
Ann. I. H. Poincaré – AN 23 (2006) 629–639
www.elsevier.com/locate/anihpc

Note on an inequality

Yongzhong Xu

Rutgers University, Department of Mathematics, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Received 26 January 2005; received in revised form 26 May 2005; accepted 5 July 2005

Available online 9 December 2005

Abstract

We prove in this article the case of three masses, of an inequality of discrete type (which might have a continuous extension)
which is still a conjecture for any p points in R

3. The inequality appears naturally in the derivation of Morse Lemma at infinity for
Yamabe problems with changing signs. We also explain why this inequality might hold in general.

Résumé

Nous prouvons dans cet article le cas p = 3, d’une inégalité discrète (qui s’étend peut-être au cas continu) qui est une conjecture
pour p points quelconques de R

3. Cette inégalité apparaît naturellement dans la démonstration du Lemme de Morse à l’infini
[A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Scientific &
Technical, Harlow, 1989] pour les problèmes de Yamabe avec changement de signe. Nous montrons par la suite pourquoi l’inégalité
devrait être vraie en général.
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1. Introduction

The aim of this note is to prove the case of three masses, of an inequality which is conjectured in [8] and used in
order to establish a Morse lemma at infinity in the changing sign Yamabe problem on S3.

Let A = (aij ) be the p × p matrix, with aii = 0, and aij = 1/|xi − xj |, for 1 � i, j � p. The conjecture reads as
follows:

Conjecture 1. There exists c(p) > 0, such that, for any (x1, . . . , xp) ∈ R
3p , and for any u ∈ R

p ,

sup
1�i�p

∣∣∣∣t u[ ∂A

∂xi

]
u

∣∣∣∣+ |Au|2 � c
∑
i �=j

u2
i

|xi − xj |2 .
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The inequality might seem somewhat surprising, but it arises in a natural way when one tries to establish a Morse
lemma at infinity for the Yamabe changing-sign problem on S3, see [5,8]. We would like to explain briefly in the
introduction how it arises.

Let (S3, c) be S3 equipped with the standard metric and let J (u) = 1/
∫
S3 u6 dv be the Yamabe functional defined

on Σ = {u such that
∫
(|∇S3u|2 + 3

4u2)dv = 1}. Critical points for J are known to exist, in fact infinitely many critical
points are known to exist. Because of the non-compactness of the conformal group, they concentrate and combine to
build asymptotes, see [1–3,6]. The difference of topology at the level set of J induced by these asymptotes has never
been computed. Hence, one can say there is a variational problem where several critical points are known, but the
variational problem is not understood.

Consider a family of solutions ω1, . . . ,ωp, one can combine them into
∑p

i=1

√
λi ωi(λi(x−ai)) after stereographic

projection on R
3. If the ai ’s remain in a compact set and the λi ’s tend to +∞ and if

εij = 1
/( λi

λj

+ λj

λi

+ λiλj |ai − aj |2
)1/2

tends to zero, then J ′(
∑p

i=1

√
λi ωi(λi(x − ai))) tends to zero, i.e.

∑p

i=1

√
λi ωi(λi(x − ai)) builds an asymptote.

A good parametrization of a neighborhood of this asymptote is provided by

u =
p∑

i=1

αi

√
λi ωi

(
λi(x − ai)

)+ v =
p∑

i=1

αiωi + v,

where v is small and satisfies a family of orthogonality conditions [2,5,8].
Expanding J (u), we find

J (u) = (
∑p

i=1 α2
i

∫
ωi

6)3∑p

i=1 α6
i

∫
ωi

6

(
1 + P + R + (f, v) + Q(v,v)

)
.

Here P is the principal term in the expansion,

P =
∑
i �=j

(
ωi(ãj )ωj

∞ − cij ε
3
ij

)
,

where ωj
∞ is the value of ωj at the north pole (with

√
λjωj (λj (x − aj )) concentrated at the south pole) and ωi(ãj )

are the value of ωi at the new concentration point of ωj after re-scaling ωi to concentration 1. And the reminder term
R reads:

R = o

(∑((
ωi

∞2 + ωj (ãj )
2)ε2

ij + ε3
ij

)+ |v|2
H 1

)
.

