] 2.

~

Proof. Recall (see [12, Section 10]) the Bochner identity combined with finite band property gives for 2 < p < oo
that

~

[V2PG 2 S 2255 2IPGL + K] 2‘(2’< O | PGl + 25 K N2 I PGl 2. 4.5)
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By Proposition 3.2(iii), combining (4.5) with the finite band inequality, |V PG |l;2 < ks~ PG| 12, we conclude
the second inequality holds true for any 0 < y < 1. The other one follows by duality. O

Now we are ready to state the main result on the elliptic P° estimates on Hodge operators.

Theorem 4.1. Let D denote either Dy, Dy or their adjoint operators *D and *D,. Then for any S-tangent tensor
fields & and F satisfying D€ = F and any % >0 >0,

_ 1—
IV&lpe SIFlpe +A0lD™ Fllla I F Il (4.6)

where 1 —o > q > yyand a > 4.

The estimate (4.6) was stated in [9] where the second term on the right-hand side is not included. The proof of the
corrected version is based on the unpublished notes of Klainerman and Rodnianski [6]. To prove Theorem 4.1, we
rely on the following two propositions.

Proposition 4.5. Let F be an S-tangent tensor field. Then for any 1 > y > yg > % where yy is determined by the
condition that K v < 00, we have the following estimate for k,m > 0

| PV Py Fl 2 5g) < 2700m02=2m 1| =1 p, “L?L% - gmintm R p=(=y)ymaxmb) g =7 p, | 212

I—y 2
t Ly

+ 27K Kol P Fll 2 4.7
L

For low frequency terms, the following estimate holds

| PV P<oF | 200 S 27K Peo Fll 2y + 27 KK 1877 P<o Fll 2

kY >
+2 IIKIILZ(H)K;/OIIP@FIIL[%L? (4.8)

Proposition 4.6. Let F be an S-tangent tensor field and D be the corresponding elliptic Hodge operator. Then for
k,l >0,

|~ P F |2y S27 maxkDp =g || P | gy + 27 M EDmUmImxkD 2V € NP2y, (49)

where 1 >y > yy > % and yy is determined by the condition that kyo < o0.
We first give the proof of Theorem 4.1 by assuming Propositions 4.5 and 4.6.

Proof of Theorem 4.1. It suffices to consider the case o = 0. For the case 1/2 > o > 0, by taking ¢ < 1 — o we can
follow the same argument.

According to the definition of | VD! F | po and Proposition 4.1, we only need to estimate ) || Pk VD~ F| L2(H)-
k>0
Using Proposition 4.5 we have

” PkVD_lF” L2(H) S Z” PkVPmD_lFHH(H) + ” PkV(PS()D_lF) ”LZ(H) = Hi + L.
m
We first estimate the high frequency terms

(H)

He < szin(m,k)z—Zlm—kl |~ D F 0
m

+ Z2min(m,k)2—(1—y)max(m,k)ky() ”t—y PmD_lF”LZ
m

+ Ky KN ;2"’""" | PuD'F I =
t

—y L%

D, 7 4@ 7 v 40
= A+ KA + Ky IK 1 200 AL
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We first estimate the term A,({S). Note by interpolation we can easily obtain with % + I_T‘f =

I\J‘\

[PnD7UF] 2 S [PWDTF

_y L2

;’LZHP D~ F”LZ(H)’

I

then by Lemma 4.2,
3
DoAY S 2 OMIDT I I F S IDT I I FI -
k m
Now we define

A,((}) — szin(m,k)2—2|m—k| ”t—lme—lpl

m

(2) szm(m k)2 (1—y) max(m,k) ||t yP D P[F” L

F“ L2(H)’

(GO

We use the GLP projections to decompose F and ignore the low frequency terms,’ then we infer
&) 1) (2) )
DA AY and AT A
k k.l k ki
Therefore, it suffices to establish the following estimates

1 2
Y A SIPFl2g and Y AT SIPFl00. (4.10)
k k

We estimate the term A,S) with the help of Proposition 4.6.

(1) < szm(m k)2 2|m k|2 max(m 1)2 |m l| ”P[F”Lz(’)—{)

m

4+ 3 minn ) =2m ki~ max(mDy ==y maxmD 1=y py g

S 27K am 2 Y P 2 gy

m
S22 P F || 239,

The first estimate in (4.10) now follows after summing over k. The second estimate in (4.10) can be proved similarly.
As to low frequency terms Ly, taking le norm with the help of (4.8), we infer

| PV (P<oD'F)| 1212 S22 PoD || L2(H) +27 0K 177 P<oDT F | L2(H)

—k o -1
21K gy Ko PoDT F | 2

t X
By elliptic estimates and interpolation again, we can get the desired result. O

In order to give the proofs of Propositions 4.5 and 4.6, the following lemma is crucial.

Lemma 4.4. Let S be a weakly regular surface with Gauss curvature K satisfying the condition K v < 00 for some
1>y > % Then for any smooth S-tangent tensor F, 1 >y > yg and k > 0, there hold

|A~Y(KF) ||L2(S) < Ky0(||VF||Lz(S) 1t F D 2s))- 4.11)
Form,l > 0 there hold
| AT (K PuF) 1205 S Kpo2"s  IPwFll2s) (4.12)

3 The low frequency are the terms similar to A(l) and A(z) with / in the expressions replaced by < 0. These terms are actually much easier to
estimate. We omit the detail.
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and
| Pn(KD~" PF) |2 S Ky2""s T PF || (s, (4.13)

where D is an elliptic Hodge operator.

We remark that the K » in Lemma 4.4 and Proposition 4.5 should be replaced by K » + Ao, where the presence of
Ao is due to the difference r = — s =2 which is relatively trivial in the calculation. We can simply ignore Ag, however,
without hurting the proof of Theorem 4.1.

Proof. We first show (4.11). It is clear that

|A=7 (K - F)”Lg SA™ (K- F)HL% +1r =AY F 2 (4.14)
Due to Propositions 3.1 and 3.2(ii), forany 0 < s < 1

2 =s AT Fliga S dolls™ 7 Flla,

which obviously is a lower order term. Hence, it only remains to estimate the first term on the right-hand side of
(4.14). By Proposition 3.2

| A7 (K - F) Hi; ~ 3272 |5 Py (K - F) ||i§ + |[s¥ P<o(K - F) ||i§. (4.15)

m>0

In order to estimate the low frequency term 50| Pgo(lé -F)|l 12, Weuse Proposition 3.2 to obtain for any appropriate S
tangent tensor field G,

(s7P<o(K - F),G)= (K - F, P<oG) < [|ATK || 12 - | s" AT (F - P<oG)|
S Ky (™I AYF 2| AP<oG 12 + s AF || 21| A P<oGll 12)
S Kyl AFl 211Gl 2.

Hence

|57 P<o(K - F)[ 12 S Ky (IVF 2 + 57 IIF NI 2)-
In order to estimate the first term on the right-hand side of (4.15), by the GLP decomposition we write K =

>, P2K =Y, . Ku + K<o, then

|Bn K Pz < S Bn R )5 + [ B R PO @16)
neN ’
For any 2 < p < oo let p* satisfy Ly # =1 We will employ the finite band property, the weak and sharp Bernstein

inequalities for the GLP projections, the Sobolev inequalities and the Young’s inequality. For the low frequency
in (4.16), we choose p such that % < Y0, then for any appropriate tensor field G
(Pu(K<o- F).G)= (K<o- F. PuG) S K<oll 2| Fll 2 I PuGll

2m
P

v 2m 1-2 2
2 _ —1 -1
SlIK<oll227s (IVEN "IIsT FII, + DI F||L§)||G||L§'
Therefore

D 27"s" Pu(Ko- B 2 S Ao(IVF Iz + lls™' Fl2)- (4.17)

m=>0

Now it remains to estimate || Py, (IE,, - F)|l; 2. When m > n, we choose p; such that % <y — yo. Then
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[P K- B[ 5 275 |V (Ko - )] S27s (VKR i IF o1+ 1Kl IV F L 2)

—m+ +ZJ v _ — -
SR 2 (IVF Il + s~ Fll2) + 27" Kl 2 IV 2

et -
SRR 2 (IVF Nl + D™ Fll2).-

~

When m < n, choose p> such that 1 — % <y — y. Then
| Pw(Kn - )| 2= 272152 Py(AK, - F)| 2
<2722 || Py div(V K, - F)|| o + 27252 P (VK - VF) |
S2THHSVE, - Fllp +27 SV, V)
x L,

-2 > —on+43m 5/4 >
STV FIL s + 27 SV | VK
x L3

2 2
Mmoo 1-= -5 3 .
m— 2L Py —1 oy P 3 (m—
SRR 2 IVFI, s FI + 280 F 1K
- X X

o _
S22 NK 2 (IVF Iz + s~ Fll2)-

Therefore, by using Proposition 3.2(vi), we obtain

> 2 PR

m,n>0
(Y —yg— 2 v
< Y 2 vTmE e o= R (IVF Il + e F )
m>n>0 !
_2_ v
+ Z 2(1 2} V+yo)n2(lfy)(m7n)s1/*)/o||2*VonSV0Kn”LE(”VF”L%_i_”sle”LE)

n>m>0
S Kyo(||VF||L2(S) + ||S_1F||L2(s)).

The proof of (4.11) is thus complete.
Now (4.12) follows by applying (4.11) to P, F and using the finite band property. In order to show (4.13), we write

Pu(KD'PF) = Py(KD'PF) + (s7> = r 2P, D' B F.
Then (4.13) follows by estimating the first term as we did for | P (K - F)] L2 in the above and applying Proposi-
tions 3.1 and 4.1 to the second term. O
Now we are ready to prove Propositions 4.5 and 4.6.
Proof of Proposition 4.5. We may assume F is a 1-form without loss of generality. By duality we can assume that
k > m. Then from the finite band property we have
1PV P Fll 22 S 2%k thPkAVPmFHLtzL§.
We denote by R the Riemann curvature tensors on 2-surface (Sy, ). Then

Ripea = VacVbd — Yaavoe)K and R, =y,pK.

