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Abstract

This paper is concerned with the so-called Derivative Nonlinear Schrödinger equation. This equation is known to have a
two-parameter family of solitary waves solutions. We prove orbital stability of these particular solutions for the whole range
of parameters values by using variational methods.

Résumé

Cet article concerne l’équation de Schrödinger Non Linéaire Dérivée. Cette équation possède une famille d’ondes solitaires
dépendantes de deux paramètres. Nous prouvons la stabilité orbitale de ces solutions particulières pour toutes les valeurs des
paramètres en utilisant des méthodes variationnelles.
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1. Introduction and main result

In this paper, we study orbital stability of solitary wave solutions for the derivative nonlinear Schrödinger equation
(DNLS):

i∂tu + ∂2
xu + i∂x

(|u|2u) = 0, (t, x) ∈ R × R. (1.1)

Eq. (1.1) appears in plasma physics (see, e.g., [14,15]). It is known (see [9] and Section 2 below) that (1.1) has a
two-parameter family of solitary wave solutions of the form:

uω,c(t, x) = φω,c(x − ct) exp

{
iωt + i

c

2
(x − ct) − 3

4
i

x−ct∫
−∞

∣∣φω,c(η)
∣∣2 dη

}
, (1.2)
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where (ω, c) ∈ R
2, c2 < 4ω, and

φω,c(x) =
[ √

ω

4ω − c2

{
cosh

(√
4ω − c2 x

) − c

2
√

ω

}]−1/2

, (1.3)

which is a positive solution of

−∂2
xφ +

(
ω − c2

4

)
φ + c

2
|φ|2φ − 3

16
|φ|4φ = 0, x ∈ R. (1.4)

In [9], Guo and Wu show that uω,c(t) is orbitally stable for DNLS (1.1) if c < 0 and c2 < 4ω. The case c � 0 is not
studied in [9]. The proof in [9] is based on the general theory of Grillakis, Shatah and Strauss [7,8] and the spectral
analysis of linearized operators. In [9], it is remarked that DNLS (1.1) cannot be written in a Hamiltonian form, so
that the abstract theory of Grillakis, Shatah and Strauss [7,8] cannot be applied to (1.1) directly. Instead, the authors
use an alternate stability theorem (see Theorem 2 in [9]), whose proof they omit.

In this paper, we shall prove that uω,c(t) is orbitally stable for DNLS (1.1) for any (ω, c) ∈ R
2 satisfying c2 < 4ω,

using the variational method related to the solitary waves (see Sections 3 and 4) as in Shatah [22] (see also [17]).
We also use gauge transformations to rewrite (1.1) in a Hamiltonian form (see (2.5) below). The spectral analysis of
linearized operators is not needed in our proof.

For later use, let us consider more general equation of the form:

i∂tu + ∂2
xu + iλ|u|2∂xu + iμu2∂xū + a|u|2u + b|u|4u = 0, (1.5)

where λ,μ,a, b ∈ R. Recall that the Cauchy problem for (1.5) is locally well-posed in the energy space H 1(R).
It is proved by Ozawa [21] (see also [10–12]) that for any u0 ∈ H 1(R) there exists a unique solution u ∈
C([0, Tmax[,H 1(R)) of (1.5) with initial data u(0) = u0. Moreover, the solution u(t) satisfies three conservation
laws

E
(
u(t)

) = E(u0), Q
(
u(t)

) =Q(u0), P
(
u(t)

) =P(u0), (1.6)

for all t ∈ [0, Tmax[, where

E(u) = 1

2
‖∂xu‖2

2 + λ + μ

4
Im

∫
R

|u|2ū∂xudx − a

4
‖u‖4

4 −
(

b − 5μ(λ + μ)

96

)
‖u‖6

6,

Q(u) = 1

2
‖u‖2

2, P(u) = −1

2
Im

∫
R

ū∂xudx − μ

4
‖u‖4

4,

and ‖ · ‖p denotes the Lp(R) norm. For the well-posedness of the Cauchy problem for (1.1) in Hs(R) with s < 1, we
refer to [1,24,25].

Here, we give the definition of orbital stability.

Definition 1. Let U = U(t, x) be a solitary wave solution of (1.5). We say that U(t) is orbitally stable for (1.5) if for
any ε > 0 there exists δ > 0 such that if u0 ∈ H 1(R) satisfies ‖u0 − U(0)‖H 1 < δ, then the solution u(t) of (1.5) with
initial data u(0) = u0 exists globally in time and satisfies

sup
t�0

inf
(θ,y)∈R2

∥∥u(t) − eiθU(t, · − y)
∥∥

H 1 < ε.