Under minimal assumptions of non-degeneracy (i.e.transversallity to their invariance group) of the ωj ’s, (f, v) +
Q(v,v) + o(|v|2

H 1) can be extremized. Thus we have derived a new

ū =
p∑

i=1

αiωi + v̄

and

J (u) = J (ū) + Q(v,v),

where v is a new small linear parameter standing for v − v̄ (or so).
Then J (ū) reads basically as

J (ū) = (
∑p

i=1 α2
i

∫
ωi

6)3∑p

i=1 α6
i

∫
ωi

6
(1 + P1 + R1),

where P1 and R1 behave exactly as P and R, so we drop the subscript 1 in what follows.
The Morse lemma at infinity then reads (it is still a conjecture if no assumption is introduced at this time, see [8]):
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Morse lemma at infinity. There exists a change of coordinates in the (ai, λi) spaces, (ai, λi) → (ãi , λ̃i) such that
J (u) reads as

J(ū) = (
∑p

i=1 α2
i

∫
ωi

6)3∑p

i=1 α6
i

∫
ωi

6

(
1 + P̃ ′

1

)
,

where P̃ ′
1 is P1 with the variables a′

i , λ′
i , λj .

We now provide a sketch of the proof of this lemma under more assumptions [8]. This will show how our inequality
enters into play.

ū contains only the variables λi , αi , ai , σi . In order to complete a Morse lemma at infinity, we need to estimate

(i)
∂J (ū)

∂αi

= J ′(ū) ·
(

ωi + ∂v̄

∂αi

)
,

(ii) λi

∂J (ū)

∂λi

= J ′(ū) ·
(

λi

∂ωi

∂λi

+ λi

∂v̄

∂λi

)
,

(iii)
∂J (ū)

λi∂ai

= J ′(ū) ·
(

∂ωi

λi∂ai

+ ∂v̄

λi∂ai

)
,

(iv)
∂J (ū)

∂σi

= J ′(ū) ·
(

∂ωi

∂σi

+ ∂v̄

∂σi

)
.

The v̄ derivatives can be easily handled using a trick involving the orthogonality relations satisfied by v̄.
When we are dealing with positive solutions, the ωi ’s are equal to the δi ’s. In this case, one can easily see that

(i), (ii) and (iii) work together by taking derivatives of P . Indeed ωi(ãj ) and ωj
∞ are constants equal to c0 > 0. The

λi -derivatives work together and provide estimates. They do not destroy each other. This basic fact helps in order to
build a pseudo-gradient out of (i)–(iii).

When the positivity assumption is dropped, these estimates are lost and we need large variations in the ‘compact’
variables, which are all the variables besides the λi ’s (the ai ’s live on S3).

We are then led to estimate ∂J (ū)/∂αi in lieu of ∂J (ū)/λi∂ai .
Computing ∂P/∂ai , under the assumption that εij = 1/(

√
λiλj |ai − aj |), we find (identifying ωi(ãj ) and ωj

∞
for the sake of simplicity)

−
∑
i �=j

ωi
∞ωj

∞ ai − aj√
λiλj |ai − aj |3 + cij 3

∑
i �=j

ε3
ij

ai − aj

|ai − aj |2 .

The first term can be identified as(
. . .

ωi
∞

√
λi

. . .

)
∂A

∂ai

(
. . .

ωi
∞

√
λi

. . .

)t

,

while the second term is

O

(∑
i �=j

√
λiλj ε4

ij

)
.

Continuing a thorough and difficult computation, we find that the derivatives of the remainder term R behave as∣∣∣∣ ∂R

∂ai

∣∣∣∣= o

(∑
j �=l

λlωj
∞2ε2

j l +
∑
j �=l

√
λjλl, ε

4
j l

)
.

Actually, the estimate is much better because εij is a factor in ∂R/∂ai (a square root of it depends only on i). Work is
under progress to prove that, in this statement, we can take j = i.