Note that the commutation formula

Va(AF) = ANV F) + Ve(Rigac Fa) = Ry VaFi + Ry Ve Fa.

c

Then we have || PtV P, FIIL[sz < A + A, where
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Ay =27 (|2 PV AP,F| 202 P PuFll2,2),
Ao = 2P PNV K P F) | 20 + 27 [P PUK Y P F) | 2
It is easy to see
AL S22 PV Py Fll 20 42724 ||t’1PmF||L’2L%
S22 7 P
In order to estimate A5, it follows from Lemmas 4.3 and 4.4 that
| PV K PuF)| 2 S KA+, D AT (KPuF) | o S2s7 KA+ v, Ol PuFll 2 Ky
Thus, by a standard duai argument, we obtain for any appropriate S-tangent tensor field G
(Pi(K -V PyF),G)=(Pydiv(K - PG), PyF) < || Py div(K - PkG)||L% 1P Fll 2
S22 K (L4 v, m)Kyy | PGl 2| P Fll 2
S2"s T K+ v, K I PuFll 2 Gl 2.
The last inequality is derived by using k > m. Hence, '

Ay 27K [ P F | oy + 2" Ky IKN Y I P Il 2

l
tzL)zc Ltlf}’ L2

The proof of (4.7) is complete by combining the estimates of .4; and A;. The inequality (4.8) can be proved simi-
larly. O

Proof of Proposition 4.6. For the case k > [, we use the finite band property for GLP projections, the representation
formula A =*DD + K + ¢~2Id and (4.13) in Lemma 4.4 to obtain

|PD'PF|,, S 2 *2 | P AD PF |

<272 P DPF|| L2

)

+27%¢2| P(KD' P F) +27%*| D' P

&) ||L2(S) F||L2(S)

S22 PF N sy + 27T 2K I PF gy + 27 K1 PLF D s

Then the desired estimate follows for this case.
In order to show the result for the case 0 < k < [, we note that

| PO KPP 2 S2 Ky | PF (4.18)

which follows from (4.13) in Lemma 4.4 by a dual argument. Similar as above, we may use the representation formula
A =D*D =+ K to complete the proof. O

5. Product estimates in Besov norms

We will provide a series of product estimates in Besov norms which are of fundamental importance for the later
applications.

5.1. Non-sharp product estimates
The following non-sharp product estimates will be used in Section 6.

Proposition 5.1. For any S-tangent tensor fields F and G,

IF - Gllpo SNUF) (|74 G Lo+ ||t%VGHL[2L%) with a > 4, (5.1)
IF - Gllpo SNa(t'2F)IGlipo, (5.2)
IF - Glipo SN (1 F)(IVG 2,2 + G 2)- (53)
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Before giving the proof, we recall the notion of A/-envelopes of tensor fields introduced in [11].

Definition 5.1. For a given S-tangent tensor field F and a sufficiently small € > 0 we define its N;-envelope (of
order €) to be any sequence of positive real numbers N7 [ Fi] satisfying

NiF] S 29%FING[Fp],  forany k, K,
Y NMILF ~Ni(F)*. (5.4)
k

By the same way as in [11, page 31-33], we can obtain the following result whose proof can be found in [22].
Lemma 5.1. For any smooth S-tangent tensor field F there always exists an envelope N[ Fy] such that

(i) For?2 < q < oo, there hold the dyadic Gagliardo—Nirenberg inequalities
||,—z—aFk||LqL2Nz—zk FNIRL PR e S2RNIRL 5:5)
(1) Forall g with 1 < q < 2 sufficiently close to 2,
||t7_3+VLFkHL;,L§ < MLFxl. (5.6)
(iii)) Forany?2 <q <4,
|1V | o1 <MD [FL (5.7)
(iv) Forany2 < q < oo,

0377 Fe g S 27PN, (5.8)
Remark 5.1. The above dyadic inequalities can be adapted to low frequency terms F¢o = P<oF, for instance

“17i F N (F -12p <SNI(F

|t7274 <0||LquN 1(F), |2 <0||L%L?CN 1(F),
_1

T VFgoHL;;Li SN(F), 2<q<4,

1_1
|27 Feol a0 SMI(F), 2<q <00

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. In what follows we will prove (5.1) only. (5.2) and (5.3), which have been stated in [9]
without proof, can be proved in a similar but easier way (see [22, Section 5.2]). We will frequently use Lemma 4.1,
(5.7), (5.5), (5.4) and (3.12).

We choose A and b such that

2<b<4 A< g oA r ]
<4, < , an -=—,
= a+2 = a 2 b
where % + bl* = % This is always possible for a > 4. Moreover
! A ! 0 5.9)
——A—=<0. .
2 b
We will use the notations
M |4 _1 1—x Ao,k _1 1—h
my:=[t2VG, ||L2(H) ”t “ L?Lg’ "= ”tzVG”LZ(’H) Ht @ L;1L§‘

Clearly, by interpolation and Bernstein inequality

~

||t%+%VGn ||L?*L§ S ”t%VGn ”;‘Z(H) ”tl"VG HL"L2 S0y (5-10)
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and

[574Gu] ez S274 MY [T G gy 200 (5.11)

~

Similarly, we have

Now we prove (5.1). We begin with expanding F - G by GLP decomposition as
F-G:F>0~G>()+D(F,G),

t%+%VG<0”Lf’*L§ 517’\, HI%_%GQ)HL?*L%SHA- (5.12)

where
D(F,G)=Fgo-Ggo+ F<o- G0+ F-0- Go.

We first estimate || F~q - G>ollpo. Set % + qi* = % with ¢ < 4, by the Holder inequality and Lemma 5.1 we obtain
(G=my—2 1/2
”Fm'Gn”LZ(H)S,”Fm”L;’OLZHGn”LtZL_Z*,SZ 772 q*-/\/.l[Fm]“t VG”L,ZL)ZC‘
Summing over m, n > 0 gives
IFo0- Gooll 2y SMUE) 112V G 25

It remains to consider the following high frequency terms

Pi(Fo0-Go0)= Y PuFu -G+ Y Pk<Fm-Gn)+< S+ ) )Pk(Fm-Gn>

k>n,m>0 k<n,m n<k<m m<k<n
k k k
= A] + Az + A3.
Step 1. Estimate of Alf' By finite band property and the weak Bernstein inequality of GLP projections, we have
- =3k
”AIICHL,ZL% < Z 2 2k“t2PkA(Fm 'Gn)”L?L} S Z (Afnn +27 Byn) (5.13)
k>n,m>0 k>n,m>0

where for m,n, k > 0,

Ay =2 B B (Fy Gy w0d By = [ VG|
t

4.
L}

Using (5.10) and (5.7),

Bun S |15V F]| oy |35V G| o pp S 2078 A=A [ T2 (5.14)
As to Afjm, by weak Bernstein inequality, (3.12), (5.10) and (5.11)

Ay ST BT |G|
=X

mn ~ L
1 1_2 2
5 2—2k+2max(m,n)+(7—F—;)mz(l—k—ﬁ)an (F)H’ih (515)
Due to (5.9), choosing g > 2 such that % — % < % < A, combining (5.13) with (5.14) and (5.15), we conclude
1 _1
D A2 SMEN([2VG | 2 + 179G ap2)-
k>0 ' ’

Step 2. Estimate of A’;. Using the weak Bernstein inequality and (5.5), we have

—m—

| PicCE - G")”L,ZL% 52% |1~ 2 F HLj’CLfllG"”LtzLi §2k 2 an[Fm]Hl‘l/2VG|

’L%Lf‘
Summing over k < m, n for the respective case, we conclude

1
Z“Ag“L%Lg SM(F)HIZVG”L%L%
k>0
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Step 3. Estimate of Ag‘. We first consider the case n < k < m by using finite band property
| P Gl 213 S 272" 2 PUA o G 12
SIP BV F - Gl gz + [P BV VG 3,2)
_ k
S2 2m(2k ”tVFm ~Gan ”L?Lg + 223'"")'
For the first term, using Holder inequality, (3.12), (5.10) and (5.11), it can be bounded by

- —1 n_
L?*Li 5 2 2m+k+(1 b)m+2 )LI’IM [Fm]H;iL

2 IEY Fy Gl
t

s
Combined with (5.14), it implies

|| Pk(Fm . Gn) ||L2L2 5 (272m+k+(17é)m+%7)»n + 272m+§+(17%)m+n7)~n)Nl [Fm]n,?
rEx
Summing over n < k < m gives

Z ” P (Fp - G")”L?L)Z( 5N1(F)(HI%VGHL,2L§ + Ht_%GHL?LE)'

n<k<m

1

It remains to consider the last case m <k <n. With 1 < p <2 and Ly % =, we have from the finite band

2
property and the weak Bernstein inequality that

2_ _2 2_ _2
| PeEn - G| o S 2P B - Gallp S 25TV TR Fll e Gl 2

2_ _2y
<SGV B2 VG .
By using (5.5) and (5.4), we infer
k(2—-1 3_2y_
Yo NP G £ D0 2TV NIE 1 2YG g,

n>k>m n>k>m
SNP)| VG 2.
Therefore

1 _1
ZH.A§ ||L,2L§ SNl(F)(”ﬁVG”L,ZL§ + “t aG”L?L}()’
k>0
Step 4. Finally we need to show for the low frequency term D(F, G) that

| DCF.G) | po SNIE) (129G 12y + 175G

Lo2)- (5.16)

The estimates for F'g - G~ and F-q - G o can be derived by adapting the arguments in step 1 and step 3. While the
estimate for Figo - G <o can be obtained by using Bernstein inequality and Holder inequality. We omit the details. O

5.2. Transport product estimates

The main purpose of this subsection is to provide the transport-product estimates. We will always assume the
bootstrap assumptions (BA1) and (BA2). In the following theorems, k > 0 is a given number.