Otherwise, U(t) is said to be orbitally unstable.

Now we state the main result of this paper.

Theorem 1. For any (ω, c) ∈ R
2 satisfying c2 < 4ω, the solitary wave solution uω,c(t) given by (1.2) is orbitally

stable for DNLS (1.1).
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Remark 1. Note that vω,c(t, x) = ei(ω−c2/4)tφω,c(x) is a solitary wave solution of the following nonlinear Schrödinger
equation (NLS):

i∂tv + ∂2
x v − c

2
|v|2v + 3

16
|v|4v = 0, (1.7)

and it is known that vω,c(t) is orbitally stable for (1.7) if c < 0, and it is orbitally unstable for (1.7) if c � 0 (see [18]).
In fact, we have

‖φω,c‖2
2 = 8 tan−1

√
2
√

ω + c

2
√

ω − c
(1.8)

for any (ω, c) ∈ R
2 satisfying c2 < 4ω (see Section 5). Thus, ∂ω‖φω,c‖2

2 is positive if c < 0, and it is negative if c > 0.
The orbital stability and instability of vω,c(t) for NLS (1.7) follow from the variation of ‖φω,c‖2

2 with respect to ω and
the general theory of Grillakis, Shatah and Strauss [7,8] (see also [5,23,27]). For the case c = 0, the strong instability
of vω,c(t) for NLS (1.7) is proved by Weinstein [26]. Moreover, for the case c > 0, we can prove the strong instability
of vω,c(t) for NLS (1.7) in the same way as in [20] (see also [2,19]).

Remark 2. On one hand, it is known that if u0 ∈ H 1(R) satisfies ‖u0‖2
2 < ‖φω,0‖2

2 = 2π , then the solution u(t) of
DNLS (1.1) with initial data u(0) = u0 exists globally in time (see [11,12,21]). On the other hand, little is known for
the case ‖u0‖2

2 � 2π . Especially, it is an open problem whether DNLS (1.1) has finite time blowup solutions for large
data. Since ‖uω,c(0)‖2

2 = ‖φω,c‖2
2, it follows from (1.8) that ‖uω,c(0)‖2

2 < 2π if c < 0, and 2π � ‖uω,c(0)‖2
2 < 4π if

c � 0. By Theorem 1, uω,c(t) is orbitally stable for DNLS (1.1) even if c � 0, which gives some information about
the global existence result for large initial data ‖u0‖2

2 � 2π .

The plan of this paper is as follows. In Section 2, we state Theorem 3, which gives sufficient conditions for the
orbital stability of a solitary wave of a simplified equation (2.4), and show that the conclusion of Theorem 1 follows
from that of Theorem 3 via a gauge transformation. In Section 3, we give a variational characterization of solitary
wave solutions. In Section 4, we give the proof of Theorem 3 using the variational characterization proved in Section
3 and the arguments in [22] and [17]. Finally, in Section 5, we use elementary computations to verify the conditions
in the hypothesis of Theorem 3.

2. Proof of Theorem 1

In this section, we prove Theorem 1. First, we rewrite DNLS (1.1) in a Hamiltonian form by using a gauge trans-
formation. For ν ∈ R, we define Gν :H 1(R) → H 1(R) by

Gν(u)(x) = u(x) exp

(
νi

x∫
−∞

∣∣u(η)
∣∣2 dη

)
, u ∈ H 1(R).

Note that G−1
ν = G−ν and

eiθGν(u)(x − y) = Gν

(
eiθu(· − y)

)
(x) (2.1)

for u ∈ H 1(R), x, y, θ ∈ R. Moreover, there exists C = C(ν) > 0 such that∥∥Gν(u) − Gν(v)
∥∥

H 1 � C
(
1 + ‖u‖4

H 1 + ‖v‖4
H 1

)‖u − v‖H 1 (2.2)

for u, v ∈ H 1(R). By v(t) = Gν(u(t)), Eq. (1.5) is transformed to an equation of the same form with different
coefficients:

i∂tv + ∂2
x v + iλ̃|v|2∂xv + iμ̃v2∂xv̄ + a|v|2v + b̃|v|4v = 0, (2.3)

where

λ̃ = λ − 2ν, μ̃ = μ − 2ν, b̃ = b + ν

(
ν + λ − 3

μ

)
.