On the other hand,

−2λi

∂P

∂λi

=
∑

ωi
∞∑

ωj
∞ 1√

λiλj |ai − aj | + O
(
ε3
ij

)
,

i �=j
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while

∂P

∂σi

= ∂ωi
∞

∂σi

∑
i �=j

ωj
∞ 1√

λiλj |ai − aj | + O
(
ε3
ij

)
.

Assuming that∣∣ωi
∞∣∣+ ∣∣∣∣∂ωi

∞

∂σi

∣∣∣∣� c > 0,

we derive:
p∑

i=1

∣∣∣∣λi

∂P

∂λi

∣∣∣∣+ ∣∣∣∣ ∂P

∂σi

∣∣∣∣� |Au| + O

(∑
ε3
ij

)
.

Combining with the ai ’s and these derivatives, we rebuild

sup
i

∣∣∣∣t u[ ∂A

∂xi

]
u

∣∣∣∣+ |Au|2.

We want the above term to be much larger than the derivatives of the remainder term in the expansion of J .
Comparing, we reach our inequality.

As in [5], the Morse lemma at infinity is established in [8] when the λi ’s satisfy

1

c
� λi

λj

� c

with c a fixed constant. However the expansion is general and we expect this hypothesis to be removed soon. Our
inequality becomes crucial in this process.

This inequality is difficult to establish. We proved for the case of p = 3. Although this seems to be quite limited,
the application is in fact large since it establishes the Morse lemma at infinity for all possible triplet (ω1,ω2,ω3) of
solutions of the Yamabe changing-sign problem on S3. We expect of course this Morse lemma at infinity and the
techniques of [1,4,7] to extend to Yamabe-type problems.

Thus our theorem reads:

Theorem 1. There exists a constant c3 > 0, such that for every (x1,x2, x3) ∈ R
9 and (u1,u2, u3) ∈ R

3,

sup
1�i�3

∣∣∣∣t u[ ∂A

∂xi

]
u

∣∣∣∣+ |Au|2 � c3

∑
i �=j

u2
i

|xi − xj |2 .

The remaining part of this paper is devoted to the proof of this theorem.
The proof is completed by carefully examining for the relative positions of the xi ’s. We denote

a = |x2 − x3|, b = |x1 − x3|, c = |x1 − x2|.
Without loss of generality, we can assume a � b � c, therefore θ1 � θ2 � θ3.

We discuss three distinct cases:
Case I, the lengths of a, b and c are comparable, and the three angles θ1, θ2 and θ3 are neither very small nor very

close to π . In this case, the first term of the left-hand side of the inequality is able to balance the second term, the
proof is quite straightforward;

Case II, c is very small compared with a. In this case, we prove the inequality by looking at the minimization
problem

Min
|u3(u1/b

2 + (u2/a
2) cos θ3)| + u1u2/(ab) + u1u3/(ac) + u2u3/(bc)

(u2
1 + u2

2)/c
2 + (u2

2 + u2
3)/a

2 + (u2
1 + u2

3)/b
2

= J (u1, u2, u3);

Case III, we prove all the remaining cases by carefully balancing the two terms directly.
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2. Details of the proof

For p = 3,

t u

[
∂A

∂x1

]
u = 2|u1|

√
u2

2

|x1 − x2|4 + u2
3

|x1 − x3|4 + 2u2u3
(x1 − x2, x1 − x3)

|x1 − x2|3|x1 − x3|3 .

Similarly we have

t u

[
∂A

∂x2

]
u = 2|u2|

√
u2

1

|x2 − x1|4 + u2
3

|x2 − x3|4 + 2u1u3
(x2 − x1, x2 − x3)

|x2 − x1|3|x3 − x2|3 ,

tu

[
∂A

∂x3

]
u = 2|u3|

√
u2

1

|x3 − x1|4 + u2
2

|x3 − x2|4 + 2u1u2
(x3 − x1, x3 − x2)

|x3 − x1|3|x3 − x2|3 ,

and

|Au|2 =
{

u2
1 + u2

2

|x1 − x2|2 + u2
2 + u2

3

|x3 − x2|2 + u2
1 + u2

3

|x1 − x3|2
}

+ 2

{
u1u2

|x3 − x1||x3 − x2| + u1u3

|x2 − x1||x2 − x3| + u2u3

|x1 − x2||x1 − x3|
}
.