Theorem 5.1. Assume that the S-tangent tensor fields W, F and G satisfy the transport equation Vi W + %W =
VL F -G along H and limg_,.o s|W| =0. Then

”W”BO fSNI (F)- (Nl (G) + ||G||LaO)OLt2)
Theorem 5.2. Assume that the S-tangent tensor fields W, F and G satisfy the transport equation Vi W + ]SiW =F-G
along H and limg_,o s|W| = 0. Then

IWligo S IFllpo(N1(G) + IIGIILSUOL;)
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Theorem 5.3. For any pair of S-tangent tensor fields G and W such that W satisfies the transport equation of the
form Vi W + %W = F along 'H, there holds

1G - Wikpo S (m Wl g i5) + I Fllpo ) (M (G) + Gl 0 12)-

The proof of these results can be carried out by using the reduction argument given in [11, Lemma 4.13]), that is, it
is enough to prove these results for the scalar transport equations, with W being a scalar function. After this reduction,
the results follow immediately from the sharp trace inequalities which in our situation take the following forms.

Proposition 5.2. For any S-tangent tensor fields F and G of the same type, there holds
t
1! /SVLF -Gds
0
and for any scalar functions F and G there hold

SNI(F)N1(G), (5.17)

BO

t

[P Gds| S (NG +1G5.) I, (5.18)
0 B°
t
t_1G~/sts g(Nl(G)+||G||LZ?L[2)||F||7;0. (5.19)
'pO

0

One can follow essentially the method in [11] to complete the proof. One can also find a proof in [22] by combining
the GLP theory and classical LP theory through an equivalence argument. We thus omit the proof.

Theorem 5.4. Let F be an S-tangent tensor field which admits a decomposition of the form VF =V P + E with
tensor fields P and E of the same type. If |s°~ F| and |sV F| are uniformly bounded when s — 0, then

1F o2 SNUF) + Ni(P) + | E ]l po.

Proof. We set ¢(t) = fot |F|?ds, then V¢ = |F|?. Due to [9, Proposition 5.1] we have

lelzearo S 1Vellgo + It @l oo - (5.20)

It is easy to see
It~ 0l o2 SNFllpoey2 - I~ Fll 2o (5.21)
We now estimate |V¢| go. In view of the commutation formula [V, V]gp = —x - Vg, we know Vg satisfies the

transport equation
1 1
VLV<p+—V<p=2F~VF—5V-V(p—)€~V<p. (5.22)
s

In order to apply Theorem 5.1 and Theorem 5.2, we need to show lim,_, ¢ s|V¢| = 0. By the weakly spherical regular-

ity of (S, 77) proved in Lemma 3.2, we only need to show limg_,¢ % = 0 under the transport coordinate (s, w1, wy),
where i = 1, 2. Note that

t

9 :2/(v% F. F)ds,

8a)i
0
we infer
t
‘ g‘fv o F,F)ds| < sup |s""F|- sV .0 F|/ I+ ygs. (5.23)
dw; do; 0<s<t 0
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From the conditions on F, we conclude |;—u‘fi| —0ass—0.
Now we substitute the decomposition VF = V; P 4+ E into (5.22) and use Theorem 5.1 and Theorem 5.2 to
conclude

IVl S Vi (P) + IElpo) (Mi(F) + IF | e 12) + (M1 (A) + 1 All o 12) V9 1 po.
This inequality, together with (BA1) and the fact || Vo[ po S [[Vellgo yield
IVeligo S N1(F) + I Fll oo 12) (N1 (P) + I Ellpo).
Combining the above inequality with (5.20) and (5.21), we get
1FI o2 S NIF) 4 1F Nl o 2) N1 (P + IEllpo) + I e g2+ e Fll 22
which implies the desired result. O
In Theorem 5.4, we require F to satisfy certain initial conditions. Note that we will only apply this theorem to x
and ¢ to derive their ng’L,2 estimates. For F = % and ¢, in view of Proposition 2.1, there hold |s°~ F| — 0 and

[sVF| — 0 when s — 0. Thus the initial conditions in Theorem 5.4 are satisfied. In Section 7 where the calculations
for || X |l pocy2 and [ |, oo 2 are carried out, we will not mention the initial condition any more.
w 't w 1

6. Error estimates

In this section, we study various kinds of error terms which arise from commuting V; with Hodge operators. Recall
that we have introduced the conventions R, R, Ry, A, A and V A in Section 3. Then the null Bianchi equations (2.17),
(2.18) and (2.19) can be symbolically written as

L(p.—6)=Dip+s 'R+ AR, (6.1)
ViB="Di(p.0)+s 'R+ AR, 6.2)
where
R:=Ry+VA+A-A+s'A.
It follows easily from (BA1) and (BA2) that

IR 127 < Ro + Ao. (6.3)
We will also use the commutation formulas given in [9, Proposition 2.16] which symbolically can be written as
VL, VIF=(A+s)-VF+(A+s)-A-F+p-F (6.4)

for any S-tangent tensor field F. When F are scalar functions, the right-hand side is simply (A +s~!) - VF.
In the remaining parts of this paper, we will employ the following conventions:

e R denotes either the pair (0, —&) or é

e D! R denotes either Dl_l(,b, —0) or *Dl_lé

D2R denotes either Dz_l ~D1_1(,5, —o) or Dl_l . *D]_lé

e D'V, R denotes either *Dfle,é or DflL(,é, —5)

Co(R) denotes [V, D} '1(5, —&) or [V, *D; 1B

e D72.V, R denotes Dy - D'V (, —5) or D' -*D; 'V, B

D! Co(R) denotes Dy ' - [V, Dy '1(p, &) or Dy - [V, *D 1B

In this section we will consider the commutators
C(R) = (C1(R), C2(R), C3(R)) (6.5)

given in [9, Definition 6.3] which, by the above conventions, can be written symbolically as
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Ci(R)=V-D ' [v,, D']R,
C2(R) =V -[V,,D7'].- DR,
C3(R)=[V.,V]-D2R.
Corresponding to (6.1) and (6.2), we introduce the error terms
Err=D;'V (p,—6)— B and Err=="D;'V B —(p,0). (6.6)
Let
Fi:=(Err, l:];}).
Then symbolically F has the form
F1 =D71(s711é +A- R).
Consequently we infer from (6.1) and (6.2) the symbolic expressions
D-'V.R=Ry+ F). 6.7)
By using (4.4) with 6 = 0 and p = 2, Proposition 4.1 and the Holder inequality we infer that
IFillpo S AF + Ro- (6.8)

Now we are ready to state the main results in this section. The first one is

Proposition 6.1. For the error terms Co(Ié), Cq (Ié), C2(1{’) and C3(Ié) there hold

|Co(R) | po S AF + Ro. (6.9)
|C1(R) || po S AF + Ro. (6.10)
C2(R) =V -D~(B-D*R) +err, (6.11)
C3(R)=p-DX(R) +err (6.12)

with
lerrllpo < A3+ Ro.
We remark that the terms V - D! B - D‘zlé) and 8 - D2R in Cz(lé) and C3 (Ié) cannot be bounded in P° norm.
The next main result provides tools to deal with such terms.
Proposition 6.2. All the commutators C (R) can be expressed as follows
C(R)=V.P+E,
where P and E are tensors verifying
NM(P) + | Ellpo < A+ Ro.
We mention that the above two results have been proved in [9]. The proofs in [9], however, rely on the following
Hodge-elliptic PO estimate and product estimate (see [9, (196),(190)])
IV- D~ Flipo S IFllpo, and IF - Glipo SN(F) - (IVGl 312 + G 212).

for appropriate tensor fields F and G. Unfortunately, these inequalities are not quite accurate since some terms were
missed. Instead we will use the corrected versions (4.6) and (5.1). The presence of the terms in L¢ L)Z( norms in these
corrected inequalities requires us to modify the proof in [9, Section 6.12] by establishing LfL% estimates for some
commutators, which add much complexity.
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6.1. Proof of Proposition 6.1: Part [

We first note that by (3.11), the Holder inequality and the Sobolev inequality, we can obtain from (BA1) and (BA2)
that

s~ All 20 IV Al 20 AT o3 1Al o6 IVt X1l 2100 S Ao,

» (6.13)
1A~ All2ggy, 14 All 22 S A3 VLAl 2,2 S Ao,
In this subsection, with the help of Propositions 4.3 and 4.4, we will prove (6.9), (6.11) and (6.12).
We first prove (6.9). We use (6.4) to write
CoR) =D ' ((A+s ) (V- D'R)+(A+s7')-A-D'R+B-D'R). (6.14)

Then, by using (4.4) with 8 =0 and p = %, Proposition 4.1 and the Holder inequality we can estimate the various
terms in the above equation to get

|Co(R) | po S A5+ Ro+ Ao - N1(D™'R). (6.15)
By the definition of A/; (D! R) and Proposition 4.1 it follows that

NI R) S Ro+ 43+ DV R 2z + [ ColR 35
While it follows from (6.7) and (6.8) that

[D™'VLR| 1210 S 45+ Ro.

