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Abstract

We study the Cauchy problem

(P)

{
ut = �u + |u|σ−1u in RN × (0,+∞),

u(x,0) = u0(x) in RN,

for nonnegative functions u : RN × (0,+∞) → R+. Here N � 3, σ + 1 = 2∗ = 2N
N−2 is the Sobolev exponent of the embedding

H 1(RN) ↪→ L2∗
(RN) and u0 = U is a time independent positive solution with nonempty singular set Σ = Sing(U), e.g. a distri-

butional solution associated to a singular Yamabe metric on SN . We show that, if Σ is a finite set, then problem (P) has a weak
solution which is smooth for positive time. Hence, time independent singular solutions may be unstable and the Cauchy problem
(P) may have infinitely many weak solutions. A similar weaker result is proved for any nonnegative distributional solution U when
Σ is a compact set.

Résumé

Nous étudions le problème de Cauchy

(P)

{
ut = �u + |u|σ−1u in RN × (0,+∞),

u(x,0) = u0(x) in RN,

pour fonctions nonnégatives u : RN × (0,+∞) → R+. Ici N � 3, σ + 1 = 2∗ = 2N
N−2 est la puissance critique pour l’injection

de Sobolev H 1(RN) ↪→ L2∗
(RN) et u0 = U est une solution stationnaire singulière, par exemple une solution distributionelle

associée à une métrique de Yamabe singulière sur SN . Nous montrons que, si Σ = Sing(U) est un ensemble fini, alors le problème
(P) a une solution faible qui est régulière pour temps positives. Par conséquent, solutions stationnaires singulières peuvent être
instables et le problème de Cauchy (P) peut avoir un nombre infini de solutions faibles. De plus, nous montrons un rèsultat similaire
pour chaque solution distributionelle U avec ensemble singulier compact.
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1. Introduction

In this paper we study global nonnegative weak solutions for the Cauchy problem

(P)

{
ut = �u + |u|σ−1u in RN × (0,+∞),

u(x,0) = u0(x) in RN,

when σ = N+2
N−2 and the initial condition u0 is neither bounded nor satisfies the usual integrability assumption u0 ∈

Lq(RN) for some q � N
2 (σ − 1) = 2∗, the Sobolev exponent associated to the embedding H 1(RN) ↪→ L2∗

(RN). It is
well known that under this integrability assumption we can use the heat semigroup S(t) to recast problem (P) in the
integral form

(E) u(t) = S(t)u0 +
t∫

0

S(t − s)
∣∣u(s)

∣∣σ−1
u(s)ds, (1.1)

and we can find a weak solution u of (E) (a so-called mild solution) in the space C([0, T0];Lq(RN)) for T0 =
T0(u0) > 0 sufficiently small. Such a solution exists by a contraction mapping argument, as shown e.g. in [54,
55,18]. See [50] and [24] for related results in more sophisticated function spaces of Lorentz and Besov–Morrey
type. See also [43] for a proof based on energy method also for nonlinear Leray–Lions operators but in bounded
domains. Moreover, each solution can be extended up to a maximal time �T > T0 so that u ∈ C([0, �T );Lq(RN)),
u ∈ L∞

loc((0, �T );L∞(RN)) (actually u ∈ C∞(RN × (0, �T )) for nonnegative initial data) and ‖u(t)‖∞ → ∞ as t ↗ T̄

by the classical blow-up alternative. Existence proof relies on the classical Kato trick of introducing an artificial
seminorm |||v||| = ess sup0<t<T0

tγ ‖v(t)‖r , γ = N
2 ( 1

q
− 1

r
), for q < r � σq to choose properly, whose finiteness, by

standard parabolic theory, is responsible for the extra smoothness. Existence follows from the contraction mapping
theorem for the operator

T (v)(t) = S(t)u0 +
t∫

0

S(t − s)
∣∣v(s)

∣∣σ−1
v(s)ds, (1.2)

on a suitable subset K of the space X = {v ∈ L∞(0, T0;Lq(RN)), ‖|v‖| < ∞}. Uniqueness holds in the subset K

of this space and the same statement in the whole C([0, T0];Lq(RN)) holds but it has to be proved separately (see
[54,55] and [4] for the case of bounded domains). However, we stress that uniqueness is a delicate issue and in the
limiting case q = N

2 (σ − 1), it depends on the assumption q > σ which holds by our choice of σ . Otherwise, if
q = N

2 (σ − 1) = σ , the so-called doubly critical case, nonuniqueness occurs (see [37,50]).
If the integrability assumption u0 ∈ Lq(RN) for some q � N

2 (σ − 1) is not satisfied then the contraction argument
breaks down and if q < N

2 (σ − 1) there is some evidence that for suitable u0 there is no solution in any reasonable
weak sense (see [4,54]). On the other hand in this case nonuniqueness is well known (see [20]). An example of data
of particular relevance is the family of singular initial conditions u0(x) = λU(x), λ > 0, where

U(x) =
(

N − 2

2

)N−2
2 |x| 2−N

2 , U ∈ L2∗,∞(
RN

)
, U /∈ L2∗(

RN
)
, (1.3)

and the Lorentz space L2∗,∞ can be identified with the usual weak-L2∗
space of measurable functions satisfying

sups>0 s|{|f | > s}|1/2∗
< ∞. Indeed, in this situation both the initial data and the equation are invariant under the

transformation U → Uδ , u → uδ , given by Uδ(x) = δ
2

σ−1 U(δx) and uδ(x, t) = δ
2

σ−1 u(δx, δ2t) for any δ > 0. Fur-
thermore, the L2∗

, the L2∗,∞ and even the artificial seminorm ess sup0<t<T0
tγ ‖v(t)‖r , γ = N

2 ( 1
q

− 1
r
) for r > q are

invariant under the same scaling. As a consequence, in our example this invariance rules out the contraction argument
unless a smallness assumption on λ is made (see e.g. [8,24,34]). The same kind of smallness assumption is required
for a number of evolution equations in critical scale-invariant spaces, e.g. the nonlinear Schrödinger equation, the
nonlinear wave equation, the Navier–Stokes system (see e.g. [8,44,26] Chapters 22 and 23 [24,34]). On the other
hand, if we drop the smallness assumption and we take λ = 1 in the family above, then u0(x) = U(x) is a singular
steady state but it is well known (see [15]) that problem (P) admits a weak solution (according to the definition below)
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which is smooth for positive time (quite surprisingly this regularisation phenomenon occurs even for λ > 1, λ−1 	 1
as shown in the recent paper [47]). Thus, once smallness is dropped nonuniqueness may occur. This phenomenon
happens also for some geometric flows when the initial data is a cone-like (homogeneous) time independent singular
solution, like the mean curvature flow (see [22]), the wave map system in R2+1 with values into S2 (see [10]) and
it can be also proved for the gradient flow for harmonic maps from R2 to S2 even for quasi-homogeneous data (see
[42]). Here we stress that, except for the last paper cited, both the nonuniqueness results just mentioned and other
existence results for similar problems with cone-like initial condition (see [16,13]) are obtained by reduction to ODE.

The aim of this paper is to shed some light in problem (P) for some initial condition u0 ∈ L2∗,∞(RN) including the
one in (1.3) (actually, for even much more rough data) without any smallness assumption on the scale invariant norms
of u0 and without any reduction to ODE analysis.

For suitable positive functions u0 we construct by the monotone iteration method weak solutions u as the pointwise
limit of the suite {T n(0)} constructed inductively from (1.2). Due to the positivity of the initial data these solutions
turn out to be the minimal positive solutions of (P). To be more precise, we assume 0 � u0 � Ψ̄ , for some (possibly

discontinuous) Ψ̄ ∈ L
N+2
N−2
loc (RN) with suitable decay at infinity and satisfying �Ψ̄ + Ψ̄

N+2
N−2 � 0 in D′(RN). Under these

assumptions the sequence vn = T n(0) is increasing and pointwise convergent to a function u � Ψ̄ which is an a.e.
solution of the integral equation (1.1). Actually this function is also a globally defined weak solution of (P) according
to the following definition.

Definition 1.1. Let u0 ∈ L
N+2
N−2
loc (RN),u0 � 0 a.e., and u0(x) = O(eC|x|2) as |x| → ∞ for some C > 0. Let u : RN ×

R+ → R be a measurable function such that for some C′ > 0 we have |u(x, t)| = O(eC′|x|2) as |x| → ∞ uniformly

on t . We say that u is a weak solution of problem (P) if u � 0 a.e., u ∈ C0(R+;L
N+2
N−2
loc (RN)), u(0) = u0 and for any

ψ ∈ C∞
0 (RN × R) we have∫

RN

u0(x)ψ(x,0)dx +
∫

RN×R+

u(x, t)ψt (x, t)dx dt +
∫

RN×R+

u(x, t)�ψ(x, t)dx dt

+
∫

RN×R+

u(x, t)
N+2
N−2 ψ(x, t)dx dt = 0. (1.4)

Weak supersolution can be obtained choosing Ψ̄ = λU , where λ ∈ (0,1] and U ∈ L
N+2
N−2
loc (RN) is any positive distrib-

utional solution of �U + U
N+2
N−2 = 0. A plethora of such solutions with nonempty singular set is well known to exist

(see e.g., [45,40,29,30,32,12]) and to be of relevance in the singular Yamabe problem (see [46], see [35] for a survey
and Section 3 for a quick introduction). Here and throughout the paper Σ = SingU is the complement of the largest
open set where U is C∞.

The first existence result we have is the following.

Theorem 1. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN) and Σ = SingU is a

nonempty compact set. Let u0 a measurable function such that 0 � u0 � λU a.e. for some λ ∈ (0,1]. Then there exist
a unique minimal weak solution u of (P), i.e. a weak solution such that u � v a.e. in RN × R+ for any weak solution
v of (P). This solution satisfies 0 � u � λU a.e. in RN × R+. If λ ∈ (0,1) then u ∈ C∞(RN × (0,∞)) and for each
t > 0 ∥∥u(t)

∥∥
L∞(RN)

�
(

4

N − 2

(
λ

2−N
4 − 1

)) 2−N
4

t
2−N

4 . (1.5)

If in addition u0 = λU , λ ∈ (0,1], then u has the following additional properties.

(1) (monotonicity) u is nonincreasing in time.
(2) (regularity vs minimality) If v is a weak solution of (P) such that 0 � v � λU a.e., λ ∈ (0,1], and v ∈ C∞(RN ×

(0,∞)) then v = u.
(3) (uniqueness) If v is a weak solution such that 0 � v � λU a.e., λ ∈ (0,1), and Σ is a finite set then v = u.
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The convergence of the monotone iteration method is classical topic, at least if we assume the continuity of the weak
supersolution Ψ̄ . Under this hypothesis the universal bound (1.5) has already appeared in [53], giving the L∞ decay
rate for large time. Here we extend the monotone iteration to singular data u0 and singular weak supersolution Ψ̄ . The
universal bound (1.5) still holds and, quite surprisingly, the L∞ blow-up rate as t → 0+ turns out to be independent
of the integrability of u0. About claim (2) we remark that the assumption v � λU , λ � 1 cannot be removed. Indeed,
as proved in [47], if u0 = λU , 0 � λ − 1 	 1 and U is given by (1.3) then there are at least two weak solutions uλ

which are positive and smooth for t > 0 (the same multiplicity result seems to be true even for 0 < λ 	 1, see [36]).
By the way, it is not hard to see that for λ > 1 these solutions do not satisfy the pointwise bound uλ � u0 despite u0
is a weak subsolution. Indeed we would get uλ �≡ 0 and

∂tuλ � �uλ + cλ

|x|2 uλ in RN × (0,∞), cλ = λ
4

N−2

(
N − 2

2

)2

>

(
N − 2

2

)2

= c1,

the optimal constant of the Hardy inequality (5.8) below. Using uλ as a supersolution away from the origin it is not
difficult to contradict the result of [3] (see also [6]) about complete blow-up for the linear heat equation with inverse
square potential with constant cλ > c1. On the other hand, for λ = 1, there is at least one solution which does not
satisfy uλ � u0, despite u0 = U is a weak (super)solution. Thus, the parabolic comparison principle fails both for
singular subsolutions and for singular supersolutions.

In proving claim (3) we use suitable extensions of the classical Hardy inequality∫
RN

V ϕ2 dx �
∫

RN

|∇ϕ|2 dx for any ϕ ∈D
(
RN

)
, V (x) =

(
N − 2

2

)2 1

|x|2 , (1.6)

which gives the (form) positivity of the Schrödinger operator Lu = −�u − V (x)u. Here the idea is to derive smooth-
ness from the pointwise bound v � λU and from an Hardy inequality, and to infer uniqueness from claim (2). For

any weak supersolution Ψ̄ as above we are able to show that if we set V (x) = Ψ̄ (x)
4

N−2 , then (1.6) still holds, the
choice Ψ̄ = U and U as in (1.3) giving the classical Hardy inequality with best constant. More generally, if U > 0 is

a distributional solution with finite singular set Σ and V (x) = U(x)
4

N−2 then inequality (1.6) holds and it is sharp, i.e.

inf

{ ∫
RN

|∇ϕ|2 dx, ϕ ∈ C∞
0

(
RN

)
,

∫
RN

V ϕ2 dx = 1

}
= 1. (1.7)

Combining (1.6) for V (x) = U(x)
4

N−2 with the pointwise bound v � λU , λ < 1, we are able to control the nonlinear
term with the linear part, at least when Σ is a finite set (see Section 5), and obtain smoothness for t positive. At the
beginning of our research we introduced these generalised Hardy inequalities in proving smoothness of the minimal
positive solution, under suitable assumption on Σ . Actually for such purpose a much simpler argument, originally
introduced in [53] for continuous data, can be used, assuming Σ to be just a compact set. However, this argument
does not extend to nonminimal weak solutions, and this is exactly where the generalised Hardy inequalities come into
play.

As final remark we observe that inequality (1.5), which holds for any λ < 1, can be regarded as an instability result

for the singular steady state U (e.g. in the L
N+2
N−2
loc (RN) topology) in the sense that the difference U − uλ(t) cannot be

made arbitrarily small uniformly for t � 0, no matter how small (1 − λ)U = U − uλ(0) is.
So far, the main question we want to address is, in view of the explicit dependence on λ in (1.5), what happens to

uλ(t) = u(t, λU) as λ ↗ 1. In particular, do we have nonuniqueness or the increasing sequence uλ verifies uλ → U as
λ ↗ 1? In other terms we can ask the following question. If u0 = U do we have u(t,U) ≡ U? In both cases the answer
is not obvious and it depends in a critical way on the smoothness of U . Indeed it is well known that if U ∈ L2∗

loc(R
N)

then U ∈ H 1
loc(R

N) and in turn U ∈ C∞(RN) (see [51]). By the classification of [7] (see also [27] for a much simpler
proof), U ∈ L2∗

(RN) and it is given by a well known formula (see Section 3). Due to the aforementioned uniqueness
theorem for problem (P) when u0 ∈ L2∗

(RN), it is not hard to see that in this case u(t, λU) → u(t,U) ≡ U . On the
other hand, as already mentioned, if U is given by (1.3) then u(t, λU) → u(t,U) �≡ U and u ∈ C∞(RN × (0,∞)).
Since the regularity of U plays a crucial role in the nonuniqueness phenomena for problem (P), we find this topic
worth of deeper investigation. Therefore, we sharpen the L2∗

-regularity condition which is implicit in [51] into an
loc
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ε-regularity theorem in the Lorentz space L2∗,∞ in the spirit of the analogous results for generalised harmonic maps
(see [1,17]). We have the following result.

Theorem 2. Let N � 3, Ω ⊂ RN an open set and let u ∈ L
N+2
N−2
loc (Ω) be such that u > 0 a.e. in Ω and �u + u

N+2
N−2 = 0

in D′(Ω).

(1) There exists ε0 > 0 depending only on N such that if BR(x0) ⊂ Ω and ‖u‖L2∗,∞(BR(x0))
= ε < ε0 then u ∈

C∞(BR(x0)).
(2) If BR(x0) ⊂ Ω and u ∈ L2∗,q(BR(x0)) for some q ∈ [2∗,∞) then u ∈ C∞(BR(x0)).

The smallness assumption in the previous theorem cannot be removed in view of the explicit example (1.3). Going
back to the dynamic instability of U and the behaviour of uλ as λ ↗ 1 we remark the following. Due to the monotonic-
ity of u with respect to the initial data, the two questions are both related to the validity of an a-priori estimate for the
suite {T n(0)}, u0 = U , in the scale invariant norm |‖ · |‖ introduced above. A direct derivation of this estimate seems
difficult and instead we are forced to use monotonicity methods and a suitable blow-up argument. We confine our-
selves to the case when Σ is a finite set. Such distributional solutions with finitely many point singularities arbitrarily
prescribed do exist and were first constructed in the important paper [45]. For such initial condition the main result of
the paper answers the previous question negatively.

Theorem 3. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN). Assume that Σ =

SingU = {P1, . . . ,Pk} is a finite set. Let u0(x) = U(x). Then there exists a unique weak solution u of (P) such that
0 < u � U a.e. and u ∈ C∞(RN × (0,∞)). Moreover u is decreasing in time, and if Σ = {0}, i.e. if U is radial, then
u is radial and radially decreasing for all t > 0. We have u = u, the corresponding minimal weak solution given by
Theorem 1. Moreover ‖u(·, t)‖L∞(RN) → 0 as t → ∞.

In proving the previous result the key point it to derive a suitable a-priori estimate on the solutions uλ in the
“subcritical” case λ < 1, using a blow up argument originally introduced in [19] to obtain the L∞ decay rate of
classical global solutions of (P) as t tends to infinity. Combining a suitable variant of it with the precise asymptotic
analysis of U at isolated singularities developed in [7] and [23] we are able to prove that uλ ↗ u ∈ C∞(RN × (0,∞)).
On the other hand we are able to show that there is no regular steady-states for (P) lying below U . In turn this forces
the solution u to converge to zero uniformly as t → ∞. Moreover, when U is radial the solution u is radial and it has
the same (either discrete or continuous) scale invariance of the initial data. Due to this possibly discrete invariance,
we call these solutions (quasi-)selfsimilar.

Using the global solution of Theorem 3 for radial initial data and taking into account the asymptotic analysis of
U at isolated singularities developed in [7] and [23], we are able to give a much more precise description of the
asymptotic behaviour of u, both near Σ as t → 0+ and as t → ∞. We have the following result.

