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Abstract

In this paper we describe some topological and geometric properties of the set of sequences LW = {(a, b) ∈ Σ0 × Σ1; a �
σn(a) � b, a � σn(b) � b, ∀n ∈ N}, which essentially represents all the allowed dynamics for piecewise continuous increasing
maps with one discontinuity. In particular, we describe the first main bifurcations in LW which generate non-trivial dynamics, and
we study (fractal) geometric properties of LW and of the phase spaces Σa,b associated to it.

Résumé

Dans ce travail nous décrivons quelques proprietés topologiques et géometriques de l’ensemble de suites LW = {(a, b) ∈
Σ0 × Σ1; a � σn(a) � b, a � σn(b) � b, ∀n ∈ N}, que répresentent essentiellement toutes les dynamiques permises pour des
fonctions continues et croissantes par morceaux avec un point de discontinuité. En particulier, on décrit les premières bifurcations
dans LW qui produisent des dynamiques non-triviales et nous étudions des proprietés géometriques (fractales) de LW et des espaces
de phase Σa,b associés.
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1. Introduction

In the remarkable work [13], a meteorologist, E.N. Lorenz, showed numerical evidence of the existence of a strange
attractor for a quadratic system of ordinary differential equations in three variables. Some time later J. Guckenheimer,
[7], produced a work where he introduced symbolic dynamics in order to understand the topological equivalence
classes for nearly similar attractors. At that time R.F. Williams, [26], introduced a geometrical model in order to
understand the dynamics of these Lorenz attractors. In Fig. 1 we give a sketch of the geometric attractor. Moreover,
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Fig. 1. Geometric Lorenz attractor. Fig. 2. One-dimensional return map.

in Fig. 2 we represent the one-dimensional models associated to the attractor. The right-hand side of this picture
corresponds to the numerical experiments of Lorenz, who used a cross-section different from that of Guckenheimer
and Williams, who obtained a map as in the left-hand side of the figure. The combinatorial dynamics of both one-
dimensional maps sketched in this figure are equivalent. In this work we will concentrate our attention on piecewise
increasing one-dimensional maps.

Using this geometrical model the dynamical behavior of the three-dimensional vector field can be reduced to the
dynamical behavior of a one-dimensional map with one discontinuity and Guckenheimer and Williams, [8], used
this fact to show uncountable many classes of non-equivalent geometric Lorenz attractors. The evidence of the non-
equivalence were the kneading sequences associated to these one-dimensional maps. The class of one-dimensional
maps defined in this way is included in the class of one-dimensional maps which we work here (see the definition of
the set DM0 given in Section 2.1).

Associated to any f ∈ DM0 we have two kneading sequences (af , bf ) = I (f ) (see Section 2.3 for the definition
of these sequences) that satisfy af = inf{σk(af ), k ∈ N}, bf = sup{σk(bf ), k ∈ N} and {af , bf } ⊂ Σaf ,bf

(here
Σa,b denotes the set

⋂∞
i=0 σ i([a, b]); see Section 2.3 for details). These properties inspired (see [22]) the following

definitions. A sequence of two symbols a = (0, . . .) ∈ Σ2 (resp. b = (1, . . .) ∈ Σ2) is called minimal (resp. maximal) if
a = inf{σk(a), k ∈ N} (resp. b = sup{σk(b), k ∈ N}. Here σ :Σ2 → Σ2 denotes the usual shift map. We will denote
by Min2 (resp. Max2) the set of minimal (resp. maximal) sequences in Σ2. These two properties allow us to define
the Lexicographical World as LW = {(a, b) ∈ Min2 ×Max2, {a, b} ⊂ Σa,b}. The itinerary

I : DM0 → LW, f → (af , bf )

defines a continuous and surjective map (see Section 2.5). We will say that the map f ∈ DM0 has essentially the same
dynamics as g ∈ DM0 if I (f ) = I (g). It is clear that two topologically equivalent maps are essentially equivalent.

Notice that one of the main topological obstructions for two maps in DM0 with essentially the same dynamics being
conjugated is the presence of wandering intervals for some of these maps. We prove in Proposition 1 that generic C2

maps in DM0 do not have non-trivial wandering intervals.
Therefore, the lexicographical world provide a universal model for (essentially) equivalent dynamics in this con-

text. This means the following: given (a, b) ∈ LW , there is f ∈ DM0 such that Σa,b = Σaf ,bf
and a surjective map

If :Γf → Σa,b such that If ◦ f = σ ◦ If and reciprocally (see Section 2.3 for the definition of the set Γf , the
definition of the map If and the proof of the realization lemma). Clearly, if we are able to describe the different dy-
namics present in this universal model then we are able to prove some dynamical properties of the elements in DM0.
Also our set, DM0, contains the topologically expanding Lorenz maps as defined in [9]. The kneading sequences,
(a, b) ∈ LW associated to expanding maps satisfies the condition a � σn(a) < b and a < σn(b) � b, ∀n � 0. Let
denote by TE ⊂ LW this set. One of the problems posed in [9] is to describe the set TE. In Section 4 we characterize
the local fractal properties of TE (and LW).