Combining the above three inequalities and using the smallness of Ay we obtain (6.9).
In the above proof, together with Lemma 4.1 we have actually verified the following

Proposition 6.3.
|D7'VLR] 2,2 S Ro+ A3, (6.16)
|V DR 20 S Ro+ 45, (6.17)
M (D7'R) SRo+ A}, (6.18)
Ni(V-D72R) SRo+ A%, Na(D72R) SRo + Al (6.19)

In order to prove (6.11) and (6.12), we first use (6.4) to write
Co(R)=V - [vL,D—l]gD—1R+v.D—‘(,3 -D72R), (6.20)
C3(R)=[V.,V]lg-D 2R+ -D?R (6.21)
where
[VL,VIgF :i=(A+s ). VF+(A+s ") - A-F,
[vL,D—l]gF =D ' ((A+s - VD 'F+(A+s1-A.-D'F)

are the “good” parts in the corresponding commutators consisting of those terms not involving the curvature 8. Then
the proof can be complete by using (6.18) and the following result.

Lemma 6.1. For appropriate S-tangent tensor field F, there hold

[V, V1D F | py SMF) and |V - [V, D] F|lpo S M(F). (6.22)
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Proof. Noting that the simple inequality
IFllpo < eV F 20 + I Fll 2030

for any S-tangent tensor field F'. By Proposition 5.1 with a > 4 and Lemma 4.1 we then have

[V, V1D F o 5N1(VD71F)(||I%VA||L%L§ + oA Loz2)

+ 17 VD Fllpo + Na D EY(JA - Allpo + 172 A o)
SNI(VD™'F) + Na (D' F)
SNI(F).

This proves the first inequality. In order to prove the second inequality, in view of (4.6), it suffices to show for
appropriate S-tangent tensor fields F there holds*

Ve, D—l]gF < N(F) with4 <a < oo, (6.23)

LyLE ~

which can be proved, by using Proposition 4.3 with p = 4/3, Proposition 4.1, (3.11), (6.13) and Lemma 4.1, as
follows:

H [VL’ D_l]gF

L¢L? < HII/ZA : VD—IF”L“L4/3 + ”tl/zA A D_IFHU’L“/3
X t=x =X

+ ||t D7 vDlF

Lo +tTPA-DTF

LeLy?
SHANLe 2|V - D7 F | ey + 14 - All oz [ D7 F| oo

+||vD'F

-1/2-1
oz TIANLL2 |~ F”L,OOL;‘
SNo(D7'F) + M (VD' F)
SM(F). O
6.2. Proof of Proposition 6.1: Part Il
In order to complete the proof of Proposition 6.1, it remains only to prove (6.10). Observe that C; (R) can be
written symbolically in the form
Ci(R)=V -D 'Cy(R).

We then obtain from the Hodge-elliptic estimate (4.6), (6.9) and (6.17) that

v 1—
Z;IL)% ”CO(R)”LZ(qm

i;‘ L2 (A(z) + Ro)liq’

|C1R) | po S [[Co(R) | po + A0 | D™ Co(R)

S A3+ Ro+ Ao| D7 Co(R)

where Yy <g <l and 4 <a < oo.
We will complete the proof of (6.10) by establishing the following

Proposition 6.4. For 4 < a < oo there holds

i R ~
|72 D' Co(R) | a2 S AF + Ro.

Before proving Proposition 6.4, let us state the following two useful results.

Proposition 6.5. Let D! denote either Df] or *D;l. Then for any S-tangent tensor fields F and G on 'H there holds
| e D Y(F- VG|

Lag2 SME)NM(G), withd <a < oo.

4 We will improve the right-hand side of (6.23) to be N; (D*1 F) in the next section.
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Proof of Proposition 6.5. By the GLP decomposition we first write
t~iD N (F-VG)=1"iD  (Foo-VG-0) + L(F, G)

where L(F, G) denotes low frequency terms. For the high frequency terms, we use the GLP decomposition again and
ignore the low frequency part Zlgo P;, we only need to consider Z = Zl,m,n>0 Linm, Where

Linm = ||t_%Pﬂ)_1(PnF : VPmG)HL?LE‘

We will estimate such terms by considering several cases. When [ < m < n, by using Lemma 4.2 we obtain

2

2 1
Tiam S22 |2 74 P, F - VP,G| (6.24)

LALY

where 2 > p > 1 is sufficiently close to 1.

Let p* be such that % + % = % By using Lemma 5.1 and the Sobolev inequality it is easy to derive that
- 112
[T TR e S22V N, (6.25)

<23 Ni[Gpl. (6.26)

~

|2V PGl 2o

Using both of them together with Holder inequality, it follows from (6.24) that

Tium < 20 DT RN, N G ).
Thus we can obtain
> Tim SNMF)M(G)
0<l<m<n
aslongas 1 —1 — 2 <0, which is possible when p is sufficiently close to 1.

a p*
1

When m <[ < n, by using Lemma 4.2 with 4/3 < p < 2, (6.25), (6.26), and defining p* by # + % = we obtain

2 2_1
Tim S27 V#7974 P F -V P,G

LeLY
3

52‘(2‘%)’||z1/2VPmG|| 2Ty ap,F

ezl LiLy”
m_ Iy, (2_3 n_n_2n
<G DTG DHGE 2D NG NI E .

We can choose p sufficiently close to 4/3 so that % - % — (% < 0. Then we have

Y Tm SNMIGNI(F).

O<m<l<n

When [ < n < m, we note that
P,F-VP,G=V(P,F-P,G)—VP,F-P,G,
thus we need to consider the two terms

z}, = a BD N VP, F - PG|

L{L3

T2 = ||t‘5P1D‘1V(PnF‘PmG)HL;*LE'

Inm

Observe that by the same method for establishing > *_;_,,, -, Zinm, We can obtain

Y T SMPNG).

O<l<n<m

For Z?

Inm

we have from Proposition 4.1, (5.5) and (5.8) that
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L S ”t_‘l‘(P"F . PmG)“L?Lg
1

<@ P p,F

L_

1 l)
7 2pP,G

(7
LY L® |« L9 12

1 1 1 1
S 2T N R, MGl
where % + # = 617 Summing over [ <n < m gives
3 R, SNIPNG).
O<l<n<m
When m > [ > n, we can follow exactly the same way as for the case [ < n < m to obtain

Y T SMPIN(G).

O<n<l<m

Finally when ! > m and [ > n, we derive by Lemma 4.2, (6.26) and (5.8) that

Tinm 27674 P F - VP, G

~

L{L3

YR

<ol H,%—%PmGHLgLo,o |«
<2 MG =D AL F N (G,
which yields

Y Tium SMFIN(G).

I>m,l>n

Thus we conclude Z < N (F)N1(G).
It remains to show

|£CF.6) fara SNIFINI(G)
for low frequency term L(F, G), which can be done similarly. Since the argument is much easier, we omit the de-
tails. O
Lemma 6.2. For S-tangent tensor fields F on H there hold
||zfeAfepl—1F||L§ SIFll, (6.27)
[ A= DY | o SUFN ey (628)
where 1 <b <ooand () <e < 1.
Proof of Lemma 6.2. To show (6.28), by duality and ignoring lower order terms, we only need to show for appropriate
tensor field G,
[P PAT G| o S 27 (14 1KNT) G 2. (6.29)

where 0 < 6 < 1 is close to 0, then summing over k > 0 and integrating in ¢.
We decompose ’Dl_lPkA_fG using Zl P12 = Id. Since PID]_IP/(A_EG are not scalar functions, to which we
cannot apply sharp Bernstein inequality, we use the following curvature dependent estimates, ([12, Section 10])

IPH e £ 20 (1 + 27" e KNG, ) 1P H 2.1 > 0 (6.30)
and

IP<oH e St (1+ 1K) IHI 2. (6.31)
From (6.31), we infer

[ P<oDT PATG] o S 2741+ WKL) G 3. ©32
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When [ > 0, it follows from (6.30) that

~

| PO AT G| oo 27 (1427 0K, ) | PDT PeATG 2.
Using (4.9) we have
||t_€P1D1_1PkA_‘G||L;,O <27kamI=kI(g +2_01||t5||i§)||PkG||L%.

Summing the above inequality over [, k > 0, combined with (6.32), gives (6.29).

To show (6.27), the difference is that PI’*D]_1 Py A™€G are scalar functions, to which, instead of using the inequal-
ities (6.30) and (6.31), we employ the sharp Bernstein inequality ([12, Section 10]) which does not involve [|K||;>.
Thus we can derive that '

|~ P*D PAT G| o S 27K PG 2 (6.33)
Summing over [ and k, we obtain
||t—e*«Dl—1A—6G||LOO /S ”G”L% (6.34)

Then (6.27) follows by a standard dual argument. O

Note that by using Proposition 3.2(iii), for appropriate S-tangent tensor fields F on H,
[ A DT SIFI with0<a <, (6.35)
By duality, the above estimate implies the following inequality for any appropriate S-tangent tensor field F on H
1t DT AYF Y 2 SUF g2 (6.36)

With its aid, we infer from Lemma 6.2 the following result.

Corollary 6.1. Let F be an appropriate S-tangent tensors on H. Then on each leaf S; there holds

|D3 "D |y S U FilL- (6.37)
Moreover, on 'H there holds

| D7D F o2 SNEFIl e (6.38)

where 1 < b < 00.

Let D be one of the operators D1, *Dp or D,. We will use Proposition 6.5, Lemma 6.2 to estimate the error type
terms in the following result.