Theorem 4. Let N � 3, U as in Theorem 3 and u0(x) = U(x). Let u be the unique weak solution of (P) constructed
in Theorem 3, so that 0 < u � U a.e. and u ∈ C∞(RN × (0,∞)). Then

(1) for each 2∗ < p � ∞ there exists C(p) > 0 such that for each t > 0∥∥u(t)
∥∥

Lp(RN)
� Ct

− N
2 ( 1

2∗ − 1
p

)
. (1.8)

(2) For each Pj ∈ Σ let Uj (x) be the unique radial singular solution such that for some αj > 0 we have

U(x)−Uj (x) =O(|x −Pj | 2−N
2 +αj ) as |x −Pj | → 0. Let uj (x, t) the corresponding radial solution as given by

Theorem 3. There exists ri ↘ 0 such that as i → ∞
r

N−2
2

i u
(
ri(x − Pj ), r

2
i t

) → uj (x, t) in C
2,1
loc

(
RN × (0,∞)

)
. (1.9)

Moreover, for each η > 0 such that Σ ∩ Bη(Pj ) = {Pj } and for each 2∗ < p � ∞ we have

t
N
2 ( 1

2∗ − 1
p

)
∥∥u(t) − uj (t)

∥∥
p → 0 as t → 0+. (1.10)
L (Bη(Pj ))
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(3) Assume that U has a nonremovable singularity at infinity, i.e. U(x) � C|x| 2−N
2 for large x, so that there exist

a unique radial singular solution U∞ such that for some α∞ > 0 we have U(x) − U∞(x) = O(|x| 2−N
2 −α∞) as

|x| → ∞. Let u∞(x, t) the corresponding radial solution as given by Theorem 3. There exists ri ↗ ∞ such that
as i → ∞

r
N−2

2
i u

(
rix, r2

i t
) → u∞(x, t) in C

2,1
loc

(
RN × (0,∞)

)
. (1.11)

Moreover, for each 2∗ < p � ∞ we have

t
N
2 ( 1

2∗ − 1
p

)
∥∥u(t) − u∞(t)

∥∥
Lp(RN)

→ 0 as t → ∞. (1.12)

Thus, the solution u turns out to be asymptotically (quasi-)selfsimilar both as (x, t) → (P,0), P ∈ Σ , and as t

tends to infinity in the sense that the “tangent flows” obtained by scaling u both at the singular points and at infinity
turns out to be the (quasi-)selfsimilar radial flows given by Theorem 3, associated to the radial “tangent maps” of U

at the corresponding points. It is easy to prove that the same statement holds for the solutions corresponding to each
λ ∈ (0,1). We observe also that for λ small enough we can improve (1.10) and (1.12) to a power-like decay. Indeed,

for example, the asymptotic property U(x) − U∞(x) =O(|x| 2−N
2 −α∞) as |x| → ∞ easily yields t

N
2 ( 1

2∗ − 1
p

)‖S(t)U −
S(t)U∞‖Lp(RN) =O(t−δ) as t → ∞ for some δ > 0. Hence, using semigroup techniques the claim follows arguing
as in [8], Theorem 6.1. We conjecture that the same conclusion holds for λ = 1, i.e. for the solutions considered in
Theorems 3 and 4.

An immediate consequence of Theorem 3 is the following result.

Corollary 1. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN) and Σ = SingU is a

nonempty finite set. Let u0(x) = U(x). Then problem (P) has infinitely many weak solutions.

The plan of the paper is as follows. In Section 2 we present some preliminary results concerning the monotone
iteration method. In Section 3 we review the basic properties of singular solutions corresponding to singular Yamabe
metrics on SN which will be used in the sequel. In Section 4 we prove an ε-regularity theorem (Theorem 2) for
these singular solutions using Lorentz spaces. In Section 5 we obtain the extended Hardy inequalities and we prove
Theorem 1. In Section 6 we present a simpler direct proof of Theorem 3 for radial singular steady states U and we
construct the corresponding (quasi-)selfsimilar solutions. In Section 7 we prove Theorem 3 in the general case and
we derive Corollary 1 as a straightforward consequence. In Section 8 we use some asymptotic analysis and prove
Theorem 4. A very weak form of the maximum principle for the heat equation is confined in an appendix.

2. Preliminary results

Let us denote by Kt(x) = (4πt)−N/2 e− |x|2
4t , t > 0, the standard heat kernel in RN and by S(t) the associated heat

semigroup, S(t)v0 = Kt ∗v0. The following lemma expresses the well-known smoothing effect of the heat semigroup.
The proof is an easy application of Young inequality in Lp spaces and it will be omitted.

Lemma 2.1. Let 1 � β � γ � ∞. For all t > 0 and all v0 ∈ Lβ(RN)∥∥S(t)v0
∥∥

Lγ (RN)
� 1

t
N
2 ( 1

β
− 1

γ
)
‖v0‖Lβ(RN), (2.1)

and for 1 � β < ∞∥∥S(t)v0 − v0
∥∥

Lβ(RN)
→ 0 as t → 0+. (2.2)

Using the previous lemma we can prove the following existence result of the minimal and the maximal weak
solutions u and ū of problem (P). The assumption on the behaviour of Ψ̄ at infinity is far from being optimal but it is
modelled on the applications we have in mind.



A. Pisante / Ann. I. H. Poincaré – AN 23 (2006) 591–628 597
Proposition 2.1. Let N � 3 and Ψ̄ ∈ L
N+2
N−2
loc (RN), Ψ̄ > 0 a.e., such that

�Ψ̄ + Ψ̄
N+2
N−2 � 0 in D′(RN

)
, (2.3)

and Ψ̄ (x) = O(|x| 2−N
2 ) as |x| → ∞. Let u0 a measurable function such that 0 � u0 � Ψ̄ a.e.. Then there exist two

weak solutions u, ū of (P) such that 0 � u � ū � Ψ̄ in RN × R+. Moreover u � v � ū a.e. in RN × R+ for any
other weak solution v of (P) such that v � Ψ̄ a.e. in RN × R+. If in addition u0 = Ψ̄ then for all 0 � t1 < t2 we have
u(t1) � u(t2) and ū(t1) � ū(t2) a.e. in RN , i.e. u and ū are decreasing in t .

Proof. Define MΨ̄ := {v : RN × R+ → R, 0 � v � Ψ̄ , a.e.}. For any v ∈MΨ̄ we set

T (v) = S(t)u0 +
t∫

0

S(t − s)v(s)
N+2
N−2 ds

=
∫

RN

Kt (x − y)u0(y)dy +
t∫

0

∫
RN

Kt−s(x − y)
(
v(y, s)

)N+2
N−2 dy ds. (2.4)

We have the following

Lemma 2.2. For any v ∈MΨ̄ the function T (v) is well defined and T (v) ∈ MΨ̄ .

Proof. Since both u0 and v are positive functions, T (v) is always well defined, possibly infinite. More precisely, by
(2.4) for each t > 0 the function Tt (Ψ̄ )(·) = T (Ψ̄ )(·, t) is defined a.e. in RN . As T is monotonically increasing both
in u0 and in v, it is enough to prove that T (v) ∈ MΨ̄ when u0 = Ψ̄ and v = Ψ̄ .

Now we are going to prove that T (Ψ̄ ) ∈ MΨ̄ , i.e. that T (Ψ̄ ) � Ψ̄ a.e. in RN × R+. Let t > 0 be fixed. For each
0 < ε < t we set

T ε
t (Ψ̄ ) = S(t)Ψ̄ +

t−ε∫
0

S(t − s)Ψ̄
N+2
N−2 ds. (2.5)

Thus T ε
t (Ψ̄ ) � Tt (Ψ̄ ) and, by the monotone convergence theorem, T ε

t (Ψ̄ ) → Tt (Ψ̄ ) a.e. as ε ↘ 0.
Observe that since �Ψ̄ � 0 in D′(RN) and Ψ̄ decays to zero at infinity, by approximation we can test this inequality

with Kt(x − ·) because for t > 0, Kt belongs to the Schwartz class. Since S(t)Ψ̄ is smooth for t > 0, differentiating
under integral sign and using the identity ∂tKt = �Kt we easily conclude that S(t)Ψ̄ is decreasing in t . Moreover
S(t)Ψ̄ ↗ Ψ̄ a.e. as t ↘ 0 because S(t)Ψ̄ satisfies the heat equation with initial condition Ψ̄ .

Since �Ψ̄ + Ψ̄
N+2
N−2 � 0 in D′(RN) we can test this inequality with the heat kernel Kt−s(x − ·), 0 < s < t − ε

because Kt,�Kt and ∂tKt are bounded and decay exponentially as |x| → ∞ locally uniformly for t > 0 (a rigorous
justification can be done as in the proof of Proposition A.1). Thus we have

T ε
t (Ψ̄ ) = S(t)Ψ̄ +

t−ε∫
0

∫
RN

Kt−s(x − y)Ψ̄ (y)
N+2
N−2 dy ds � S(t)Ψ̄ −

t−ε∫
0

∫
RN

�yKt−s(x − y)Ψ̄ (y)dy ds

= S(t)Ψ̄ +
t−ε∫
0

∫
RN

∂sKt−s(x − y)Ψ̄ (y)dy ds = S(t)Ψ̄ + S(ε)Ψ̄ − S(t)Ψ̄ = S(ε)Ψ̄ .

Since we have already shown that S(ε)Ψ̄ � Ψ̄ a.e. we obtain T ε
t (Ψ̄ ) � Ψ̄ a.e. in RN . As ε → 0 we have Tt (Ψ̄ ) � Ψ̄

a.e. and the conclusion follows since t > 0 can be chosen arbitrarily. �
The function u = T (v) inherits from the heat kernel some regularity in time.
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Lemma 2.3. Let v ∈MΨ̄ and let u = T (v). Then u(t) → u0 in L
N+2
N−2
loc (RN) as t → 0 and u ∈ C0(R+;L

N+2
N−2
loc (RN)).

Proof. Since u � Ψ̄ it is enough to prove that u(t) → u0 in L1
loc(R

N) as t → 0 and u ∈ C0(R+;L1
loc(R

N)) and
the conclusion follows easily applying the dominated convergence theorem. By assumption there exists R0 > 0 such
that Ψ̄ is bounded for |x| � R0. We write Ψ̄ = Ψ̄1 + Ψ̄2, where Ψ̄1 = Ψ̄ χ{|x|<R0} � 0, Ψ̄2 = Ψ̄ − Ψ̄1 � 0. Clearly

by the assumptions on Ψ̄ we have Ψ̄1 ∈ L
N+2
N−2 (RN) and also Ψ̄1 ∈ L1(RN) because Ψ̄1 has compact support. On the

other hand Ψ̄2 ∈ Lp(RN) for any p > 2∗ by the decay assumption on Ψ̄ at infinity. Similarly, we split u0 = u1
0 + u2

0,

u1
0 = u0χ{|x|<R0}, so that u1

0 ∈ L
N+2
N−2 (RN) and u2

0 ∈ Lp(RN) for any p > 2∗. For each t > 0 and p > 2∗, using (2.4),
u � Ψ̄ , Holder inequality and (2.1) we have

∥∥u(t) − u0
∥∥

L1(BR0 )
�

∥∥S(t)u0 − u0
∥∥

L1(BR0 )
+

t∫
0

∥∥S(t − s)Ψ̄
N+2
N−2

∥∥
L1(BR0 )

ds

�
∥∥S(t)u1

0 − u1
0

∥∥
L1(RN)

+ C(R0,p)
∥∥S(t)u2

0 − u2
0

∥∥
Lp(RN)

+
t∫

0

∥∥S(t − s)Ψ̄
N+2
N−2

1

∥∥
L1(RN)

ds

+ C(R0,p)

t∫
0

∥∥S(t − s)Ψ̄
N+2
N−2

2

∥∥
Lp(RN)

ds

�
∥∥S(t)u1

0 − u1
0

∥∥
L1(RN)

+ C(R0,p)
∥∥S(t)u2

0 − u2
0

∥∥
Lp(RN)

+ t
∥∥Ψ̄1

∥∥N+2
N−2

L
N+2
N−2 (RN)

+ tC(R0,p)
∥∥Ψ̄2

∥∥N+2
N−2

L
p N+2

N−2 (RN)

, (2.6)

whence the r.h.s. goes to 0 as t → 0 by the assumptions on u1
0, u2

0, Ψ̄1, Ψ̄2, and (2.2).
Now let T > 0 be fixed and choose 0 < t1 < t2 < T . We will consider one of them fixed and we will prove only

one-side continuity as t2 − t1 → 0. First let us argue as above and split v = v1 + v2 where v1 = vχ{|x|<R} � 0 and
v2 = v − v1 � 0, so that vi � Ψ̄i for i = 1,2.

Write

∥∥u(t2) − u(t1)
∥∥

L1(BR0 )
�

∥∥S(t2)u0 − S(t1)u0
∥∥

L1(BR0 )
+

∥∥∥∥∥
t2∫

0

S(t2 − s)
(
v(s)

)N+2
N−2 ds

−
t1∫

0

S(t1 − s)
(
v(s)

)N+2
N−2 ds

∥∥∥∥∥
L1(BR0 )

= I1 + I2.

Clearly we can argue as in (2.6) to prove that I1 → 0 as t2 − t1 → 0. Thus it suffices to prove that I2 → 0 as t2 − t1 → 0.
Splitting v as above and using the pointwise inequalities vi � Ψ̄i , the semigroup property and (2.1), we get

I2 �
∥∥∥∥∥

t1∫
0

S(t1 − s)
{
S(t2 − t1)

(
v1(s)

)N+2
N−2 − (

v1(s)
)N+2

N−2
}

ds

∥∥∥∥∥
L1(BR0 )

+
∥∥∥∥∥

t2∫
t1

S(t2 − s)
(
v1(s)

)N+2
N−2 ds

∥∥∥∥∥
L1(BR0 )

+
∥∥∥∥∥

t1∫
0

S(t1 − s)
{
S(t2 − t1)

(
v2(s)

)N+2
N−2 − (

v2(s)
)N+2

N−2
}

ds

∥∥∥∥∥
L1(BR0 )

+
∥∥∥∥∥

t2∫
t1

S(t2 − s)
(
v2(s)

)N+2
N−2 ds

∥∥∥∥∥
L1(BR0 )

�
T∫ ∥∥S(t2 − t1)

(
v1(s)

)N+2
N−2 − (

v1(s)
)N+2

N−2
∥∥

L1(RN)
ds
0
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+ C(R0,p)

T∫
0

∥∥S(t2 − t1)
(
v2(s)

)N+2
N−2 − (

v2(s)
)N+2

N−2
∥∥

Lp(RN)
ds

+ (t2 − t1)
∥∥Ψ̄1

∥∥N+2
N−2

L
N+2
N−2 (RN)

+ (t2 − t1)C(R0,p)
∥∥Ψ̄2

∥∥N+2
N−2

L
p N+2

N−2 (RN)

. (2.7)

Since

G1(t1, t2)(s) := ∥∥S(t2 − t1)
(
v1(s)

)N+2
N−2 − (

v1(s)
)N+2

N−2
∥∥

L1(RN)
� 2

∥∥Ψ̄1
∥∥N+2

N−2

L
N+2
N−2 (RN)

and similarly

G2(t1, t2)(s) := ∥∥S(t2 − t1)
(
v2(s)

)N+2
N−2 − (

v2(s)
)N+2

N−2
∥∥

Lp(RN)
� 2

∥∥Ψ̄2
∥∥N+2

N−2

L
p N+2

N−2 (RN)

,

and G1,G2 → 0 a.e. as t2 − t1 → 0 by (2.2), the conclusion follows from (2.7) and the dominated convergence
theorem. �
Remark 1. Given v ∈ MΨ̄ , u = T (v) is formally a mild solution of the Cauchy problem

(Pv)

{
ut = �u + v

N+2
N−2 in Rn × (0,+∞),

u(0) = u0 in Rn.
(2.8)

Since Ψ̄ /∈ L
N+2
N−2 (RN) a direct application of the semigroup method is not possible. Indeed local integrability and

integrability at infinity for the initial data do not match and it would be necessary to introduce weighted spaces. It is
more convenient for us to interpret (2.8) in the sense of distributions according to the lemma below. This way u = T (v)

is a classical solution of (2.8) for t > 0 and u ∈ C∞(RN × (0,∞)) whenever v ∈ C∞(RN × (0,∞)) according to the
standard regularity theory for the heat equation.

The function u = T (v) solves (2.8) in the sense of distributions.

Lemma 2.4. Let v ∈ MΨ̄ and let u = T (v) as in (2.4). Then u ∈ C0(R+;L
N+2
N−2
loc (RN)), u(0) = u0 and for any ψ ∈

C∞
0 (RN × R) we have∫

RN

u0(x)ψ(x,0)dx +
∫

RN×R+

u(x, t)ψt (x, t)dx dt +
∫

RN×R+

u(x, t)�ψ(x, t)dx dt

+
∫

RN×R+

v(x, t)
N+2
N−2 ψ(x, t)dx dt = 0. (2.9)

Proof. The first two claims hold by Lemma 2.3. In order to check the third we choose {un
0} ⊂ C∞

0 (RN) such that

0 � un
0 � Ψ̄ a.e., un

0 → u0 in L
N+2
N−2
loc (RN) and a.e.. Similarly, since Ψ̄ ∈ L

N+2
N−2
loc (RN × R) and v ∈ MΨ̄ , we may extend

v � 0 to 0 for t < 0 and find {vn} ⊂ C∞
0 (RN × R) such that 0 � vn � Ψ̄ , vn → v in L

N+2
N−2
loc (RN × R) and a.e.. For

example, if S(t) (resp. �S(t)) is the heat semigroup in RN (resp. in RN+1) then we can take un
0 = ϕnS(1/n)u0 (resp.

vn = ϕn
�S(1/n)v) and ϕn ∈ C∞

0 (RN) (resp. ϕn ∈ C∞
0 (RN+1)) satisfying 0 � ϕn � 1, ϕn → 1 in C∞(RN) (resp. in

C∞(RN+1)).
Thus, if we set

un(t) = S(t)un
0 +

t∫
S(t − s)

(
vn(s)

)N+2
N−2 ds,
0
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then un ∈ C∞(RN × R+) because un is the unique, global, classical solution of

(Pn
v)

{
un

t = �un + (
vn

)N+2
N−2 in Rn × (0,+∞),

un(0) = un
0 in Rn,

(2.10)

and smoothness follows from the standard regularity theory for linear heat equation (see [25]).

Arguing as in Lemma 2.2, by dominated convergence we conclude un → u a.e., hence un → u in L
N+2
N−2
loc (RN ×R+)

because 0 � un � Ψ̄ for each n. Multiplying (2.10) by ψ and integrating by parts we obtain (2.9) for each (un, vn)

and the conclusion follows as n → ∞. �
Finally we are in the position to finish the proof of Proposition 2.1. Set v0 = 0, v1 = T (v0) = S(t)u0 and for each

n � 1 let us set vn+1 = T (vn). By Lemma 2.2 the sequence {vn} is well defined and {vn} ⊂ MΨ̄ . Since v1 � 0 = v0
a simple induction argument based on Proposition A.1 and similar to the one below shows that {vn} is pointwise
increasing, hence vn → u for some u ∈ MΨ̄ . Using the monotone convergence theorem in (2.4) we immediately
obtain u = T (u) a.e. whence, applying Lemma 2.4, u is a weak solution of (P) in the sense of Definition 1.1. Similarly
we can take v0 = Ψ̄ , v1 = T (v0) and for each n � 1 we can set vn+1 = T (vn). By Lemma 2.2 the sequence {vn} is
well defined and {vn} ⊂ MΨ̄ . An induction argument based on Proposition A.1 and similar to the one below shows
that {vn} is pointwise decreasing, hence vn → ū for some ū ∈MΨ̄ such that ū = T (ū) and ū is a weak solution of (P)
in the sense of Definition 1.1.

In order to prove the minimality of u, let v be any other weak solution in the sense of Definition 1.1. Let vn

as above, v0 ≡ 0 and vn ↗ u a.e.. Let us set Wn := v − vn. By definition of weak solution and Lemma 2.2, {Wn} ⊂
C0(R+;L1

loc(R
N)) and Wn(0) ≡ 0 for each n � 0. On the other hand, since v(x, t) =O(eC|x|2) for |x| → ∞ uniformly

on t and |vn(x, t)| � Ψ̄ (x) = O(|x| 2−N
2 ) as |x| → ∞, we clearly have Wn(x, t) = O(eC|x|2) for |x| → ∞ uniformly

on t � 0 and on n � 0.
We claim that for each n � 0 we have Wn � 0 a.e., i.e. v � vn a.e., whence the minimality follows as n → ∞.