In these directions are the main results of the present paper: we describe some metric and geometrical properties of
the lexicographical world which “essentially” represents all the allowed dynamics for piecewise continuous increasing
maps and we use these properties to establish some results for the elements in DM0. For instance, among other results,
we prove
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Theorem 1. The maps ϕ,ψ,χ : Min2 → Max2 given by

ϕ(a) = inf{b ∈ Σ1; Σa,b 	= ∅}, ψ(a) = inf{b ∈ Σ1; Σa,b is infinite} and

χ(a) = inf{b ∈ Σ1; Σa,b is uncountable}
satisfy the following recursive formulas (see Section 3 for the definition of the maps Ta,b and T ∗

a b)

(i) (1) for a � 001 we have 0ϕ(a) = T0,01 ◦ ϕ ◦ T ∗
0,01(a),

(2) for 01 < a < 01 we have ϕ(a) = T10,1 ◦ ϕ ◦ T ∗
10,1(1a),

(3) for 001 � a � 01 we have ϕ(a) = 10.
(ii) (1) for a < 001, χ(a) = σ ◦ T0,01 ◦ χ ◦ T ∗

0,01(a),
(2) for 001 � a � 00110, χ(a) = 1T01,10 ◦ χ ◦ T ∗

01,10(σ (a)),
(3) for 00110 � a � 01, χ(a) = 110,
(4) for 01 � a � 01, χ(a) = T10,1 ◦ χ ◦ T ∗

10,1(1a).
(iii) (1) for a � 001, ψ(a) = σ ◦ T0,01 ◦ ψ ◦ T ∗

0,01(a),
(2) for 001 < a � 00110, ψ(a) = 1T01,10 ◦ ϕ ◦ T ∗

01,10(σ (a)),
(3) for 00110 � a � 01, ψ(a) = 110 and
(4) for 01 < a � 01 we have ψ(a) = T10,1 ◦ ψ ◦ T ∗

10,1(1a).

We notice that {(a, b) ∈ Σ0 × Σ1; Σa,b 	= ∅} = {(a, b) ∈ Σ0 × Σ1; b � ϕ(a)}.
Another characterization of the map χ is given by the following

Theorem 2. The set {(a, b) ∈ Σ0 ×Σ1; the topological entropy of the map (σ |Σa,b
): Σa,b → Σa,b is zero} is equal to

the set {(a, b) ∈ Σ0 × Σ1; b � χ(a)}.

We observe that a consequence of Theorem 2 is the following: The set EZ0 = {maps in DM0 with zero topological
entropy} is equal to the set {f ∈ DM0; bf � χ(af )} (we observe that related problems of characterizing the boundary
of the set of maps of zero entropy were focused by several authors in this and other contexts; see for instance [2,23,
19,15,24,5,20,21]).

Also we prove the following result about (fractal) geometric properties of LW:

Theorem 3. Let D :Σ0 × Σ1 → R be the map defined as D(a,b) = HD(Σa,b), where HD(Σa,b) denotes the Haus-
dorff dimension of the set Σa,b (here we consider the set Σ0 × Σ1 equipped with the usual diadic metric; see
Section 2.2). Then D is a continuous map.

For (a, b) ∈ Σ0 × Σ1 define Ω(a,b) = {(α,β) ∈ LW; a � α � β � b} and �Ω(a,b) = {(α,β) ∈ Ω(a,b); (α,β) ∈
TE} then

HD
( �Ω(a,b)

) = HD
(
Ω(a,b)

) = 2D(a,b) = 2

log(2)
htop(Σa,b)

(here htop(Σa,b) means the topological entropy of the restriction of the shift map to the set Σa,b).

Clearly, the described structure of the set LW reflects in the bifurcation theory associated to any parameterized
family of maps in DM0 (also an extremely interesting problem focused for several authors in this an other contexts,
see for instance [14,2,1,4]). In [10,11] and [12] we applied these results for contracting, expanding and linear families
of Lorenz maps.

This paper is organized as follows: In Section 2 we introduce the lexicographical world, we describe the set DM0
(that we recognize as the set of Lorenz Maps) and we prove the realization lemma. In Section 3 we prove Theorem 1
and part of Theorem 2. In Section 4 we prove Theorem 3 and we complete the proof of Theorem 2.

There are several works related to the symbolic dynamics associated to one dimensional Lorenz maps. For
instance, in the papers by Hubbard and Sparrow [9] and Glendinnig and Sparrow [6] a study of the symbolic dy-
namics associated to topologically expansive one-dimensional Lorenz maps is performed. We note that the equality
D(a,b) = 1 htop(Σa,b) follows from results by H. Furstenberg [3] and also by Urbański [25].
log(2)
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2. Lorenz maps and symbolic dynamics

2.1. The set DM0

In the sequel DM0 will denote the set of maps f : (R \ {0}) → R such that:

(1) The restriction maps f |(−∞,0) : (−∞,0) �→ R and f |(0,∞) : (0,∞) → R are continuous and non-decreasing maps.
(2) f (0+) = limx↓0 f (x) ∈ (−∞,0] and f (0−) = limx↑0 f (x) ∈ [0,∞[.

2.2. The lexicographical order

Let Σ2 denote the set of sequences θ : N → {0,1} endowed with the topology given by the metric

d(α,β) = 1

2n
,

where

n = min{k ∈ N; αk 	= βk}.
Let σ :Σ2 → Σ2 be the shift map σ(θ0, θ1, θ2, . . .) = (θ1, θ2, . . .). Let Σ0 and Σ1 denote the sets {θ ∈ Σ2; θ0 = 0}
and {θ ∈ Σ2; θ0 = 1} respectively. It is clear that Σ2 = Σ0 ∪ Σ1.

