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Abstract

We prove approximate controllability of the bilinear Schrödinger equation in the case in which the uncontrolled Hamiltonian
has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in
which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin
approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented:
the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials.
© 2008

Résumé

Nous montrons la contrôlabilité approchée de l’équation de Schrödinger bilinéaire dans le cas où l’hamiltonien non contrôlé a
un spectre discret et non-résonnant. Les résultats obtenus sont valables que le domaine soit borné ou non, et que le potentiel de
contrôle soit borné ou non. La preuve repose sur des méthodes de dimension finie appliquées aux approximations de Galerkyn du
système. Ces méthodes permettent en plus d’obtenir des résultats de contrôlabilité des matrices de densité. Deux exemples sont
présentés, l’oscillateur harmonique et le puits de potentiel en dimension trois, munis de potentiels de contrôle adéquats.
© 2008
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1. Introduction

In this paper we study the controllability of the bilinear Schrödinger equation. Its importance is due to applications
to modern technologies such as Nuclear Magnetic Resonance, laser spectroscopy, and quantum information science
(see for instance [22,29,31,38]).
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Many controllability results are available when the state space is finite dimensional, e.g., for spin systems or for
molecular dynamics when one neglects interactions with highly excited levels (see for instance [8,19]). When the state
space is infinite-dimensional the controllability problem appears to be much more intricate. Some results are available
when the control is the value of the wave function on some portion of the boundary or in some internal region of the
domain (see [41] and references therein and the recent paper [39]).

However, from the point of view of applications the case in which the control appears in the Hamiltonian as an
external field is much more interesting, since the wave function is not directly accessible in experiments and because
of the postulate of collapse of the wave function. For instance, in nuclear magnetic resonance the control is a magnetic
field, in laser spectroscopy and in many applications of photochemistry the control is a laser or a source of light.

In this paper we consider the controllability problem for the following bilinear system representing the Schrödinger
equation driven by one external field

i
dψ

dt
(t) = (H0 + u(t)H1

)
ψ(t). (1.1)

Here the wave function ψ evolves in an infinite-dimensional Hilbert space, H0 is a self-adjoint operator called drift
Hamiltonian (i.e. the Hamiltonian responsible for the evolution when the external field is not active), u(t) is a scalar
control function, and H1 is a self-adjoint operator describing the interrelation between the system and the external
field.

The reference case is the one in which the Hilbert space is L2(Ω) where Ω is either Rd or a bounded domain
of Rd , and Eq. (1.1) reads

i
∂ψ

∂t
(t, x) = (−� + V (x) + u(t)W(x)

)
ψ(t, x), (1.2)

where � is the Laplacian (with Dirichlet boundary condition in the case in which Ω is bounded) and V and W are
suitably regular functions defined on Ω . However the setting of the paper covers more general cases (for instance Ω

can be a Riemannian manifold and � the corresponding Laplace–Beltrami operator). Let us stress that the proposed
approach allows to handle both cases where the control potential (i.e. H1 in (1.1) or W in (1.2)) is bounded or
unbounded. Notice that in many situations the control potential happens to be unbounded. For instance if Ω = Rd and
the controlled external force depends on time, but is constant in space, then W is linear and hence unbounded.

Besides the fact that one cannot expect exact controllability on the whole Hilbert sphere (see [10,40]) and some neg-
ative result (in particular [28,36]) only few approximate controllability results are available and concern mainly special
situations. It should be mentioned, however, that several results on efficient steering of the Schrödinger equation with-
out any controllability assumptions are available, e.g. [11,14,23]. (For optimal control results for finite dimensional
quantum systems see, for instance, [15–17,26].)

In [12,13] Beauchard and Coron study the controllability of a quantum particle in a 1D potential well with
W(x) = x. Their results are highly non-trivial and are based on Coron’s return method (see [18]) and Nash–Moser’s
theorem. In particular, they prove that the system is exactly controllable in the unit sphere of the Sobolev space H 7

(implying in particular approximate controllability in L2). One of the most interesting corollaries of this result is exact
controllability between eigenstates.

A different result is given in [1], where adiabatic methods are used to prove approximate controllability for systems
having conical eigenvalue crossings in the space of controls.

Another controllability result has been proved by Mirrahimi in [27] using Strichartz estimates and concerns ap-
proximate controllability for a certain class of systems such that Ω = Rd and whose drift Hamiltonian has mixed
spectrum (discrete and continuous).

The aim of the present paper is to prove a general approximate controllability result for a large class of systems for
which the drift Hamiltonian H0 has discrete spectrum. Our main assumptions are that the spectrum of H0 satisfies a
non-resonance condition and that H1 couples each pair of distinct eigenstates of H0. Such assumptions happen to be
generic in a suitable sense, as it will be discussed in a forthcoming paper.

We then apply the approximate controllability result to two classical examples, namely the harmonic oscillator and
the 3D potential well, for suitable controlled potentials.

Our method is new in the framework of quantum control and relies on finite-dimensional techniques applied to the
Galerkin approximations. A difficult point is to deduce properties of the original infinite-dimensional system from
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its finite-dimensional approximations. For the Navier–Stokes equations this program was successfully conducted by
Agrachev and Sarychev in the seminal paper [5] (see also [3,35]).

A key ingredient of the proof is a time reparameterization that inverts the roles of H0 and H1 as drift and control
operator. This operation is crucial since it permits to exploit for the Galerkin approximation the techniques developed
in [2] for finite-dimensional systems on compact semisimple Lie groups. The passage from the controllability prop-
erties of the Galerkin approximations to those of the infinite-dimensional system heavily relies on the fact that the
dynamics preserve the Hilbert sphere.

A feature of our method is that the infinite-dimensional system inherits, in a suitable sense, controllability results for
the group of unitary transformations from those of the Galerkin approximations. This permits to extract controllability
properties for the density matrix. Let us stress that, as it happens in finite dimension, controllability properties for the
density matrix cannot in general be deduced from those of the wave function (see for instance [7]).

The paper is organized as follows. In Section 2 we present the general functional analysis setting and we state our
main result (Theorem 2.4) for the control system (1.1). In Section 3 we show how this result applies to the Schrödinger
equation (1.2) when Ω is both bounded or unbounded. Section 4 contains the proof of Theorem 2.4 and an estimate of
the minimum time for approximately steering the system between two given states, that holds even if the system itself
is not approximately controllable. In Section 5 we extend Theorem 2.4 to the controlled evolution of the density matrix
(Theorem 5.2). Finally in Section 6 we show how Theorems 2.4 and 5.2 can be applied to specific cases. In particular,
we show how to get controllability results even in cases in which V does not satisfy the required non-resonance
hypothesis, using perturbation arguments.

2. Mathematical framework and statement of the main result

Hereafter N denotes the set of strictly positive integers. Definition 2.1 below provides the abstract mathemati-
cal framework that will be used to formulate and prove the controllability results later applied to the Schrödinger
equation (1.2). The hypotheses under which (1.2) fits the abstract framework are discussed in Section 3.

Definition 2.1. Let H be a complex Hilbert space and U be a subset of R. Let A,B be two, possibly unbounded,
operators on H with values in H and denote by D(A) and D(B) their domains. The control system (A,B,U) is the
formal controlled equation

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t), u(t) ∈ U. (2.1)

We say that (A,B,U) is a skew-adjoint discrete-spectrum control system if the following conditions are satisfied:
(H1) A and B are skew-adjoint, (H2) there exists an orthonormal basis (φn)n∈N of H made of eigenvectors of A,
(H3) φn ∈ D(B) for every n ∈ N.

In order to give a meaning to the evolution equation (2.1), at least when u is constant, we should ensure that the
sum A + uB is well defined. The standard notion of sum of operators seen as quadratic forms (see [20]) is not always
applicable under the sole hypotheses (H1)–(H3). An adapted definition of A+uB can nevertheless be given as follows:
hypothesis (H3) guarantees that the sum A + uB is well defined on V = span{φn | n ∈ N}. Any skew-Hermitian
operator C :V → H admits a unique skew-adjoint extension E (C). We identify A + uB with E (A|V + uB|V ).

Let us notice that when A + uB is well defined as sum of quadratic forms and is skew-adjoint then the two
definitions of sum coincide. This happens in particular for the Schrödinger equation (1.2) in most physically significant
situations (see Section 3).

A crucial consequence of what precedes is that for every u ∈ U the skew-adjoint operator A+uB generates a group
of unitary transformations et(A+uB) :H → H . In particular, the unit sphere S of H satisfies et(A+uB)(S) = S for
every u ∈ U and every t � 0.