Proposition 6.6. For S-tangent tensors G on H verifying N1(G) < oo, set
E(G):=s""DVA-G) or DA -A-G),
&G)=D Y A-VG), &:=D YA -A-4), &:=s"'"D(A-A),

where for E3, D denote either Dy or *Dy. The following estimates hold

|ma€1(G) S AoNi(G)

afr?
LtLX ~

Loz t ”f%“:Z(G)i

2

||I_GA_€53 LiL2 5 AO

_1 e
L;’L%-’_”t a&y L;ng"'”t "Dl

where 4 <a <00,0<e < 1.
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Proof. For £;(G) =D '(A- A - G), we can use Proposition 4.3 to get

| &1(G) “iA-A-G

Lo S < e Lo SIAI 4 1G g s S AGMI(G).
When £1(G) =s~!D~1(A - G), by Proposition 4.1 and (3.12)
[ R, _1
774D A O]y S 11754 G gyp S |5 A] g4 IG e
SNMI(ANI(G) S AoN1(G).
For & (G), we infer from Proposition 6.5 that
_1
[t=a&0)| rer2 SN1GIN1(A) S Ao (G).
In order to estimate &3, we use (6.28) and the simple inequality
1
Ht—aFHm,, SUVLFl e + ||t‘1F||L 1 with p>1 (6.39)

combined with the Leibnitz rule, Holder inequality and (6.13) to get

[ A7 Es] aye SNA-A- Al S VL(A-A-A)| 110 + rar AL A Al
SIVLAl22 A - All g2 + VLAl 22 1A - All 212 + A
<A

For &4, we use Proposition 4.3 with p > 1 sufficiently close to 1 together with Holder inequality to get

||t—%54 PTEALA

Lo ~ ] [ LoLh ~ ”t LaLP*”t_l/2A||L°°L2v

ity (6.36), we have ||z Ip- 153||L?L§ < A3 m
By analyzing the expression of 8 and Co(F) := [V, D~YF, we have

Corollary 6.2. The following inequalities hold for any S-tangent tensor F,

| e DB F)| 0y 2 SNI(F) Ao, (6.41)

LYL2

|67a Co(F)|| uyr SNI(E3D7'F) (6.42)

LuLZ ~

where 4 < a < 00.

Proof. Using Codazzi equation (2.12),i.e. B=VA+A-A+ s~ 1A, we infer
DB F)=E1(F) + &(F).

Whence (6.41) follows from Proposition 6.6.
Similarly, using (6.4) we can write

Co(F)=E D 'FY+ &M 'Fy+ D7 'vD ! F.
For the last term, using Proposition 4.1, we infer

”t_l_‘l’D_IVD_IFHL;’LE S Ht_l_%D_IFHL;‘L; SNl(t_%D_lF)'

5 Using Proposition4.4 and Holder inequality, we can get the simple result

[Co) 12 SIFI L2024y (6.40)
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The desired estimate then follows from Proposition 6.6. O

Proof of Proposition 6.4. Combining Proposition 4.3, (6.42) and (6.18) we derive

SM(PD'R) S A2+ R

4D ot g5 € 115 CotRO g

as desired. O
6.3. L¢L2 estimates for D-'EC

For arbitrary S-tangent tensor field F', we denote by E lG either [V, Dl_l](,é, —0) - F or Err- F. In what follows,
we establish L;‘L% estimates for D' E IG, which are important for the Hodge-elliptic P° estimates involved in the
decomposition procedure in Section 6.5.

Proposition 6.7. Denote by D either Dy or D;, for appropriate S-tangent tensor fields F, the following estimates
hold

[== D= Err )| a0 S (43 + Ro)N(F) (6.43)

|4 D ([Vi, DTV ](5, =6) - F)| s S AcNi(F). (6.44)

L{L:
where Err is defined in (6.6) and 4 < a < oo.
In order to prove Proposition 6.7, we may use the error type terms introduced in Proposition 6.6 to rewrite (6.6) as
Err =D (s7'R) + £E1(A) + E2(A) + & + &a. (6.45)
We first assume the following lemma which will be used to treat the term &3.
Lemma 6.3. Let D denote one of the operators Dy, D> or *Dy. For appropriate S-tangent tensor fields W and F
there holds

1D W F)| 0y S [ A~W

L?L% L;’L)Z(NZ(F)’ (646)

where 0 < € < 1.

Proof of Proposition 6.7. (6.44) can be obtained by using Proposition 4.3 and (6.42) as follows,

|=a D (Co(R) - F)

o2 S ”t%_%CO(Ié)

Loz 1Pl rs SNLF) Ao,
In the same manner, we can easily check

|=a D (€1(A) - F)

Lo + oD (&) - F)

Loz + | e D&y - F)

2 S AINL(F).
Thus to prove (6.43), in view of (6.45), we only need to show

| e DY (D7 (' R) + &) - F) SN2(F) (45 + Ro).

LeL2 ~

Using Proposition 4.3, we infer

< ||[—%—$Dl—11é.F G F

el el
[k 1(DllR'F)”L;'L}N

L S |Dr 'R ezl

L{L3
SNI(DTR)NI(F).
Using Lemma 6.3 and Proposition 6.6, we derive
1l L1l ¢
[7e D7 P popa S 12700 7 ATE | a2 Na(F) S AGN(F).

The proof is thus complete. O
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Proof of Lemma 6.3. We will show (6.46) by using GLP decomposition. For simplicity, we ignore the low frequency
terms. Note that D~Y(W - F) = Zk’n <7 P.D~Y (W, - F). After dropping the low frequency terms, we consider the
following terms

1= |BD'Wa-P)] 2. =) [PD'(Wa-F) 5.
O<k<n ' 0<n<k

By using Lemma 4.2, Proposition 4.1 and the finite band property we have
|PcD~ (W, - F) ||L§ <27 DT (AW, - F) ||L§
S27(|2 D div(VW, - F)|| 2+ |t2PD~ (VW, - VF) UL%)
<SP ([AVW - F L+ 252K v, V] ).
Then by the finite band property and (3.11) we obtain with - + 3 = £ and 1 < p <4/3
[P~ W P2 S 272 27 3 W | o |2 F
L A A P e
Summing over 0 < k < n, we conclude for 0 < € < 1, |
TSI A= Wi ([ F | o + |77 VF] ).
Taking L! norm of 7, noting [~ VF| Looppe SNa(F) and using (3.11), we infer

Il SNa(F) 137 € A~ W (6.47)

Liry:
As to 11, by the finite band property and (3.11) we infer fork > n > 0
_ _ k.3 _1
| 2D~ W B 2 S27406Wa - Flla S22 Wa| o |72 F o
S22 W |
Summing over k > n > 0, then taking L,1 norm and using (3.11) we conclude for 0 <€ < 1,
3 ¢

e < 27 AT W o2 N2 (F).
Combine the estimates of I and 11, we get (6.46) as desired. O
6.4. L*L? estimates for Vi D~2R

We will establish the following result which will be used in the next subsection.

Proposition 6.8. The following estimate holds

2

|~ VLD 2R 4
where 4 < a < 00.

To prove Proposition 6.8, we will rely on the following estimate of D~! Fy, which will be justified at the end of
this subsection.®

6 By D! F}, we denote either Dz_lErr or *Dl_lffr.
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Proposition 6.9. For F1 = (Err, Iz:r/r) with Err and Err given by (6.6), there holds

< A%—I-Ro,

1
|¢=eD 1F1”L§’L§~

where 4 < a < o0.

Using Hodge-elliptic P° estimate (4.6), Proposition 6.9 and (6.8), we can obtain

Corollary 6.3. For Fy = (Err, Er?’) there holds

”V . D_lFl ”’PO < A% + Ro.
Now we will show Proposition 6.8 by assuming Proposition 6.9 first.

Proof of Proposition 6.8. In view of the formula
ViD2R=[Vy, DD 'R+ D[V, D 'R+ D2VR,
we only need to show
_1 17— 3
|e=#[v.. D']D lR”L?L% < Aj+Ro,

|e=eD [V, DR

< A2
L?L%NA0+R0’

| D2V, R

2
Lar2 5 AO + Ro.

(6.48)

(6.49)

(6.50)
6.51)

(6.52)

By using the fact that N} (t2D—2R) < Na(D2R) < A%+ Ry, (6.50) follows from (6.42) with F =D~'R. (6.51)

was proved in Proposition 6.4. Thus it only remains to prove (6.52).
We first verify (6.52) for the case D2V R = Dz_lDl_l V5 (p,d).Itis clear that

VD 02 S 1092 2 Tl 0z + 1P VB2

Applying (6.40) to the commutator and applying (2.16) and Proposition 4.3 to the other term, we obtain

||VLD_1/3||L11L2 < A(% + Ro. Then by (6.48) and (6.39), we obtain

||t*%D*1(Err+/3)

2
L;IL)Z( S AO + RO

In view of the expression Err = Dl_l Vi (p, —&) — B, (6.52) is proved in this case.
Next, for the case R = é , we estimate the L% L2 norm of the term D=2V, é . Using

*D; 'V B = (p,0) +Err,
we obtain

|i=5D-29.5]

I R et 1-1
L?L}.SHI «Dj ((P»U)+Err)||L;’L§.+H’ "54HL;’L§‘
By Proposition 6.6, the second term is bounded by A(z). The first term is bounded by

4D Rl gy + 4D B

L{LY

It is bounded by A(z) + Ro by using the inequality ||z‘_%D_1 I§||L?L% <M (t%D_l Ié), (6.18) and (6.48). We conclude

1DV Bllar2 S Aj+Ro. O

We will rely on the following two results to prove Proposition 6.9.
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Lemma 6.4. Let D~ denote one of the operators D;l, D, Yor *Dfl. For any appropriate S-tangent tensor field G
there holds

DMK - G)] oy S KnMi(G)  with 4 <a < oo, (6.53)

where yy > 1/2 is close to %

Proof of Lemma 6.4. Set £2,,; := ;D! (I? - P,G), it suffices to prove
D o 12ullper2 S Ky Ni(G).