In Σ2 we consider the lexicographical order: θ < α for any θ ∈ Σ0 and α ∈ Σ1 or θ < α if there is n ∈ N such that
θi = αi for i = 0,1,2, . . . , n − 1 and θn = 0 and αn = 1.

For a � b in Σ2 let [a, b] denote the interval {θ ∈ Σ2 | a � θ � b}. Σa,b will denote the set
⋂∞

n=0 σ−n([a, b ]).
Let a = a0, a1, . . . , an be a finite word. We will denote by a the infinite sequence (a0, a1, . . . , an;a0, a1, . . . , an;

a0, a1, . . . , an; . . .) ∈ Σ2.

2.3. The set Σaf ,bf

For f ∈ DM0 let Γf = (R \ ⋃∞
j=0 f −j (0)) denote the set of “continuity” of the map f .

For x ∈ Γf we define If (x) ∈ Σ2 by

If (x)(i) = 0 if f i(x) < 0 and If (x)(i) = 1 if f i(x) > 0.

For x = 0 we define:

If (0+) = lim
x↓0, x∈Γf

If (x)

and

If (0−) = lim
x↑0, x∈Γf

If (x).

In the same way to any x ∈ ⋃∞
j=0 f −j (0) such that f i(x) 	= 0, 0 � i < n; f n(x) = 0 we associate the sequences:

If (x+) = (
If (x)(0), . . . , If (x)(n − 1), If (0+)

)
and

If (x−) = (
If (x)(0), . . . , If (x)(n − 1), If (0−)

)
.

For x ∈ Γf we define If (x+) = If (x−) = If (x).
Let If = {If (x+); x ∈ [f (0+), f (0−)[} ∪ {If (x−); x ∈ ]f (0+), f (0−)]}.
Let us denote af = If ((f (0+))+) and bf = If ((f (0−))−). The following lemma is a classical fact which asso-

ciates a symbolic dynamical system to a Lorenz map on the interval, via kneading sequences. See, for instance, [22].

Lemma 1. If = ⋂∞
σ−n([af , bf ]) = Σaf ,bf

.
n=0
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Proof. We have If (f (x)) = σ(If (x)), by definition of If (x), so σ(If ) ⊂ If . This also implies that, since If ⊂
[af , bf ], If ⊂ σ−n([af , bf ]) for every natural number n. Let now θ ∈ ⋂∞

n=0 σ−n([af , bf ]), that is af � σn(θ) � bf

for n = 0,1,2, . . . . Clearly we must have af � σn(θ) � 0bf or 1af � σn(θ) � bf for every n = 0,1,2, . . . . Let
I0 = [f (0+),0[ and I1 = ]0, f (0−)]. The opposite inclusion follows from the following facts:

(i) If (0+) = 1af , If (0−) = 0bf ;
(ii) Iθ0 ∩ f −1(Iθ1) ∩ f −2(Iθ2) ∩ · · · ∩ f −n(Iθn) 	= ∅ for n = 0,1, . . . and

(iii) the continuity of the map f on I0 ∪ I1. �
We observe that associated to any f ∈ DM0 we can define a continuous map (see [16] for details)

h :
[
f (0+), f (0−)

] ∩ Γf → Σaf ,bf
⊂ Σ2,

such that h ◦ f = σ ◦ h. The map h is given by h(x) = If (x) and could collapse some intervals into points. This map
cannot be extended, continuously, to the set

⋃∞
i=0 f −i (0).

There are two kinds of intervals that are collapsed by the map h: The wandering intervals and the intervals that are
contained in the stable manifolds of the periodic sinks. An interval I ⊂ [f (0+), f (0−)] is called a wandering interval,
for the map f , if for any x ∈ I we have that x is a wandering point. We will call a point x a non-wandering point
if for any neighborhood Ux of x and any positive integer N we can find n � N such that f n(Ux) ∩ Ux 	= ∅. The set
of non-wandering points of the map f is denoted by Ωf . A point x /∈ Ωf is called a wandering point. Given any
interval I , the orbit of this interval is the sequence of iterations (f n(I ), n ∈ N).

We say that a wandering interval is non-trivial if it is not contained in a basin of attraction of a periodic orbit.
Concerning the existence of wandering intervals we have the following:

Proposition 1. Let {ϕλ,λ ∈ R} ⊂ DM0 be a one parameter family of C2 piecewise increasing maps ( for instance,
elements of DM0) such that for each λ there are sequences λn → λ and μn → λ with ϕλn(x) > ϕλ(x) and ϕμn(x) <

ϕλ(x), ∀x then there is a residual set of parameters λ for which ϕλ has no non-trivial wandering intervals.

Proof. The orbit of any non-trivial wandering interval must accumulate in the discontinuity (it is a consequence of
the Schwarz lemma or of Mañé’s Theorem on hyperbolicity for one-dimensional maps; see [16]). To get the result it
is enough to prove that for any a, b ∈ Q, with a < b the interval ]a, b[ is not contained in a wandering interval for an
open and dense set of parameter λ. If, for some parameter λ the interval ]a, b[ is contained in a wandering interval
then its orbit accumulates the discontinuity. Assume that 0 is accumulated by the left side by the orbit of the interval
]a, b[. Let λn → λ be the sequence, associated to λ, given by the hypothesis. Since ϕλn > ϕλ we can find an iterate of
]a, b[, say ϕ

kn

λ (]a, b[) such that ϕ
kn

λ (]a, b[) ⊂ ]−∞,0[ and ϕ
kn

λn
(]a, b[) ⊂]0,∞[ (since the length of ϕn(]a, b[) must

converge to 0 and all the maps ϕλ are increasing). Joining λ to λn by a continuous path we find a parameter value, ρn

between λ and λn such that ϕ
kn
ρn(]a, b[) contains 0 and then ]a, b[ cannot be contained in a wandering interval for ϕρn .