We prove the claim by an induction argument. By definition of weak solution W0 = v � 0, hence the claim holds for

n = 0. For n � 1 by (1.4) and (2.9) we have ∂tWn −�Wn = v
N+2
N−2 − v

N+2
N−2
n−1 in D′(RN × (0,∞)). Since the r.h.s. of this

equation is positive by the inductive assumption Wn−1 � 0 and Wn(0) = u0 − u0 = 0, we can apply Proposition A.1
to conclude Wn � 0 a.e. and the claim is proved.

The same argument applied to {vn} and v shows that ū is the maximal weak solution in MΨ̄ .
Now let us assume that u0 = Ψ̄ and let us prove that u is nonincreasing in t . For a given nonnegative initial function

0 � f � Ψ̄ , let us denote with u(t, f ) the corresponding minimal solution at time t > 0, whose existence is guaranteed
by the first part of the proposition. Clearly by (2.4) for each t > 0 we have

f1 � f2 �⇒ u(t, f1) � u(t, f2) a.e. (2.11)

We claim that u satisfies the semigroup property, i.e. for any s, t � 0

u(s + t, f ) = u
(
s, u(t, f )

)
. (2.12)

Assuming (2.12) for a moment, let us prove that u(t, Ψ̄ ) is decreasing in time. Since u(t, Ψ̄ ) � Ψ̄ for each t � 0, then
for any 0 � t1 < t2 we have u(t1, Ψ̄ ) � u(t1, u(t2 − t1, Ψ̄ )) = u(t2, Ψ̄ ) by (2.11), (2.12), and the proof is completed.

In order to check (2.12) it suffice to prove that for each t0 > 0, if we set

v(t, f ) =
{

u(t, f ) t ∈ [0, t0],
u
(
t − t0, u(t0, f )

)
t � t0,

(2.13)

then u(t, f ) = v(t, f ) for every t � 0. To verify this property, first we observe that v is also a weak solution in the
sense of Definition 1.1. Indeed, given u(t, f ) we use a standard approximation argument for the test function ψ in
(1.4) in the time interval [0, t0] by ψθn, θn = θn(t) ∈ C∞

0 (R) such that 0 � θn � 1 and θn → χ[0,t0]. As n → ∞ by
dominated convergence we obtain∫

N

f (x)ψ(x,0)dx −
∫
N

u(t0, f )(x)ψ(x, t0)dx +
∫

N

u(t, f )(x)ψt (x, t)dx dt
R R R ×(0,t0)
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+
∫

RN×(0,t0)

u(t, f )(x)�ψ(x, t)dx dt +
∫

RN×(0,t0)

u(t, f )(x)
N+2
N−2 ψ(x, t)dx dt = 0.

Testing Eq. (1.4) for u(s,u(t0, f )) with ψ(x, s + t0), changing variables as s = t − t0 and adding to the pre-
vious relation we conclude that v is a weak solution. To prove that u(t, f ) = v(t, f ) we observe that the “�” is
obvious because of the minimality of u(t, f ). The “�” is trivial for t ∈ [0, t0] and it follows from the minimality
of u(t − t0, u(t0, f )) for any t − t0 � 0. Thus, (2.12) holds for any initial condition 0 � f � Ψ̄ . The proof of the
analogous statements for ū are entirely similar, therefore it will be omitted. �

As a consequence of the previous result we obtain the following sufficient condition for minimality.

Corollary 2. Let u0 = Ψ̄ , u as in Proposition 2.1 and let u be a weak solution of (P). If u � Ψ̄ a.e. and u ∈ C∞(RN ×
(0,∞)), then u = u, i.e. u is the minimal solution.

Proof. By Proposition 2.1 we have a well defined minimal solution u(t, Ψ̄ ) � u(t) for all t � 0. In order to prove the
reverse inequality let us fix t0 > 0. Clearly for t � 0 the function u(t + t0) is a classical (hence a weak) solution of
(P) with u(t0) � Ψ̄ (x) as initial condition. Observe that u(t0) ∈ L∞(RN) because it is positive, smooth and u(t0) �
Ψ̄ (x) → 0 as |x| → ∞. Similarly ‖u(t + t0)‖∞ is locally bounded for t � 0. By Proposition 2.1 the minimal solution
u(t, u(t0)) is well defined for all t � 0 and, by minimality, u(t, u(t0)) � u(t + t0) for all t � 0. Thus, ‖u(t, u(t0))‖∞ is
locally bounded for t � 0 and u(t, u(t0)) has smooth initial condition, therefore it is smooth by the standard regularity
theory for the heat equation (see [25]). By the short time uniqueness of the bounded classical solution of (P) with
bounded smooth initial data u(t0) we obtain u(t + t0) ≡ u(t, u(t0)) for t small enough. Repeating this argument we
actually obtain u(t + t0) ≡ u(t, u(t0)) for all t � 0. Since u(t0) � Ψ̄ , using (2.11) we obtain u(t + t0) ≡ u(t, u(t0)) �
u(t, Ψ̄ ) a.e. for all t � 0. Since u ∈ C0(R+;L1

loc(R
N)), as t0 → 0 we have u(t) � u(t, Ψ̄ ) a.e. for all t � 0 and the

conclusion follows. �
Another consequence of Proposition 2.1 is the following corollary which guarantees the smoothness of the min-

imal solution and an explicit L∞-bound of u(t) for each t > 0. This bound has been already established in [53],
Theorem 4.1, when Ψ̄ is a continuous weak supersolution.

Corollary 3. Let Ψ̄ as in Proposition 2.1, λ ∈ (0,1) and u0 = λΨ̄ . Let u the minimal weak solution of problem (P) as
in Proposition 2.1. Then 0 < u � λΨ̄ a.e., u ∈ C∞(RN × (0,∞)) and for each t > 0

∥∥u(t)
∥∥

L∞(RN)
�

(
4

N − 2

(
λ

2−N
4 − 1

)) 2−N
4

t
2−N

4 . (2.14)

Proof. First we regularise suitably the initial data. Given u0(x) = λΨ̄ (x), λ ∈ (0,1), for each τ > 0 we set u0τ (x) =
u0 ∗ Kτ (x), where Kτ is the standard heat kernel in RN × R+ at time t = τ . Clearly u0τ is smooth for each τ > 0,

0 < u0τ � u0 by Lemma 2.2 and u0τ → u0 in L
N+2
N−2
loc (RN) as τ → 0 by Lemma 2.3. On the other hand, for each

λ ∈ (0,1), arguing as in the proof of Proposition 5.1, we can easily prove that u0τ satisfy (2.3) in a classical sense
(regularisation with the heat kernel involves probability measures). Thus, ∂τ u0τ = �u0τ � 0, i.e. u0τ is decreasing
in τ . Hence u0τ ↗ u0 a.e. as τ → 0.

For each τ > 0 let us consider the Cauchy problem

(Pτ )

{
ut = �u + |u| 4

N−2 u in Rn × (0,+∞),

u(x,0) = u0τ (x) in Rn.
(2.15)

Since the initial function is bounded, smooth and decays fast enough at infinity together with its derivatives of any
order, by classical theory (see [25]) problem (Pτ ) has a unique bounded and infinitely smooth solution uτ defined in
some strip RN × [0, T ]. As already observed u0,τ � 0 is a classical solution of inequality (2.3), i.e. u0,τ is a smooth
time-independent supersolution for problem (Pτ ). Thus, by standard comparison principle on (Pτ ) we conclude

0 < S(t)u0τ (x) � uτ (x, t) � u0τ (x), ∂tuτ � 0 for any (x, t) ∈ RN × (0, T ], (2.16)
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By the well known blow-up alternative, the a-priori L∞ bound on uτ guarantees that the solution can be extended
globally in time. Thus for each τ > 0 problem (Pτ ) has a unique bounded global-in-time solution uτ ∈ C∞(RN ×
R+). Moreover, combining the smoothness up to t = 0 with the translation invariance of the equation and the decay

properties of u0τ and its derivatives at infinity, it is easy to check that ∂tuτ and u
N+2
N−2
τ belong to L∞(0, T ;L∞(RN))

for any T > 0 and they are smooth.
Let us set Ψ̄τ = Kτ ∗ Ψ̄ , so that Ψ̄τ are classical solutions of (2.3) by the same argument used for u0τ . Following

[53], Theorem 4.1, let us set v = ∂tuτ + ηu
N+2
N−2
τ , where η > 0 is to be chosen later. Standard calculation yields

∂tv − �v � N + 2

N − 2
u

4
N−2
τ v on RN × [0,∞).

Choosing η = λ
4

2−N − 1 > 0 we have

v(0) = (
∂tuτ + ηu

N+2
N−2
τ

)
(0) = (

�uτ + (1 + η)u
N+2
N−2
τ

)
(0) = �u0τ + (1 + η)u

N+2
N−2
0τ

= λ
(
�Ψ̄τ + (1 + η)λ

4
N−2 Ψ̄

N+2
N−2

τ

) = λ
(
�Ψ̄τ + Ψ̄

N+2
N−2

τ

)
� 0,

because Ψ̄τ are classical solutions of (2.3). Since v belong to L∞(0, T ;L∞(RN)) for any T > 0 and is smooth we
can apply the standard comparison principle to conclude v � 0 everywhere, because T > 0 can be chosen arbitrarily.

Thus, ∂tuτ + ηu
N+2
N−2
τ � 0 everywhere, whence a direct integration yields

∥∥uτ (t)
∥∥

L∞(RN)
�

(
4

N − 2

(
λ

2−N
4 − 1

)) 2−N
4

t
2−N

4 . (2.17)

As already observed u0τ is pointwise increasing to u0 as τ → 0, hence by standard comparison principle the
same holds for uτ . By (2.17) and (2.16) there exists a locally bounded pointwise limit u : RN × R+ → R such that
0 � u � u0, u is nonincreasing in time and u satisfies (2.14). On the other hand, combining (2.17) with the standard
Lp and Schauder theory for the heat equation, we easily infer that {uτ } is a compact sequence in C

2,1
loc (RN × (0,∞)).

Therefore u is in C
2,1
loc (RN × (0,∞)) and it is a classical positive solution of the equation. By (2.16) we also have

S(t)u0 � u � u0, hence u is C∞-smooth for t > 0 by standard theory (see [25]). Moreover u(t) → u0 in L
N+2
N−2
loc (RN)

as t → 0+ and u ∈ C0(R+;L
N+2
N−2
loc (RN)) by dominated convergence. Thus, u is a weak solution of problem (P) and

using Corollary 2 we conclude u = u. �
Remark 2. The proof of Corollary 3 clearly shows that, at least for λ < 1, the minimal positive solution u(t, λΨ̄ ) can
be constructed by solving (Pτ ) and passing to the limit as τ → 0. Actually it is not hard to see that the same holds for
λ = 1. Indeed u0τ ↗ u0 as τ → 0+ and uτ → u for some weak solution u ∈ MΨ̄ of problem (P). On the other hand,
by Corollary 2 and (2.11) we have uτ (t) = u(t, u0τ ) � u(t, Ψ̄ ), whence u(t) � u(t, Ψ̄ ) and the conclusion follows
from the minimality of u.

3. A review of singular steady states in RN

In this section we recall well known results about singular stationary solutions of problem (P) which we need to
prove our main theorems. Let N � 3 and let (SN ,g0) the N -dimensional sphere with the standard metric, so that

SN has constant positive scalar curvature Rg0 . If g and g0 are conformally related metrics, i.e. g = u
4

N−2 g0 for some
positive function u ∈ C∞(SN), then the scalar curvatures Rg and Rg0 are related by the equation

�g0u − N − 2

4(N − 1)
Rg0u + N − 2

4(N − 1)
Rgu

N+2
N−2 = 0. (3.1)

For any Riemaniann manifold the classical Yamabe problem (resp. the prescribing scalar curvature problem) consists
in finding a positive solution u of (3.1) for prescribed constant scalar curvature Rg (resp. for prescribed smooth
function Rg). After the important paper [46] there has been a lot of interest in solving equation (3.1), especially
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in the positive case Rg = const > 0, on open subdomains Ω0 � SN in connection with the embedding problem for
locally conformally flat manifolds. In particular one requires the metric g to be of constant positive scalar curvature
in Ω0, i.e. u has to solve (3.1) in Ω0, and to be complete in Ω0, hence the factor u has to blow-up suitably as
x → Σ0 = SN \Ω0. This is the so-called singular Yamabe problem on SN (see [35] for an introduction and a detailed
review on the subject).

Assuming Rg = const > 0 and using the stereographic projection ΠP0 :SN → RN from a point P0 ∈ Ω0, Eq. (3.1)
is equivalent to

�U + U
N+2
N−2 = 0, x ∈ Ω � RN, (3.2)

where Ω = Π(Ω0), coupled with the “boundary condition” U → ∞ suitably as x → Σ = Π(Σ0) which guarantees
the completeness of the corresponding metric g on Ω0.

Existence results for complete metrics heavily depends on the “size” of the singular set Σ and in order to guarantee
solvability a bound on the Hausdorff dimension of Σ , namely 0 � dH (Σ) � N−2

2 , is necessary (see [46]). Under this
assumption solutions of (3.2) such that g is complete on Ω0 do exists whenever Σ is a finite union of compact
submanifolds without boundary Σi of dimension 0 � di � N−2

2 (see e.g. [45,32,29,31,40,30]). On the other hand
singular solutions do exist even when Σ is a submanifold with boundary [12] or certain purely unrectifiable sets
(see [46]). Under a further mild geometric assumption (see [23]) which always holds for finite union of smooth

compact submanifolds satisfying the previous dimensional bound, any solution U belongs to L
N+2
N−2
loc (RN) and extends

to a distributional solution in the whole RN .
A related major task in this subject is the understanding of the blow-up rate of positive solutions U ∈ C∞(Ω) as

x → Σ . The first result in this direction has been obtained in [7], Theorem 1.2, when Σ is a finite set. Under this
assumption,

C1|x − P | 2−N
2 � U(x) � C2|x − P | 2−N

2 as x → P ∈ Σ, (3.3)

for some C1(U),C2(U) > 0. Such blow-up rate is sharp as it is shown by the explicit example (1.3) and the well-
known classification of radial singular solutions which we recall below. Inequalities (3.3) also show that if Σ is a
finite set then U ∈ L

2∗,∞
loc (RN) and has no higher integrability. Here the Lorentz space L

2∗,∞
loc (RN) can be viewed as

the weak-Lp space, p = 2∗, of measurable functions satisfying sups>0 s|{|f | > s} ∩ B|1/p < ∞ for any ball B ⊂ RN

(for further information about regularity results in the setting of Lorentz spaces see the next section). Using conformal
invariance of (3.2) and the Kelvin transform it is possible to deduce some information on the behaviour of U at infinity
from (3.3) whenever Σ is a compact set (which is always the case if P0 ∈ Ω0), namely

either U(x) ∼ |x| 2−N
2 or U(x) ∼ |x|2−N as |x| → ∞. (3.4)

In the first case we say that U is singular at infinity while in the second we say that U is regular. The second case
actually occur for positive smooth solutions U . According to [51], if U ∈ L2∗

loc(R
N) and U > 0 a.e. is a weak solution

of (3.2) then U ∈ H 1
loc(R

N) by standard linear regularity theory, hence U ∈ C∞(RN) by [51], Theorem 3. By the
classification result of [7], Corollary 8.2, we have U ∈ L2∗

(RN) and

U(x) = �Uδ(x − x0) = δ
N−2

2 �U(
δ(x − x0)

)
, �U(x) =

(√
N(N − 2)

1 + |x|2
)N−2

2

, (3.5)

for some x0 ∈ RN , δ > 0.
Going back to singular solutions the upper bound in (3.3) has been generalised to any distributional solution

with compact singular set Σ of zero 2-capacity. According to [9] if cap2(Σ) = 0 then U(x) = O(dist(x,Σ))
2−N

2

as x → Σ . Assuming some smoothness property on Σ and some upper bound k on its dimension as above (or just
k-rectifiability), the k-dimensional upper Minkowski contents of Σ is finite, hence it is not hard to derive for integer

0 � k < N−2
2 the weak-Lp bound U ∈ L

2(N−k)
N−2 ,∞

loc . This bound roughly shows that “the thicker the singular set is the
lower is the local integrability of U”. Even though this argument do not apply for the limiting case k = N−2

2 , the
solution constructed in [40] for N � 4 even and Σ a finite union of k = N−2 -dimensional compact submanifolds turn
2
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out to be exactly in L
N+2
N−2
loc (RN), i.e. they have the lowest possible integrability to give a meaning to the equation in the

sense of distributions.
A further step in the understanding of singular solutions of (3.2) is the study of the asymptotic behaviour of

solutions U as x → Σ . Here we focus on singular solutions with finitely many isolated singularities. In this case a
complete picture has been obtained in the works [7,23]. A major role in this study is played by entire radial solutions
of (3.2) which we are going to review in some detail below. For higher dimensional singular sets there is no complete
picture of the asymptotic behaviour, due to the lack of tangential regularity (see [28]). As a consequence we are not
able to extend Theorem 3 to more general singular steady states u0 = U . In the presentation below we essentially
follow [23], even if with different normalisations.

Let U a positive singular solution of (3.2) such that Σ = SingU = {O}. Then U is radial (see [7], Theorem 8.1)
and

U(x) = |x| 2−N
2 g

(− log |x|), t = − log |x|, d2

dt2
g =

(
N − 2

2

)2

g − g
N+2
N−2 . (3.6)

Converting the previous equation into a system in the phase space (g,h) = (g, g′) we have

d

dt
g = h,

d

dt
h =

(
N − 2

2

)2

g − g
N+2
N−2 ,

which is an Hamiltonian system with energy function

H(g,h) = 1

2
h2 − 1

2

(
N − 2

2

)2

g2 + N − 2

2N
g

2N
N−2 . (3.7)

In particular, if g(t) is a positive solution of (3.6) then the path parametrised by (g(t), h(t)) is contained in a level
set of H and H is constant along the trajectory. All the admissible solutions (i.e. the ones such that g is a positive
solution of (3.6) and U is a singular solution of (3.2)) correspond to a one parameter family of closed level sets of H in
the region {H < 0} ∩ {g > 0}. The level set {H = 0} ∩ {g > 0} is an homoclinic trajectory, which, up to a translation,
corresponds to the unique solution g0 > 0 of (3.6) such that g(±∞) = 0 and g(0) = maxg. If g(t) = g0(t − log δ) then
(3.6) gives the family of smooth solutions �Uδ(x) as in (3.5). Therefore, an elementary calculation gives the universal

bound g � L0, L0 = maxg0 = (N−2
4 )

N−2
4 , for any positive solution g of (3.6). On the other hand, if ε0 = (N−2

2 )
N−2

2

then H � H(ε0,0) ≡ Hε0 in {H < 0} ∩ {g > 0} and the level set {H = Hε0} consists of the constant solution gε0 ≡
(N−2

2 )
N−2

2 which corresponds to the singular solution (1.3). In order to parametrise the other level sets we introduce

the necksize ε of any positive solution g such that H(g,g′) < 0, as ε = ming. This way 0 < ε � ε0 = (N−2
2 )

N−2
2 ,

Hε ≡ H(ε,0) and g is contained in the level set {H = Hε}. Since the system is autonomous for each 0 < ε < ε0 there
exists a unique solution gε such that H(gε, g

′
ε) = Hε and gε(0) = ε. Such a solution is periodic of period Tε > 0 and

for each s ∈ [0, Tε) (actually for each s ∈ R by periodicity) the function g(t) = gε(t + s) is still a solution.
This way the radial singular solutions are given by (1.3) and

U(x) = Uε,δ(x) = δ
N−2

2 Uε(δx), δ > 0, Uε(x) = |x| 2−N
2 gε

(− log |x|), 0 < ε < ε0, (3.8)

the former being formally included in (3.8) for ε = ε0 and δ > 0 chosen arbitrarily. For 0 < ε < ε0 and Tε as above,

if U = Uε,δ and we set δε = e−Tε , by periodicity of gε we have U(x) = δ
N−2

2
ε U(δεx). The following two facts are the

crucial ingredients in the proof of Theorems 3 and 5. The first one is that any radial singular solution of (3.2) is radially
decreasing. Indeed, for each 0 < ε � ε0 we have H(gε(t), g

′
ε(t)) ≡ Hε < 0, hence g′

ε(t) > −N−2
2 gε(t) for each t ∈ R

and the conclusion follows easily by differentiating (3.8). The other key fact is related to the intersection property of
classical and singular solutions of (3.2). For each 0 < ε � ε0 we set Lε = maxgε . Clearly H(Lε,0) = Hε < 0 and the
definitions above yield easily ε � gε � Lε < L0 for each t ∈ R. Thus formula (3.8) gives

0 < inf
x �=0

|x|N−2
2 U(x) � sup |x|N−2

2 U(x) <

(
N(N − 2)

4

)N−2
4

(3.9)

x �=0
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for any radial singular solution Uε,δ of (3.2). On the other hand, since g0 > 0, g0(±∞) = 0 and maxg0 = L0 =
(
N(N−2)

4 )
N−2

4 , by (3.5), (3.6) we conclude

lim|x|→0
|x|N−2

2 U(x) = 0, lim|x|→∞ |x|N−2
2 U(x) = 0 and max

x �=0
|x|N−2

2 U(x) =
(

N(N − 2)

4

)N−2
4

(3.10)

for any radial regular solution �Uδ of (3.2).
Conditions (3.9), (3.10) clearly show that each pair of a regular and a singular solutions do intersect (transversally

by ODE uniqueness) for at least two radii (actually at most finitely many times, due to the different behaviours at
|x| → 0, at |x| → ∞, and ODE uniqueness).