Due to the dependence of the domain D(A + uB) on u, the solutions of (2.1) cannot in general be defined in
classical (strong, mild or weak) sense. Let us mention that, in some relevant cases in which the spectrum of A has a
non-trivial continuous component the solution can be defined as in [30,34] by means of Strichartz estimates.
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We will say that the solution of (2.1) with initial condition ψ0 ∈ H and corresponding to the piecewise constant
control u : [0, T ] → U is the curve t �→ ψ(t) defined by

ψ(t) = e(t−∑j−1
l=1 tl )(A+uj B)etj−1(A+uj−1B) · · · et1(A+u1B)(ψ0), (2.2)

where
∑j−1

l=1 tl � t <
∑j

l=1 tl and u(τ) = uj if
∑j−1

l=1 tl � τ <
∑j

l=1 tl . Notice that such a ψ(·) satisfies, for every
n ∈ N and almost every t ∈ [0, T ], the differential equation

d

dt

〈
ψ(t),φn

〉= −〈ψ(t),
(
A + u(t)B

)
φn

〉
. (2.3)

Remark 2.2. The notion of solution introduced above makes sense in very degenerate situations and can be enhanced
when B is bounded. Indeed, well-known results assert that in this case if u ∈ L1([0, T ],U) then there exists a unique
weak (and mild) solution ψ ∈ C([0, T ],H ) which coincides with the curve (2.2) when u is piecewise constant.
Moreover, if ψ0 ∈ D(A) and u ∈ C 1([0, T ],U) then ψ is differentiable and it is a strong solution of (2.1). (See [10]
and references therein.)

Definition 2.3. Let (A,B,U) be a skew-adjoint discrete-spectrum control system. We say that (A,B,U) is approxi-
mately controllable if for every ψ0,ψ1 ∈ S and every ε > 0 there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈ U such
that ∥∥ψ1 − etk(A+ukB) · · · et1(A+u1B)(ψ0)

∥∥< ε.

Let, for every n ∈ N, iλn denote the eigenvalue of A corresponding to φn (λn ∈ R). The main result of the paper is

Theorem 2.4. Let δ > 0 and (A,B, (0, δ)) be a skew-adjoint discrete-spectrum control system. If the elements of the
sequence (λn+1 − λn)n∈N are Q-linearly independent and if 〈Bφn,φn+1〉 �= 0 for every n ∈ N, then (A,B, (0, δ)) is
approximately controllable.

Recall that the elements of the sequence (λn+1 − λn)n∈N are said to be Q-linearly independent if for every N ∈ N
and (q1, . . . , qN) ∈ QN

� {0} one has
∑N

n=1 qn(λn+1 − λn) �= 0.
The condition 〈Bφn,φn+1〉 �= 0, preferred here for the easiness of its expression, can be replaced by a weaker one

(namely, (4.4)), as detailed in Remark 4.2.

3. Discrete-spectrum Schrödinger operators

The aim of this section is to recall some classical results on Schrödinger operators. In particular we list here,
among the numerous situations studied in the literature, some well-known sufficient conditions guaranteeing that the
controlled Schrödinger equation (1.2) satisfies the assumptions of Definition 2.1.

Theorem 3.1. (See [21, Theorem 1.2.2].) Let Ω be an open and bounded subset of Rd and V ∈ L∞(Ω,R). Then
−�+V , with Dirichlet boundary conditions, is a self-adjoint operator with compact resolvent. In particular −�+V

has discrete spectrum and admits a family of eigenfunctions in H 2(Ω,R) ∩ H 1
0 (Ω,R) which forms an orthonormal

basis of L2(Ω,C).

Theorem 3.2. (See [32, Theorems XIII.69 and XIII.70].) Let Ω = Rd and V ∈ L1
loc(R

d ,R) be bounded from below
and such that

lim|x|→∞V (x) = +∞.

Then −� + V , defined as a sum of quadratic forms, is a self-adjoint operator with compact resolvent. In particular
−� + V has discrete spectrum and admits a family of eigenfunctions in H 2(Rd ,R) which forms an orthonormal
basis of L2(Rd ,C). Moreover, for every eigenfunction φ of −� + V and for every a > 0, x �→ ea‖x‖φ(x) belongs to
L2(Rd ,C).
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In the following, we call controlled Schrödinger equation the partial differential equation

i
∂ψ

∂t
(t, x) = (−� + V + uW)ψ(t, x)

where ψ : I × Ω → C, Ω is an open subset of Rd , I is a subinterval of R and, in the case in which Ω is bounded,
ψ |I×∂Ω = 0. The correct functional analysis framework for this equation is specified below.

The following corollary, which is a straightforward consequence of the results recalled above, states that the as-
sumptions of Definition 2.1 are fulfilled by the operators appearing in the controlled Schrödinger equation under
natural hypotheses.

Corollary 3.3. Let Ω be an open subset of Rd , V,W be two real-valued functions defined on Ω , and U be a sub-
set of R. Assume either that (i) Ω is bounded, V,W belong to L∞(Ω,R) or that (ii) Ω = Rd , V,W belong to
L1

loc(R
d ,R), the growth of W at infinity is at most exponential and, for every u ∈ U , lim‖x‖→+∞(V (x) + uW(x)) =

+∞ and infx∈Rd (V (x)+uW(x)) > −∞. Let H be equal to L2(Ω,C) and D(A) be equal to H 2(Ω,C)∩H 1
0 (Ω,C)

in case (i) and to H 2(Ω,C) in case (ii). Let, moreover, A be the differential operator −i(−�+V ) and B be the mul-
tiplication operator −iW . Then (A,B,U) is a skew-adjoint discrete-spectrum control system, called the controlled
Schrödinger equation associated with Ω,V,W and U .

Since the controlled Schrödinger equation is a skew-adjoint discrete-spectrum control system, it makes sense to
apply Theorem 2.4 to it. The result is the following theorem.

Theorem 3.4. Let Ω,V,W and U satisfy one of the hypotheses (i) or (ii) of Corollary 3.3. Denote by (λk)k∈N the
sequence of eigenvalues of −� + V and by (φk)k∈N an orthonormal basis of L2(Ω,C) of corresponding real-valued
eigenfunctions. Assume, in addition to (i) or (ii), that U contains the interval (0, δ) for some δ > 0, that the elements
of (λk+1 − λk)k∈N are Q-linearly independent, and that

∫
Ω

W(x)φkφk+1 dx �= 0 for every k ∈ N. Then the controlled
Schrödinger equation associated with Ω,V,W and U is approximately controllable.

As stressed just after the statement of Theorem 2.4, the condition
∫
Ω

W(x)φkφk+1 dx �= 0 could be replaced by a
weaker one (see Remark 4.2).

4. Proof of Theorem 2.4

The proof of Theorem 2.4 is split in several steps. First, in Section 4.1 the controllability problem is transformed,
thanks to a time-reparameterization, into an equivalent one where A and B play the role of controlled dynamics and
drift, respectively. Then, in Section 4.2, we prove a controllability result for the Galerkin approximations of this equiv-
alent system. In Section 4.3 we show how to lift the controllability properties from a Galerkin approximation to an
higher-dimensional one. Section 4.4 makes the link between finite-dimensional and infinite-dimensional controllabil-
ity properties and completes the proof.

Finally, in Section 4.5, as a byproduct of the arguments of the proof, we get a lower bound on the minimum steering
time.

4.1. Time-reparameterization

First remark that, if u �= 0, et(A+uB) = etu((1/u)A+B). Theorem 2.4 is therefore equivalent to the following property:
if the elements of the sequence (λn+1 − λn)n∈N are Q-linearly independent and if 〈Bφn,φn+1〉 �= 0 for every n ∈ N,
then for every δ, ε > 0 and every ψ0,ψ1 ∈ S there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk > δ such that∥∥ψ1 − etk(ukA+B) · · · et1(u1A+B)(ψ0)

∥∥< ε. (4.1)

In other words, the system for which the roles of A and B as drift and controlled field are inverted, namely,

dψ

dt
(t) = u(t)Aψ(t) + Bψ(t), u(t) ∈ U, (4.2)

is approximately controllable provided that the control set U contains a half-line. The notion of solution of (4.2)
corresponding to a piecewise constant control function is defined as in (2.2).
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4.2. Controllability of the Galerkin approximations

Let, for every j, k ∈ N, bjk = 〈Bφj ,φk〉 and ajk = 〈Aφj ,φk〉 = iλj δjk . (Recall that λj ∈ R and {iλj | j ∈ N}
is the spectrum of A.) Define, for every n ∈ N, the two complex-valued n × n matrices A(n) = (ajk)1�j,k�n and
B(n) = (bjk)1�j,k�n. The Galerkin approximation of (4.2) at order n (with respect to the basis (φk)k∈N) is the finite-
dimensional control system

dx

dt
= uA(n)x + B(n)x, x ∈ Sn, u > δ, (Σn)

where Sn denotes the unit sphere of Cn. Notice that the system is well defined since, by construction, A(n) and B(n)

are skew-Hermitian matrices.
We say the (Σn) is controllable if for every x0, x1 ∈ Sn there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk > δ such

that

x1 = etk(ukA
(n)+B(n)) · · · et1(u1A

(n)+B(n))x0.