[,n>0

We first consider the case n > [ > 0, by (4.18) we have
12ull 2 STV PGl 2Ky, withy > 0.
Due to (5.5), we infer for y > yq that
1 1 v
12l a2 S 2" 727D NMIGAIK

Since y < % + al can be achieved when y > yp > % are sufficiently close to %, we obtain

> 12l o2 SNI(G)Ky.

n>l

Next, we consider the case 0 < n < [. Combine (4.12) with the fact that for S-tangent tensor fields F
| PDT AV F|| , S 25 F o,
we infer

—14y)l4n  — >
1821l 22 < 2y YIPuGli 2 Ky
Since y < % + al, following the same treatment as for the case n > [ we derive

S I2ullpegz £ 2T HFHETEN[GAIKyy SMIG)K,,. O
n<l n<l
Lemma 6.5. For S-tangent tensor fields G, the following estimate holds

I[Ve, Dy DG e S 1D G oy with p>2. (6:54)

Proof of Lemma 6.5. In this proof and the next one, we denote by D2 the operator DI_I*DI_I. In view of
[VL,D72]G = Co(*D;'G) + Dy ' Co(6),

it suffices to estimate [|Co(*D; 'G)| 1172 and ID; ! Co(G) |l 1112+ From (6.40) it follows
[P G)

|12 SIDT'G 20 (6.55)

Then we can obtain (6.54) by combining (6.55) with the following estimate

[P Co@ Nz SIMPC (6.:56)

Ly

where p > 2.
In order to prove (6.56), we use the commutation formula [V, V]p = x - Vg for scalar function to write

D' Co(G) =D ((A+s~HVv*D1G).
Noting that by Proposition 4.3 and Proposition 4.1,
D72V D O) e S DGl e
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it remains to estimate ||[D2(A - V*Dfl G|l L2 Clearly, we have the following identity.
D (A-V*D;{'G)=D?(V(A-*D;'G) — VA -*D;'G). (6.57)
The first term of (6.57) can be estimated by using Proposition 4.3 and Proposition 4.1 as follows
|D~*v(A-*D;'G)

||IA'*D1_1G”L}L§ S Al 2

~

”L,' L2 N t*Dl_lG ”L,ZL,‘Z

S A'PriG]

Ly

where % + # = % and p is close to 2. To derive the last inequality, we employed Sobolev inequality [|A|| 2L <
IVAllL22 + Ilt_lAllLtng < Ao.
Using Proposition 4.3, we infer

”D;“Dfl (VA '*DIIG) ” I S thi%*plilG ’ VAH L} LYY S AOH*DTIG”L?L?

where % + % = ﬁ and px is close to 1. Thus (6.56) is proved. O

Now we are ready to prove Proposition 6.9.

Proof of Proposition 6.9. By letting F =1 in (6.43), we can obtain ||t’£D2_ 1ErrII Le12 < A(z) + Ro. Thus we only

need to consider Dl_lErr.

Recall that
Err="D{'(s7'B+A-(VA+A-A+s'A)+*D{' (¢ - p— o + V- B). (6.58)
By Proposition 6.6, we have
[maD2(A (VA+ 1 A+ A A))] 00 SA3 withd <a<oo, (6.59)

which allows us to renormalize the curvature terms p, o and $. It remains to estimate the following three terms:

U=|aD2¢ - p) V=i D2(e*5) W= aD2(VB)

Lyl LiLy LiLy:

By (2.13), clearly & = curl ¢. Thus we obtain V = [|1~a D~1&(¢) lpar2 SM ()2
Now we consider the term /. By (2.15), we have ’

US a2 (K +r2=572) 1)

Lozt ”t_éD_Z(A (A-A+17'4))

Loz (6.60)

By using (6.59) the second term on the right-hand side of (6.60) can be bounded by A%. Due to (6.53), Proposition 3.1

and Proposition 4.1, the first term can be bounded by (I? v + A0)N1(¢), whence U < A(z) follows.
To estimate W, using (6.39), it suffices to show

|VLD2(VB) ||L}L% < A3+ Ro. 6.61)
Note that
[ViD2 VB 12 < IPZVLOV B 112 + 1 [Ve DTNV gy = W1+ W
First, by (6.54) and (6.39), we can estimate YV, as follows
We S I VB a1z SWVBIz + [ DT (VA 1212 S A0R0,

where we employed Proposition 4.3 to obtain the last inequality.
It remains to prove W) = ”D_ZVL(VE)”L}LZ, < A(z) + Ryo. Set

WO = D2V Bl W= D2V -V e
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clearly Wy < WP 4+ W@
By (6.38), we infer

| Y .
Wl( ) S ”tvLV ’ é”L,”L;, S ”é”L%L} ”tVLV”L,”L}‘
According 0 (2.6), VLV ~ A+1A- A by (6.13), [1VLV |25 S Ao. Thus W < AgRy.
Finally, using (6.2) we deduce '
2 —1x— * — — nd —1l*~N— 5
WP S [Py D (V- Do, )|y + [T DTV Ry + [DTIDT(V (A R) e (662)
The last term on the right-hand side of (6.62), in view of (6.38), can be bounded by
IV - ARl e SV - All 2o 2[RI 20 S AF + Ro.

The second term can be treated similarly. At last, we estimate the first term on the right-hand side of (6.62) with the
help of the formula

*Dl(V(p, 0)) =V*Di(p,0) — pVV + (cVV)*. (6.63)
Using (6.38), we obtain
D7D ¥V + @IV s S W0V gy + [TV ey
SRolIVV Il .2 S Rodo.
Combined with
[P D7 D1V (9. 00) g2 % 11V (0,002 5 AR
which is obtained by Proposition 4.3, we conclude

[P D (V*Dip, ) 1,2 S A0Ro.

Therefore, Wl(z) < A(z) + Ro. We complete the proof of Proposition 6.9. O

6.5. Decomposition and correction estimates for Cz(Ié) and C3 (é).

In this section we vvvill prove Proposition 6.2. To this end, according to Proposition 6.1, it remains to consider the
“bad” terms B - D72R and V - D~'(B - D~2R). We establish the following result which, together with (6.19) and
Proposition 6.8, immediately completes the proof of Proposition 6.2.

Theorem 6.1. Assume that F is an S-tangent tensor field of appropriate order on H verifying Np(F) < oo and
||t*£VLF||L;4L% < 00 with 4 < a < 0o. Then we have

(1) There exists a 1-form Eq such that’
B=V.-D 'R+ Ey with |Eollpo < A3+ Ro. (6.64)

(ii) There exists a decomposition - F =V P + E, where P and E are tensor fields of the same type as B - F with
the estimates

1
Ni1(P) S AoN2(F), IEllpo S Ag - (N2(F) + 17 a VL Fllpap2). (6.65)
(iii) There exist tensors P and E verifying (6.65) so that
V.-DYB-F)=V,P+E. (6.66)

7 In Theorem 6.1 and the following proofs, R=(p,—&) and CO(Ié) =[VL, D?l](ﬁ, —0&), since the other case in our convention will not come
up here.
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Proof. In view of (6.6), we have
B=V. -D 'R+ Co(R)+ Err. (6.67)

This proves (i) by noting that Eg := Err + Co(Ié) satisfies || Egllpo S A% + Ry in view of (6.8) and (6.9).
Now we prove (ii). We have from (6.67) that

B-F=(ViDy'R+Err+Co(R))-F=V (D;'R-F)+EE + Ef,
where

Efg = —Dl_llé -V F and ElG = (Err+ Co(Ié)) - F.
By (5.2), (6.9) and (6.8) we obtain

|EF | po S Na(F)(IErrllpo + [ICo(R)llpo) S AoNa(F).
By (5.1) and (6.18) we have

[E | po SM @ B (|7 VLF | g2 + 12V VL] 12,2)

< (Ro+ A3)(Na(F) + |17 VL F ). (6.68)
Now we set
Pi:=D;'R-F and E,:=Ef+EF, (6.69)
from the above estimates we have
1E1po S AoWa(F) + |5 VLF | 0).

In order to estimate N1 (Py), let us estimate || E1 || 12 first. By using Holder’s inequality and Sobolev inequalities,
we can obtain

|EP|| oy = ID7'R-VLF| 12 1D~ Rll oo g4 IVLF Il 21

<
(H) ~
SNOTR(IVILF 2y + [17TVLF] 120,

and by using ||E1G||L2(H) < ||E1G||po we can obtain ||E1G||L2(H) < AgN2(F). Therefore

I E1 ”LZ(H) S AgN2(F). (6.70)
Now we show
Ni(P)) SN2 (F) (Ao + Ro). (6.71)

With the help of Vi P| = - F — E| and (6.70) we can estimate ||V P; ||L,2L2 as follows
VL P ”L,ZL% 5 8- F”L%L% + [ E ”Lzsz ,S (Ro + AO)NZ(F)-

Similar to [9, Section 6.12], we get ||V P; ||L3Lz < (A% + Ro)N2(F). Therefore (ii) is proved.
Finally we prove (iii) by using the iteration procedure in [9, Section 6.12]. Let Py := DF, then we can apply (ii) to
construct iteratively two sequences of S-tangent tensor fields {#;} and {E;} such that

B-D'P_=V.P +E; (6.72)
and

NM(P) < CANL(D ' Piy),

I1Eillpo < CAo(N2(D™'Pisy) + ||t_%VLD_1Pi—1|

Lor):
Such P; and E; can be constructed as in the proof of (ii), in particular, P; and E; are given by (6.69).
By using Lemma 4.1 it is easy to see that

Ni(Po) < (CA) N (D™ Py) = (C A0 N (F). (6.73)