Using the radial singular solutions discussed above it is possible to describe the asymptotic behaviour of U near its
singular set when Σ consists of finitely many points. Such solutions were first constructed in [45] (see also [30]) and
were discussed in more detail in [33]. Let Σ = SingU be a finite set and let P ∈ Σ . Then (see [7], Theorem 1.2, [23],
Proposition 5, respectively) there exist unique δ > 0, ε ∈ (0, ε0] and α > 0 such that

U(x) = |x − P | 2−N
2

(
gε

(− log
(
δ|x − P |)) + o(1)

)
,

U(x) = Uε,δ(x − P) +O
(|x − P | 2−N

2 +α
)

as x → P. (3.11)

Similarly when Σ = SingU is a compact set and U(x) ∼ |x| 2−N
2 as |x| → ∞ (compare with (3.4)), the asymptotic

behaviour of U at infinity is given by a radial singular solution. Indeed, by conformal invariance of (3.2), Kelvin
transformation and (3.11), there exist unique δ > 0, ε ∈ (0, ε0] and α > 0 such that

U(x) = |x| 2−N
2

(
gε

(− log
(
δ|x|)) + o(1)

)
, U(x) = Uε,δ(x) +O

(|x| 2−N
2 −α

)
as |x| → ∞. (3.12)

4. Lorentz spaces and ε-regularity

In this section we prove Theorem 2 using Holder, Young and Sobolev inequalities in Lorentz spaces. Since we do
not assume the reader to be familiar with these spaces first we recall their definition and the results we need. For more
details we refer to papers [1,21,38,49] and the books [48,56].

We consider real valued measurable functions f defined on the measure space (Ω, | · |), where Ω ⊂ RN is an open
set and | · | is the Lebesgue measure. We assume all the functions to be finite a.e. and such that |{|f | > s}| < ∞ for
any s > 0. Given f :Ω → R the distribution function λf is defined as

λf (s) = ∣∣{x ∈ Ω:
∣∣f (x)

∣∣ > s
}∣∣, s > 0,

and the nonincreasing rearrangement f ∗ is defined as

f ∗(t) = inf
{
s > 0: λf (s) � t

}
,

and it is a.e. finite. The averaged nondecreasing rearrangement f ∗∗ is defined as f ∗∗(t) = 1
t

∫ t

0 f ∗(τ )dτ , t > 0. For
1 < p < ∞, 1 � q � ∞, we set

‖f ‖Lp,q (Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

q

p

|Ω|∫
0

(
t1/pf ∗∗(t)

)q dt

t

]1/q

, 1 < p < ∞, 1 � q < ∞,

sup
t>0

t1/pf ∗∗(t), 1 < p < ∞, q = ∞.

(4.1)

By definition f ∈ Lp,q(Ω) iff ‖f ‖Lp,q (Ω) < ∞ (see e.g. [38]; see also e.g. [49] and [56] for equivalent definitions).
Finally, we say that f ∈ L

p,q

loc (Ω), 1 < p < ∞, 1 � q � ∞, if f ∈ Lp,q(Ω ′) for each open set Ω ′ ⊂ RN with compact
closure such that �Ω ′ ⊂ Ω .

When 1 < q = p < ∞ we have Lp,p(Ω) = Lp(Ω) and when 1 < p < ∞, q = ∞ this definition is equivalent to the
one of the weak-Lp (see e.g. [56]). For 1 < p < ∞ and 1 � q1 � q2 � ∞ we have the inclusion Lp,q1(Ω) ⊂ Lp,q2(Ω)

with continuous embedding and ‖f ‖Lp,q2 (Ω) � p ‖f ‖Lp,q1 (Ω). When |Ω| < ∞, for any 1 < p1 < p2 < ∞ and

p−1
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q1, q2 ∈ [1,∞] we have Lp2,q2(Ω) ⊂ Lp1,q1(Ω) with continuous embedding. If |Ω| < ∞ and 1 < p < ∞, 1 � q �
∞, we also have L∞(Ω) ⊂ Lp,q(Ω) with continuous embedding.

Continuity of multiplication and convolution (when Ω = RN ) hold under certain restriction on the exponents. Here
confine to the cases we are interested in. For the general case see [38], Theorems 3.5 and 2.6 respectively.

If f1 ∈ Lp1,q1(Ω), f2 ∈ Lp2,q2(Ω), 1 < p1,p2 < ∞ and 1 � q1, q2 � ∞, then f1f2 ∈ L1(Ω) and

‖f1f2‖L1(Ω) � C(p1,p2, q1, q2)‖f1‖Lp1,q1 (Ω)‖f2‖Lp2,q2 (Ω),
1

p1
+ 1

p2
= 1,

1

q1
+ 1

q2
= 1. (4.2)

If f1 ∈ Lp,q(RN), f2 ∈ L1(RN), 1 < p < ∞ and 1 � q � ∞, then f1 ∗ f2 ∈ Lp,q(RN) and

‖f1 ∗ f2‖Lp,q � C′(p, q)‖f1‖Lp,q ‖f2‖L1 . (4.3)

The following preliminary result concerning interior elliptic regularity in Lorentz spaces will be used in the sequel.

Lemma 4.1. Let Ω ⊂ RN , N � 3. Let u, f ∈ L1
loc(Ω) such that −�u = f in D′(Ω). Let 1 < p < ∞, 1 � q � ∞. If

f ∈ L
p,q

loc (Ω), then u ∈ W
2,r
loc (Ω) for all 1 < r < p and ∇2u ∈ L

p,q

loc (Ω).

Proof. It is enough to prove that for any ball B3R � Ω and any 1 < r < p we have

‖u‖W 2,r (BR) + ∥∥∇2u
∥∥

Lp,q (BR)
� C(p,q, r,R)

(‖f ‖Lp,q (B3R) + ‖u‖L1(B3R)

)
. (4.4)

Let f0 = f χB3R
, so that f0 ∈ Lp,q(B3R), f0 ∈ Lr(B3R) for each 1 < r < p and f0 vanishes identically outside B3R .

Let us denote with H(x) the fundamental solution of the Laplace equation in RN , i.e. the Newtonian potential H(x) =
C(N)|x|2−N , C(N) > 0, satisfying −�H = δ0 in D′(RN). For any x ∈ RN we set

v(x) = H ∗ f0(x) = C(N)

∫
RN

|x − y|2−Nf0(y)dy.

Using the Calderon–Zygmund theorem we have v ∈ W 2,r (B3R) and

‖v‖W 2,r (B3R) � C(r,R)‖f0‖Lr(B3R). (4.5)

On the other hand −�v = f0 in D′(B3R), hence w = u − v satisfies �w = 0 in D′(B3R). Thus, w ∈ C∞(B3R) by
Weyl’s lemma and by standard regularity results for harmonic functions

‖w‖W 2,r (BR) � C(r,R)‖w‖C2(BR) � C(r,R)‖w‖L1(B2R) � C(r,R)
(‖v‖Lr(B3R) + ‖u‖L1(B3R)

)
.

Since u = v + w, combining the previous estimate with (4.5) we easily infer

‖u‖W 2,r (BR) � C(r,R)
(‖f0‖Lr(B3R) + ‖u‖L1(B3R)

)
,

i.e. the first part of (4.4) is proved. To prove the second part we choose 1 < p1 < p < p2 and we argue by in-

terpolation. Indeed, if we set Tf0 = ∇2v, arguing as in (4.5) we see that T : Lpi (B3R) → (Lpi (B3R))
N(N−1)

2 ,
for i = 1,2. Using the general Marcinkiewicz interpolation theorem (see [48], Theorem V.3.15) with θ ∈ (0,1)

such that 1/p = θ/p1 + (1 − θ)/p2 we have T :Lp,q(B3R) → (Lp,q(B3R))
N(N−1)

2 boundedly, i.e. there exists C =
C(p,q,R) > 0 such that∥∥∇2v

∥∥
Lp,q (B3R)

� C(p,q,R)‖f0‖Lp,q (B3R). (4.6)

On the other hand w = u − v ∈ C∞(B3R) satisfies �w = 0 in D′(B3R) and the previous argument gives also∥∥∇2w
∥∥

Lp,q (BR)
� C(p,q,R)‖w‖C2(BR) � C(p,q,R)‖w‖L1(B2R) � C(p,q,R)

(‖v‖Lp,q(B3R) + ‖u‖L1(B3R)

)
,

for any 1 < r < p. Since u = v+w, combining the previous estimate with (4.5), (4.6) and the embedding Lp,q(B3R) ⊂
Lr(B3R) we easily infer∥∥∇2u

∥∥
Lp,q (BR)

� C(p,q, r,R)
(‖f0‖Lp,q (B3R) + ‖u‖L1(B3R)

)
,

and the proof is complete. �
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The crucial tool in the proof our regularity result is given by the following well-known improved Sobolev in-
equality in Lorentz spaces (see e.g. [49], Theorem 8). Namely, for any 1 < p < N , 1 � q � ∞, there exists
C′ = C′(N,p,q) > 0 such that

‖f ‖Lp∗,q � C′′(N,p,q)‖∇f ‖Lp,q ,
1

p∗ = 1

N
− 1

p
, (4.7)

for any measurable function f such that ∇f exists and satisfies ‖∇f ‖Lp,q < ∞. Here we confine ourselves to the
case 1 < p < N , the case p = 1 being slightly different.

Using these tools we are ready to prove the ε-regularity theorem in L2∗,∞.

Proof of Theorem 2. We are going to show that u ∈ L2∗
loc(BR(x0)), whence u ∈ H 1

loc(BR(x0)) by Lemma 4.1 and

the conclusion follows from [51], Theorem 3. To this end let us set ε0 = ( N2

2(N−2)
)

2−N
4 (C′(N)C′′(N)

N−2
2 )−1, where

C′(N),C′′(N) are the ones defined in (4.3), (4.7) with p = q = 2. We fix two radii R1,R2 such that 0 < R1 < R2 < R

and for simplicity (up to a translation) we may assume x0 = 0. Let ϕ ∈ C∞
0 (BR2) be such that ϕ ≡ 1 for |x| � R1.

Clearly f = u
N+2
N−2 ∈ Ls(BR) for any 1 < s < 2N

N+2 and f ∈ L
2N

N+2 ,∞(BR) by the definition of the Lorentz norm

(see Lemma 13 in [1]). Using Lemma 4.1 with p = 2N
N+2 and q = ∞ and taking into account the improved Sobolev

embedding (4.7) we infer u ∈ W 1,s(BR2) for any s < 2 and ∇u ∈ L2,∞(BR2). Unfortunately this is not enough to test
the equation with ϕ2u, therefore we need to approximate the equation suitably. Let 0 < δ < R − R2 and let ζδ be a
standard mollifier supported in the ball Bδ . Set uδ = u ∗ ζδ and fδ = f ∗ ζδ , so that uδ, fδ ∈ C∞(BR2) and

−�uδ = fδ in C2(BR2), uδ → u in Lr(BR2), 1 � r < 2∗,

fδ → f in Ls(BR2), 1 � s <
2N

N + 2
. (4.8)

Let 0 < β0 < 1/2 such that 4β2
0/(1 − 4β2

0 ) � 1
2 (1 − (ε/ε0)

4/N−2). For each 0 < β � β0 we set

vδ = ϕ2 uδ

(1 + u2
δ)

β
, wδ = uδϕ

(1 + u2
δ)

β/2
, gδ = ϕ

(1 + u2
δ)

β/2
. (4.9)

It is easy to check that vδ,wδ, gδ ∈ C∞
0 (BR2). Moreover, we have the following pointwise inequalities∣∣∣∣∇ 1

(1 + u2
δ)

β/2

∣∣∣∣ � β|∇uδ|
(1 + u2

δ)
(β+1)/2

, |∇gδ|2 � 2|∇ϕ|2 + 2ϕ2
∣∣∣∣∇ 1

(1 + u2
δ)

β/2

∣∣∣∣2

, (4.10)

and

u2
δ |∇gδ|2 � 2|∇ϕ|2u2

δ + 2β2ϕ2|∇uδ|2
(1 + u2

δ)
β

, |∇wδ|2 � 2ϕ2|∇uδ|2
(1 + u2

δ)
β

+ 2u2
δ |∇gδ|2. (4.11)

As in (4.11) we also have ϕ2|∇uδ |2
(1+u2

δ )
β

� 2u2
δ |∇gδ|2 +2|∇wδ|2. Thus, using (4.11), the monotonicity of t

1−t
and the choice

of β0, we obtain

u2
δ |∇gδ|2 � 2

1 − 4β2
|∇ϕ|2u2

δ + 1

2

(
1 −

(
ε

ε0

)4/N−2)
|∇wδ|2. (4.12)

Since |∇wδ|2 = ∇uδ∇vδ + u2
δ |∇gδ|2, combining this identity with (4.12) and integrating, we obtain

1

2

(
1 +

(
ε

ε0

)4/N−2) ∫
BR2

|∇wδ|2 dx � 2

1 − 4β2
0

∫
BR2

|∇ϕ|2u2
δ dx +

∫
BR2

∇uδ∇vδ dx. (4.13)

On the other hand, multiplying (4.8) by vδ ∈ C∞
0 (BR2) and integrating by parts we obtain

∫
BR2

∇uδ∇vδ dx =∫
BR2

fδvδ dx, whence

1

2

(
1 +

(
ε

ε0

)4/N−2) ∫
B

|∇wδ|2 dx � 2

1 − 4β2
0

∫
B

|∇ϕ|2u2
δ dx +

∫
B

fδvδ dx. (4.14)
R2 R2 R2
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We rewrite the last integral as follows∫
BR2

fδvδ dx =
∫

BR2

(
fδvδ − u

4
N−2
δ w2

δ

)
dx +

∫
BR2

u
4

N−2
δ w2

δ dx = Iδ + IIδ. (4.15)

Setting �C(N) = N
N−2C′(N)

4
N−2 , by Young inequality (4.3) and the definition of the Lorentz norm (see [1], Lemma 13)

we have∥∥u
4

N−2
δ

∥∥
LN/2,∞(BR2 )

� N

N − 2
‖uδ‖

4
N−2

L2∗,∞(BR2 )
� �C(N)‖u‖

4
N−2

L2∗,∞(BR)
= �C(N)ε

4
N−2 .

Using Holder inequality (4.2) with parameters (N/2,∞) and (2∗/2,1) respectively, since ‖w2
δ‖L2∗/2,1 � N

2 ‖wδ‖2
L2∗,2 ,

by the Sobolev embedding (4.7) and the previous inequality we have

IIδ =
∫

BR2

u
4

N−2
δ w2

δ dx �
∥∥u

4
N−2
δ

∥∥
LN/2,∞(BR2 )

N

2
‖wδ‖2

L2∗,2(BR2 )

� N2

2(N − 2)
C′(N)

4
N−2 C′′(N)2ε

4
N−2

∫
BR2

|∇wδ|2 dx,

i.e.

IIδ �
(

ε

ε0

) 4
N−2

∫
BR2

|∇wδ|2 dx. (4.16)

Combining (4.14)–(4.16) and using Sobolev inequality we deduce

1

2

(
1 −

(
ε

ε0

)4/N−2)( ∫
BR2

|wδ|2∗
dx

)2/2∗

� 2C(N)

1 − 4β2
0

∫
BR2

|∇ϕ|2u2
δ dx + C(N)Iδ. (4.17)

Now we claim that Iδ → 0 as δ → 0. Assuming the claim for a moment, we have uδ → u in L2(BR2) by (4.8). Up to
subsequences we may assume wδ → ϕu(1 + u2)−β/2 a.e. in BR2 , and applying Fatou’s lemma in (4.17) we conclude

1

2

(
1 −

(
ε

ε0

)4/N−2)( ∫
BR2

∣∣∣∣ ϕu

(1 + u2)β/2

∣∣∣∣2∗

dx

)2/2∗

� 2C(N)

1 − 4β2
0

∫
BR2

|∇ϕ|2u2 dx. (4.18)

Since the r.h.s. of (4.18) is finite and independent of β , by Fatou lemma and the choice of ϕ, as β → 0 we conclude∫
BR1

u2∗
dx < ∞.

As 0 < R1 < R2 < R have been chosen arbitrarily we have u ∈ L2∗
loc(BR) as claimed and the proof is complete.

In order to prove that Iδ → 0 as δ → 0, first we define v and w from u as in (4.9). Clearly f v − u
4

N−2 w2 ≡ 0 and
both the terms are absolutely integrable because of (4.9) and the assumption u ∈ Ls(BR) for each 1 � s < 2∗. Recall
that

Iδ =
∫

BR2

(
fδvδ − u

4
N−2
δ w2

δ

)
dx,

so the conclusion follows if we can pass to the limit under integral sign. Since 0 < β < 1/2, if we set s1 = 2∗(1−β)
1−β/2 ,

s2 = 2∗
2−β

, then 1 < s1 < 2∗ and 2∗/2 < s2 < ∞. Thus uδ → w2
δ is a bounded (hence continuous) superposition

operator from Ls1(BR ) to Ls2(BR ). If s′ is the conjugate exponent to s2 and w set s3 = 4 s′ , then 1 < s′ < N/2
2 2 2 N−2 2 2
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and 4/N −2 < s3 < 2∗. Therefore uδ → u
4

N−2
δ is a bounded (hence continuous) superposition operator from Ls3(BR2)

to Ls′
2(BR2). Combining these remarks, by (4.8) we conclude∫
BR2

u
4

N−2
δ w2

δ dx →
∫

BR2

u
4

N−2 w2 dx as δ → 0.