The same is true for parameters near ρn and also ρn → λ as n → ∞. This completes the proof of the proposition. �
Remark 1.

(a) The previous argument also shows that the set

{f ∈ DM0; f has no non-trivial wandering intervals}
is residual in DM0.

(b) The result is true also with an arbitrary number of parameters.

Definition 1. Let f,g ∈ DM0. We will say that f has essentially the same dynamics as g if If = Ig .

We observe that in this situation, up to the existence of some intervals where the itineraries of the points are the
same, the dynamics of the maps f and g are topologically equivalent (see [16]).
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2.4. The Lexicographical World

Let Min2 = {a ∈ Σ0; σk(a) � a, ∀k ∈ N} and Max2 = {b ∈ Σb; σk(b) � b, ∀k ∈ N}. Elements in Min2 (resp.
Max2) will be called minimal (resp. maximal) elements in Σ2.

Remark 2.

(1) Assume that a ∈ Σ0 is a periodic sequence in Min2. Let a0a1 · · ·ak be its period. Then, necessarily, we have
a0 = 0 and ak = 1.

(2) Assume that b ∈ Σ1 is a periodic sequence in Min2. Let b0b1 · · ·bk be its period then, necessarily, we have b0 = 1
and bk = 0.

(3) Clearly, Min2 and Max2 are closed sets in Σ2.

Definition 2. The set LW = {(a, b) ∈ Min2 ×Max2; {a, b} ⊂ Σa,b} will be called the lexicographical world.

For a ∈ Min2 its LW-fiber is the set LW0(a) = {b ∈ Max2; (a, b) ∈ LW}. For b ∈ Max2 its LW-fiber is the set
LW1(b) = {a ∈ Min2; (a, b) ∈ LW}.

Remark 3. It is clear that if (a, b) ∈ LW then Σa,b 	= ∅, since it contains {a, b}.

2.5. The realization lemma

Let us now consider (a, b) ∈ LW .

Lemma 2. There is f ∈ DM0 such that If = Σa,b .

Proof. Let us consider the map g : (R \ {0}) → R given by

g(x) =
{

2x − 1, x > 0,

2x + 1, x < 0.

In this case Ig = Σ2. Let xa < 0 and xb > 0 be the points such that Ig(x
+
a ) = a, Ig(x

−
b ) = b. Let xa < xb < 0 <

xa < xb, be the points that satisfy g(xb) = xb and g(xa) = xa .
Let f : (R \ {0}) → R be the map defined by:

f (x) =

⎧⎪⎨
⎪⎩

g(x), x � xb,

xb, xb � x < 0,

xa, 0 < x � xa,

g(x), xa � x.

The map f satisfy If = Σa,b . In fact: af = a, bf = b and the itinerary, θ , send points in the set {x ∈ [xa, xb] ∪
[xa, xb] (= Jf );f n(x) ∈ Jf ∀n ∈ N} into points in If which is equal to Σa,b . �

Therefore, we have a surjective map I : DM0 → LW , I (f ) = (af , bf ). Also, using C0 proximity of maps in DM0
(with respect to f |]−∞,0] and f |[0,∞[) on compact sets, this map is continuous.

3. Structure of the Lexicographical World

3.1. The maps ϕ,ψ,χ

It is clear that Σa,1 	= ∅ for any a ∈ Σ0. Hence we can define maps ϕ,ψ,χ :Σ0 → Σ1 by:

ϕ(a) = inf{b ∈ Σ1 | Σa,b 	= ∅},
ψ(a) = inf{b ∈ Σ1; Σa,b contains infinitely many elements}
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and

χ(a) = inf{b ∈ Σ1; Σa,b is uncountable}.
Clearly, a1 � a2 imply ϕ(a1) � ϕ(a2), ψ(a1) � ψ(a2) and χ(a1) � χ(a2) and for all c ∈ Σ1 such that c < ϕ(a)

we have Σa,c = ∅. Moreover, for any a ∈ Σ0 we have that 1a � ϕ(a) (in fact, any b < 1a satisfy b /∈ Σa,d for any
d ∈ Σ1).

Examples. We have: ϕ(0 ) = ψ(0 ) = χ(0 ) = 10; ϕ(01 ) = ψ(01 ) = 1.
If Σa,b is uncountable then we can define

ã = inf{θ ∈ Σa,b, θ is a condensation point of Σa,b}
and

b̃ = sup{θ ∈ Σa,b, θ is a condensation point of Σa,b}.
Let us recall that a condensation point of a set X ⊂ Σ2 is a point with the property that any neighborhood of it

contains an uncountable subset of X.
It is clear that the set (Σa,b \ Σ

ã,b̃
) is countable, since it has no condensation points, and we have

ã � σn(ã) < b̃ and ã < σn(b̃) � b̃, ∀n ∈ N,

so, by [9], Σ
ã,b̃

is a perfect set and the restriction of the shift map, σ |Σ
ã,b̃

, is topologically expansive.
We observe that for any a ∈ Σ0 we have ϕ(a) � ψ(a) � χ(a).