Therefore in order to establish our theorem for p = 3 we need to prove that there exists a constant c such that

sup

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2|u1|
√

u2
2

|x1 − x2|4 + u2
3

|x1 − x3|4 + 2u2u3
(x1 − x2, x1 − x3)

|x1 − x2|3|x1 − x3|3

2|u2|
√

u2
1

|x2 − x1|4 + u2
3

|x2 − x3|4 + 2u1u3
(x2 − x1, x2 − x3)

|x2 − x1|3|x3 − x2|3

2|u3|
√

u2
1

|x3 − x1|4 + u2
2

|x3 − x2|4 + 2u1u2
(x3 − x1, x3 − x2)

|x3 − x1|3|x3 − x2|3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+
{

u2
1 + u2

2

|x1 − x2|2 + u2
2 + u2

3

|x3 − x2|2 + u2
1 + u2

3

|x1 − x3|2
}

+ 2

{
u1u2

|x3 − x1||x3 − x2| + u1u3

|x2 − x1||x2 − x3| + u2u3

|x1 − x2||x1 − x3|
}

� c

{
u2

1 + u2
2

|x1 − x2|2 + u2
2 + u2

3

|x3 − x2|2 + u2
1 + u2

3

|x1 − x3|2
}

for any xi ∈ R
3, ui ∈ R, i = 1,2,3.

Claim 1. We have:

|u1|
√

u2
2

c4
+ u2

3

b4
+ 2u2u3

cos θ1

b2c2

� sup

{ |u1u3| sin θ1

b2
,
|u1u2| sin θ1

c2
, |u1|

∣∣∣∣u2

c2
+ u3

b2
cos θ1

∣∣∣∣, |u1|
∣∣∣∣u2

c2
cos θ1 + u3

b2

∣∣∣∣},

|u2|
√

u2
1

c4
+ u2

3

a4
+ 2u1u3

cos θ2

a2c2

� sup

{ |u1u2| sin θ2
2

,
|u2u3| sin θ2

2
, |u2|

∣∣∣∣u1
2

+ u3
2

cos θ2

∣∣∣∣, |u1|
∣∣∣∣u1

2
cos θ2 + u3

2

∣∣∣∣},

c a c a c a
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and

|u3|
√

u2
1

b4
+ u2

2

a4
+ 2u1u2

cos θ3

a2b2

� sup

{ |u1u3| sin θ3

b2
,
|u2u3| sin θ3

c2
, |u3|

∣∣∣∣u1

b2
+ u2

a2
cos θ3

∣∣∣∣, |u3|
∣∣∣∣u1

b2
cos θ3 + u2

a2

∣∣∣∣}.

Proof of Claim 1. It is easy to see that√
u2

2

c4
+ u2

3

b4
+ 2u2u3

cos θ1

b2c2
=
√(

u2

c2
+ u3

b2
cos θ1

)2

+ u2
3 sin2 θ1

b4
� sup

{∣∣∣∣u2

c2
+ u3

b2
cos θ1

∣∣∣∣, |u3| sin θ1

b2

}
,

and √
u2

2

c4
+ u2

3

b4
+ 2u2u3

cos θ1

b2c2
=
√(

u3

b2
+ u2

c2
cos θ1

)2

+ u2
2 sin2 θ1

c4
� sup

{∣∣∣∣u3

b2
+ u2

c2
cos θ1

∣∣∣∣, |u2| sin θ1

c2

}
.

Similarly, we can prove the remaining two inequalities. �
We would like to compare these expressions with

u1u2

ab
+ u1u3

ac
+ u2u3

bc
and

u2
1 + u2

2

c2
+ u2

2 + u2
3

a2
+ u2

1 + u2
3

b2
.