Similarly if we set s4 = 2∗
1−β

, s5 = 2∗ 1−2β
1−β

, then 1 < s5 < 2∗, 2∗ < s4 < ∞ and 1 < s′
4 < 2N

N+2 . Thus uδ → vδ is a

bounded (hence continuous) superposition operator from Ls5(BR2) to Ls4(BR2) and fδ → f in Ls′
4(BR2) because of

(4.8). Combining these remarks we conclude that∫
BR2

fδvδ dx →
∫

BR2

f v dx as δ → 0,

and the claim follows.
(2) We give here a proof which is independent of the previous part and is based just on Lemma 4.1 and the improved

Sobolev embedding (4.7). For alternative proofs see Remark 4 below.

Consider the equation −�u = f in D′(Ω), where f = |u| 4
N−2 u. Let BR(x0) ⊂ Ω and 0 < R0 < R. Let R0 < R1 <

R2 � R. If u ∈ L2∗,q (BR2(x0)), 2∗ � q < ∞ then f ∈ L
2N

N+2 , N−2
N+2 q(BR2(x0)) (see [1], Lemma 13). By Lemma 4.1

we have u ∈ W 2,r (BR1) for any 1 < r < 2N
N+2 and ∇2u ∈ L

2N
N+2 , N−2

N+2 q(BR1(x0)). Applying (4.7) twice we conclude

u ∈ L2∗, N−2
N+2 q(BR1(x0)). With finitely many choices of radii R1,R2 we can easily infer u ∈ L2∗,( N−2

N+2 )mq(BR0(x0)), for
any positive integer m such that (N−2

N+2 )mq > 1. Clearly we can get 1 < (N−2
N+2 )mq � 2∗ for m large enough, whence

u ∈ L2∗,( N−2
N+2 )mq(BR0(x0)) ⊂ L2∗

(BR0(x0)) and L2∗
loc(BR0(x0)) because R0 can be chosen arbitrarily. By Lemma 4.1

we have u ∈ H 1
loc(BR0(x0)) and smoothness follows from [51], Theorem 3. �

Remark 3. As already observed in the Introduction about (1.3), the smallness assumption in the previous theorem
cannot be removed. Indeed, if u is any distributional solution with finite nonempty singular set as constructed in [45],
then u ∈ L2∗,∞ (see (3.3)) but the singularities are not removable.

Remark 4. Alternative proofs of claim (2) can be obtained arguing as in [1] or [17] respectively. Indeed, arguing as in
[1], p. 233–234, one can use claim (1) to prove that Σ = Singu ∩ BR(x0) is a finite set. Then the asymptotic results
of [7] actually show that isolated singularities which are L2∗,q -integrable for some q < ∞ are removable by (3.3).
Alternatively, following a remark contained in [17], one can prove that the smallness assumption of claim (1) holds
at suitably smaller scales. Namely, since u ∈ L2∗,q (BR(x0)) then supBρ⊂BR(x0)

‖u‖L2∗,∞(Bρ) → 0 as ρ → 0. Thus,
smoothness follows from claim (1).

5. Hardy inequalities and instability in the subcritical case

In this section we derive some extensions of the classical Hardy inequality (1.6) and we prove Theorem 1. We
start with an Hardy-type inequality for supersolutions of semilinear equations of quite general form. The connection
between Hardy-type inequalities like (1.6) and linear elliptic equations is well known (see e.g. [39], Chapter 2). On
the other hand, at least in the author’s knowledge, the connection with semilinear differential inequalities is new.

Proposition 5.1. Let Ω ⊂ RN be an open set, N � 1, and let u ∈ L1
loc(Ω), u � 0, u �≡ 0. Let f : R+ → R+ be a

convex function. Assume that f (u) ∈ L1
loc(Ω) and u satisfies

�u + f (u) � 0 in D′(Ω). (5.1)

Then, u > 0 a.e. in Ω and∫
Ω

f (u)

u
ϕ2 dx �

∫
Ω

|∇ϕ|2 dx for any ϕ ∈D(Ω). (5.2)
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Proof. Let ϕ ∈ C∞
0 (Ω) and let ζε be a family of standard mollifiers, i.e. ζε � 0, ζε ∈ C∞

0 (Bε) and
∫

ζε = 1 for each
ε > 0. As it is well known, if Ω ′ � Ω is such that sptϕ ⊂ Ω ′ and ε is small enough, then uε = u ∗ ζε are nonnegative
and smooth in Ω ′, uε → u in L1(Ω ′) and (up to a subsequence) uε → u a.e. in Ω ′.

Since f is positive and convex and ϕ has compact support in Ω , for x ∈ Ω ′ and ε < dist(∂Ω, �Ω ′), using Jensen
inequality in (5.1) we have

�uε(x) + f
(
uε(x)

) =
∫
Ω

u(y)�yζε(x − y)dy + f

(∫
Ω

u(y)ζε(x − y)dy

)
�

〈
�u(y) + f

(
u(y)

)
, ζε(x − y)

〉
� 0.

From the previous relation we deduce that uε are (classical) local solutions of the differential inequality (5.1). In
particular they are nonnegative superharmonic functions. Since u �≡ 0 we have uε �≡ 0 and, by the classical mean-value
inequality uε > 0 in Ω ′. Using a standard covering argument, as ε → 0 the mean value inequality gives u > 0 a.e.
in Ω , since Ω ′ can be chosen arbitrarily. Let ψε ∈ C∞

0 (Ω ′) to be specified later. Writing (5.1) for uε , multiplying by
uεψ

2
ε and integrating by parts we have∫

Ω ′
f (uε)uεψ

2
ε dx �

∫
Ω ′

−uεψ
2
ε �uε dx =

∫
Ω ′

∇uε∇
(
uεψ

2
ε

)
dx =

∫
Ω ′

(∣∣∇(uεψε)
∣∣2 − u2

ε |∇ψε|2
)

dx

�
∫
Ω ′

∣∣∇(uεψε)
∣∣2

dx.

Let ϕ ∈ C∞
0 (Ω ′) be fixed. Choosing ψε = ϕ/uε ∈ C∞

0 (Ω ′) in the previous inequality we obtain∫
Ω

f (uε)

uε

ϕ2 dx �
∫
Ω

|∇ϕ|2 dx,

and the conclusion follows from Fatou’s lemma and the continuity of f as ε → 0. �
As a consequence of the previous proposition we obtain the following result.

Proposition 5.2. Let U ∈ L
N+2
N−2
loc (RN), N � 3, U > 0 a.e., such that �U + U

N+2
N−2 � 0 in D′(RN) and let V (x) =

U(x)
4

N−2 . Then∫
RN

V ϕ2 dx �
∫

RN

|∇ϕ|2 dx for any ϕ ∈D
(
RN

)
, (5.3)

and for any ϕ ∈ H 1(RN).

If in addition �U + U
N+2
N−2 = 0 in D′(RN) and Σ = SingU is a nonempty finite set then

inf

{∫
RN

|∇ϕ|2 dx, ϕ ∈ C∞
0

(
RN

)
,

∫
RN

V ϕ2 dx = 1

}
= 1. (5.4)

Proof. Clearly (5.3) follows readily from Proposition 5.1 and the case ϕ ∈ H 1(RN) can be obtained by approximation.
In order to prove (5.4) we set

mU = inf

{∫
RN

|∇ϕ|2 dx, ϕ ∈ C∞
0

(
RN

)
,

∫
RN

V ϕ2 dx = 1

}
, (5.5)

therefore mU � 1 by (5.3) and it suffice to prove that mU = 1. First we assume that U = U0 is a radial singular
solution and we prove (5.4) with an argument similar to the one in [41] for the homogeneous case. Let us denote by

V0 = U
4

N−2 the corresponding potential. Since U0 is radial, by (3.8) we may assume U0(x) = |x| 2−N
2 g(− log |x|) for
0



A. Pisante / Ann. I. H. Poincaré – AN 23 (2006) 591–628 611
some bounded smooth function g : R → R which is a positive solution of g′′ = (N−2
2 )2g − g

N+2
N−2 bounded away from

zero. Moreover either g is periodic of period T > 0 or g ≡ (N−2
2 )

N−2
2 (see the discussion in Section 3). In both cases

there exists T > 0 such that g(t + T ) = g(t) for each t ∈ R. Arguing by contradiction, we assume that mU0 > 1. Let
r0 > 0, t0 = − log r0 and for each integer n � 1 let us set rn = r0 enT , so that rn → ∞ as n → ∞. Multiplying the

equation �U0 + U
N+2
N−2

0 = 0 by U0, integrating over Ωn = {r0 < |x| < rn}, taking polar coordinates and integrating by
parts we have∫

Ωn

V0U
2
0 dx = −

∫
Ωn

U0�U0 dx = −ωN

rn∫
r0

r
2−N

2 g(− log r)∂r

(
rN−1∂r

(
r

2−N
2 g(− log r)

))
dr

=
∫
Ωn

|∇U0|2 dx − ωN

[
rN−1(r 2−N

2 g(− log r)
)
∂r

(
r

2−N
2 g(− log r)

)]rn
r0

.

Clearly[
rN−1(r 2−N

2 g(− log r)
)
∂r

(
r

2−N
2 g(− log r)

)]rn
r0

=
[
g(− log r)

(
g(− log r)

2 − N

2
− g′(− log r)

)]rn

r0

= 0,

because rn = r0 enT and g is a T -periodic function. Since
∫
|x|>r0

|∇U0|2 dx = ∞ we conclude∫
Ωn

V0U
2
0 dx =

∫
Ωn

|∇U0|2 dx → ∞ as n → ∞. (5.6)

Let ε > 0 any fixed positive number and for each n � 1 let us set

ϕn(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U0

(
r0

x

|x|
)

if |x| � r0,

U0(x) if r0 < |x| < rn,

U0

(
rn

x

|x|
)( |x|

rn

) 2−N
2 −ε

if |x| � rn.

(5.7)

Clearly ϕn is constant in Br0 , ϕn ∈ L2∗
(RN), ∇ϕn ∈ L2(RN) and combining the definition of mU0 given by (5.5) with

a standard approximation argument we deduce∫
RN

V0ϕ
2
n dx � 1

mU0

∫
RN

|∇ϕn|2 dx,

for each n � 1. On the other hand, since U0(x) = |x| 2−N
2 g(− log |x|) � C|x| 2−N

2 for some C = C(N) > 0 indepen-
dent of g (see the discussion after (3.7)), a straightforward computation yields

∫
|x|>rn

|∇ϕn|2 dx + ∫
|x|>rn

V ϕ2
n � C.

Combining the previous two inequalities with (5.6) we have

0 �
∫

RN

V0ϕ
2
n dx − 1

mU0

∫
RN

|∇ϕn|2 dx

=
∫

|x|<r0

V0ϕ
2
n dx +

(
1 − 1

mU0

)∫
Ωn

|∇U0|2 dx +
∫

|x|>rn

V0ϕ
2
n dx −

∫
|x|>rn

|∇ϕn|2 dx

�
(

1 − 1

mU0

)∫
Ωn

|∇U0|2 dx − C.

If mU0 > 1, letting n → ∞ and taking (5.6) into account we get a contradiction. Thus mU0 = 1 and the claim holds
when U is radial.

In the general case we use a blow-up argument. Let U be any positive weak solution such that Σ = SingU is
a nonempty finite set, so that, up to a translation, we may assume 0 ∈ Σ . Following [7,23], there exists a radial
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singular solution U0 and α > 0 such that U(x) − U0(x) = O(|x| 2−N
2 +α) as x → 0 (see (3.11)). Hence, if U0(x) =

|x| 2−N
2 g(− log |x|) and g is T -periodic as above, and if we set λn = e−nT → 0 as n → ∞, then λ

N−2
2

n U(λnx) → U0(x)

a.e. as n → ∞. Let ϕ ∈ D(RN) and for each n � 1 let ϕn(x) = λ
2−N

2
n ϕ(λ−1

n x). Taking into account the definition of
mU and changing variables in both the integrals below we infer

1

mU

∫
RN

|∇ϕ|2 dx = 1

mU

∫
RN

|∇ϕn|2 dx �
∫

RN

V ϕ2
n dx =

∫
RN

(
λ

N−2
2

n U(λnx)
) 4

N−2 ϕ2 dx.

Using Fatou’s lemma we obtain

1

mU

∫
RN

|∇ϕ|2 dx �
∫

RN

V0ϕ
2 dx,

for V0 = U
4

N−2
0 . Optimising with respect to ϕ ∈ D(RN) such that

∫
RN V0ϕ

2 dx = 1 we conclude mU � mU0 . Combin-
ing this inequality with (5.3) and the previous part we have 1 � mU � mU0 = 1 and the conclusion follows. �
Remark 5. If U is the homogeneous solution given by (1.3), U(x) = (N−2

2 )
N−2

2 |x| 2−N
2 , then V (x) = (N−2

2 )2 1
|x|2 and(

N − 2

2

)2 ∫
RN

ϕ2

|x|2 dx �
∫

RN

|∇ϕ|2 dx for any ϕ ∈ D
(
RN

)
, (5.8)

i.e., we recover the classical Hardy inequality with best constant.

Remark 6. We conjecture that (5.4) holds for distributional solutions U with more general singular set Σ . A necessary
and sufficient condition for the validity of (5.4) involving capacity is known (see [11]), but we are not able to check
it in the present situation, even under the assumptions of Proposition 5.2. On the other hand, in view of the recent
results contained in [5,52,2] and [14] it would be of interest to know if the Hardy inequalities (5.3) can be improved
on bounded domains by adding various lower order terms.

Using the generalised Hardy inequalities (5.3), (5.4) we are able to prove regularity properties of weak solutions for
the Cauchy problem (P).

Proposition 5.3. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN). Assume that

Σ = SingU is a finite set, so that U(x) = O(|x| 2−N
2 ) as |x| → ∞. Let λ ∈ (0,1), 0 � u0(x) � λU(x), and let ū

be the maximal solution of problem (P) such that 0 < ū(x, t) � λU(x) for a.e. (x, t) ∈ RN × R+, as constructed in
Proposition 2.1. Then ū ∈ C∞(RN × (0,∞)).

Proof. First we observe that U ∈ L2∗,∞(RN), because Σ is a finite set and (3.3) holds near each singular point.
Thus, U ∈ L

p

loc(R
N) for any p < 2∗, by the standard embedding properties of weak-Lp spaces. Let v(t) = ū(t, u0)

be the maximal solution of (P) satisfying 0 � v(t) � λU a.e. in RN for each t � 0, as constructed in Proposition 2.1.
Clearly by monotonicity with respect to u0 we may assume u0 = λU . Indeed by (2.11) we would infer that v is locally
bounded for t > 0 whenever ū(t, λU) is, whence the conclusion follows from the standard smoothing effect for the
heat equation. Thus, by Proposition 2.1 we may also assume that v is decreasing in t .

Let Σ = SingU , η0 > 0 such that d(P,Q) � 4η0 for each P,Q ∈ Σ,P �= Q. For each 0 < η < η0 let us set
Ση = {x: dist(x,Σ) � η}, so that Ση are compact sets, and let us set Ω = RN \ Σ . If we define Ωη = RN \ Ση, then,
by assumption, v is bounded in each open set Ωη × (0,∞), therefore it is smooth by standard smoothing effect of
the heat equation. Thus, v ∈ C∞(Ω × (0,∞)) because η > 0 can be chosen arbitrarily small. Let �R > 0 such that
Σ2η0 ⊂ B�R(0) and let R > 2�R. Let ϕ ∈ C∞

0 (B2R(0)) such that 0 � ϕ � 1 and ϕ ≡ 1 for |x| � R.
We need the following integrability result.
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Lemma 5.1. Let U , u0 and v as above. Then for any 0 < t1 < t2 and R > 2�R, we have ∇v ∈ L2(BR × (t1, t2)) and
vvt ∈ L1(BR × (t1, t2)).

Proof. Let ψ ∈ C∞
0 (B1) such that 0 � ψ � 1 and ψ ≡ 1 for |x| � 1/2 and let ϕ as above, i.e. ϕ ∈ C∞

0 (B2R(0)),
0 � ϕ � 1 and ϕ ≡ 1 for |x| � R. Let us define {ζη} ⊂ C∞

0 (B2R) as

ζη(x) = ϕ(x)ψη(x) = ϕ(x)

(
1 −

∑
P∈Σ

ψ

(
x − P

2η

))
, so that 0 � ζη � ϕ, ζη ≡ 0 on Ση,

|∇ζη| � C

η
, (5.9)

for some C > 0 depending on ϕ but independent of η. Let θ(t) ∈ C∞
0 ((t1/2,2t2)) such that 0 � θ � 1 and θ ≡ 1 for

t1 � t � t2. Then vζ 2
η θ ∈ C∞

0 (RN × (0,∞)). Testing (1.4) with vζ 2
η θ and integrating by parts in the first two terms

we have ∫
RN×(0,∞)

vtvζ 2
η θ dx dt +

∫
RN×(0,∞)

∇v · ∇(
vζ 2

η

)
θ dx dt =

∫
RN×(0,∞)

v
4

N−2 (vζη)
2θ dx dt.

If we choose θ = θn → χ{t1<t<t2} a.e. in (t1/2,2t2), by dominated convergence (both v and ∇v are bounded on
(B2R \ Ση) × (t1/2,2t2)) we infer∫

RN×(t1,t2)

∇v · ∇(
vζ 2

η

)
dx dt =

∫
RN×(t1,t2)

v
4

N−2 (vζη)
2 dx dt +

∫
RN×(t1,t2)

(−vtvζ 2
η

)
dx dt. (5.10)

Since v � λU is decreasing in time, then vt � 0 in Ω × (0,∞) and from (5.9) we easily obtain∫
RN×(t1,t2)

−vvtζ
2
η dx dt =

∫
RN×{t=t1}

1

2
v2ζ 2

η dx −
∫

RN×{t=t2}

1

2
v2ζ 2

η dx �
∫

RN

U2ϕ2 dx < ∞. (5.11)

Since the r.h.s. of (5.11) is independent of η, ζη → ϕ a.e. as η → 0 and ϕ ≡ 1 on BR , by Fatou’s lemma we immediately
infer vvt ∈ L1(BR × (t1, t2)).

Combining (5.11), (5.3) with (5.10) we deduce∫
RN×(t1,t2)

∇v · ∇(
vζ 2

η

)
dx dt � λ

4
N−2

∫
RN×(t1,t2)

∣∣∇(vζη)
∣∣2 dx dt +

∫
RN

U2ϕ2 dx. (5.12)

Since ∇v · ∇(vζ 2
η ) = |∇(vζη)|2 − v2|∇ζη|2 and v � U , we have(

1 − λ
4

N−2
) ∫
RN×(t1,t2)

∣∣∇(vζη)
∣∣2 dx dt � (t2 − t1)

∫
RN

U2|∇ζη|2 dx +
∫

RN

U2ϕ2 dx. (5.13)

Since Σ is a finite set, using the asymptotic results of [7] (see (3.3)) we know that there exists C = C(U) > 0 such

that U(x) � C
∑

P∈Σ |x − P | 2−N
2 χB2η0 (P ) for every x ∈ Σ2η0 . Thus, taking (5.9) into account, we conclude∫

RN

U2|∇ζη|2 dx � 2
∫

RN

U2|∇ϕ|2 dx + 2
∫

RN

ϕ2U2|∇ψη|2 dx

� 2
∫

RN

U2|∇ϕ|2 dx +
∑
P∈Σ

∫
η<|x−P |<2η

C/η2U2 dx

� 2
∫
N

U2|∇ϕ|2 dx + C#Σ, (5.14)
R
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where C > 0 is an absolute constant. Combining (5.13) and (5.14) we conclude that there exists C = C(λ,U,ϕ) > 0
such that ∫

RN×(t1,t2)

|∇vζη|2 dx dt � C.