3.2. The recurrence formula of the maps ϕ, ψ and χ

Let m0 < m1 be two finite words of 0’s and 1’s. Let Tm0,m1 :Σ2 → Σ2 be the map Tm0,m1(θ0, θ1, . . .) =
(mθ0 ,mθ1 , . . .). About this map we make the following considerations:

(1) Θ1 � Θ2 imply Tm0,m1(Θ1) � Tm0,m1(Θ2).
(2) If Σm0,m1 = {Θ: N → {m0,m1}} then Tm0,m1(Σ2) = Σm0,m1 and it is an homeomorphism onto its image. The

inverse map is constructed in the following way: let ε(m0) = 0, ε(m1) = 1 for α ∈ Σm0,m1 we have T −1
m0,m1

(α) =
(ε(α0), ε(α1), . . .).

(3) An extension of the map T −1
m0,m1

is given by the map T ∗
m0,m1

defined, for α � m1, as T ∗
m0,m1

(α) = inf{β ∈ Σ2;
Tm0,m1(β) � α}.

(4) We define the map σm0,m1 :Σm0,m1 → Σm0,m1 , by

σm0,m1

(
Tm0,m1(a)

) = Tm0,m1

(
σ(a)

)
, ∀a ∈ Σ2.

Proposition 2. The map ϕ satisfies:

(1) for a � 001 we have 0ϕ(a) = T0,01 ◦ ϕ ◦ T ∗
0,01(a),

(2) for 01 < a < 01 we have ϕ(a) = T10,1 ◦ ϕ ◦ T ∗
10,1(1a),

(3) for 001 � a � 01 we have ϕ(a) = 10.

Proof. Let us prove (2). By the definition of ϕ, ΣT ∗
10,1(1a),ϕ(T ∗

10,1(1a)) is a non-empty set. Hence,

T10,1(ΣT ∗
10,1(1a),ϕ(T ∗

10,1(1a)))

is an invariant, non-empty set for σ10,1 :Σ10,1 → Σ10,1. So, since T10,1 is a conjugacy between σ and σ10,1,

T10,1(ΣT ∗
10,1(1a),ϕ(T ∗

10,1(1a))) ∪ σ
(
T10,1(ΣT ∗

10,1(1a),ϕ(T ∗
10,1(1a)))

)
is a non-empty, invariant set for σ. Therefore ϕ(a) � T10,1 ◦ ϕ ◦ T ∗

10,1(1a). If ϕ(a) < T10,1 ◦ ϕ ◦ T ∗
10,1(1a) then

[1a,ϕ(a)] ∩ Σa,ϕ(a) 	= ∅ and T ∗
10,1([1a,ϕ(a)] ∩ Σa,ϕ(a)) ⊂ [T ∗

10,1(1a),ϕ(T ∗
10,1(1a)[) is a non-empty, σ -invariant set

(since a > 01 implies Σa,1 ∩ Σ1 ⊂ Σ01,1, and so, in particular, ϕ(a) ∈ Σ10,1). This is a contradiction.
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The proof of (1) follows in a similar way since ∅ 	= Σa,01 ∩ Σ0 ⊂ Σ0,01.
The proof of (3) follows from Σ01,10 	= ∅ and ϕ(001 ) = 10 which gives 10 = ϕ(001 ) � ϕ(a) � ϕ(01 ) � 10,

∀a ∈ [001,01 ]. �
Note 1.

(i) We observe that ϕ is not a continuous map since lima→01+ ϕ(a) = 110 	= 10 = ϕ(01 ). In fact, for an = (01)n011
we have that ϕ(an) = 1(10)n+1. Therefore an → 01 and ϕ(an) → 110.

(ii) As a consequence of Proposition 2 we note that the graph of the map ϕ is a kind of “devil stair” (although not
continuous) in Σ0 × Σ1: it is locally constant in an open and dense set. In fact, let A denote the map T0,01,B
denote the map σ ◦ T10,1 and I be the interval [0010,01 ]. Let A0 = I , A1 = A0 ∪ A(A0) ∪ B(A0), A2 = A1 ∪
A(A1) ∪ B(A1) and, inductively, An+1 = An ∪ A(An) ∪ B(An). It is not hard to see, from the recursive formulas
at Proposition 2 that the set A∞ = ⋃∞

n=0 An is a dense set in Σ0 and (ϕ|J ) is constant for any interval J ⊂ A∞.

Proposition 3. The maps χ and ψ satisfy:

(a) for a < 001, χ(a) = σ ◦ T0,01 ◦ χ ◦ T ∗
0,01(a),

(b) for 001 � a � 00110, χ(a) = 1T01,10 ◦ χ ◦ T ∗
01,10(σ (a)),

(c) for 00110 � a � 01, χ(a) = 110,
(d) for 01 � a � 01, χ(a) = T10,1 ◦ χ ◦ T ∗

10,1(1a),
(a′) for a � 001, ψ(a) = σ ◦ T0,01 ◦ ψ ◦ T ∗

0,01(a),
(b′) for 001 < a � 00110, ψ(a) = 1T01,10 ◦ ϕ ◦ T ∗

01,10(σ (a)),
(c′) for 00110 � a � 01, ψ(a) = 110 and
(d′) for 01 < a � 01 we have ψ(a) = T10,1 ◦ ψ ◦ T ∗

10,1(1a).