We recall that a n × n matrix C = (cjk)1�j,k�n is said to be connected if for every pair of indices j, k ∈ {1, . . . , n}
there exists a finite sequence r1, . . . , rl ∈ {1, . . . , n} such that cjr1cr1r2 · · · crl−1rl crlk �= 0. (In the literature connected
matrices are sometimes called einfach, or irreducible, or inseparable.) The following proposition is in the spirit of the
controllability results obtained in [2] and [40].

Proposition 4.1. Let A = (αjk)
n
j,k=1, B = (βjk)

n
j,k=1 be two skew-symmetric n × n matrices and assume that A is

diagonal and B is connected. Assume moreover that |αjj − αkk| �= |αll − αmm| if {j, k} �= {l,m}. Then the control
system (Σ): ẋ = uAx + Bx is controllable in Sn with piecewise constant controls u : R → U , provided that U

contains at least two points.

Proof. For every 1 � j, k � n let ejk be the n × n matrix whose entries are all equal to zero except the one at line j

and column k which is equal to 1.
Define for every p ∈ N the iterated matrices commutator Mp = adp

A
(B). (Recall the usual notation adX(Y ) =

[X,Y ] = XY − YX for the adjoint operator associated with X.) A simple induction on p shows that the matrix Mp

has the expression

Mp =
n∑

l,m=1

(αll − αmm)pβlmelm.

Fix two indices j �= k such that 1 � j, k � n and βjk �= 0. Since, by hypothesis, (αjj − αkk)
2 �= (αll − αmm)2 as

soon as {j, k} �= {l,m}, there exists some polynomial Pjk with real coefficients such that Pjk

(
(αjj − αkk)

2
)= 1 and

Pjk

(
(αll − αmm)2

)= 0 for all {l,m} �= {j, k}, 1 � l,m � n.

Let us define (ch)h as the coefficients of Pjk , i.e., Pjk(X) =∑d
h=0 chX

h. Define moreover the matrix Njk =∑d
h=0 chM2h. By construction Njk =∑n

l,m=1 βlmelmPjk((αll − αmm)2) = βjkejk − βjkekj . Therefore, the commuta-
tor [A,Njk] is equal to (αjj − αkk)(βjkejk + βjkekj ) and so the Lie algebra generated by A and B contains the two
elementary anti-Hermitian matrices Ejk = ejk − ekj and Fjk = i(ejk + ekj ).

Notice now that, for every 1 � j, k,h,m � n, ejkehm = δkhejm and therefore

[Ejk,Ekm] = Ejm + δkmEkj + δkjEmk,

[Ejk,Fjk] = 2i(ejj − ekk).

It follows from the definition of connected matrix and the relation [A,Ejk] = i(αkk − αjj )Fjk that the Lie algebra
generated by A and B contains the matrices Ejk , Fjk and i(ejj − ekk) for every j �= k. Therefore

su(n) ⊆ Lie(A,B). (4.3)

Fix x̄ ∈ Sn and consider the submersion P : SU(n) → Sn defined by P (g) = gx̄. Since

TP (g)(Sn) = P∗
(
Tg SU(n)

)= P∗
(
su(n)g

)= su(n)gx̄ = su(n)P (g),
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then the evaluation at x = P (g) of the Lie algebra generated by A and B contains the whole space Tx Sn. Since for
any u ∈ U and any t ∈ R the flow et(uA+B) : Sn → Sn is volume-preserving then (Σ) is controllable (see [4, Cor. 8.6,
Prop. 8.14, Th. 8.15]). �

The condition bj,j+1 �= 0 for every j ∈ N appearing in Theorem 2.4 clearly ensures that every matrix B(n) is
connected. Proposition 4.1, applied to A(n) = A and B(n) = B, implies therefore that (Σn) is controllable.

Remark 4.2. In the following we can replace the assumption that bj,j+1 �= 0 for every j ∈ N with the weaker one that
B(n) is frequently connected, that is,

∀j ∈ N, ∃k � j | B(k) is connected. (4.4)

Notice, as a partial counterpart, that if there exists a non-empty and proper subset Ξ of N such that for every j ∈ Ξ

and k ∈ N � Ξ the coefficient bjk is equal to zero (i.e., the infinite-dimensional matrix (blm)l,m∈N is non-connected)
then the control system (2.1) is not approximately controllable. Indeed, the subspace span{φk | k ∈ Ξ } is invariant for
the dynamics of A + uB for every u ∈ U and has non-trivial (invariant) orthogonal.

4.3. Approximate controllability in higher-dimensional projections

Fix δ, ε > 0 and ψ0,ψ1 ∈ S . For every n ∈ N, let Πn :H → H be the orthogonal projection on the space
span(φ1, . . . , φn) and Πn :H → Cn be the map that associates to an element of H the vector of its first n coor-
dinates with respect to the basis (φm)m∈N. Choose n such that∥∥ψj − Πn(ψj )

∥∥< ε for j = 0,1. (4.5)

Thanks to (4.4) we can assume, without loss of generality, that (Σn) is controllable. Let u : [0, T ] → (δ,∞) be the
piecewise constant control driving ξ0/‖ξ0‖ to ξ1/‖ξ1‖ where ξj = Πn(ψj ) for j = 0,1.

Let μ > 0 be a constant which will be chosen later small enough, depending on T , n, and ε. Notice that for every
j ∈ N the hypothesis that φj belongs to D(B) implies that the sequence (bjk)k∈N is in l2. It is therefore possible to
choose N � n such that∑

k>N

|bjk|2 < μ, for every j = 1, . . . , n. (4.6)

If t �→ X(t) is a solution of (ΣN ) corresponding to a control function U(·), then t �→ e−V (t)A(N)
X(t) = Y(t), where

V (t) = ∫ t

0 U(τ)dτ , is a solution of

Ẏ (t) = e−V (t)A(N)

B(N)eV (t)A(N)

Y (t). (ΘN )

Let us represent the matrix e−v(t)A(N)
B(N)ev(t)A(N)

, where v(t) = ∫ t

0 u(τ) dτ , in block form as follows

e−v(t)A(N)

B(N)ev(t)A(N) =
(

M(n,n)(t) M(n,N−n)(t)

M(N−n,n)(t) M(N−n,N−n)(t)

)
, (4.7)

where the superscripts indicate the dimensions of each block.

Claim 4.3. There exists a sequence of piecewise constant control functions uk : [0, T ] → (δ,∞) such that the sequence
of matrix-valued curves

t �→ Mk(t) = e−vk(t)A
(N)

B(N)evk(t)A
(N)

,

where vk(t) = ∫ t

0 uk(τ ) dτ , converges to

t �→ M(t) =
(

M(n,n)(t) 0n×(N−n)

0(N−n)×n M(N−n,N−n)(t)

)
in the following integral sense

t∫
0

Mk(τ) dτ →
t∫

0

M(τ)dτ (4.8)

as k → ∞ uniformly with respect to t ∈ [0, T ].
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Proof. We will prove the claim taking v(·) piecewise constant, since every piecewise affine function can be approx-
imated arbitrarily well in the L∞ topology by piecewise constant functions and because the map associating to v(·)
the curve t �→ ∫ t

0 M(τ)dτ is continuous with respect to the L∞ topology (taken both in its domain and its codomain).
Assume that v(·) is constantly equal to w ∈ R on [t1, t2]. Since λ2 −λ1, . . . , λN −λN−1 are Q-linearly independent,

then for every s0 ∈ R the curve

(s0,∞) � s �→ (
(λ1 − λ2)s, . . . , (λ1 − λN)s

)
projects onto a dense subset of the torus RN−1/2πZN−1. Thus, there exist two sequences w(m) ↗ +∞ and
z(m) ↗ +∞ such that

(λ1 − λj )w
(m) (mod 2π) −→ (λ1 − λj )w (mod 2π) for 2 � j � N,

(λ1 − λj )z
(m) (mod 2π) −→ (λ1 − λj )w (mod 2π) for 2 � j � n,

(λ1 − λj )z
(m) (mod 2π) −→ (λ1 − λj )w + π (mod 2π) for n + 1 � j � N,

as m tends to infinity. In particular the sequence of matrices e−w(m)A(N)
B(N)ew(m)A(N)

converges to e−wA(N)
B(N)ewA(N)

as m goes to infinity, while the sequence e−z(m)A(N)
B(N)ez(m)A(N)

converges, following the notations introduced
in (4.7), to(

M(n,n) −M(n,N−n)