Clearly vζη → vϕ in L2(RN × (t1, t2)), and using the previous inequality we deduce that ∇(vϕ) exists and ∇(vϕ) ∈
L2(RN × (t1, t2)). Since ϕ ≡ 1 in BR the conclusion follows. �

Once we know the L2-integrability of the gradient we can use another perturbation argument to obtain higher
integrability of v.

Lemma 5.2. Let U , u0 and v as above and let λ ∈ (0,1). There exists p = p(λ) > 2∗ and for each t0 > 0 a constant
C = C(p, t0,U) > 0 such that

sup
t�2t0

∥∥v(t)
∥∥

Lp(RN)
� C. (5.15)

Proof. Due to our choice of �R we have Σ ⊂ B�R , hence U(x) � C|x| 2−N
2 for |x| � �R by the asymptotic decay

rate (3.4). Since v � U it suffices to show that

sup
t�2t0

∥∥v(t)
∥∥

Lp(BR)
� C, (5.16)

for some R > �R.
Let R > 2�R be fixed and let ϕ ∈ C∞

0 (B2R(0)) such that 0 � ϕ � 1 and ϕ ≡ 1 for |x| � R. Let t0 > 0 be fixed, t1 =
t0, t2 > t1 and θ(t) ∈ C∞

0 ((t1/2,2t2)) such that 0 � θ � 1 and θ ≡ 1 for t1 � t � t2. Let 0 < α < min{1/4,2∗/2−1} to
be chosen later. For each δ > 0 we define φδ(s) = s(1 + s2)α/(1 + δs2)α , so that φδ is a Lipschitz function, φδ(0) = 0
and |φδ(s)| � |s|δ−α . From Lemma 5.1 and standard composition properties we infer φδ(v) ∈ L2

loc(0,∞;H 1
loc(R

N)),
whence Ψ = ϕ2θφδ(v) ∈ L2(R+;H 1

0 (B2R)) and has compact support in RN × (0,∞), namely sptΨ ⊂ sptϕ×spt θ �
B2R × (t1/2,2t2). Let

{Ψn} ⊂ C∞
0

(
B2R × (t1/2,2t2)

)
such that Ψn → Ψ in L2(t1/2,2t2;H 1(B2R)

)
,

0 � Ψn � Uδ−α a.e. (5.17)

Such a sequence can be easily constructed as Ψn = ϕ̄�S(1/n)Ψ , where ϕ̄ ∈ C∞
0 (B2R × (t1/2,2t2)) satisfies 0 � ϕ̄ � 1

and ϕ̄ ≡ 1 on sptϕ × spt θ , and �S is the standard heat semigroup in RN+1. Thus 0 � Ψn � δ−α�S(1/n)U � δ−αU

because v � U and �U � 0 in D′(RN+1). Arguing as in Lemma 5.1 we easily get vtU ∈ L1(B2R × (t1/2,2t2)).
Since v ∈ C∞(Ω × (0,∞)) and Lemma 5.1 holds on the cylinder B2R ×{t1/2,2t2} ⊃ spt ϕ̄, we can test (1.4) with Ψn

and integrate by parts in the first two terms to get∫
RN×(t1/2,2t2)

vtΨn dx dt +
∫

RN×(t1/2,2t2)

∇v · ∇Ψn dx dt =
∫

RN×(t1/2,2t2)

v
N+2
N−2 Ψn dx dt.

Using dominated convergence and (5.17) we can pass to the limit in the first two integrals as n → ∞. As a consequence
the integrals in r.h.s. are bounded with respect to n. Since, up to subsequences, Ψn → Ψ a.e., by Fatou’s lemma we

get
∫

RN×(t1/2,2t2)
v

N+2
N−2 Ψ dx dt < ∞. As v � U , combining Young inequality ab � εa2 + 1

4ε
b2, ε > 0, with Hardy

inequality (5.3) we obtain∣∣∣∣ ∫
RN×(t1/2,2t2)

v
N+2
N−2 Ψn dx dt −

∫
RN×(t1/2,2t2)

v
N+2
N−2 Ψ dx dt

∣∣∣∣ �
∫

RN×(t1/2,2t2)

U
4

N−2 |ϕ̂v|∣∣(Ψn − Ψ )
∣∣dx dt

� ε

∫
N

∣∣∇(ϕ̂v)
∣∣2 dx dt + 1

4ε

∫
N

∣∣∇(Ψn − Ψ )
∣∣2 dx dt,
R ×(t1/2,2t2) R ×(t1/2,2t2)
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where ϕ̂ is any smooth function ϕ̂ ∈ C∞
0 (B2R × (t1/2,2t2)) satisfying 0 � ϕ̂ � 1 and ϕ̂ ≡ 1 on spt ϕ̄.

As n → ∞ the second integral goes to zero, due to (5.17), while the first can be made arbitrarily small for a suitable
choice of ε > 0. Thus∫

RN×(t1/2,2t2)

v
N+2
N−2 Ψn dx dt −

∫
RN×(t1/2,2t2)

v
N+2
N−2 Ψ dx dt → 0 as n → ∞,

and ∫
RN×(t1/2,2t2)

vtΨ dx dt +
∫

RN×(t1/2,2t2)

∇v · ∇Ψ dx dt =
∫

RN×(t1/2,2t2)

v
N+2
N−2 Ψ dx dt.

Arguing as in Lemma 5.1, if θ = θn → χ{t1<t<t2} a.e. in (t1/2,2t2), by dominated convergence we have∫
RN×(t1,t2)

vtΨ dx dt +
∫

RN×(t1,t2)

∇v · ∇Ψ dx dt =
∫

RN×(t1,t2)

v
N+2
N−2 Ψ dx dt, (5.18)

where Ψ = ϕ2φδ(v).
As in Section 4, for each δ > 0 we introduce two other Lipschitz functions φ̄δ and φ

δ
. We set

φ̄δ(s) = s
(
1 + s2)α/2

/
(
1 + δs2)α/2

,

so that φ̄δ satisfies φ̄δ(0) = 0 and |φ̄δ(s)| � |s|δ−α/2, and φ
δ
(s) = (1 + s2)α/2/(1 + δs2)α/2 which is a bounded and

satisfies |φ̄δ(s)| � δ−α/2. Thus, if we define w = ϕφ̄δ(v), from Lemma 5.1 and standard composition properties we
infer w ∈ L2(t1, t2;H 1

0 (B2R)), φ̄δ(v) ∈ L2(t1, t2;H 1(B2R)) ∩ L∞ and (5.18) can be rewritten as∫
RN×(t1,t2)

vtϕ
2φδ(v)dx dt +

∫
RN×(t1,t2)

∇v · ∇(
ϕ2φ2

δ
(v)v

)
dx dt =

∫
RN×(t1,t2)

v
4

N−2 w2 dx dt. (5.19)

Combining the identity ∇v · ∇(ϕ2φ2
δ
(v)v) = |∇w|2 − v2|∇(ϕφ

δ
(v))|2, the pointwise inequality v � λU and (5.3)

we infer(
1 − λ

4
N−2

) ∫
RN×(t1,t2)

|∇w|2 dx dt �
∫

RN×(t1,t2)

−ϕ2vtφδ(v)dx dt +
∫

RN×(t1,t2)

v2
∣∣∇(

ϕφ
δ
(v)

)∣∣2 dx dt. (5.20)

Now we estimate the r.h.s. of (5.20). Since vt � 0 a.e.,v is smooth in Ω × (0,∞) and Σ = RN \ Ω is a finite set, by
Fubini’s theorem we have∫

RN×(t1,t2)

−ϕ2vtφδ(v)dx dt �
∫

RN

ϕ2

t2∫
t1

−vtv
(
1 + v2)α dt dx �

∫
RN

ϕ2 1

2(1 + α)

(
1 + U2)1+α

< ∞,

because ϕ has compact support, α < 2∗/2 − 1 and U ∈ L
p

loc(R
N) for any 1 � p < 2∗. Thus

(
1 − λ

4
N−2

) ∫
RN×(t1,t2)

|∇w|2 dx dt �
∫

RN

ϕ2

2(1 + α)

(
1 + U2)1+α +

∫
RN×(t1,t2)

v2
∣∣∇(

ϕφ
δ
(v)

)∣∣2 dx dt. (5.21)

It is easy to check that φ
δ

satisfies |sφ′
δ
(s)| � 2αφ

δ
(s), whence

v2
∣∣∇(

ϕφ
δ
(v)

)∣∣2 � 2|∇ϕ|2v2φ2
δ
(v) + 2ϕ2

∣∣vφ̄′
δ(v)

∣∣2|∇v|2 � 2|∇ϕ|2(1 + U2)1+α + 8α2ϕ2φ2
δ
(v)|∇v|2.

On the other hand ∇w = v∇(ϕφ
δ
(v)) + ϕφ

δ
(v)∇v, hence

ϕ2φ2 (v)|∇v|2 � 2|∇w|2 + 2v2
∣∣∇(

vφ (v)
)∣∣2

.

δ δ
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Since α < 1
4 , combining the previous two inequalities we obtain

v2
∣∣∇(

ϕφ
δ
(v)

)∣∣2 � 2|∇ϕ|2
1 − 16α2

(
1 + U2)1+α + 16α2

1 − 16α2
|∇w|2,

and (5.21) can be rewritten as(
1 − λ

4
N−2

) ∫
RN×(t1,t2)

|∇w|2 dx dt

�
∫

RN

(
ϕ2

2(1 + α)
+ 2(t2 − t1)|∇ϕ|2

1 − 16α2

)(
1 + U2)1+α dx + 16α2

1 − 16α2

∫
RN×(t1,t2)

|∇w|2 dx dt. (5.22)

Choosing α possibly smaller so that 16α2

1−16α2 � 1
2 (1 − λ

4
N−2 ) we easily get∫

RN×(t1,t2)

|∇w|2 dx dt � C(λ,α, t1, t2)‖ϕ‖C1(RN)

∫
B2R

(
1 + U2)1+α dx. (5.23)

Observe that w is decreasing in t because vt � 0 a.e. and (sφ
δ
(s))′ � (1−2α)φ

δ
(s) � 0 by our choice of α. Choosing

t1 = t0, t2 = 2t0, applying Sobolev embedding and taking into account the previous observation we obtain

t0

( ∫
RN×{t=2t0}

(
ϕv

(1 + v2)α/2

(1 + δv2)α/2

)2∗

dx

)2/2∗

� C(λ,α, t0)‖ϕ‖C1(RN)

∫
B2R

(
1 + U2)1+α dx.

If we set p = 2∗(1 + α) > 2∗ and we use Fatou’s lemma, as δ → 0 we easily conclude ‖v(2t0)‖Lp(BR) < ∞ because
ϕ ≡ 1 on BR and the r.h.s. is finite and independent of δ. Thus, (5.16) follows immediately because v is decreasing
w.r.t. t . The lemma is completely proved. �

From the previous lemmas we infer v ∈ L∞
loc(0,∞;Lp(RN)) for some p > 2∗, ∇v ∈ L2

loc(R
N × (0,∞)), and the

nonlinear term V = v
4

N−2 belongs to L∞
loc(0,∞;Lq(RN)) for q = N−2

4 p > N
2 . By standard Lp theory for the linear

equation vt = �v + V v (see [25]) v belongs to L∞
loc((0,∞);L∞

loc(R
N)). As ū = v is locally bounded, the smoothness

of ū follows from the classical bootstrap argument in Lp and Cα spaces (see [25]). �
We are ready to prove the first theorem of the paper.

Proof of Theorem 1. Let Ψ̄ = λU . Since Σ = SingU is a compact set we have Ψ̄ (x) = O(|x| 2−N
2 ) as |x| → ∞ by

the asymptotic results of [7] (see (3.4)). Let u the solution with initial data u0 � λU as constructed in Proposition 2.1,
so that 0 < u � λU a.e. in RN × R+ and u is minimal. Hence u is unique and, by Proposition 2.1, if u0 = λU then
u is also decreasing in time. By Corollary 3, if λ ∈ (0,1) then u is smooth for t > 0 and (1.5) holds, i.e. claim (1)
is completely proved. Claim (2) holds by Corollary 2. To prove claim (3) we observe that ū(t, λU) as constructed in
Proposition 2.1 is maximal, i.e. ū satisfies 0 � v � ū � λU a.e. in RN × R+ for any weak solution of (P) such that
v � λU a.e. in RN × R+. On the other hand from Proposition 5.3 we know that ū ∈ C∞(RN × (0,∞)) whenever Σ

is a finite set and λ ∈ (0,1). Under these assumptions we conclude u = ū by Corollary 2, and claim (3) follows. �
6. Instability and nonuniqueness: radial solutions

In this section we improve the result obtained in the previous section up to the critical value λ = 1 when U is a
radial distributional solution with an isolated singularity at the origin. The proof evilly relies on the scale invariance

of radial singular solutions U explained just after (3.8), namely U(x) = δ
N−2

2
ε U(δεx) when U = Uε,δ . In this case

the corresponding minimal solution u is (quasi-)selfsimilar, i.e. u(x, t) = δ
N−2

2
ε u(δεx, δ2

ε t) for the same δε > 0. More
precisely we are going to prove the following version of Theorem 3.
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Theorem 5. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN). Assume that U is

radial, Σ = SingU = {O}, and let u0(x) = U(x). Then the minimal weak solution u of (P) exists and for each t > 0

u(t) is radial and radially decreasing. If U(x) = δ
N−2

2 U(δx) for some δ > 0, then u(x, t) = δ
N−2

2 u(δx, δ2t). Moreover
u ∈ C∞(RN × (0,∞)), ut � 0 and for each 2∗ < p � ∞ there exists C = C(p) > 0 such that for each t > 0∥∥u(t)

∥∥
Lp(RN)

� Ct
− N

2 ( 1
2∗ − 1

p
)
. (6.1)

Before going into the proof let us make some preliminary observations. As recalled in Section 3, U = Uε,δ is given
by (3.8) for some 0 < ε � ε0 and some δ > 0. We may assume ε < ε0, otherwise U = Us is given by (1.3), the theorem

holds and the minimal solution is self-similar (see [15] or [47]). The function g(s) = U(x)|x|N−2
2 , s = − log |x|, is

continuous in R and periodic of period T = Tε > 0. We have g(s) ≡ gε(s − log δ) and mins g(s) = ε. Moreover some
standard phase-plane analysis shows that ε is attained precisely once in the period, i.e. only on a sequence {si}i∈Z

satisfying si+1 = si − T . Let us denote by {ri}i∈Z the corresponding sequence of radii ri = e−si , so that ri → +∞ as
i → +∞.

Recall that the radial classical solutions of �U + U
N+2
N−2 = 0 are explicitly given in (3.5) by the one parameter

family {�Uδ}δ>0. As explained in Section 3, due to (3.9), (3.10), for each δ > 0 the graphs of the radial profile of �Uδ

and U intersect for finitely many values of r = |x| (always transversally and at least twice); there is also a unique

choice of the parameter δ0 > 0 such that �Uδ0(x)|x|N−2
2 = ε for |x| = r0 and �Uδ0(x)|x|N−2

2 � ε for |x| � r0. Thus, if
we set

U0(x) =
{ �Uδ0(x) if |x| � r0,

U(x) if |x| � r0,
(6.2)

then U0 is a continuous radial and radially decreasing function, U0 � U and U0 is weak solution of (5.1) (indeed, if
r > r0, r − r0 	 1, we have U(x) < �Uδ0(x) for r0 < |x| � r and the conclusion follows from [19], Proposition 2.1,
choosing R1 ∈ (r0, r) and 0 < R2 < r0). The crucial ingredient in the proof of the theorem is the following auxiliary
result.

Proposition 6.1. Let U0 as in (6.2) and u0 = U0. Then problem (P) has a global classical solution v ∈ C0(RN ×
R+) ∩ C∞(RN × (0,∞)). The solution v is decreasing in t and it is radial and radially decreasing for each t > 0.
Moreover, there exists C > 0 such that for each t > 0 we have∥∥v(t)

∥∥
L∞(RN)

� Ct
2−N

4 . (6.3)

Proof. Let v the minimal positive solution as constructed in Proposition 2.1. Since U0 is a bounded continuous weak
supersolution, then v � U0, it is smooth for t > 0 and it is decreasing in time, hence it is continuous up to t = 0.
Moreover, since U0 is radial and radially decreasing the same holds for v (compare [19], Proposition 2.2). Indeed the
operator T :MΨ̄ →MΨ̄ used in Proposition 2.1 is a convolution operator with radial and radially decreasing kernels
(with respect to the space variables). Hence, T maps functions w such that w(t) is radial and radially decreasing
for all t � 0 into functions with the same property by repeated use of [53], Lemma 1.4. Thus, the same holds for
v = limn→∞ T n(0). It remains to prove the asymptotic decay (6.3). To this end we apply exactly the same blow-up
argument used in [19], pp. 609–611, under the assumption

lim sup
|x|→∞

U0(x)|x|N−2
2 �

(
N − 2

2

)N−2
2

.

First observe that we must have ‖v(·, t)‖L∞(RN) → 0 as t → ∞. Indeed v is globally bounded and decreasing
in t . Therefore there exists some nonnegative radial regular steady state v∞ such that v(t) → v∞ locally smoothly by
standard Schauder estimates (see [25]). Moreover ‖v(·, t)‖L∞(RN) → 0 as t → ∞ if and only if v∞ ≡ 0. As already
mentioned, if v∞ �≡ 0 then v∞ = �Uδ for some δ > 0, where �Uδ is given by (3.5). Hence �Uδ � v(t) � U0 � U in
the whole RN . This is a contradiction, because U and �Uδ must intersect transversally. Thus ‖v(·, t)‖L∞(RN) → 0 as
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t → ∞ as claimed. Now we can apply exactly the same argument used in [19], pp. 609–611. We assume that (6.3) is
false and that there exists a sequence tk → ∞ such that

αk := sup
t∈[0,tk]

t
N−2

4
∥∥v(·, t)∥∥

L∞(RN)
= t

N−2
4

k

∥∥v(·, tk)
∥∥

L∞(RN)
→ ∞. (6.4)

Following their argument and taking (3.5) into account we find that there exists a sequence {Mk}, Mk → ∞, such that

�Uδ̄(z) � lim sup
k→∞

M
N−2

2
k U0(Mkz), δ̄ = [

N(N − 2)
]−1/2

. (6.5)

As U0 � U , U = Uε,δ , and Lε ≡ supx∈RN |x|N−2
2 U(x), from (6.5) we obtain

�Uδ̄(z) � lim sup
k→∞

M
N−2

2
k U(Mkz) � Lε|z| 2−N

2 ,

which contradicts (3.9) and (3.10). The proposition is completely proved. �
Proof of Theorem 5. For each i � 1 we set Ui(x) = r

N−2
2

i U0(rix), so that, by the scale invariance of U we know
that Ui are continuous bounded weak supersolutions satisfying Ui � U . Let us set ui

0(x) = Ui(x) and let ṽi be the
corresponding sequence of minimal weak solutions as constructed in Proposition 2.1. Since Ui are bounded weak
supersolutions and ṽi � Ui we conclude that the ṽi are continuous, smooth for t > 0 and decreasing in time. As

vi(x, t) := r
N−2

2
i v(rix, r2

i t) have the same properties, by Corollary 2 we conclude vi = ṽi . On the other hand by (6.2)
it’s easy to check that Ui ↗ U pointwise as i → ∞, hence vi is an increasing sequence by (2.11). Thus, there exists a
pointwise limit v̄ = limi→∞ vi � U which is also decreasing in time. Using dominated convergence theorem in (1.4)
it is easy to check that v̄ is a weak solution of problem (P) with u0 = U as initial data. On the other hand, taking (6.3)
into account we conclude∥∥vi(t)

∥∥
L∞(RN)

� Ct
2−N

4 , for all t > 0, (6.6)

for some constant C > 0 independent of i (actually C > 0 is precisely the one in (6.3)). As i → ∞ we obtain∥∥v̄(t)
∥∥

L∞(RN)
� Ct

2−N
4 , for all t > 0, (6.7)

hence, v̄ is smooth for t > 0 by standard parabolic theory because it is locally bounded. Using Corollary 2 we have
v̄ = u, the minimal weak solution of problem (P) with initial data u0 = U , and u inherits from v all the claimed
properties except scale invariance and (6.1). The scale invariance of u follows readily from the one of U , the pointwise
bound u(x, t) � U(x), the smoothness of u for t > 0 and the uniqueness property of Corollary 2. Alternatively it
follows from the covariance of the operator T , and in turn the invariance of the sequence {T n(0)}, under the parabolic
scaling when the initial condition u0 = U has the same invariance property. Estimate (6.1) has been proved just for

p = ∞ (Eq. (6.7)). In the remaining cases we combine (6.7) with the pointwise inequality u(x, t) � U(x) � L|x| 2−N
2 ,

with L = Lε as in (3.9). For each t > 0 we write∥∥u(t)
∥∥

Lp(RN)
�

∥∥u(t)
∥∥

Lp(B√
t )

+ L

( ∫
|x|>√

t

dx

|x| p(N−2)
2

)1/p

�
∥∥u(t)

∥∥
Lp(B√

t )
+ LC(p)t

− N
2 ( 1

2∗ − 1
p

)
. (6.8)

By (6.7) we have ‖u(t)‖p

Lp(B√
t (0)) � Ct

N
2

p

2∗ |B√
t (0)| = Ct

− Np
2 ( 1

2∗ − 1
p

). Combining it with (6.8) the conclusion fol-

lows. �
7. Instability and nonuniqueness: nonradial solutions

In this section we extend the result obtained in the previous section to arbitrary distributional solution U with finite
singular set as initial data and we prove Theorem 3. The strategy here is quite different and the crucial step is deriving
suitable uniform a-priori estimates on the minimal solutions uλ(t) = u(t, λU), λ < 1, constructed in Theorem 1.
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Proof of Theorem 3. We will argue by contradiction and establish the key estimate (7.1) below uniformly on λ. This
is enough to construct the solution u.