Proof. Let us first remark that if Σa,b 	= ∅ and a � 00110 begins with 00 then b � σ 2(a) � 110. If a begins with 01
then there is no pair of consecutive 0’s in any element of Σa,b , so for the interesting a we have a � 01, and if b begins
with 11 then (for the interesting b) we have b � 110. If b begins with 10 then there is no pair of consecutive 1’s in
any element of Σa,b , so b � 10 in this case and, hence Σa,b ⊂ Σ01,10 = {01,10} is finite. This implies χ(a) � 110
and ψ(a) � 110 for a � 00110.

To show that χ(a) � 110 for a � 01 it is enough to notice that the set Σ01,1(10)n is uncountable for each n ∈ N.
The proof in the cases a � 001 and a > 01 is analogous to the previous proof for the map ϕ.
In the case 001 � a � 00110, 11001 � b � 110, let Ca,b = {x ∈ Σa,b, 01 � x � 10} then Ca,b ⊂ Σ01,10, and the

first return map of σ to the set Ca,b is σ 2, that is T01,10 ◦ σ 2 ◦ T ∗
01,10 restricted to Ca,b . Moreover, Σa,b = [a, b] ∩⋂

n∈N
σ−n(Ca,b) so Σa,b is uncountable if and only if Ca,b is uncountable, and Σa,b is infinite if and only if Ca,b is

non-empty. This gives the result. �
Now, Theorem 1 follows from Propositions 2 and 3.

Note 2.

(i) The map ψ,χ are discontinuous. In fact, for an = 001(01)n we have χ(an) = (10)n101001(01)n and then we
obtain limn→∞ χ(an) = 10 	= 110010 = χ(00101 ). Also, for αn = 00(10)n11 we have ψ(αn) = 1100(10)n and
then we get limn→∞ ψ(αn) = 110010 	= 10 = ψ(0010 ).

(ii) As a consequence of Proposition 3 ((a)–(c) and (d)) we observe that the graph of the map χ is a devil stair in
Σ0 × Σ1. In fact, let A denote the map T0,01, B denote the map σ ◦ T10,1,C denote the map 0T01,10 and J be the
interval [001101,01 ]. Let Ā0 = J , Ā1 = Ā0 ∪ A(Ā0) ∪ B(Ā0) ∪ C(Ā0), Ā2 = A1 ∪ A(Ā1) ∪ B(Ā1) ∪ C(Ā1)

and, inductively, Ān+1 = An ∪A(Ān)∪B(Ān)∪C(Ān). Now it is not hard to see that Ā∞ = ⋃∞
n=0 An is a dense

set in Σ0 and (χ |L) is constant for any interval L ⊂ Ā∞.
Similarly, as a consequence of Proposition 3 ((a′)–(c′) and (d′)) we verify that (ψ |L) is constant for any interval
L ⊂ Ā∞.

(iii) We observe that the map ψ is lower semicontinuous while the map χ is upper semicontinuous.
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To complete the proof of Theorem 2 let us prove the following

Proposition 4. Let χ(a) = inf{b ∈ Σ1; Σa,b is uncountable}. Then, for any b > χ(a) the topological entropy
htop(σ |Σa,b) of the restriction of the shift map, σ , to Σa,b is positive.

Proof. Let b̃ ∈ Σ1 be such that χ(a) < b̃ < b. By the definition of χ(a),Σ
a,b̃

is uncountable. Let n ∈ N be such that

d(b̃, b) = 1/2n, and let A = {α ∈ {0,1}n+1; α appears as a subsequence of (n+1) consecutive terms of some element
θ ∈ Σ

a,b̃
}.

Let MA be the matrix (aαβ)α,β∈A given by aαβ = 1 if every subsequence of (n+1) consecutive terms of αβ belongs
to A and aαβ = 0 otherwise.

Let ΣA = {α1α2α3 · · · | αi ∈ A, aαiαi+1 = 1 ∀i � 1} be the subshift of finite type induced by MA. Since Σ
a,b̃

is
invariant by σ , ΣA is also invariant by σ , and since Σ

a,b̃
is uncountable, and Σ

a,b̃
⊂ ΣA then ΣA is also uncountable

and we have htop(ΣA) > 0, because ΣA is a shift of finite type.
Notice now that ΣA ⊂ Σa,b . In fact, for any θ ∈ ΣA there is θ̃ ∈ Σ

a,b̃
whose first (n + 1) terms are the same as

those of θ , so d(θ, θ̃) > 1
2n+1 . Since d(b, b̃) = 1

2n , b > b̃ and b̃ � θ̃ , we have b > θ . So, we conclude that htop(Σa,b) �
htop(ΣA) > 0. �
4. Hausdorff dimensions and the Lexicographical World

We will discuss in this section some results on geometrical properties of invariant sets for shifts as the sets Σa,b

and of the natural parameter space associated to them. We will study the Hausdorff dimension of such sets, which
equipped with natural diadic metrics, and prove a general result of continuity. In the case of Σa,b , the Hausdorff
dimension is related to the topological entropy. The continuity of the topological entropy in related cases was studied
by Urbański [25] and also by Misiurewicz and Szlenk [17], among other authors.