Moreover we have
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Proposition 6.10. For {P;}72 | and {E;}72 | there hold

|imav, D' By 1912 S Ao(N2(D7! Pet) + | VLD P | Lor2) (6.74)

| V- D™ Ex]l po S I1Eklpo + Ao(N2 (D™ Pect) + | VLD ™" Pect | a2 (6.75)
We will prove this result at the end of this section. We observe that (6.74) and Lemma 4.1 clearly imply

1Exllpo < (C AN (Na(F) + | a VL F|| Lag2)- (6.76)

We note that
V. D_l(ﬂ D'P)=V- D™V Peg1 + Exs1)
=Vi(V-D ' Peyt) + [V D VL] Pyt + V- D7 By
=V (V-D ' Pes1) +B-D ' Ps1 + VD (B- D7 Pry)
+ [VL, V. D_l]ng+l +V. D_lEk_H
where, for any appropriate S-tangent tensor field F,
-1 —1 -1
[VL. VD], F=[VL, VD" F+V-[V., D] F.
This together with the definition of P, and Ej implies
VDB F)=ViP+V-D (VL P + Ey,
where
Pe=V-D NP+ 4+ P_)+ Pyt + Pr.
Ex=[V- D" Vi],(Pr+-+ Po) +V DN (E1+-+ E) + Ex+---+ Ey.
It follows from (6.73), (6.75), (6.76) and (6.22) that
Ni(Pe = P))<Na(F) D (CA)™ S AoNa(F),

JH1<m<k

and

IEx — Ejllpo < (Na(F) + |14 VL F|

L;’L?;) Z (C40)"

JHI<m<k

< Ag(Na(F) + |e=a VL F

Lo2)
Therefore { P} forms a Cauchy sequence relative to the norm A7 (-), while {E}} forms a Cauchy sequence relative to
the P norm. Denote by P and E their corresponding limits, we have
Ni(P) S ANa(F) and (| Ellpo S Ao(Na(F) + 1= VL F ).
We also observe that for sufficiently small Ag,
VDB F) = VL P~ Er] 22 = |V - DN YLPO | 122 S NI(PO).
Letting k — 400, we get

VDB F) = VLP — E[ 2, =0.

2=
Hence VD~!(B - F) = V, P + E. This completes the proof of (iii).
Now we conclude this section by proving Proposition 6.10. We first prove (6.75). By using (4.6) we have

q 1—q
L;IL)Z{ “ Ek ”LZ(H) 5

|VD™ Ex] po S I1Ek]Ipo + 40| D" Ex
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where 4 <a < oo and 1 > g > yp. Thus it suffices to show for 4 < a < oo that

174D En] 010 S A0(WNa(D™" Pict) + | V2D Picy (©77)

L{ L)%)‘
By the construction of P, and Ey, it suffices to show it for k = 1. To this end, in view of E; = E IG + EB, we can
complete the proof by using Proposition 6.7 and the estimate

Sl

IR

L?Li/3 S ||,D1_11\é”LTOOL¢ ”VLF”L;IL%
< (A3 +Ro)IVLF |l a2

which follows from Proposition 4.3 and Holder inequality.
In order to prove (6.74), we first note that

|e=ev. D Py

< 4 1 -1 1
per2 SN[V DT Pl ez + 11t e DT VL Pl g2 (6.78)
By using (6.42), the first term on the right-hand side of (6.78) can be estimated as
_1 I R | 1 1
|2 ”CO(Pk)HLm SN 2D ) SN2 (12D ) SN(Po),
while by using (6.72), (6.77) and (6.41), the second term can be estimated as

| oD v, Py

LOL2 S ”t_ép_l(ﬂ D™ Py — Ek)

Le12
S Ht_"lD_l(ﬂ ‘D_IPkfl)HL;IL; + Ht_%p_lEkHL;’LE
S A N2(D7 Pey) + |V DT Py

L;‘L%)'

Therefore (6.74) is proved. O
7. Proof of main result, Theorem 1.1

In this section, we prove the main result, Theorem 1.1, based on the bootstrap principle. In addition to (BA1) and
(BA2), we also make the following auxiliary bootstrap assumption

IA - Allpo < A2

In order to complete the proof of Theorem 1.1, it suffices to show that all the inequalities in (BA1), (BA2) and (BA3)
still hold with Ag replaced by Ap/2 when 0 < Rg < Ay are sufficiently small.

7.1. Estimates for tr x and X
Step 1. Recall (2.6) and Proposition 2.1, for V :=trxy — % we have

2 1
VLV=——V—§V2—|)2|2 and V =0(s)ass — 0. (7.1)
S

Integrate the equation along any null geodesic and using (BA1), we obtain

o2
r _— =
X t

5112 2 2
SIRE e + VI o S A3 (7.2)
L?OLZO w ~t w ~t

Moreover, by using (BA1), (3.11) and the Holder inequality, we also get from (7.1) that
IVLV Iz S WVilzee + 1V 20 +11Z P20 < A5 (13)
Step 2. Estimates for V tr x. First we have from (5.2) that
B=D;'L(p,~6)+ Fi with Fj=Err.
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This together with (2.12) gives
X=-D;'D7'VL(p, )+ D P 4+D (Ve x +A- A+5s71g).
Set D2 = D, lDl_l and Dl = D, 1, we obtain after taking covariant derivatives
Vi=-V.- D2V, (R)+F+V-D M, (7.4)

where F=V - DY (Fi+A-A+s7'¢)and M =Viry.
We claim that

IFllpo S A3+ Ro. (1.5)

Indeed, by (6.49), Theorem 4.1, the non-sharp product estimate, Propositions 6.6, 4.1, (3.11) and the bootstrap as-
sumptions we have

IFllpo < lls~ " Ellpo + A5 + Ro.
It remains to estimate ||s~'¢ [l po. In view of (1.2) and (2.13), we have the Hodge system

divi=—p—p+1¢ cull=¢. (7.6)
Thus it follows from Proposition 4.1 that

Is™ ¢ llpo SUVEN2ery + 1 6 2y S Nl 2ergy + RN 230y + 1A - All 2y

<Nl g2 + A + Ro. (7.7)

In order to estimate ||l 127, we use (2.20), which symbolically can be written as

d

3 . ~ 1. _
—u+-u=x-V®;+-R+A-R.
ds K s

Using limg_,¢ s« = 0 given in Proposition 2.1, and integrating the above equation in s, we derive

t
Il 2 S ||t_2fs3(A -VA+sT'R+A-R) dsli2p2
0
SHE(A-VA+A-R) 20 + IRl 2
fs “A“LQO)OL%”VA”L%L% + ”Ié”Lz(’H) + ”A”LgOLtz”R“LZ(’H) SJ A(z) + Ro.

Therefore ||s—'& lpo < A(Z) + Ro, and the claim (7.5) is proved.
Now we come back to (7.4). By using the notations in (6.5), we can write

V-D2VL(R) = VL(V-D2R) + C(R)

where, by Proposition 6.2, there exist tensors P’ and E’ so that C(R) = V. P’ + E’ and N|(P') + IE |l po S A(z).
Thus (7.4) becomes

Vi{=V.P+V-D'M+E (7.8)
where P =V -D 2R+ P’ and E = F + E’, both of which satisfy, by using Corollary 6.19 and (7.5),
Ni(P) + | Ellpo S A+ Ro.
By combining (7.8) with (2.8) we obtain
3 3
ViM+=M=A-(V.P+V -D'M+E)- SV M.
S
Since Proposition 2.1 implies limg_,o s M = 0, we can apply Theorem 5.1, Theorem 5.2, (BA1) and (7.10) to obtain
IMlgo S (NM(P)+ IV =D M|l po + | Ellpo + AF) (N1 (A) + IIAIILZchz)
< Ao(IIV - D' Mllpo + Af + Ro). (7.9)
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Thus we need to estimate ||V - Yo M || po. To this end, using limg_,o s M = 0 we derive from (2.8) that
t
13 f s’A-VAds
0

2
IMllp < SIVA-Allapr < A3,

L3LF®

while, by Proposition 4.3 we have
-1 2
1D~ Moz SNeMIlLers S IM I 20 S A3

Therefore we infer from Theorem 4.1 that

IV-D'M|lpo < IM|lpo + A (7.10)
Since || M||po S | M| go, we obtain from (7.9) and (7.10) that
IMligo S Ao(IM g0 + AF + Ro). (7.11)

Using the smallness of Ag we get
IMllg0 + I MIlpo + IV - D' M|l po S Af + Ro. (7.12)
From the above argument, by setting E = E + V - D' M we obtain from (7.8) the decomposition
Vi=VLP+E and Ni(P)+|Ellpo < Af+ Ro. (7.13)

Step 3. Estimates for N1(%) and || % ||L00Ltz. In order to estimate N7 (}), we first use Proposition 4.1 and (2.12) to
get

”t_l)%”[‘?L)Zr + ”VX”L%L% 5 ”IB”L,ZL)Z( + ”VtrX”L[ZL)Z( +1A- A”L?L% + ”t_l{”L?L%
SRo+ 4G
We then use (2.7) to obtain

IVeR 22 SIV - Rlg2z + 167 Rl 22 +Ro S A3+ Ro.

Therefore
Ni(R) SRo+ A (7.14)
Using Theorem 5.4, (7.13) and (7.14) we have
102 SNIGD) +M(P) + 1| Ellpo S Af+ Rao. (7.15)

In view of (7.2), (7.3), (7.12), (7.14) and (7.15), we verify for small R that the bootstrap assumptions (BA1) for
tr x and ¥ hold true with Ag replaced by Ag/2.