Case I: the lengths of a, b and c satisfy b + c − a � a/100. Now we look at the case that b + c − a � a/100. It is
easy to see that( |u1u3| sin θ3

b2

)2/(u1u3

ac

)2

= a2c2(1 − cos2 θ3)

b4
= a2c2

b4

(
1 − (a2 + b2 − c2)2

4a2b2

)
= c2(a + b + c)(a + b − c)(a + c − b)(b + c − a)

4b6
.

Since b + c − a � a/100 and we assumed that a � b � c, the above quantity is bounded below.
Similarly we have( |u1u2| sin θ2

c2

)2/(u1u2

ab

)2

= a2b2(1 − cos2 θ2)

c4
= a2b2

c4

(
1 − (a2 + c2 − b2)2

4a2c2

)
= b2(a + b + c)(a + b − c)(a + c − b)(b + c − a)

4c6

and ( |u1u3| sin θ3

b2

)2/(u1u3

ac

)2

= a2c2(1 − cos2 θ3)

b4
= a2c2

b4

(
1 − (a2 + b2 − c2)2

4a2b2

)
= c2(a + b + c)(a + b − c)(a + c − b)(b + c − a)

4b6
.

They are bounded from below. We proved the theorem in this case.
Case II: c is very small compared with a. Now let us look at the case that c = o(a). Since we already prove the

inequality for the case that b+c−a � a/100, we assume now b+c−a � a/100. Therefore c is very small compared
with both a and b.

We consider the minimization problem

min
(u ,u ,u )∈R3

|u3(u1/b
2 + (u2/a

2) cos θ3)| + u1u2/(ab) + u1u3/(ac) + u2u3/(bc)

(u2 + u2)/c2 + (u2 + u2)/a2 + (u2 + u2)/b2
= J (u1, u2, u3). (∗)
1 2 3 1 2 2 3 1 3
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We consider it as two minimization problems separately,

min
(u1,u2,u3)∈R3

J1(u1, u2, u3) = u3(u1/b
2 + (u2/a

2) cos θ3) + u1u2/(ab) + u1u3/(ac) + u2u3/(bc)

(u2
1 + u2

2)/c
2 + (u2

2 + u2
3)/a

2 + (u2
1 + u2

3)/b
2

and

min
(u1,u2,u3)∈R3

J2(u1, u2, u3) = −u3(u1/b
2 + (u2/a

2) cos θ3) + u1u2/(ab) + u1u3/(ac) + u2u3/(bc)

(u2
1 + u2

2)/c
2 + (u2

2 + u2
3)/a

2 + (u2
1 + u2

3)/b
2

.

Let

N =
∣∣∣∣u3

(
u1

b2
+ u2

a2
cos θ3

)∣∣∣∣+ u1u2

ab
+ u1u3

ac
+ u2u3

bc
,

N1 = u3

(
u1

b2
+ u2

a2
cos θ3

)
+ u1u2

ab
+ u1u3

ac
+ u2u3

bc
,

N2 = −u3

(
u1

b2
+ u2

a2
cos θ3

)
+ u1u2

ab
+ u1u3

ac
+ u2u3

bc
,

and

D = u2
1 + u2

2

c2
+ u2

2 + u2
3

a2
+ u2

1 + u2
3

b2
.

The minima of J , J1 and J2 exist on the unit sphere since they are homogeneous. We want to prove that the
minimum of J (u), θ = N/D � max(N1/D,N2/D) > −1/2, therefore the inequality holds.

At the critical points of J1 we have

∂J1

∂u1
= D(u3/b

2 + u2/(ab) + u3/(ac)) − N2u1(1/b2 + 1/c2)

D2
= 0,

∂J1

∂u2
= D((u3/a

2) cos θ3 + u1/(ab) + u3/(bc)) − N2u2(1/a2 + 1/c2)

D2
= 0,

∂J1

∂u3
= D(u1/b

2 + (u2/a
2) cos θ3 + u1/(ac) + u2/(bc)) − N2u3(1/a2 + 1/b2)

D2
= 0.