−M(N−n,n) M(N−n,N−n)

)
,

where we dropped the dependence on t of the different sub-matrices since v is constant on [t1, t2].
Fix δ̄ > δ. Consider a sequence (v̄k)k∈N in R+ (whose role will be clarified later) and define, for every k ∈ N, a

finite increasing sequence (θk
l )l=0,...,k with θk

0 = v̄k , θk
l+1 � θk

l + δ̄(t2 − t1)/k2 for 0 � l < k, and such that, for l > 0,
θk
l belongs to (w(m))m∈N if l is odd and to (z(m))m∈N if l is even. Define, moreover,

τj = t1 + j − 1

k
(t2 − t1),

for j = 1, . . . , k + 1.
Consider the continuous function vk uniquely defined on [t1, t2] by the conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vk(t1) = v̄k,

vk(τi + t2−t1
k2 ) = θk

i for i = 1, . . . , k,

v̇k(t) = δ̄ if t ∈⋃k
i=1(τi + t2−t1

k2 , τi+1),

v̈k(t) = 0 if t ∈⋃k
i=1(τi, τi + t2−t1

k2 ).

(See Fig. 1.) Define ṽk as the piecewise constant function that coincides with θk
i on [τi, τi+1]. On each interval

[τi + (t2 − t1)/k
2, τi+1] the difference between vk and ṽk is bounded in absolute value by δ̄(t2 − t1)/k. Therefore,

sup

{∥∥e−vk(t)A
(N)

B(N)evk(t)A
(N) − e−ṽk(t)A

(N)

B(N)eṽk(t)A
(N)∥∥ ∣∣∣ t ∈

k⋃
i=1

[
τi + t2 − t1

k2
, τi+1

]}

goes to zero as k goes to infinity.
Since ‖e−νA(N)

B(N)eνA(N)‖ is uniformly bounded with respect to ν ∈ R and the measure of
⋃

i[τi, τi + T

k2 ] goes
to 0 as k goes to infinity, we have

t∫
t1

(
e−vk(τ)A(N)

B(N)evk(τ)A(N) − e−ṽk(τ )A(N)

B(N)eṽk(τ )A(N))
dτ

k→∞−−−→ 0 uniformly on [t1, t2].

Moreover, by definition of the sequences θk
i , w(m), and z(m), one has

t∫
e−ṽk(τ )A(N)

B(N)eṽk(τ )A(N)

dτ
k→∞−−−→

t∫
M(τ)dτ uniformly on [t1, t2],
t1 t1
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Fig. 1. The functions vk and ṽk .

and therefore e−vk(t)A
(N)

B(N)evk(t)A
(N)

converges in integral sense to M(t) on [t1, t2].
Finally, construct uk as follows: for t1 = 0 define uk on (t1, t2) as the derivative of vk (defined almost everywhere),

where the vk’s correspond to the sequence of initial conditions v̄k = 0 for every k ∈ N. Then, on the second interval
on which v(·) is constant, use as a new set of initial conditions for the approximation procedure the values v̄k = vk(t2)

and define again uk as the derivative of vk . Iterating the procedure on the finite set of intervals covering [0, T ] on
which v(·) is constant we obtain the required approximating sequence of piecewise constant control functions. �
4.4. Approximate controllability for the infinite-dimensional system

Let uk and Mk be defined as in Claim 4.3. The resolvent Rk(t, s) : CN → CN of the linear time-varying equation

Ẏ = Mk(t)Y,

converges, uniformly with respect to (t, s), to the resolvent R(t, s) : CN → CN of

Ẏ = M(t)Y.

(See, for instance, [4, Lemma 8.10].) Notice that R(t, s) preserves the norms of both the vector formed by the first n

coordinates and the one formed by the last N − n.
Let, for every k ∈ N, ψk be the solution of (4.2) corresponding to uk . We have the following approximation

property.

Claim 4.4. For k large enough,∥∥Πn

(
e−vk(T )Aψk(T )

)− Πn

(
e−v(T )Aψ1

)∥∥< 2ε, (4.9)

where ε is the positive constant which has been fixed at the beginning of Section 4.3.

Proof. Define qk(t) = e−ivk(t)A ψk(t). According to (2.3) (more precisely, its counterpart for Eq. (4.2)), the compo-
nents qk

j (t) = e−iλj vk(t)〈ψk(t), φj 〉 of qk(t) with respect to the basis of eigenvectors of A satisfy for almost every
t ∈ [0, T ]

q̇k
j (t) =

∞∑
bjle

i(λl−λj )vk(t)qk
l (t). (4.10)
l=1
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Therefore, the curves P k(t) = (qk
1 (t), . . . , qk

n(t))T and Qk(t) = (qk
n+1(t), . . . , q

k
N(t))T satisfy(

Ṗ k(t)

Q̇k(t)

)
= Mk(t)

(
P k(t)

Qk(t)

)
+
(

Hk(t)

I k(t)

)

with ‖Hk‖∞ <
√

nμ (see (4.6)) and ‖I k‖∞ < C for C = C(N) large enough.
Hence(

P k(t)

Qk(t)

)
= Rk(t,0)ΠN(ψ0) +

t∫
0

Rk(s, t)

(
Hk(s)

I k(s)

)
ds.

Denote by Π
N

n the projection of CN on its first n coordinates and let

Lk(t) = Π
N

n

( t∫
0

Rk(s, t)

(
Hk(s)

I k(s)

)
ds

)
.

Since Rk converges uniformly to R and the latter preserves the norm of the first n components, we know that, for k

large, ‖Lk‖∞ < 2T
√

nμ. Moreover, Rk(t,0)ΠN(ψ0) converges uniformly to R(t,0)ΠN(ψ0). In particular, accord-

ing to the definition of R, Π
N

n (Rk(t,0)ΠN(ψ0)) converges uniformly to the solution of (Θn) corresponding to the
control u and starting from Πn(ψ0) = ξ0.

Since u drives system (Σn) from ξ0/‖ξ0‖ to ξ1/‖ξ1‖, then it steers system (Θn) from ξ0 to e−v(T )A(n)
ξ1(‖ξ0‖/‖ξ1‖).

Therefore,∥∥∥∥P k(T ) − e−v(T )A(n)

ξ1
‖ξ0‖
‖ξ1‖

∥∥∥∥< 3T
√

nμ,

if k is large enough. Let us fix μ small enough in order to have

3T
√

nμ < ε.

Then,

∥∥Πn

(
e−vk(T )Aψk(T )

)− Πn

(
e−v(T )Aψ1

)∥∥�
∥∥∥∥Πn

(
e−vk(T )Aψk(T )

)− Πn

(
e−v(T )Aψ1

)‖ξ0‖
‖ξ1‖

∥∥∥∥
+
∥∥∥∥Πn

(
e−v(T )Aψ1

)‖ξ0‖
‖ξ1‖ − Πn

(
e−v(T )Aψ1

)∥∥∥∥
=
∥∥∥∥P k(T ) − e−v(T )A(n)

ξ1
‖ξ0‖
‖ξ1‖

∥∥∥∥+ ∥∥Πn

(
e−v(T )Aψ1

)∥∥ |‖ξ1‖ − ‖ξ0‖|
‖ξ1‖

< 3T
√

nμ + ∣∣‖ξ1‖ − ‖ξ0‖
∣∣

< 2ε,

provided that k is large enough. �
As a consequence of Proposition 4.4, for k large enough the moduli of the first n components of ψk(T ) are close to

those of the first n components of ψ1. The proposition below will be used to show that their phases can also be made
as close as required by applying a suitable control on an arbitrarily small time interval.

Proposition 4.5. For every ε̃ > 0, every λ̃1, . . . , λ̃n ∈ R, and every s1 ∈ R there exist s2 > s1 and w ∈ Rn with
‖w‖ � ε̃ such that λ̃i s2 ≡ wi mod 2π for every i = 1, . . . , n. As a consequence, given a skew-adjoint discrete-spectrum
control system (Ã, B̃, (0, δ̃)), for every v1 ∈ R and every τ > 0 small enough there exists a constant control function
ũ : [0, τ ] → (δ̃,+∞) such that every trajectory ψ̃(·) of ψ̇ = uÃψ + B̃ψ corresponding to ũ(·) satisfies ‖Πn(ψ̃(τ ))−
Πn(e

v1Ãψ̃(0))‖ � ε̃ (where Πn denotes the orthogonal projection on the space spanned by the first n eigenvectors
of Ã).
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Proof. The first part of the statement is a simple application of the Poincaré recurrence theorem. Indeed, since the
dynamics s �→ x0 + s(λ̃1, . . . , λ̃n) on the n-dimensional torus preserve volumes and distances, then the constant
vector field (λ̃1, . . . , λ̃n) is recurrent at every point of the torus, and in particular at the origin x0 = 0. Therefore any
neighborhood N of the origin is sent, after a suitably long time (which can be assumed to be larger than s1), to another
neighborhood of the origin isometric to N . Taking N equal to the ball of radius ε̃ centered at the origin, the first part
of the claim is proven.