Lemma 7.1. Let λ ∈ (0,1) and let uλ(t) = u(t, λU) as constructed in Theorem 1. There exists C > 0 independent of
λ such that for all λ ∈ (0,1) we have∥∥uλ(t)

∥∥
L∞(RN)

� Ct
2−N

4 for all t ∈ (0,1]. (7.1)

Proof. We employ a blow-up argument similar to the one used in Theorem 5. However, since we are no longer dealing
with radial and radially decreasing solutions the argument used there has to be modified. Arguing by contradiction,
we assume that (7.1) does not hold. Due to the monotonicity w.r.t. λ, i.e. (2.11), and (2.14), there exist two sequences
{λn}, {tn} ⊂ (0,1) such that λn ↗ 1,

sup
t∈(0,1]

t
N−2

4
∥∥uλn(t)

∥∥
L∞(RN)

� t
N−2

4
n

∥∥uλn(tn)
∥∥

L∞(RN)
+ 1

n
and

δn := t
N−2

4
n

∥∥uλn(tn)
∥∥

L∞(RN)
→ ∞ as n → ∞. (7.2)

Since uλn(x, t) � U(x) → 0 as |x| → ∞ and it is smooth for t > 0, we may clearly assume that there exists {xn} ⊂ RN

such that

δn := t
N−2

4
n

∥∥uλn(tn)
∥∥

L∞(RN)
= t

N−2
4

n uλn(xn, tn). (7.3)

Obviously δn � uλn(xn, tn) � U(xn), hence U(xn) → ∞ as n → ∞. Thus, dist(xn,Σ) → 0 as n → ∞ because U is
bounded far from Σ and, up to a subsequence, we may assume xn → x∞ ∈ Σ .

Let us set s = log t and for each n � 1, sn = log tn and vn(y, s) = t
N−2

4 uλn(xn + y
√

t, t), y ∈ RN , s ∈ R. Then

∂svn = �vn + 1

2
y · ∇vn + N − 2

4
vn + v

N+2
N−2
n , y ∈ RN, s ∈ R, (7.4)

and, by definition, 0 < vn(y, s) � δn + 1
n

for −∞ < s � sn, vn(0, sn) = δn. We rescale each vn as follows

wn(z, τ ) = β
N−2

2
n vn

(
βnz,β

2
nτ + sn

)
, where βn =

(
δn + 1

n

) 2
2−N → 0 as n → ∞. (7.5)

By (7.3), (7.4) and (7.5) we have⎧⎪⎨⎪⎩
∂τwn = �wn + β2

n

(1

2
z · ∇wn + N − 2

4
wn

)
+ w

N+2
N−2
n ,

wn(0,0) = δn

δn + 1/n
, 0 < wn � 1 for z ∈ RN, −∞ < τ � 0.

(7.6)

As βn → 0 as n → ∞, using the interior Lp-estimates and Schauder estimates for linear parabolic equations, there
exists a function w ∈ C2+α,1+α/2(RN × (−∞,0]) such that (up to subsequences) wk → w in C

2+α,1+α/2
loc (RN ×

(−∞,0]) and w satisfies{
∂τw = �w + w

N+2
N−2 in (−∞,0],

w(0,0) = 1, 0 � w � 1 in (−∞,0]. (7.7)

Since for each λ ∈ (0,1) the function uλ is decreasing in t , we have �uλn(x, t) + (uλn(x, t))
N+2
N−2 � 0 for x ∈ RN and

t ∈ (0,∞). Thus

wn(z, τ ) = (
βn e(β2

nτ+sn)/2)N−2
2 uλn

(
xn + βn e(β2

nτ+sn)/2z, eβ2
nτ+sn

)
satisfies

�zwn(z, τ ) + (
wn(z, τ )

)N+2
N−2 � 0, z ∈ RN, τ � 0,
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hence

∂τw = �w + w
N+2
N−2 � 0, z ∈ RN, τ � 0. (7.8)

As w � 1 and w(0,0) = 1, from the previous inequality we obtain ∂τw(0, τ ) ≡ 0. Differentiating (7.8) in τ and
taking (7.8) into account, by the strong maximum principle for parabolic equations we easily conclude ∂τw ≡ 0. Thus

w(z, τ ) ≡ w(z) is a classical solution of �u+u
N+2
N−2 = 0 with maximum at the origin equal to 1. By (3.5) we conclude

w(z) = �Uδ̄(z), for δ̄ = [N(N − 2)]−1/2 .
Now we claim that there exists C > 0 such that

|xn − x∞|
βn

√
tn

� C, for each n � 1. (7.9)

Indeed, xn → x∞ ∈ Σ and U(x) � C|x − x∞| 2−N
2 whenever |x − x∞| is sufficiently small by (3.3). Thus, by (7.2),

(7.3) we have

δn = t
N−2

4
n uλn(xn, tn) � t

N−2
4

n U(xn) � C

( |xn − x∞|√
tn

) 2−N
2

,

whence( |xn − x∞|
βn

√
tn

)N−2
2

� C
δn + 1/n

δn

→ C as n → ∞,

and (7.9) is proved.
For any fixed (z, τ ) ∈ RN × (−∞,0], z �= 0, we have

wn(z, τ ) = (
βn e(β2

nτ+sn)/2)N−2
2 uλn

(
xn + βn e(β2

nτ+sn)/2z, eβ2
nτ+sn

)
� M

N−2
2

n U(xn + Mnz), (7.10)

where we set Mn = βn

√
tn e(β2

nτ)/2. Observe that Mn → 0 as n → ∞ because βn → 0 by (7.5),∥∥uλn(·, tn)
∥∥

L∞(RN)
→ ∞

by (7.2) and(
βn

√
tn

)N−2
2 = δn

(δn + 1/n)

1

‖uλn(·, tn)‖L∞(RN)

→ 0,

by (7.5), (7.2). Hence xn + Mnz → x∞ as n → ∞.
Since wn → �Uδ̄ locally uniformly in RN × (−∞,0] as n → ∞, from (7.10) we infer

�Uδ̄(z) � lim sup
n→∞

M
N−2

2
n U(xn + Mnz). (7.11)

As xn +Mnz → x∞ we can apply the asymptotic results of [23] (see also [7]) to estimate the r.h.s. of (7.11). Indeed, by
(3.11) there exists a radial singular solution U0 = Uε,δ and a positive number α > 0 such that U(x) − U0(x − x∞) =
O(|x − x∞| 2−N

2 +α) as |x − x∞| → 0. We claim that (7.11) yields

�Uδ̄(z) � L|z| 2−N
2 , L = Lε = max

x∈RN
U0(x)|x|N−2

2 . (7.12)

Clearly, if (7.12) holds, then we have a contradiction because of (3.9) and (3.10). Thus, the contradiction proves the
lemma.

It remains to prove (7.12). First we observe that, due to (7.9), ξn := (xn − x∞)M−1
n is a bounded sequence. If

ξn → 0 then from (7.11) we infer

�Uδ̄(z) � lim sup
n→∞

M
N−2

2
n U(xn + Mnz)

� lim sup
n→∞

M
N−2

2
n

∣∣U(xn + Mnz) − U0(xn + Mnz)
∣∣ + lim sup

n→∞
M

N−2
2

n U0(xn + Mnz)

� lim supC|ξn + z| 2−N
2 |xn − x∞ + Mnz|α + lim supL|ξn + z| 2−N

2 = L|z| 2−N
2 ,
n→∞ n→∞
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i.e. (7.12) holds. Otherwise, up to a subsequence we may assume ξn → ξ∞ �= 0. Let ξ �= 0 and z = (ξ∞/|ξ∞|)|ξ |, so
that ξn + z → ξ∞ + z = (1 + |ξ |/|ξ∞|)ξ∞ �= 0.

Applying (7.11) with z = (ξ∞/|ξ∞|)|ξ |, using radial symmetry we have

�Uδ̄(ξ) = �Uδ̄(z) � lim sup
n→∞

M
N−2

2
n U(xn + Mnz)

� lim sup
n→∞

C|ξn + z| 2−N
2 |xn − x∞ + Mnz|α + lim sup

n→∞
L|ξn + z| 2−N

2

= L

∣∣∣∣(1 + |ξ |
|ξ∞|

)
ξ∞

∣∣∣∣ 2−N
2

� L|ξ | 2−N
2 ,

i.e. (7.9) holds and the proof is completed. �
By (2.11) the family of solutions uλ = u(λU) � U is clearly increasing as λ ↗ 1. Thus, there exists a pointwise limit
u = limλ↗1 uλ � U which is a weak solution of problem (P), with u0 = U as initial data by the same dominated
convergence argument used in the previous section. This solution is also decreasing in time because the same holds
for each uλ.

Taking Lemma 7.1 into account, as λ ↗ 1 we conclude∥∥u(t)
∥∥

L∞(RN)
� Ct

2−N
4 , for all 0 < t � 1. (7.13)

Hence, u is smooth for t > 0 by standard parabolic theory because it is locally bounded for 0 < t � 1 by (7.13) and it
is globally bounded for t � 1 because it is decreasing in time and it satisfies (7.13). Using Corollary 2 we have u = u,
the minimal weak solution of problem (P) with initial data u0 = U , because u � U and it is smooth for t > 0.

It remains to show that limt→∞ ‖u(·, t)‖L∞(RN) = 0. We need the following lemma.

Lemma 7.2. Let N � 3 and U ∈ L
N+2
N−2
loc (RN), U > 0 a.e., such that �U + U

N+2
N−2 = 0 in D′(RN). Assume that Σ =

SingU = {P1, . . . ,Pk} is a finite set. Let V ∈ C2(RN) a positive solution of �V + V
N+2
N−2 = 0. Assume that V � U

a.e. Then there are infinitely many x0 ∈ RN \ Σ such that V (x0) = U(x0).

Proof. As already recalled in (3.5), from [7] we know that V (x) = �Uδ(x − x̄) for some δ > 0 and x̄ ∈ RN . On the

other hand it follows from (3.4) that U(x) = O(|x| 2−N
2 ) as |x| → ∞ and we may assume also U(x) � C|x| 2−N

2 for
large |x|, i.e. we may assume that U has a nonremovable singularity at infinity. Otherwise Σ contains at least two
points (see [7], Theorem 8.1) and if we select P ∈ Σ and for z = x−P

|x−P |2 we set Û (z) = 1
|z|N−2 U(P + z

|z|2 ), then Û is

still singular and it has all the desired properties, while V̂ (z) = 1
|z|N−2 V (P + z

|z|2 ) is still a regular positive solution.

Once the lemma is proved for Û and V̂ , the conclusion follows going back to the original variables.
Since V is bounded and u(t,V ) � V , we deduce that u(t,V ) ≡ V by the uniqueness of bounded solutions of the

Cauchy problem (P). Let {λn} ⊂ (0,1), λn ↗ 1. For each n � 1 we set Kn = {x ∈ RN \ Σ : λnU(x) � V (x)}. Clearly
Kn+1 ⊆ Kn for each n and each Kn is a relatively closed subset of RN \ Σ because both U and V are continuous in

RN \Σ . Moreover Kn is a compact set in RN,Kn ⊂ RN \Σ . Indeed by our assumptions U(x)/V (x) � C|x|N−2
2 → ∞

as |x| → ∞, and U(x)/V (x) → ∞ as dist(x,Σ) → 0 by (3.5) and (3.3).
We claim that each Kn is nonempty. Otherwise V < λU a.e. Evolving in time through the minimal positive solution

and using (2.11), (2.14) we would get

V (x) = u(t,V ) � u(t, λU) � C(λn,N)t
2−N

4 .

Since the r.h.s. goes to zero as t → ∞ we have a contradiction. Thus Kn �= ∅ for each n and clearly ∂Kn �= ∅ because
Kn is a compact set. As both U and V are continuous functions in a neighbourhood of Kn we have also λU ≡ V on
∂Kn. Obviously K = ⋂

n Kn �= ∅ and if xn ∈ ∂Kn, up to subsequences we may assume xn → x0 ∈ K . On the other
hand λnU(x) → U(x) uniformly on K1, therefore

V (x0) � U(x0) = lim λnU(xn) � lim V (xn) = V (x0),

n→∞ n→∞
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and the set A = {x ∈ RN \ Σ : U(x) = V (x)} is not empty. In order to finish the proof it is enough to show that each
point of A is not isolated. Assume the converse. Then there exists x0 ∈A and R > 0 such that BR(x0) ⊂ RN \ Σ and
V (x) < U(x) in BR(x0) \ {x0}. Then W(x) = U(x) − V (x) is smooth and satisfies �W � 0 in BR(x0); moreover
W(x0) = 0 and W(x) > 0 for each x ∈ BR(x0) \ {x0}. By the strong maximum principle we have a contradiction and
the lemma is completely proved. �

Let V (x) = limt→∞ u(x, t), which is well defined and bounded because u is decreasing in time and bounded
e.g. for t = 1. Let t0 � 1 a fixed number. Multiplying the equation by ϕ ∈ C∞

0 (RN) and integrating by parts on
RN × (t0, t0 + 1) we get∫

RN

u(x, t0 + 1)ϕ(x)dx −
∫

RN

u(x, t0)ϕ(x)dx

=
∫

RN×(t0,t0+1)

u(x, t)�ϕ(x)dx dt +
∫

RN×(t0,t0+1)

u(x, t)
N+2
N−2 ϕ(x)dx dt.

Letting t0 → ∞ in the previous equation, by dominated convergence we get

0 =
∫

RN

V (x)�ϕ(x)dx +
∫

RN

V (x)
N+2
N−2 ϕ(x)dx,

hence, by elliptic regularity (Lp and Schauder theory) V is a classical solution because it is bounded. Obviously
V � U . If V ≡ 0 then u(·, t) → 0 uniformly as t → ∞ because u is decreasing in time and u(x, t) � U(x) → 0 as
|x| → ∞. Thus, the last claim of the theorem follows if V ≡ 0. Otherwise, assume V �≡ 0, then V > 0 by the strong
maximum principle and, applying Lemma 7.2 there exists x0 ∈ RN \ Σ such that V (x0) = U(x0). On the other hand
using the strong maximum principle for parabolic equations in the strip 0 < t1 < t � t2 we know that u is strictly
decreasing in time and we have

U(x0) � u(x0, t1) > u(x0, t2) � V (x0),

which is a contradiction. �
A trivial consequence of Theorem 3 is Corollary 1. The proof is standard and it will be just outlined below.

Proof of Corollary 1. Let U as in Theorem 3 and let u be the corresponding minimal solution which is smooth for
t > 0 by the same theorem. For each τ > 0 we set uτ (t) = U for 0 � t � τ and uτ (t) = u(t − τ) for t > τ . It is easy
to check that each uτ is a weak solution, and clearly they are all distinct because u is smooth for t > 0. �
8. Asymptotic behaviour

Proof of Theorem 4. (1) First we prove (1.8) for p = ∞, and in view of (7.13) we may restrict to the case t � 1. In
order to prove the estimate we use another blow up argument similar to the one used in Theorem 3. However, since this

time the rescaling is performed at infinity we give a full detailed proof. First we observe that δ(t) = t
N−2

4 ‖u(t)‖L∞(RN)

is a continuous function in [1,∞) because u is smooth for t > 0 and u(x, t) � U(x) = O(|x| 2−N
2 ) as |x| → ∞.

Arguing by contradiction, assume (1.8) does not hold. By (7.13), there exist a sequence {tn} ⊂ (1,∞), tn → ∞ such
that

δn := sup
t∈(0,tn]

t
N−2

4
∥∥u(t)

∥∥
L∞(RN)

= t
N−2

4
n

∥∥u(tn)
∥∥

L∞(RN)
→ ∞ as n → ∞. (8.1)

Since u(x, t) � U(x) → 0 as |x| → ∞ and u is smooth for t > 0, we may assume that there exists {xn} ⊂ RN such
that

δn = t
N−2

4
n

∥∥u(tn)
∥∥ ∞ N = t

N−2
4

n u(xn, tn). (8.2)

L (R )
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Let us set s = log t and for each n � 1, sn = log tn and vn(y, s) = t
N−2

4 u(xn + y
√

t, t), y ∈ RN , s ∈ R. Then

∂svn = �vn + 1

2
y · ∇vn + N − 2

4
vn + v

N+2
N−2
n , y ∈ RN, s ∈ R, (8.3)

and, by definition of tn and xn we have 0 < vn(y, s) � δn for −∞ < s � sn, and vn(0, sn) = δn. We rescale vn as
follows

wn(z, τ ) = β
N−2

2
n vn

(
βnz,β

2
nτ + sn

)
, where βn = (δn)

2
2−N → 0 as n → ∞. (8.4)

By (8.3) we have⎧⎨⎩ ∂τwn = �wn + β2
n

(1

2
z · ∇wn + N − 2

4
wn

)
+ w

N+2
N−2
n ,

wn(0,0) = 1, 0 < wn � 1 for z ∈ RN,−∞ < τ � 0.

(8.5)

By the interior Lp-estimates and Schauder estimates for linear parabolic equations, there exists a function w ∈
C2+α,1+α/2(RN × (−∞,0]) such that (up to subsequences) wk → w in C

2+α,1+α/2
loc (RN × (−∞,0]) and w satis-

fies {
∂τw = �w + w

N+2
N−2 in (−∞,0],

w(0,0) = 1, 0 � w � 1 in (−∞,0]. (8.6)

Arguing as in (7.7) and (7.8) we conclude that w is nonincreasing in τ , hence w(z, τ ) = �Uδ̄(z), δ̄ = [N(N −2)]−1/2,
by the parabolic maximum principle, the normalisation at the origin and formula (3.5).