We must have

det

⎛⎜⎜⎜⎜⎜⎜⎝
−2θ

(
1

b2
+ 1

c2

)
1

ab

1

b2
+ 1

ac

1

ab
−2θ

(
1

a2
+ 1

c2

)
1

a2
cos θ3 + 1

bc

1

b2
+ 1

ac

1

a2
cos θ3 + 1

bc
−2θ

(
1

a2
+ 1

b2

)

⎞⎟⎟⎟⎟⎟⎟⎠= 0,

otherwise the only critical point of J1(u1, u2, u3) would be (0,0,0), which is contradictory with the fact that we are
looking for the critical points of J1(u1, u2, u3) on the unit ball.

Let us look at the coefficients of 1/c4,

−(2θ)3
(

1

a2
+ 1

b2

)
+ 2θ

(
1

a2
+ 1

b2

)
= F(θ).

We must have F(θ) = 0 at the critical points of J1(u1, u2, u3), since 1/c4 is the dominant term of the determinant of
the linear system. Therefore the minimum of J1(u1, u2, u3) is either θ = 0 or −1/2.

Similarly, at the critical points of J2(u1, u2, u3) we have

∂J2

∂u1
= D(−u3/b

2 + u2/(ab) + u3/(ac)) − N2u1(1/b2 + 1/c2)

D2
= 0,

∂J2 = D(−(u3/a
2) cos θ3 + u1/(ab) + u3/(bc)) − N2u2(1/a2 + 1/c2)

2
= 0,
∂u2 D
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∂J2

∂u3
= D(−u1/b

2 − (u2/a
2) cos θ3 + u1/(ac) + u2/(bc)) − N2u3(1/a2 + 1/b2)

D2
= 0.

We must have

det

⎛⎜⎜⎜⎜⎜⎜⎝
−2θ

(
1

b2
+ 1

c2

)
1

ab
− 1

b2
+ 1

ac

1

ab
−2θ

(
1

a2
+ 1

c2

)
− 1

a2
cos θ3 + 1

bc

− 1

b2
+ 1

ac
− 1

a2
cos θ3 + 1

bc
−2θ

(
1

a2
+ 1

b2

)

⎞⎟⎟⎟⎟⎟⎟⎠= 0.

The coefficients of 1/c4 is

−(2θ)3
(

1

a2
+ 1

b2

)
+ 2θ

(
1

a2
+ 1

b2

)
= F2(θ).

We must have F2(θ) = 0 at critical points, since 1/c4 is the dominant term. Therefore the minimum of J2 is either
θ = 0 or −1/2.

If J (ũ1, ũ2, ũ3) = −1/2, then J1(ũ1, ũ2, ũ3) = −1/2 and J2(ũ1, ũ2, ũ3) = −1/2 must be 0 at the same time.
Therefore we have⎛⎜⎜⎜⎜⎜⎜⎝

(
1

b2
+ 1

c2

)
1

ab

1

b2
+ 1

ac

1

ab

(
1

a2
+ 1

c2

)
1

a2
cos θ3 + 1

bc

1

b2
+ 1

ac

1

a2
cos θ3 + 1

bc

(
1

a2
+ 1

b2

)

⎞⎟⎟⎟⎟⎟⎟⎠
(

ũ1
ũ2
ũ3

)
= 0,

and ⎛⎜⎜⎜⎜⎜⎜⎝

(
1

b2
+ 1

c2

)
1

ab
− 1

b2
+ 1

ac

1

ab

(
1

a2
+ 1

c2

)
− 1

a2
cos θ3 + 1

bc

− 1

b2
+ 1

ac
− 1

a2
cos θ3 + 1

bc

(
1

a2
+ 1

b2

)

⎞⎟⎟⎟⎟⎟⎟⎠
(

ũ1
ũ2
ũ3

)
= 0.

Solving it, we get

ũ3 = 0 and
ũ1

b2
+ ũ2

a2
cos θ3 = 0.

Therefore

J (ũ1, ũ2, ũ3) = −(b/a2) cos θ3

(1/c2)(1 + (b4/a4) cos2 θ3) + 1/a2 + (1/a4) cos2 θ3
.