In order to conclude the proof, fix a piecewise constant control function ũ : [0, τ ] → (δ̃,+∞) and a solution ψ̃ of
ψ̇ = uÃψ + B̃ψ corresponding to ũ. Set

q̃(t) = e− ∫ t
0 ũ(s) dsÃψ̃(t)

and notice that, according to (2.3), | ˙̃qj (t)| � ‖B̃φ̃j‖ for every j ∈ N, where φ̃j denotes the j -th eigenvector of Ã

and q̃j = 〈q̃, φ̃j 〉. Therefore, ‖Πn(q̃(τ )) − Πn(q̃(0))‖ � Cτ for some positive constant C independent of ũ and of ψ̃ .
Then ∥∥Πn

(
ψ̃(τ )

)− Πn

(
ev1Ãψ̃(0)

)∥∥= ∥∥Πn

(
e−v1Ãψ̃(τ )

)− Πn

(
ψ̃(0)

)∥∥
= ∥∥Πn

(
e(
∫ τ

0 ũ(t) dt−v1)Ãq̃(τ )
)− Πn

(
q̃(0)

)∥∥
�
∥∥Πn

(
e(
∫ τ

0 ũ(t) dt−v1)Ãq̃(τ )
)− Πn

(
q̃(τ )

)∥∥+ Cτ.

Fix τ < ε̃/(2C) so that

∥∥Πn

(
ψ̃(τ )

)− Πn

(
ev1Ãψ̃(0)

)∥∥�
∥∥Πn

(
e(
∫ τ

0 ũ(t) dt−v1)Ãq̃(τ )
)− Πn

(
q̃(τ )

)∥∥+ ε̃

2
. (4.11)

Notice that

Πn

(
e(
∫ τ

0 ũ(t) dt−v1)Ãq̃(τ )
)= diag

(
eiλ̃1(

∫ τ
0 ũ(t) dt−v1), . . . , eiλ̃n(

∫ τ
0 ũ(t) dt−v1)

)
Πn

(
q̃(τ )

)
.

The first part of the claim ensures the existence of v2 arbitrarily large such that if

τ∫
0

ũ(t) dt − v1 = v2 (4.12)

then the norm of the matrix

diag
(
eiλ̃1(

∫ τ
0 ũ(t) dt−v1), . . . , eiλ̃n(

∫ τ
0 ũ(t) dt−v1)

)− Idn

is smaller than ε̃/2. Take v2 large enough to satisfy (v1 + v2)/τ > δ̃. Then ũ ≡ (v1 + v2)/τ satisfies (4.12) and,
because of (4.11),∥∥Πn

(
ψ̃(τ )

)− Πn

(
ev1Ãψ̃(0)

)∥∥� ε̃,

independently of ψ̃ . �
To conclude the proof of Theorem 2.4 we extend the interval of definition of the control function uk introduced

above by taking uk(T + t) = ũ(t) for t ∈ [0, τ ] where ũ is the control obtained by applying Proposition 4.5 with
v1 = v(T )− vk(T ), Ã = A, B̃ = B , ε̃ = ε. Then, for k large enough, the corresponding trajectory ψk : [0, T + τ ] → S
satisfies ‖Πn(ψ

k(T + τ)) − Πn(ψ1)‖ < 3ε and therefore, due to (4.5),∥∥Πn

(
ψk(T + τ)

)− ψ1
∥∥< 4ε.

It is now enough to show that ‖ψk(T + τ) − Πn(ψ
k(T + τ))‖ can be made arbitrarily small by choosing a suitably

small ε. To this aim we notice that the inequality ‖Πn(ψ
k(T + τ))‖ > 1 − 4ε implies, for ε < 1/4, that ‖ψk(T + τ)−

Πn(ψ
k(T + τ))‖2 < 1 − (1 − 4ε)2 = 8ε − 16ε2 and this concludes the proof of Theorem 2.4.
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4.5. Lower bound on the steering time

In this section we prove a lower bound on the steering time for a skew-adjoint discrete-spectrum control system
without assuming that it satisfies the hypotheses of Theorem 2.4 nor any other controllability assumption.

Proposition 4.6. Let (A,B, (0, δ)) be a skew-adjoint discrete-spectrum control system. Fix ψ0,ψ1 in S and ε > 0.
Then if a piecewise constant control u : [0, Tu] → (0, δ) steers system (2.1) from ψ0 to an ε-neighborhood of ψ1, then

Tu � 1

δ
sup
k∈N

∣∣|〈φk,ψ0〉| − |〈φk,ψ1〉|
∣∣− ε

‖Bφk‖ , (4.13)

where (φk)k∈N denotes the orthonormal basis of eigenvectors of A.

Proof. Fix an initial condition ψ0 in S , a piecewise constant control u : [0, Tu] → (0, δ), and denote by ψu : [0, Tu] →
H the corresponding solution of the system (2.1) satisfying ψu(0) = ψ0.

Write u as u(t) =∑n
j=0 ujχ[tj ,tj+1)(t) where 0 = t1 < t2 < · · · < tn+1 = Tu and u1, . . . , un belong to (0, δ). In the

spirit of Section 4.1, associate to u the piecewise constant control ν : [0, Tν] → R given by ν(t) =∑n
j=0 νjχ[τj ,τj+1)(t)

with νj = 1/uj for all j = 1, . . . , n and τj defined by induction as τ1 = 0, τj+1 = τj + (tj+1 − tj )uj for j � 1.
Define ψν : [0, Tν] → H as the solution of system (4.2) corresponding to ν and satisfying ψν(0) = ψ0. Define by

mk = |〈ψν,φk〉| the modulus of the kth coordinate of ψν .
By definition mk is absolutely continuous and Eq. (4.10) implies that

ṁk �
∞∑

j=1

|bjk|mj �
( ∞∑

j=1

∣∣〈Bφj ,φk〉
∣∣2)1/2

= ‖Bφk‖.

Applying the mean value theorem, one gets∣∣∣∣〈ψν(0),φk〉
∣∣− ∣∣〈ψν(Tν),φk

〉∣∣∣∣� Tν‖Bφk‖. (4.14)

Notice that Tν =∑n
j=1(tj+1 − tj )uj � (tn − t1)δ = Tuδ, that is,

Tu � 1

δ
Tν. (4.15)

Since, by assumption, |ψν(Tν) − ψ1| < ε, then (4.14) implies

Tν � sup
k∈N

||〈φk,ψ0〉| − |〈φk,ψ1〉|| − ε

‖Bφk‖ .

Plugging this last inequality into (4.15), we obtain (4.13). �
We insist on the fact that this result is valid whenever system (2.1) is or is not approximately controllable.

Remark 4.7. When B is bounded, the same estimate as above is valid for other classes of controls (not only piecewise
constant functions but also measurable bounded or locally integrable) as soon as we can define a unique solution of
system (2.1) that satisfies (2.3). See Remark 2.2.

Remark 4.8. It follows from (4.13) that, in general, approximate controllability does not imply finite-time approximate
controllability. Indeed, if Bφk tends to 0 as k goes to infinity, then for every T > 0 the attainable set at time T from
a given point ψ0 is not dense in S since for every ε ∈ (0,1), for k large enough, φk is not ε-approximately attainable
from ψ0 in time T .

5. Controllability for density matrices

5.1. Physical motivations

A density matrix (sometimes called density operator) is a non-negative, self-adjoint operator of trace class
[32, Vol. I] on a Hilbert space. The trace of a density matrix is normalized to one. As a consequence of the defi-
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nition a density matrix is a compact operator (hence with discrete spectrum) and can always be written as a weighted
sum of projectors,

ρ =
∞∑

j=1

Pjϕjϕ
∗
j , (5.1)

where Pj ∈ [0,1],∑j Pj = 1, and ϕjϕ
∗
j is the orthogonal projector on the space spanned by ϕj with ϕ∗

j (·) = 〈ϕj , ·〉.
Here {ϕj }j∈N is a set of normalized vectors not necessarily orthogonal.