In this section Nn(a, b) will denote the number of different sequences of size n that appears as a subsequence of
some element in Σa,b . Clearly, Nkn(a, b) � (Nn(a, b))k , ∀n, k ∈ N. In this situation, since Nn(a, b) is an increasing
function of n, the number limn→∞ (log(Nn(a, b)))/(n · log(2)) exists and is equal to

inf
n∈N∗

log(Nn(a, b))

n · log(2)
.

Indeed, given a natural number k,

lim sup
n→∞

log(Nn(a, b))

n · log(2)
� lim sup

n→∞
log(Nk·�n/k�(a, b))

n · log(2)
� lim

m→∞
m · log(Nk(a, b))

k · (m − 1) log(2)
= log(Nk(a, b))

k · log(2)
.

We will denote by D(a,b) this number. Notice that D(0,1 ) = 1.

Definition 3. A complete shift is a subset, Σ(B), of Σ2 obtained by arbitrary concatenations of elements of a fixed
finite set of finite words B .

Now we have the following lemma, assuming D(a,b) > 0 analogous to the main lemma of [18].

Lemma 3. For any a, b ∈ Σ2 with a < 01 < 10 < b and ε > 0 there are sequences a < c < 01 < 10 < d < b and a
complete shift contained in Σc,d with Hausdorff dimension at least D(a,b) − ε.

Proof. Fix a large n0 ∈ N and let Bn0 be the set of sequences of size n0 that appear as a subsequence of some
element of Σa,b . Let N = Nn0(a, b) = #(Bn0). Without loss of generality we may assume that the number d̃ =
(log(Nn0(a, b)))/(n0 log(2)) is very close to D(a,b), so λ := 1 − ε/D(a, b) < D(a, b)/d̃ . Let k = 2N2. We note that
the set Bkn0 has (at least) 2kn0D(a,b) elements. An element of Bkn0 can be written as β1β2 · · ·βk where βi ∈ Bn0 for
i = 1,2, . . . , k.

Let γ = β1β2 · · ·βk be an element in Bkn0 . We say that βi ∈ Bn0 , 2 � i � k − 1, is good if there are words

β(s) ∈ Bkn0 , s ∈ {1,2}, such that β(s) = β1β2 · · ·βiβ̃
(s)
i+1 · · · β̃(s)

k , and β(s) = β̃
(s)
1 β̃

(s)
2 · · · β̃(s)

i−1βiβi+1 · · ·βk such that

β̃
(1)

< βi+1 < β̃
(2) .
i+1 i+1
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We can prove, as in [18], that at least 3
4k elements βi of most words γ ∈ Bkn0 are good. Indeed, we can estimate

the number of sequences in Bkn0 for which there are (at least) k
4 positions 2 � i1 < i2 < · · · < ik/4 � (k − 1) such that

βij is not good for 1 � j � k
4 as follows: there are at most

(
k

k/4

)
< 2k choices of the ij , 1 � j � k

4 , and, given a choice

of ij , 1 � j � k
4 , the number of sequences for which βij is not good for 1 � j � k/4 is bounded by 2k/4N3k/4 �

N4k/5 � 2kn0D(a,b) � #(Bkn0), since at the positions ij we have at most 2 choices of βij (the extreme options) to
continue the sequence.

For each of these words, in which at least 3
4k = 3

2N2 elements are good we can choose good elements
βi1, βi2 · · ·βi3N/2 with ir−1 − ir � N for r = 1,2, . . . , 3N

2 − 1. The number of such words is Nρk with ρ close to 1
(and bigger than λ). We note, as in [18], that there are: a fixed set of indexes {i1, i2, . . . , i3N/2} ⊂ {1,2, . . . , k} with
ir+1 − ir � N for 1 � r < 3N

2 and a subset {βi1, βi2, . . . , βi3N/2} ⊂ Bn0 such that for at least

Nρk

C
3N/2
k N3N/2

� Nρk

(kN)3N/2
� Nρ′k

(with ρ′ still close to 1 and bigger than λ) elements β1, . . . , βk of Bkn0 we have βir = βir and it is a good element for
1 � r � 3N

2 (here we have used C
p
r = r!

p!(r−p)! � rp).

Let us call the set of these sequences B∗. For 1 � r < s � 3N
2 let πr,s :B∗ → B

is−ir
n0 be defined by

πr,s(α1, . . . , αk) = (αir+1, . . . , αis ).

If #πr,s(B
∗) < Nλ(is−ir ), we exclude from {1,2, . . . , 3N

2 } the set of indexes {r, r + 1, . . . , s − 1}. The total number
of indexes excluded is less than N

2 , provided that ρ′ is close enough to 1 (otherwise B∗ would not have so many
elements), so there is a set of indexes {j0, j1, . . . , jN } ⊂ {0,1, . . . , 3N

2 } which are not excluded, and there are r < s

such that βijr
= βijs

.
The promised complete shift is Σ(A), where A = πjr ,js (B

∗) is a set of at least Nλ(ijs −ijr ) words of length
n0(ijs − ijr ), so the Hausdorff dimension of Σ(A) is at least

log
(
Nλ(ijs −ijr )

)
/n0(ijs − ijr ) log 2 = λ · logN/n0 log 2 > D(a,b) − ε.

Hence, in this way, we conclude the proof of the lemma. �
We will use this lemma in order to prove

Theorem 4. With the diadic metric, defined in Section 2.2, for every (a, b) ∈ Σ0 × Σ1,

HD(Σa,b) = D(a,b) = lim
n→∞

log(Nn(a, b))

n log(2)

is a continuous function of (a, b). We have D(a,b) = htop(σ |Σa,b
)/ log(2). Moreover, Ω(a,b) = {(α,β) ∈ LW; a �

α < β � b} and Ω̃(a, b) = {(α,β) ∈ Ω(a,b); σn(α) < β and α < σn(β) ∀n ∈ N} have Hausdorff dimension equal
to 2D(a,b).