Since c = o(a), J (ũ1, ũ2, ũ3) is very close to 0. Thus J (u1, u2, u3) can never reach −1/2.
We proved the theorem in this case.
Case III: all the remaining cases. The only case left is the case that c/a � γ and b + c − a � a/100, here γ is a

fixed small number. In this case, the lengths of a, b and c are comparable.
Since in this case sin2 θ1 = 1 − (b2 + c2 − a2)2/(2bc)2 is very close to 0, and a is the largest side of the triangle,

we know that θ1 is very close to π . On the other hand, sin2 θ2 = 1 − (a2 + c2 − b2)2/(2ac)2 and sin2 θ3 = 1 −
(b2 + a2 − c2)2/(2ab)2 are also very small, therefore θ2 and θ3 are very close to 0. Thus we have

|u1|
√

u2
2

c4
+ u2

3

b4
+ 2u2u3

cos θ1

b2c2
�
∣∣∣∣u1u2

c2
− γ̄

u1u3

b2

∣∣∣∣,
|u2|

√
u2

1
4

+ u2
3
4

+ 2u1u3
cos θ2

2 2
�
∣∣∣∣u1u2

2
+ γ̄

u2u3
2

∣∣,

c a a c c a
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and

|u3|
√

u2
1

b4
+ u2

2

a4
+ 2u1u2

cos θ3

a2b2
�
∣∣∣∣u1u3

b2
+ γ̄

u2u3

a2

∣∣∣∣,
here γ̄ is almost 1.

Subcase i: u2u3 < 0. If u2u3 < 0, then we have∣∣∣∣u1u2

c2
− γ̄

u1u3

b2

∣∣∣∣= |u1u2|
c2

+ γ̄
|u1u3|

b2
,

and either∣∣∣∣u1u2

c2
+ γ̄

u2u3

a2

∣∣∣∣= |u1u2|
c2

+ γ̄
|u2u3|

a2

or ∣∣∣∣u1u3

b2
+ γ̄

u2u3

a2

∣∣∣∣= |u1u3|
b2

+ γ̄
|u2u3|

a2
.

Comparing with u1u2/(ab) + u1u3/(ac) + u2u3/(bc), since the lengths of a, b and c are comparable in this case,
we can find a constant c̃ such that∣∣∣∣u1u2

c2
− γ̄

u1u3

b2

∣∣∣∣+ ∣∣∣∣u1u2

c2
+ γ̄

u2u3

a2

∣∣∣∣+ ∣∣∣∣u1u3

b2
+ γ̄

u2u3

a2

∣∣� c̃

(
u1u2

ab
+ u1u3

ac
+ u2u3

bc

)
.

We proved the theorem in this subcase.
Subcase ii: u2u3 > 0 and u1u2u3 < 0. If u1, u2 and u3 are all negative, the theorem is trivial. Therefore we need

only to consider the case that u1 < 0 and u2, u3 > 0. We need to prove that there exist θ such that

max

{∣∣∣∣u1u2

c2
− γ̄

u1u3

b2

∣∣∣∣, ∣∣∣∣u1u2

c2
+ γ̄

u2u3

a2

∣∣∣∣, ∣∣∣∣u1u3

b2
+ γ̄

u2u3

a2

∣∣∣∣}
+
(

u1

c
+ u3

a

)2

+
(

u2

c
+ u3

b

)2

+
(

u1

b
+ u2

a

)2

� θ

(
u2

1 + u2
2

c2
+ u2

2 + u2
3

a2
+ u2

1 + u2
3

b2

)
.

The inequality is true if either (u1/c + u3/a)2 � γ̃ (u1/c)
2 or (u1/b + u2/a)2 � γ̃ (u1/c)

2 holds, here γ̃ is a fixed
small constant. Hence we only need to explore the case when a

c
(−γ̃ − 1)u1 � u3 � a

c
(γ̃ − 1)u1 and a

b
(−γ̃ − 1)u1 �

u2 � a
b
(γ̃ − 1)u1. Since we assume u1 < 0 and u2, u3 > 0, this can never happen.