The density matrix is used to describe the evolution of systems whose initial wave function is not known precisely,
but only with a certain probability, or when one is dealing with an ensemble of identical systems that cannot be
prepared precisely in the same state. More precisely (5.1) describes a system whose state is known to be ϕj with
probability Pj , j ∈ N. Given an observable A (i.e. a self-adjoint operator, for instance the drift Hamiltonian) the mean
value of A is Tr(ρA) =∑∞

j=1 Pj 〈ϕj ,Aϕj 〉, where 〈ϕj ,Aϕj 〉 represents the mean value of the observable A in the
state ϕj . When for some k ∈ N we have Pk = 1 and Pj = 0 for every j �= k, one says that ρ describes a pure state,
otherwise one says that ρ describes a mixed state. In the case of pure states, the physical description via the density
matrix is equivalent to the one via the wave function. Notice that for a pure state Tr(ρ2) = 1 while for a mixed state
one has Tr(ρ2) < 1.

Without loss of generality it is possible to require that {ϕj }j∈N is an orthonormal basis (i.e. a basis of normalized
eigenvectors of ρ). In this case {Pj }j∈N is the spectrum of ρ.

The time evolution of the density matrix is determined by the evolutions of the states ϕj , namely

ρ(t) = U(t)ρ(0)U∗(t) (5.2)

where U(t) is the operator of temporal evolution (the resolvent) and U∗(t) its adjoint. Notice that the spectrum of ρ(t)

is constant along the motion.

5.2. Statement of the result

Fix δ > 0 and let (A,B, (0, δ)) be a skew-adjoint discrete-spectrum control system on a Hilbert space H , (ϕj )j∈N
an orthonormal basis of H (not necessarily of eigenvectors of A), {Pj }j∈N a sequence of non-negative numbers such
that

∑∞
j=1 Pj = 1, and denote by ρ the density matrix

ρ =
∞∑

j=1

Pjϕjϕj
∗.

Definition 5.1. Two density matrices ρ0 and ρ1 are said to be unitarily equivalent if there exists a unitary transforma-
tion U of H such that ρ1 = Uρ0U∗.

Obviously the controllability question for the evolution of the density matrix makes sense only for pairs (ρ0, ρ1)

of initial and final density matrices that are unitarily equivalent. Notice that this is a quite strong assumption, since
it implies that the eigenvalues of ρ0 and ρ1 are the same. Controllability results in the case of density matrices that
are not unitarily equivalent have been obtained in the case of open systems (i.e. systems evolving under a suitable
non-unitary evolution) in the finite-dimensional case. See for instance [9].

Next section is devoted to the proof of the following theorem.

Theorem 5.2. Let ρ0 and ρ1 be two unitarily equivalent density matrices. Then, under the hypotheses of Theorem 2.4,
for every ε > 0 there exists a piecewise constant control steering the density matrix from ρ0 ε-approximately to ρ1
i.e. there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈ (0, δ) such that setting V = etk(A+ukB) · · · et1(A+u1B), one has
‖ρ1 − Vρ0V∗‖ < ε, where ‖ · ‖ denotes the operator norm on H .

Remark 5.3. As Theorem 3.4 is a particularization of Theorem 2.4 to the controlled Schrödinger equation, the hy-
potheses of Theorem 3.4 imply ε-approximate controllability of the corresponding density matrix.
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5.3. Proof of Theorem 5.2

The proof uses the notations of Section 4. As noticed in Section 4.1, the theorem can be restated in terms of the
evolution of the density matrix corresponding to the control system ψ̇ = (uA + B)ψ , u ∈ (δ,+∞).

Fix ρ0 and ρ1 unitarily equivalent and let U be such that ρ1 = Uρ0U∗. Write

ρ0 =
∞∑

j=1

Pjϕ0,j ϕ0,j
∗,

with (Pj )j∈N a sequence of non-negative numbers whose sum is one, and (ϕ0,j )j∈N an orthonormal basis of H .
Then

ρ1 =
∞∑

j=1

Pjϕ1,j ϕ1,j
∗,

with ϕ1,j = Uϕ0,j for every j ∈ N.
Choose ε > 0. Let m ∈ N be such that∑

j>m

Pj < ε.

The idea is to follow the strategy applied in the proof of Theorem 2.4 in order to simultaneously approximately steer
m copies of system (A,B, (0, δ)) from ϕ0,j to ϕ1,j , j = 1, . . . ,m.

Let η > 0 be a small constant depending on m and ε, to be fixed later. There exists n = n(η) > m such that, for
every j = 1, . . . ,m and for k = 0,1,

‖ϕk,j − Πnϕk,j‖ < η.

By construction, when η gets small, the two families (Πnϕk,j )
m
j=1, k = 0,1, tend to two orthonormal families. Hence,

there exists a matrix M in SU(n) such that∥∥M(Πnϕ0,j ) − Πnϕ1,j

∥∥< ε (5.3)

for j = 1, . . . ,m provided that η is small enough (and, consequently, n is large enough).
Without loss of generality we may assume that B(n) is connected. Claim 4.1 can be extended to the following

result.

Claim 5.4. The control system

ġ = (uA(n) + B(n)
)
g, g ∈ U(n), (5.4)

is controllable in the following sense: for any g0, g1 in U(n), there exists a unitary complex number eiθ with 0 � θ �
2π/n, a time T > 0 and a piecewise constant function u : [0, T ] → (δ,+∞) such that the solution gu : [0, T ] → U(n)

of (5.4) with initial condition gu(0) = g0 satisfies eiθgu(T ) = g1.

Proof. Let us first assume that at least one among A(n) and B(n) has non-zero trace and hence does not belong to
su(n). In this case the inclusion (4.3), with A(n) = A and B(n) = B, implies that Lie(A(n),B(n)) = u(n). Classical
controllability results for right invariant systems on compact Lie groups (see [24,37]) ensure that the attainable set
from g0 of (5.4) coincides with U(n) so that the claim holds with θ = 0.

It remains to consider the case in which the traces of A(n) and B(n) are zero, i.e. A(n) and B(n) belong to su(n). In
this case (4.3) implies that Lie(A(n),B(n)) = su(n), and therefore the attainable set from g0 of (5.4) coincides with
g0 SU(n), the set of matrices of U(n) having the same determinant as g0. Given a target g1 there exists ϑ ∈ [0,2π ]
such that det(g0) = e−iϑ det(g1) = det(e−i ϑ

n g1). Hence the claim holds true with θ = ϑ/n. �
Let T > 0, u : [0, T ] → (δ,+∞) and 0 � θ � 2π/n be such that the control u steers system (5.4) from In to eiθM .

Notice that, without loss of generality, 2π/n < ε.
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Let μ > 0 be a small constant to be fixed later. Fix N ∈ N such that∥∥(bjl)l>N

∥∥
l2

< μ

for every j = 1, . . . , n. Let us apply Claim 4.3 to the control function u and denote by (uk)k∈N the sequence of piece-
wise constant control functions obtained in this way. Write, moreover, v(t) = ∫ t

0 u(τ) dτ and vk(t) = ∫ t

0 uk(τ ) dτ . For
every k ∈ N write uk as

uk(t) =
pk∑

j=1

wk
jχ[tkj ,tkj+1)

(t), t ∈ [0, T ],

with 0 = tk1 � · · · � tkpk
= T and denote by Vk the unitary transformation

Vk = e
(tkpk

−tkpk−1)(w
k
pk−1A+B) · · · e(tk2 −tk1 )(wk

1A+B).

For every j = 1, . . . ,m,∥∥Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)− Πn(ϕ1,j )
∥∥�

∥∥Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)− eiθM
(
Πnϕ0,j

)∥∥
+ ∥∥eiθM(Πnϕ0,j ) − M(Πnϕ0,j )

∥∥+ ∥∥M(Πnϕ0,j ) − Πn(ϕ1,j )
∥∥.

The same computations as in Section 4.4 (cf. (4.9)) show that, for every j = 1, . . . ,m,∥∥Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)− eiθM(Πnϕ0,j )
∥∥� 2ε

for μ small and k large enough. Since 0 � θ � 2π/n < ε, then, for every j = 1, . . . ,m,∥∥eiθM(Πnϕ0,j ) − M(Πnϕ0,j )
∥∥�

∣∣eiθ − 1
∣∣< ε.

Hence, because of (5.3), for k large enough, for every j = 1, . . . ,m,∥∥Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)− Πn(ϕ1,j )
∥∥< 4ε.