7.2. Estimates for pu and V¢
We first decompose V¢ as we did for V x. By using (7.6) and (2.19) we derive symbolically that
|
¢=D;' D! (vug + §R0> +D; T F =D (1, 0) + DA - A).

where J is the involution (p,0) = (—p,0), Ry =B and F1 = Erris given by (6.6). Set D2 = D]_1 -J ~*D1_1 and
Dl = Dl_l, by using (6.5) we get
‘ . 1
Vi=V.(V-D?B)+C(R)+V -D'M+F+-VD’Ry
- S

where M = (11,0) and F =V - D~ (F{ + A - A). By (7.5) we have IFllpo < A% + Ryo. In view of Proposition 6.2,
we can write V¢, for some tensors P and E, in the form

Ve=V.P+V-D'M+E with N{(P)+I|E|p, < A+ Ro. (7.16)
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Using (2.20) we see that M satisfies

d
MM =A (VLP+V DM+ E)+57 4V A (A A+ M),
N N

While by using (6.2), (BA3), and noting that ||[VL,*Df1]I§||7>o < A(z) + Ro, we can find two tensors p’ :=* Dfl
and ¢’ such that

B
(5,6)=VLp' +¢  with Ni(p)+ € lpo < A2 + Ro.

(7.17)
Thus there exist two tensors P and E such that

- 1 -~
VIM+=M=A-ViP+~(Vpp'+e)+A-(V-D'M+E). (7.18)
S S
with

Ni(P)SRo+ 4% and | Elpo SRo+ A+ IM|lpo.
We first claim that

! t
1 1
t—3fs2VLp’ds t—S/sze/ds
0 0

Indeed, for the first term in 7.19, we recall that p’ =* Dl_l é , then

k]

< A%+ Ro.
PO 0

(7.19)
lim [ls™ p'll gy SNi(P) S A5+ Ro, s~ p'llpo SNi(p) S Ro+ A5 (7.20)
N d 5

Applying Proposition 3.4 to the first term in (7.19), with the help of (7.20) we derive

t
S
k>0

t

1 2 /
Ekt_Z/s Viop'ds
0

1
p / s>V p'ds

0

t
1
p / s>V p'ds
0

t

Ekt_2/sp’ds

o

+
PO

L7L, L7L;,

+

<3| - )
k>0

s—0

LiL,

} + ”VLP/”L,ZLE

L7L3
t

1 /
po) sEpp'ds

0

SO MED 22+

k>0

k>0

. —1 /

+hm [[s™ p'llgo +IVLp Nl 2,2
s—0 2,1 tr

L212

t~w

SIT P o +1VLp g2z + lim s~ p'll gy < Ro+ 45,
The second term in (7.19) can be estimated similarly.

By the definition of u, Proposition 4.3 and Proposition 6.6, we have for 4 < a < oo,

1D wllperz S|P G+ A-A+divO) | o
SNIDTR) + N1 (©) + 11£E4ll a2 S A + Ro.

Thus, in view of (4.6), ||V - D_1M||7;0 SIIM |l po + A(z) + Ro. Now we can apply Proposition 5.2 to (7.18) to get
IMllpo S (1Ml po + A+ Ro) Ao + Af + Ro.
Since Rg < Ag < 1/2, we conclude that

IM o, IV - D~ M|l po, Ml 20y S A§+Ro. (7.21)
Following the same manner as above, we can get
1"l go S AG + Ro.

(7.22)
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Using (2.20) and noting s — 0 as s — 0, we can easily get

e 2 M| 2o S Ro + AG.

Similar to the estimates for Nj(¥) and || X ||L&er, we may use (2.9), (7.7) and (7.16) to derive that

Ni©) + ¢l g2 S Ro + 43,

(7.23)

(7.24)

In view of (7.21)—(7.24) we verify for small R that the bootstrap assumptions (BA1) and (BA2) for ¢ and w hold

true with Ag replaced by Ag/2.
7.3. Estimates for try and X
It follows from (2.10) that
d 1 1 1 .
—V+-V=—V.V4+2u+-V +4p.
ds s 2 s

Recall that limg_,9 sV (s, @) = 0 given in Proposition 2.1, we infer

1Vl S

t
1 1
;/S{V~Z+,5+M+—V}ds
S
0

2
L7L,

v 2
SV Vi + 168l + 1V + il 22 < A3+ Ro

and

—1/2
12Vl 2 S

t
1 . 1
0

L3Lfe

5 2V - Z”LIZLZ} + ||'5||L%Ltz + ”V”Ltng) + ”/’L”L%L%

(7.25)

Recall also the decomposition (7.17), we may use Proposition 3.4 and (BA3), ignoring the low frequency terms, to

get
L
Ek?/V—i—su—i—sV-K—i—s(VLp’—i—e/)ds
0

-1
1t Vilpo £

k>0

St P o + 1€ llpo + 11tV ilpo + 1V - VIIpo + [l ellpo

< A3+ Ryo.
Similarly we can obtain
1712V I go < Af + Ro.
From (7.25) it is easy to see
IVLY 2y S AG + Ro-

Using (2.11) we can derive

12 %210 SUVEN 2y + 18l o2 + 1A - All 2z + 117 All 2y S AG + Ro,
16~ R 20y SNV 20y + U o2 + 1A - All 2rgy + 117 All 23y S A+ Ro

and

IVL Rl 200y S A5 + Ro-
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In order to derive the Besov norms of X , we employ (7.16) to (2.11) to get
.1, 1 . . 2, ~
VLK"‘;K:_(VLP‘*‘E)_E K'X+V'&—;X +I®¢. (7.26)

With the help of limy—.o |X| = O given by Proposition 2.1, integrating the above equation in s, and using Proposi-
tion 3.4 and Lemma 3.3, we obtain

|72 2] S 1A~ Ao + 1™ Rllgo + 1 ElLgo + 11~ Pllgo + 1 2Pl g,
< A2+ Ro.
Similarly, we can obtain
It~ R llpo S AF + Ro.

The above argument shows that for small R the bootstrap assumptions (BA2) for tr X and X hold true with Ag
replaced by Ag/2.
It remains to show the justification of (BA3). By following the argument in [9, p. 524] we can obtain

1
IA - Allpo S AY+ AgRo < gAé,

provided that Ry is sufficiently small relative to Ag. We omit the details.
The proof of Theorem 1.1 is therefore complete.

Acknowledgements

This paper is a part of the author’s thesis in Princeton University. The author would like to thank her thesis advisor
Professor Sergiu Klainerman for his guidance and constant encouragement. The author also thanks Professor Igor
Rodnianski for his invaluable comments to her thesis.

References

[1] Y. Choquet-Bruhat, Théoreme d’existence pour certains systemes d’équations aux dérivées partielles nonlinéaires, Acta Math. 88 (1952)
141-225.
[2] D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, Princeton,
1993.
[3] S.W. Hawking, G.ER. Ellis, The Large Scale Structure of Space—Time, Cambridge Monographs on Mathematical Physics, 1973.
[4] S. Klainerman, N. Francesco, The Evolution Problem in General Relativity, Birkhduser, 2003.
[5] S. Klainerman, M. Machedon, Space—time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993)
1221-1268.
[6] S. Klainerman, I. Rodnianski, Unpublished notes, 2003.
[7] S. Klainerman, I. Rodnianski, Rough solutions to the Einstein vacuum equations, Ann. of Math. 161 (2005) 1143-1193.
[8] S. Klainerman, I. Rodnianski, The causal structure of microlocalized rough Einstein metrics, Ann. of Math. 161 (2005) 1195-1243.
[9] S. Klainerman, I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (3) (2005) 437-
529.
[10] S. Klainerman, I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differential Equations 2 (2005) 279-291.
[11] S. Klainerman, I. Rodnianski, Sharp Trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct.
Anal. 16 (1) (2006) 164-229.
[12] S. Klainerman, I. Rodnianski, A geometric Littlewood—Paley theory, Geom. Funct. Anal. 16 (1) (2006) 126-163.
[13] S. Klainerman, I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., to appear.
[14] S. Klainerman, I. Rodnianski, A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differential Equa-
tions 4 (3) (2007) 401-433.
[15] S. Klainerman, I. Rodnianski, On the breakdown criterion in general relativity, http://arXiv:0801.1709.
[16] E. Poisson, The motion of point particles in curved spacetimes, www.livingreviews.org/lrr-2004-6.
[17] E.M. Stein, Topics in Harmonic Analysis Related to the Littlewood—Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton Univer-
sity Press, 1970.
[18] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy,
Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, Monographs in Harmonic Analysis III.



328 Q. Wang / Ann. 1. H. Poincaré — AN 26 (2009) 285-328

[19] T. Tao, Harmonic analysis in the phase plane, Lecture notes 254 A, http://www.math.ucla.edu/~tao.

[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995.
[21] R.M. Wald, General Relativity, University of Chicago Press, 1984.

[22] Q. Wang, Causal geometry of Einstein-vacuum spacetimes, Ph.D thesis of Princeton University, 2006.



	On the geometry of null cones in Einstein-vacuum spacetimes
	Introduction
	Structure equations and initial data
	The bootstrap assumptions
	A preliminary bootstrap assumption
	The full set of bootstrap assumptions

	Elliptic estimates of Hodge operators on H
	L2 estimates for Hodge operators
	Elliptic Psigma estimates of Hodge operators on H

	Product estimates in Besov norms
	Non-sharp product estimates
	Transport product estimates

	Error estimates
	Proof of Proposition 6.1: Part I
	Proof of Proposition 6.1: Part II
	Lta Lx2 estimates for D-1E1G
	Lta Lx2 estimates for L D-2R
	Decomposition and correction estimates for C2(R) and C3(R).

	Proof of main result, Theorem 1.1
	Estimates for trchi and chi
	Estimates for µ and zeta
	Estimates for trchi and chi

	Acknowledgements
	References