Subcase iii: u2u3 > 0 and u1u2u3 > 0. If u1, u2 and u3 are all positive, the theorem is trivial. Therefore we need
only to consider the case that u1 > 0 and u2, u3 < 0.

The theorem holds if either (u1/c + u3/a)2 � γ (u1/c)
2 or (u1/b + u2/a)2 � γ (u1/c)

2, here γ is a small fixed
constant. Therefore we only need to explore the case when a

c
(−γ − 1)u1 � u3 � a

c
(γ − 1)u1 and a

b
(−γ − 1)u1 �

u2 � a
b
(γ − 1)u1. Under this condition,∣∣∣∣u1u2

c2
+ u2u3

a2

∣∣∣∣≈ ∣∣∣∣ab (γ − 1)
1

c2
+ (γ − 1)2

bc

∣∣∣∣u2
1 ≈

∣∣∣∣ 1

bc
− a

b

1

c2

∣∣∣∣u2
1 = 1

bc

∣∣∣∣1 − a

c

∣∣∣∣u2
1.

Since b + c − a � a/100, we have a/c > 200/101.
Therefore∣∣∣∣u1u2

c2
+ u2u3

a2

∣∣∣∣� θu2
1.

Since u2u3 > 0 and the length of a, b and c are comparable, the u2
2 and u2

3 terms have been taken care of.
Thus we established the theorem, i.e. the inequality in the case of three masses.
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3. Heuristic argument for general p

After providing a clear proof for p = 3, we present here a heuristic argument which shows why such an inequality
should hold. We believe that this inequality should give rise to a continuous (maybe well-known) inequality after
proper continuation.

We want to show in this section that condition (H) on the eigenvalues of A implies the theorem. Unfortunately, at
this moment we do know how to prove this condition on the eigenvalues. ρ is an eigenvalue of A. The condition on ρ

reads,

(H) Assume ρ = 0, then ∇ρ �= 0.

We show then why the inequality might be true if (H) holds. We consider it in two cases, the first case when the
distance between all the points xi ’s are comparable, and the case that some of the distances are very small, and some
are huge.

Case 1. The distance between all the points xi ’s is comparable, i.e. there exists a constant C such that,

1

C
� |xi − xj |

|xl − xs | � C.

Then either all eigenvalues are greater than θ , which is fixed; or there exists some eigenvalue ρ very small, then thanks
to condition (H), ∇ρ �= 0 in this case.

Case 1(a). All eigenvalues are greater than θ . It is easy to see for all u,

|Au| � θ |u|.
The inequality follows.

Case 1(b). There exists some eigenvalue ρ very small. Assume u is the unit eigenvector corresponding to ρ, then∣∣∣∣t u ∂A

∂x
j
i

u

∣∣∣∣= ∣∣∣∣ ∂

∂x
j
i

(
t uAu

)− 2t uA
∂u

∂x
j
i

∣∣∣∣= ∣∣∣∣ ∂

∂x
j
i

ρ − 2ρtu
∂u

∂x
j
i

∣∣∣∣.
Since t uu = 1, we have t u∂u/∂x

j
i = 0. Therefore,∣∣∣∣t u ∂A

∂x
j
i

u

∣∣∣∣= ∣∣∣∣ ∂

∂x
j
i

ρ

∣∣∣∣� θi > 0.

The inequality follows if only one eigenvalue is small.
Case 2. Some of the |xi − xj |/|xl − xs | can become very large or very small.
Assume x2 · · ·xl are very close to x1, i.e. |xj − x1| � ε, and the remaining points xk+1, . . . , xk are such that

ε � |xj − x1| � 1. The matrix A reads(
B C

Ct D

)
.

For the upper matrix B , since the distance between any two points of x1, . . . , xl is very small, each element of B is
greater than 1/ε; But each element of C is between 1 and 1/ε, since 1 � |xi − xj | � 1/ε. If we scale A such that the
largest element is 1, then all the elements of C become very small. Thus we can think A as the direct sum of the two
sub-matrices B and D. We can prove the inequality using induction then.
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