Applying Proposition 4.5 we can, up to the extension of uk to a piecewise constant control defined on a larger interval,
assume that∥∥Πn(Vkϕ0,j ) − Πn(ϕ1,j )

∥∥< 5ε,

for every j = 1, . . . ,m. Therefore,

∥∥Vkρ0V∗
k − ρ1

∥∥=
∥∥∥∥∥

∞∑
j=1

Pj

(
(Vkϕ0,j )(Vkϕ0,j )

∗ − ϕ1,j ϕ
∗
1,j

)∥∥

�
∥∥∥∥∥

m∑
j=1

Pj

(
(Vkϕ0,j )(Vkϕ0,j )

∗ − ϕ1,j ϕ
∗
1,j

)∥∥+ 2ε

�
m∑

j=1

Pj

(‖Vkϕ0,j‖ + ‖ϕ1,j‖
)‖Vkϕ0,j − ϕ1,j‖ + 2ε

� 2(5ε) + 2ε = 12ε,

provided that k is large enough. This concludes the proof of Theorem 5.2.

6. Examples

6.1. Perturbation of the spectrum

The scope of Section 6 is to show how the general controllability results obtained in the previous sections can
be applied in specific cases. In particular, we want to show how the conditions on the spectrum of the Schrödinger
operator appearing in the hypotheses of Theorem 3.4 can be checked in practice.
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Let us adopt the notations of Section 3 for the domain Ω , the wave function ψ , and the uncontrolled and controlled
potentials V and W . Throughout this section we assume that one of the hypotheses (i) or (ii) of Corollary 3.3 holds
true. Thus, (A,B,U) is a well-defined controlled Schrödinger equation, where A = −i(−� + V ) and B = −iW .

The study of the examples below is based on the simple idea that, even if the hypotheses of Theorem 3.4 are not
satisfied by the operators A and B , one can anyway ensure that they hold true for Aμ = −i(−� + V + μW) and
Bμ = −iW for some μ in the interior of U . This is enough to conclude that the system ψ̇ = Aψ + uBψ , u ∈ U , is
approximately controllable, since the replacement of (A,B) by (Aμ,Bμ) corresponds to a reparameterization of U

that sends u into a new control u − μ ∈ U − μ and V into V + μW . Although the spectrum of Aμ is not in general
explicitly computable, we can nevertheless deduce some crucial properties about it by applying standard perturbation
arguments. Theorem 6.1 recalls, in a simplified version suitable for our purposes, some classical perturbation results
describing the dependence on μ of the spectrum of −�+V +μW . (See [25, Chapter VII, Remark 4.22], [33, §II.10,
Theorem 1] and also [6].)

Theorem 6.1. Let U be an open interval containing zero. Assume either that (i) Ω is bounded, V,W belong to L∞(Ω)

or that (ii) Ω = Rd , V belongs to L1
loc(R

d), W belongs to L∞(Rd), lim‖x‖→+∞ V (x) = +∞ and infx∈Rd V (x) >

−∞. In both cases (i) and (ii) assume that each eigenvalue of the Schrödinger operator −� + V is simple. Denote
by (λk)k∈N the sequence of eigenvalues of −� + V and by (φk)k∈N the corresponding eigenfunctions. Then, for any
k in N, there exist two analytic curves Λk :U → C and Φk :U → L2(Ω) such that:

• Λk(0) = λk and Φk(0) = φk ;
• for any μ in U , (Λk(μ))k∈N is the family of eigenvalues of �−V +μW counted according to their multiplicities

and (Φk(μ))k∈N is an orthonormal basis of corresponding eigenfunctions;
• Λ′

k(0) = ∫
Ω

W(x)|φk(x)|2 dx.

We check below that if the derivatives Λ′
k(0) are Q-linearly independent then for almost every μ ∈ U the eigenval-

ues of −�+V +μW are Q-linearly independent. This fact is used in the following to apply Theorem 3.4 to situations
in which the uncontrolled Schrödinger operator has a resonant spectrum.

Recall that, in the notations of Section 4, for any pair of integers j, k ∈ N,

bjk =
∫
Ω

W(x)φj (x)φk(x) dx. (6.1)

In particular, Λ′
k(0) = ∫

Ω
W(x)|φk(x)|2dx is equal to bkk .

Proposition 6.2. Let U be an open interval containing zero and assume that Ω , V and W satisfy one of the hypotheses
(i) or (ii) of Theorem 6.1 and that the eigenvalues of −� + V are simple. If the elements of the sequence (bkk)k∈N are
Q-linearly independent, then for almost every μ in U the elements of (Λk(μ))k∈N are Q-linearly independent.

Proof. Let l ∈ N and z = (z1, . . . , zl) ∈ Ql . Denote by Υz the subset of elements μ in U such that
∑l

j=1 zjΛj (μ) = 0.
Since each μ �→ Λk(μ) is an analytic function, then Υz is either equal to U or to a countable subset of U . Since
b11 = Λ′

1(0), . . . , bll = Λ′
l(0) are Q-linearly independent, then Υz = U if and only if z = 0. Hence, the union Υ =⋃

l∈N
⋃

z∈Ql , z �=0 Υz has Lebesgue measure zero, since it is countable. By construction, if μ does not belong to Υ , the
elements of (Λk(μ))k∈N are Q-linearly independent. �

The other crucial hypothesis of Theorem 3.4 is that bj,j+1 �= 0 for every j ∈ N (or, more generally, that B(n) =
(bjk)

n
j,k=1 is frequently connected, see Remark 4.2). By the same analyticity argument as above one checks that either

such hypothesis is always false or it is true for almost every μ ∈ U .

Corollary 6.3. Let U be an open interval containing zero and assume that Ω , V and W satisfy one of the hypotheses
(i) or (ii) of Theorem 6.1 and that the eigenvalues of −� + V are simple. Assume moreover that the elements of the
sequence (bkk)k∈N are Q-linearly independent and that B(n) is frequently connected. Then the controlled Schrödinger
equation associated with Ω , V , W and Ũ is approximately controllable for every Ũ ⊂ U with non-empty interior.
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6.2. 1D harmonic oscillator

In this section we study the Schrödinger equation describing the evolution of the controlled one-dimensional har-
monic oscillator,

i
∂ψ

∂t
(t, x) = −∂2ψ

∂x2
(t, x) + (x2 − u(t)W(x)

)
ψ(t, x), (6.2)

where ψ is the wave function depending on the time t and on a space variable x ∈ R = Ω . Recall that u(·) is a
piecewise-continuous function with values in a subset U of R. Notice that the potential corresponding to the uncon-
trolled Schrödinger operator is V (x) = x2. The control system (6.2) has been studied, among others, by Mirrahimi
and Rouchon who proved its non-controllability in the case where W is the identity function (see [28]).

As a consequence of Theorem 3.2, the spectrum of −� + V is discrete. Its explicit expression is

{λk = 2k + 1 | k � 0},
and therefore λk+1 −λk are Q-linearly dependent. Each λk is a simple eigenvalue whose corresponding eigenfunction
is

φk(x) = 1√
k!2k

√
π

e− x2
2 Hk(x) (6.3)

where Hk(x) = (−1)kex2 dk

dxk e−x2
is the kth Hermite polynomial.

In order to apply Corollary 6.3 we would like first of all to ensure that the elements

bkk = (−1)k

k!2k
√

π

∫
R

W(x)Hk(x)
dk

dxk
e−x2

dx, k � 0, (6.4)

are Q-linearly independent. Notice that for W(x) = x (i.e., the non-controllable case pointed out by Mirrahimi and
Rouchon), since each function φ2

k is even, bkk = ∫ Wφ2
k = 0.

The existence of controlled potentials W for which the elements of (bkk)k∈N are Q-linearly independent can be
easily inferred from the linear independence of the functions φ2

k . The proposition below provides some explicit W

with such a property (and such that the corresponding Schrödinger equation is controllable). The potentials W will
be chosen in L∞(R) and therefore, as already remarked in Section 3, the corresponding solutions in the sense (2.2)
coincide with mild or strong solutions, depending on the regularity of the initial condition.

Proposition 6.4.

(1) If W is even, then system (6.2) is not approximately controllable.
(2) If W has the form W :x �→ eax2+bx+c , with a, b, c ∈ R such that a < 0 and the two numbers

√
1 − a and b

are algebraically independent, then system (6.2) is approximately controllable, provided that U has non-empty
interior.

Proof. Since each function φk has the same parity as the integer k, then φkφj has the same parity as the integer j + k.
If W is even, then (6.1) shows that for every (j, k) such that j + k is odd, bjk = 0. Applying Remark 4.2, one sees
that the spaces spanned by the sets {φk | k even} and {φk | k odd} are invariant by the dynamics of system (6.2). In
particular, there is no way to steer system (6.2) from φ1 to a point ε-close to φ2 if ε is smaller than

√
2. This proves (1).