Proof. Let us notice, that a finite sequence that appears as a subsequence of some element of Σc,d for c < a < b < d

for c and d arbitrarily near a and b does appear as a subsequence of some element of Σa,b by compactness. Hence, for
each n ∈ N we have limc↑a,d↓b Nn(c, d) = Nn(a, b). Also, for each n ∈ N, the number (log(Nn(a, b)))/(n log(2)) is an
upper bound for HD(Σa,b). All of this imply that HD(Σa,b) = D(a,b); that the Hausdorff dimension is a continuous
function of (a, b) and that Σa,b can be approximated, from inside, by complete shifts with almost the same dimension.

Let us now show that Ω(a,b) = {(α,β) ∈ LW; a � α < β � b} and Ω̃(a, b) = {(α,β) ∈ Ω(a,b); σn(α) <

β and α < σn(β) ∀n ∈ N} have Hausdorff dimension equal to 2D(a,b).
We can suppose, without loss of generality, that all the finite sequences (β1, β2, . . . , βk) that generate the referred

complete shift (see previous lemma) contained in Σc,d have a large number of elements. Let us denote by Σ̃ this
complete shift. Consider the σ -invariant subshift �Σ = ⋃

n∈N
σn(Σ̃). Let α̃ (resp. β̃) be the smallest (resp. the largest)

element in �Σ . Take a large initial finite sequence γ (resp. γ ) of α̃ (resp. β̃) ending with some of the βi . We have
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α̃ = γβ ′β ′β ′ · · · (resp. β̃ = γβ ′′β ′′β ′′ · · ·), where β ′ and β ′′ are the smallest and the largest elements in {β1, β2, . . . , βk}
respectively. Now, let B = {β1, β2, . . . , βk} \ {β ′, β ′′}. Hence, provided that the sequences βi are large enough, we
have that HD(Σ(B)) � D(a,b) − 2ε, and Σγ × Σγ ⊂ Ω̃(a, b) ⊂ Ω(a,b) where the sets Σγ = {γβ ′θ; θ ∈ Σ(B)},
Σγ = {γ β ′′θ; θ ∈ Σ(B)} satisfy HD(Σγ ) = HD(Σγ ) = HD(Σ(B)) � D(a,b) − 2ε.

In order to see that Σγ × Σγ ⊂ Ω̃(a, b), take any (α,β) ∈ Σγ × Σγ . Given n ∈ N, σn(β) = τ β̃1β̃2β̃3 · · · where
the size of τ is smaller than the size of the βi and β̃i ∈ B ∪ {β ′′} for each i, so β̃i > β ′. In particular, σn(β) >

τβ ′β ′′β ′′β ′′ · · · � γβ ′β ′′β ′′β ′′ · · · > α (since γβ ′ is the smallest possible initial segment of its size, which is larger
than the size of τβ ′, of an element of �Σ ). Analogously, σn(α) < β for each n ∈ N. Similar arguments show that
σn(α) � α and σn(β) � β, ∀n ∈ N.

Therefore, HD(Ω(a, b)) � HD(Ω̃(a, b)) � 2D(a,b) − 4ε for all ε > 0.
On the other hand it is easy to see that Ω̃(a, b) ⊂ Ω(a,b) ⊂ Σa,b × Σa,b and thus HD(Ω(a, b)) � 2HD(Σa,b) =

2D(a,b), since (log(Nn(a, b)))/(n log(2)) is also an upper bound for the limit capacity of Σa,b and converges to
D(a,b) as n → ∞.

We may also notice that, by the arguments which precede the Lemma 3 of [25], we have D(a,b) = HD(Σa,b) =
htop(σ |Σa,b

)/ log(2), where htop(σ |Σa,b
) denotes the topological entropy of the restriction of the shift to its invariant

subset Σa,b . �
Remark 4. In general the local dimension of the set Ω(a,b) in a point (α,β) ∈ LW is not necessarily equal to
2D(α,β) but it is at most this value. For instance, when (0β,1α) is properly renormalizable (see [6]) the local
dimension at (α,β) can be smaller than 2D(α,β).

We also note that the set Ω̃(0,1 ) = TE is the set of all the sequences (α,β) that satisfies the Hubbard–Sparrow
conditions (see [9]); we have HD(Ω̃(0,1 )) = 2HD(Σ0,1) = 2. The preceding theorem implies that the set, S, sketched
in Fig. 3 of [9], has the following property: given s ∈ [0,2], there is P = (α,β) ∈ S such that HD(S ∩ ([α,01 ] ×
[10, β]) = limε→0 HD(S ∩ B(P, ε)) = s, so the local dimension of S at a point P can be any number between 0
and 2.

Proof of the Theorem 2. Let (a, b) ∈ LW . If b < χ(a),Σa,b is countable, so htop(σ |Σa,b
) = 0. The continuity of

D(a,b) = 1
log(2)

htop(σ |Σa,b
) implies that htop(σ |Σa,χ(a)

) = 0. Finally, Proposition 4 gives htop(σ |Σa,b
) > 0 for each

b > χ(a). �
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