Since u(x, t) � U(x), for any fixed (z, τ ) ∈ RN × (−∞,0], z �= 0 we have

wn(z, τ ) = (
βn e(β2

nτ+sn)/2)N−2
2 u

(
xn + βn e(β2

nτ+sn)/2z, eβ2
nτ+sn

)
� M

N−2
2

n U(xn + Mnz), (8.7)

where we set Mn = βn

√
tn e(β2

nτ)/2. As wn → �Uδ̄ locally uniformly in RN × (−∞,0] as n → ∞, we conclude

�Uδ̄(z) � lim sup
n→∞

M
N−2

2
n U(xn + Mnz). (8.8)

Observe that Mn → ∞ as n → ∞ because βn → 0 by (8.4), ‖u(·, tn)‖L∞(RN) → 0 by Theorem 3 and(
βn

√
tn

)N−2
2 = 1

‖u(·, tn)‖L∞(RN)

→ ∞.

From the asymptotic analysis of [7] (see (3.4)) we know that U(x) = O(|x| 2−N
2 ) as |x| → ∞. We claim that

ξn := xnM
−1
n is a bounded sequence. If this is not he case, then, up to subsequences, |xn|M−1

n → ∞ and in particular
|xn| → ∞, because Mn → ∞. Since u � U , by definition of δn, βn and Mn we get

1 = (
βn

√
tn

)N−2
2 u(xn, tn) � C

(
βn

√
tn

)N−2
2 |xn| 2−N

2 = C

(|xn|/(βn

√
tn ))

N−2
2

→ 0 as n → ∞,

because |xn|(βn

√
tn )−1 ∼ |xn|M−1

n → ∞ as n → ∞. The contradiction shows that ξn is a bounded sequence.
To finish the proof we distinguish two cases according to (3.4). If U is nonsingular at infinity, then U(x) �

C|x|2−N for large |x|. Up to subsequences we may assume yn := xn|xn| → y∞, and if we fix ξ �= 0 and z = y∞|ξ |,
then |xn + Mnz| = ||xn|yn + Mn|ξ |y∞| � C(|xn| + |ξ |Mn) for C > 0 independent of n and n large enough, hence
|xn + Mnz| → ∞ as n → ∞. By (8.8) we have

0 < �Uδ̄(ξ) = �Uδ̄(z) � lim sup
n→∞

M
N−2

2
n U(xn + Mnz) � lim sup

n→∞
CM

N−2
2

n

(|xn| + |ξ |Mn)N−2
= 0,

which is a contradiction.
In the second case, i.e. if U has a nonremovable singularity at infinity, then there exists a radial singular solution

U∞ = Uε,δ and a positive number α > 0 such that U(x)−U∞(x) =O(|x| 2−N
2 −α) as |x| → ∞ (see (3.12)). We claim

that from (8.8) we obtain

�Uδ̄(z) � L|z| 2−N
2 , L = Lε = sup

N

U∞(x)|x|N−2
2 . (8.9)
x∈R
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Clearly, if (8.9) holds, then we have a contradiction because of (3.9) and (3.10). Since the proof of (8.9) is entirely
similar to the one of (7.12) it will be omitted.

Thus, (1.8) holds for p = ∞. The other cases are obtained “by interpolation” as in Theorem 5. Indeed u(x, t) �
U(x) in the whole RN × (0,∞). On the other hand by (3.4) U(x) � C|x| 2−N

2 for |x| � �R, �R > 1 sufficiently large.
Combining this pointwise inequality with (1.8) in the case p = ∞ on paraboloids of the form {|x| >

√
t} as in

Theorem 5, Eq. (6.8), the estimate (1.8) holds for arbitrary p > 2∗ on each interval [t1,∞), t1 > 0. For time intervals

(0, t1] the argument is similar and is based on the asymptotic bounds U(x) � C|x −P | 2−N
2 for any P ∈ Σ and |x −P |

sufficiently small given by (3.3) and U(x) = O(|x| 2−N
2 ) as |x| → ∞ given by (3.4) combined with inequality (1.8)

for p = ∞ on paraboloids of the form {|x − P | > √
t}. Thus, for t small we can control the decay in time of the l.h.s.

of (1.8) both near the singular points (P,0), P ∈ Σ and at the spatial infinity. The details are left to the reader.
(2) Up to a translation we may assume P = 0. Then U0 = Uε,δ is radial and radially decreasing and the same

holds for the corresponding minimal solution given by Theorem 5. We know that g(− log |x|) = |x|N−2
2 U0(x) is a

bounded continuous function and it is either constant or a periodic function with period T = Tε > 0. We confine
ourselves to the second case, the first one being even simpler to deal with because the argument is exactly the same

and T > 0 can be chosen arbitrarily. Thus, U0(x) = R
N−2

2 U0(Rx) for R = e−T and if we set ri = e−iT , i ∈ Z, then

r
N−2

2
i U0(rix) = U0(x) for each i. By Theorem 5 the corresponding minimal solution u0(x, t) has the scale invariance

u0(x, t) = r
N−2

2
i u0(rix, r2

i t).

Now we rescale u at 0 by setting vi(x, t) = r
N−2

2
i u(rix, r2

i t). Let wk = vik any subsequence. Clearly wk are still
weak solutions and they satisfy (1.8) for p = ∞, with the same positive constant C > 0, due to claim (1) of the theorem
and the scale invariance of (1.8). Thus, by standard Lp-estimates and Schauder estimates for linear parabolic equations
wk are compact in C

2,1
loc (RN × (0,∞)) and there exists a subsequence wkj

and a limit function w ∈ C
2,1
loc (RN × (0,∞))

such that wkj
→ w in C

2,1
loc (RN × (0,∞)) and w is smooth for t > 0 because is a C

2,1
loc solution of the semilinear heat

equation. Moreover w is decreasing in t because each wk is decreasing in t .
Since u is a weak solution, testing (1.4) with ψk(x, t) = ψ(xr−1

ik
, tr−2

ik
), ψ ∈ C∞

0 (RN × R), and scaling back the
variables we obtain

∫
RN

r
N−2

2
ik

U(rik x)ψ(x,0)dx +
∫

RN×R+

wk(x, t)ψt (x, t)dx dt +
∫

RN×R+

wk(x, t)�ψ(x, t)dx dt

+
∫

RN×R+

wk(x, t)
N+2
N−2 ψ(x, t)dx dt = 0. (8.10)

As i → +∞ we have r̄k := rik → 0 and r̄
N−2

2
k U(r̄kx) → U0(x) in L1

loc(R
N). Indeed, r̄

N−2
2

k U(r̄kx) → U0(x) a.e.

by (3.11) and, due to (3.3), we have the bound |U(x)| � C|x| 2−N
2 for some C > 0 and |x| � η, η > 0 small

enough, and the claim follows from the dominated convergence theorem. Clearly S(t)U � u(t) � U , whence

S(t)r̄
N−2

2
k U(r̄kx) � wk(x, t) � r̄

N−2
2

k U(r̄kx) and S(t)U0(x) � w(x, t) � U0(x) by pointwise convergence. Thus, by

monotone and dominated convergence we infer w ∈ C0(R+;L
N+2
N−2
loc (RN)), w(0) = U0, because w is also decreasing

in time and smooth for t > 0. On the other hand for each η0 > 0 there exist C = Cη0 > 0 and an integer k0 > 0 such

that for each k � k0 we have wk(x, t) � r̄
N−2

2
k U(r̄kx) � C|x| 2−N

2 for each x ∈ Bη0 . As wkj
→ w in C

2,1
loc , applying

dominated convergence in (8.10) we conclude that w is a weak solution. Since w is smooth for t > 0, w(0) = U0 and
w � U0, by Corollary 2 we deduce w = u0. As the limit is independent of the chosen subsequence wk we conclude
vi → u0 in C

2,1
loc (RN × (0,∞)) and (1.9) is proved.

In order to check (1.10) we use a scaling argument. As already observed, by (3.3) U(x) � C|x| 2−N
2 for |x| < η,

hence vi(x, t) � r
N−2

2 U(rix) � C|x| 2−N
2 for any |x| � ηr−1 and t > 0 and the same holds for u0 as i → +∞ in the
i i
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whole RN × (0,∞). Here we stress that the constant C depends only on U and η. Thus if we confine ourselves to the
strip r2

1 � t � 1, r1 = e−T < 1 and if we choose i0 such that ηr−1
i0

> k and i � i0, then

I1 := sup
r2
1 �t�1

(∥∥vi(·, t)
∥∥

Lp(B
ηr

−1
i

\Bk)
+ ∥∥u0(·, t)∥∥

Lp(B
ηr

−1
i

\Bk)

)
� 2C

( ∫
k<|x|

dx

|x|p N−2
2

)1/p

, (8.11)

if p < ∞, or I1 � 2Ck
2−N

2 if p = ∞. On the other hand, by (1.9) vi → u0 in C0(Bk × [r2
1 ,1]) and r1 = e−T < 1,

whence for k > 0 fixed we have

I2 := sup
r2
1 �t�1

∥∥vi(·, t) − u0(·, t)∥∥
Lp(Bk)

� C(k)
∥∥vi − u0

∥∥
L∞(Bk×[r2

1 ,1]) → 0 as i → +∞. (8.12)

Given 0 < t � r2
1 , let i(t) = [− log t

2T
], so that i(t) = k whenever r2

k+1 < t � r2
k and i(t) → ∞ as t → 0+. Let k > 0 be

a fixed number. For i0 such that ηr−1
i0

> k and t so small that i = i(t) � i0, taking the scaling invariance of the norms
into account and using (8.11), (8.12) we have

t
N
2 ( 1

2∗ − 1
p

)
∥∥u(·, t) − u0(·, t)∥∥

Lp(Bη)
� sup

r2
1 �t�1

∥∥vi(·, t) − u0(·, t)∥∥
Lp(B

ηri
−1 )

� sup
r2
1 �t�1

∥∥vi(·, t) − u0(·, t)∥∥
Lp(B

ηri
−1\Bk)

+ sup
r2
1 �t�1

∥∥vi(·, t) − u0(·, t)∥∥
Lp(Bk)

� C(p)k
− N

2 ( 1
2∗ − 1

p
) + C(k)

∥∥vi − u0
∥∥

L∞(Bk×[r2
1 ,1]).

As t → 0+ we have i(t) → +∞ and

lim sup
t→0+

t
N
2 ( 1

2∗ − 1
p
)
∥∥u(·, t) − u0(·, t)∥∥

Lp(Bη)

� C(p)k
− N

2 ( 1
2∗ − 1

p
) + lim sup

i→∞
C(k)

∥∥vi − u0
∥∥

L∞(Bk×[r2
1 ,1]) = C(p)k

− N
2 ( 1

2∗ − 1
p

)
,

and the conclusion follows as k → ∞.
(3) Since U has a nonremovable singularity at infinity there exists a singular solution U∞ = Uε,δ , radial and

radially decreasing such that U(x) − U∞(x) = O(|x| 2−N
2 −α) as |x| → ∞ for some α > 0 (see (3.12). By (3.8)

we know that g(− log |x|) = |x|N−2
2 U∞(x) is a bounded continuous function and it is either constant or a periodic

function with period T = Tε > 0. Again we confine ourselves to the second case, the first one being even simpler to

deal with. Thus, U∞(x) = R
N−2

2 U∞(Rx) for R = e−T and if we set ri = eiT , i ∈ Z, then ri → ∞ as i → +∞ and

r
N−2

2
i U∞(rix) = U∞(x) for each i (observe that now a sign has been changed in the definition of ri ). By Theorem 5

the corresponding minimal solution u∞(x, t) has the scale invariance u∞(x, t) = r
N−2

2
i u∞(rix, r2

i t) for each i ∈ Z.

We claim that if we set vi(x, t) = r
N−2

2
i u(rix, r2

i t), then vi(x, t) → u∞(x, t) in C
2,1
loc because r

N−2
2

i U(rix) → U∞(x)

by (3.12). The proof of this claim is still based on (1.8) and it is completely analogous to the one in (2), therefore
it will be omitted. Finally, a scaling argument similar to the one used in proving (1.10) and based on the asymptotic

estimate U(x) =O(|x| 2−N
2 ) shows that (1.12) holds. The details are left to the reader. �
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Appendix A. A weak maximum principle for the heat equation

We start with the following slight extension of (2.2) which will be useful later.
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Lemma A.1. Let I = [0, a] and w ∈ C0(I ;L1
loc(R

N)) such that for some C we have |w(x, t)| =O(eC|x|2) as |x| → ∞
uniformly on t ∈ I . Let a � 1

8C
and let v0 = v(0). Then S(t)v(t) → v0 in L1

loc(R
N) as t → 0+.

Proof. Let R > 0 be any positive number and let R0 � 2R such that for positive constants C0,C we have |w(x, t)| �
C0(eC|x|2) as |x| � R0 uniformly on t ∈ I . Set v1 = vχ{|x|<R0}, v2 = v − v1, and similarly v1

0 = v0χ{|x|<R0}, v2
0 =

v0 − v1
0 . Clearly we have∥∥S(t)v(t) − v0

∥∥
L1(BR)

�
∥∥S(t)v1(t) − v1

0

∥∥
L1(BR)

+ ∥∥S(t)v2(t) − v2
0

∥∥
L1(BR)

= I1(t) + I2(t).

By assumption v1 ∈ C0(I ;L1(RN)), hence (2.1), (2.2) yield

I1(t) = ∥∥S(t)v1(t) − v1
0

∥∥
L1(BR)

�
∥∥S(t)

(
v1(t) − v1

0

)∥∥
L1(BR)

+ ∥∥S(t)v1
0 − v1

0

∥∥
L1(BR)

�
∥∥v1(t) − v1

0

∥∥
L1(RN)

+ ∥∥S(t)v1
0 − v1

0

∥∥
L1(RN)

→ 0 as t → 0.

To control the second term first we observe that Kt(x) = C(N) e− |x|2
8t Kt/2(x). Thus, taking the pointwise bound of

v2 into account, we have

I2(t) = ∥∥S(t)v2(t)
∥∥

L1(BR)
�

∥∥S(t)C0 eC|x|2χ{|x|�R0}
∥∥

L1(BR)
=

∫
|x|�R

dx

∫
|y|�R0

C′ e− |x−y|2
8t Kt/2(x − y) eC|y|2 dy.

If t � 1
64C

then C′ e− |x−y|2
8t eC|y|2 � C′ e− R2

0
64t because |x| < R and |y| � R0 � 2R. Thus

I2(t) � C′′RN e− R2
0

64t → 0

as t → 0 and the lemma is completely proved.

Using the previous result we are can prove the following very weak form of the maximum principle for the heat
equation.

Proposition A.1. Let w ∈ C0(R+;L1
loc(R

N)) such that for some C > 0 we have |w(x, t)| = O(eC|x|2) as |x| → ∞
uniformly on t . Assume that ∂tw − �w � 0 in D′(RN × (0,∞)). If u0(x) := w(x,0) � 0 a.e. in RN , then w � 0 a.e.
in RN × R+, u(x, t) = S(t)u0 is defined for all t > 0 and w � u a.e. in RN × R+.

Proof. Let T = 1
8C

so that u = S(t)u0 is well defined and smooth in RN × (0, T ] and let us fix two numbers 0 <

t0 < t1 � T and let x1 ∈ RN . We fix R0 > 0 such that |w(x, t)| � C′eC|x|2 for a.e. x ∈ RN \ BR0 and for each t > 0.
Let ϕ ∈ C∞

0 (RN), ϕ � 0, such that ϕ ≡ 1 for |x| � R0. For each m ∈ N let us define ϕm ∈ C∞
0 (RN), ϕm � 0, as

ϕm(x) = ϕ(x/m) so that {ϕm} is bounded in C2(RN), ϕm ≡ 1 for |x| � m and ϕm → 1 in C2
loc(R

N) as m → ∞.
For each n ∈ N let ψn ∈ C∞

0 ((0, t0)), ψn � 0 to be specified later. For s < 0 let us denote by �Ks(x) the backward

heat kernel �Ks(x) = (4π |s|)−N/2 e− |x|2
4|s| , so that ∂s

�Ks + ��Ks ≡ 0 in RN × (−∞,0).
Testing the inequality with �Kt−t1(x1 − x)ϕm(x)ψn(t) we have

−
∫

RN×R+

w(x, t)�Kt−t1(x1 − x)ϕm(x)ψ ′
n(t)dx dt −

∫
RN×R+

w(x, t)�Kt−t1(x1 − x)�xϕm(x)ψn(t)dx dt +

− 2
∫

RN×R+

w(x, t)∇x
�Kt−t1(x1 − x)∇xϕm(x)ψn(t)dx dt � 0. (A.1)

Let us use (A.1) with ψn ∈ C∞
0 ((0, t0)), 0 � ψn � 1, ψn → χ(0,t0) a.e. and ψ ′

n → −δt0 + δ0 in (C0([0, t0]))′. Since
t0 < t1 � T = 1

8C
, using the growth assumptions on w and the properties of the (backward) heat kernel, it is easy to

check that for each x1 ∈ RN there exists g = gx1 ∈ L1(RN) such that for a.e. (x, t) ∈ {|x| � R0} × (0, t0) it holds∣∣w(x, t)
∣∣(�Kt−t (x1 − x) + ∣∣∇x

�Kt−t (x1 − x)
∣∣) � gx (x). (A.2)
1 1 1
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Since ∇xϕm ≡ 0 and �xϕm ≡ 0 for |x| > R0, using (A.2) we can pass to the limit as n → ∞ in the second and the
third term of (A.1) by dominated convergence.

On the other hand, for each x1 fixed the function t → ∫
RN w(x, t)�Kt−t1(x1 − x)ϕm(x)dx belongs to C0([0, t0])

because of (A.2) and the assumption w ∈ C0(R+;L1
loc(R

N)). Thus, by Fubini theorem, as n → ∞ we have∫
RN

w(x, t0)�Kt0−t1(x1 − x)ϕm(x)dx −
∫

RN

u0(x)Kt1(x1 − x)ϕm(x)dx

−
∫

RN×(0,t0)

w(x, t)�Kt−t1(x1 − x)�xϕm(x)dx dt

− 2
∫

RN×(0,t0)

w(x, t)∇x
�Kt−t1(x1 − x)∇xϕm(x)dx dt � 0. (A.3)

Combining (A.3), (A.2) and the support and convergence properties of ϕm, ∇ϕm and �ϕm, as m → ∞ by dominated
convergence we obtain∫

RN

w(x, t0)�Kt0−t1(x1 − x)dx �
∫

RN

u0(x)Kt1(x1 − x)dx = u(x1, t1), (A.4)

for each x1 ∈ RN and for each 0 < t0 < t1 � T . Taking v(s) = w(t1 − s), s = t1 − t0, 0 � s � t1, and applying
Lemma A.1 we easily conclude that there exists tn0 ↗ t1 such that for a.e. x1 ∈ RN we have

lim
tn0 ↗t1

∫
RN

w
(
x, tn0

)�Ktn0 −t1(x1 − x)dx = w(x1, t1). (A.5)

Since u0 � 0 then u � 0 in RN × [0, T ]. Combining (A.5) and (A.4) we easily infer w(t1) � u(t1) a.e. in RN for
each t1 ∈ [0, T ]. The conclusion follows from an induction argument using the same proof on each time interval
Il = [(l − 1)T , lT ], l ∈ N, l � 1 and the semigroup property for the standard heat kernel.
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