In order to prove (2) let us apply Corollary 6.3 (with U playing the role of Ũ and R the role of U ). Let W have the

special form W :x �→ eax2+bx+c . Up to a multiplication of W by the strictly positive real number e
b2

4(a−1)
−c, we may

assume without loss of generality that

c = b2

4(a − 1)
. (6.5)

Using the specific expression (6.3) of φk in the definition of bjk we can write

bjk = (−1)j σjσk

∫
eax2+bx+cHk(x)

dj

dxj
e−x2

dx,
R
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with σl = 1/
√

l!2l
√

π , l = k, j . Notice that Hk is a polynomial with rational coefficients and of degree k, whose
leading coefficient is equal to 2k . Integrating by parts j times, we get

bjk = σjσk

∫
R

e(a−1)x2+bx+cPj,k(x) dx

where Pj,k is a polynomial of degree j + k. Define (g
j,k
m )

j+k

m=0 through

Pj,k(x) =
j+k∑
m=0

g
j,k
m xm.

Each g
j,k
m can be seen as the evaluation at b of a polynomial G

j,k
m with coefficients in Q[a] whose degree is less than

or equal to j . If m ∈ {k, k + 1, . . . , k + j} then G
j,k
m has exactly degree j + k − m and the coefficient corresponding

to the monomial of order j + k − m is 2mam−k .
The renormalization of c performed above is such that (a − 1)x2 + bx + c = (a − 1)(x + b

2
√

1−a
)2. Hence, the

change of variables y = √
1 − a(x + b

2
√

1−a
) yields

bjk = σjσk√
1 − a

∫
R

e−y2
Pj,k

(
y√

1 − a
− b

2(a − 1)

)
dy.

Due to the remarks made above on the coefficients of Pj,k , we have

Pj,k

(
y√

1 − a
− b

2(a − 1)

)
=

j+k∑
m=k

2mam−kbj+k−m

( −b

2(a − 1)

)m

+ Qj,k(b, y)

= (−1)k

(a − 1)k

1 − ( a
a−1 )j+1

1 − a
a−1

bj+k + Qj,k(b, y) (6.6)

where Qj,k is a polynomial with coefficients in Q(
√

1 − a ) (⊃ Q[a]) and of degree smaller than j + k in its first
variable. Notice that the coefficient multiplying bj+k in (6.6) is different from zero.

For every m � 0 the integral
∫

R e−y2
ymdy is equal to zero if m is odd and to Γ (m+1

2 ) = m!
2m( m

2 )!
√

π if m is even,

where Γ is the Euler gamma function.
Therefore, if j + k is even,

bjk = σjσk

√
π√

1 − a
Sj,k(b)

where Sj,k is a polynomial with coefficients in Q(
√

1 − a ) of degree exactly j + k.
Since b is transcendental over Q(

√
1 − a ) then bjk �= 0 as soon as j and k have the same parity. Moreover, the

elements of the sequence (Λ′
k(0))k�0 = (bkk)k�0 are Q-linearly independent.

To conclude the proof let us check that each matrix (bjk)
n
j,k=0 is connected. Fix j, k ∈ {0, . . . , n}. We should prove

the existence of a sequence r1, . . . , rl ∈ {0, . . . , n} such that bjr1br1r2 · · ·brl−1rl brlk �= 0. If j and k have the same parity
then we are done since bjk �= 0. Otherwise, a simple computation and the normalization (6.5) show that

b01 = b√
2(1 − a)3/2

�= 0

and we can conclude by taking {r1, r2} = {0,1}. �
6.3. 3D potential well

Consider the Schrödinger equation

i
∂ψ

(t, x) = −�ψ(t, x) + u(t)W(x)ψ(t, x), (6.7)

∂t
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where the wave function ψ depends on the time t and on three space variables x1, x2, x3 with (x1, x2, x3) ∈ (0, l1) ×
(0, l2) × (0, l3) = Ω and satisfies the Dirichlet boundary condition ψ |∂Ω = 0. Notice that the potential corresponding
to the uncontrolled Schrödinger operator is V (x) = 0. For every W measurable bounded, solutions in the sense (2.2)
coincide with mild or strong solutions, depending on the regularity of the initial condition.

The spectrum of the Schrödinger operator is{
λk1,k2,k3 = π2

(
k2

1

l2
1

+ k2
2

l2
2

+ k2
3

l2
3

) ∣∣∣ k1, k2, k3 � 1

}
.

For the sake of simplicity, assume that (l1l2)
2, (l1l3)

2, and (l2l3)
2 are Q-linearly independent, so that all the eigenval-

ues are simple and the perturbation result appearing in Theorem 6.1 can be applied. (The case of multiple eigenvalues
can be treated similarly, applying a refined perturbation argument as the one used in [6].)

The normalized eigenfunction corresponding to λk1,k2,k3 is given, up to sign, by

φk1,k2,k3(x1, x2, x3) = 2
3
2√

l1l2l3
sin

(
k1x1π

l1

)
sin

(
k2x2π

l2

)
sin

(
k3x3π

l3

)
.

Proposition 6.5. Let (l1l2)
2, (l1l3)2, and (l2l3)

2 be Q-linearly independent and define W(x1, x2, x3) = eα1x1+α2x2+α3x3

with α1, α2, α3 ∈ R. Assume that α1, α2, α3 are non-zero and that (π/α1l1)
2, (π/α2l2)

2, (π/α3l3)
2 are algebraically

independent. Then the control system (6.7) is approximately controllable.

Before starting the proof of Proposition 6.5 let us show the following technical result.

Lemma 6.6. Let β be a real number transcendental over a field F with Q ⊂ F ⊂ R. Then the elements of the family
( 1

1+qβ
)q∈Q are F-linearly independent.

Proof. Fix N ∈ N and N distinct numbers q1, . . . , qN ∈ Q \ {0}. Assume that for some f1, . . . , fN in F

N∑
k=1

fk

1

1 + qkβ
= 0. (6.8)

We have to prove that f1 = f2 = · · · = fN = 0. Multiplying (6.8) by
∏N

k=1(1 + qkβ) we get

N∑
k=1

fk

(
N−1∑
r=0

sk,rβ
r

)
= 0 (6.9)

where sk,0 = 1 and, for r � 1,

sk,r =
∑

1�j1<j2<···<jr�N
j1,...,jr �=k

qj1qj2 · · ·qjr .

By hypothesis, all coefficients of the left-hand side of (6.9), seen as a polynomial in β , are equal to zero. Hence,
(f1, . . . , fN)SN = (0, . . . ,0) where

SN =
⎛
⎝ s1,0 · · · s1,N−1

...
...

sN,0 · · · sN,N−1

⎞
⎠ .

A computation shows that det(SN) = Π1�j<k�N(qk − qj ). Hence, SN is invertible and therefore f1 = f2 = · · · =
fN = 0. �
Proof of Proposition 6.5. Theorem 6.1 and Fubini’s theorem imply that the eigenvalues Λk1,k2,k3(μ) of −� + μW

on Ω for the Dirichlet boundary value problem satisfy
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Λ′
k1,k2,k3

(0) = 64(eα1l1 − 1)(eα2l2 − 1)(eα3l3 − 1)k1
2k2

2k3
2π6

α1l1α2l2α3l3(4π2k2
1 + α2

1 l2
1)(4π2k2

2 + α2
2 l2

2)(4π2k2
3 + α2

3 l2
3)

= Ck2
1k2

2k2
3

1

( 4π2

α2
1 l21

k2
1 + 1)( 4π2

α2
2 l22

k2
2 + 1)( 4π2

α2
3 l23

k2
3 + 1)

,

where

C = 64(eα1l1 − 1)(eα2l2 − 1)(eα3l3 − 1)π6

(α1l1α2l2α3l3)3
.

Let βj = 4π2/(α2
j l

2
j ), j = 1,2,3. The Q-linear independence of the elements of (Λ′

k1,k2,k3
(0))k1,k2,k3∈N is obtained

from the expression above thanks to three nested applications of Lemma 6.6 with F = Q(β1, β2) and β = β3, F =
Q(β1) and β = β2, and F = Q and β = β1. In order to complete the proof, let us check that every matrix B(n) is
connected. (The conclusion then follows from Corollary 6.3.) A straightforward computation shows that for every
triples of positive integers (k1, k2, k3) and (h1, h2, h3) the integral∫

Ω

eα1x1+α2x2+α3x3φk1,k2,k3(x1, x2, x3)φh1,h2,h3(x1, x2, x3) dx1 dx2 dx3

is different from zero, i.e., every element of B(n) is non-zero. �
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