2 2
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Note that to derive (2.3), we have used the following equality on u

∂t |u|2 + ∂x

{
2 Im(ū∂xu) + 1

2
(λ + μ)|u|4} = 0,

which is obtained by a straightforward computation on Eq. (1.5). In particular, by v(t) = G1/2(u(t)), DNLS (1.1) is
transformed to

i∂tv + ∂2
x v + i|v|2∂xv = 0. (2.4)

Then, (2.4) can be written in a Hamiltonian form:

∂tv = −iE′(v), (2.5)

where

E(v) = 1

2
‖∂xv‖2

2 + 1

4
Im

∫
R

|v|2v̄∂xv dx. (2.6)

Note that E, Q and P are conserved quantities of (2.4), where

Q(v) = 1

2
‖v‖2

2, P (v) = −1

2
Im

∫
R

v̄∂xv dx (2.7)

(see (1.5) and (1.6)), and that

E′(v) = −∂2
xv − i|v|2∂xv, Q′(v) = v, P ′(v) = i∂xv. (2.8)

For a while, we consider Eq. (2.4) instead of (1.1). For (ω, c) ∈ R
2, we define the functional Sω,c on H 1(R) by

Sω,c(v) = E(v) + ωQ(v) + cP (v)

= 1

2
‖∂xv‖2

2 + ω

2
‖v‖2

2 − c

2
Im

∫
R

v̄∂xv dx + 1

4
Im

∫
R

|v|2v̄∂xv dx. (2.9)

Let Gω,c be the set of all nontrivial critical points of Sω,c, i.e., ϕ ∈ Gω,c if and only if ϕ ∈ H 1(R) \ {0} satisfies

−∂2
xϕ − i|ϕ|2∂xϕ + ωϕ + ic∂xϕ = 0, x ∈ R. (2.10)

By (2.5), (2.8) and (2.9), we see that if ϕ ∈ Gω,c then eiωtϕ(x − ct) is a solitary wave solution of (2.4). By the
transformation

φ(x) = ϕ(x) exp

(
− c

2
ix + i

4

x∫
−∞

∣∣ϕ(η)
∣∣2 dη

)
, (2.11)

Eq. (2.10) is transformed to

−∂2
xφ +

(
ω − c2

4

)
φ + 1

2
Im(φ̄∂xφ)φ + c

2
|φ|2φ − 3

16
|φ|4φ = 0, x ∈ R, (2.12)

and vice versa. When c2 < 4ω, since φω,c given by (1.3) is a positive solution of (1.4), we have Im(φ̄ω,c∂xφω,c) = 0
and φω,c satisfies (2.12). Therefore, ϕω,c defined by

ϕω,c(x) = φω,c(x) exp

(
c

2
ix − i

4

x∫
−∞

∣∣φω,c(η)
∣∣2 dη

)
(2.13)

satisfies (2.10), i.e., ϕω,c ∈ Gω,c if c2 < 4ω. The following lemma gives a characterization of the set Gω,c .

Lemma 2. For any (ω, c) ∈ R
2 satisfying c2 < 4ω, we have

Gω,c = {
eiθϕω,c(· − y): (θ, y) ∈ R

2}.
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Proof. Since it is trivial that {eiθϕω,c(· − y): (θ, y) ∈ R
2} ⊂ Gω,c , we have only to show the converse. Let ϕ ∈ Gω,c .

Then, ϕ ∈ H 1(R) \ {0} satisfies (2.10), and φ given by (2.11) satisfies (2.12). Let f = Reφ and g = Imφ. Then, f

and g satisfy ∂2
xf = A(φ)f and ∂2

xg = A(φ)g, where we put

A(φ) = ω − c2

4
+ 1

2
Im(φ̄∂xφ) + c

2
|φ|2 − 3

16
|φ|4.

Thus, we have ∂x(f ∂xg − g∂xf ) = 0 for any x ∈ R. Since f,g ∈ H 1(R), we see that Im(φ̄∂xφ) = f ∂xg − g∂xf = 0
for any x ∈ R, so that φ satisfies (1.4). Therefore, there exists (θ, y) ∈ R

2 such that φ = eiθφω,c(· − y) (see Cazenave
[4, Theorem 8.1.6]). Finally, by (2.11) and (2.13), we conclude the lemma. �

Next, we consider the orbital stability of solitary wave solution

vω,c(t, x) = eiωtϕω,c(x − ct) (2.14)

of (2.4). Note that the solitary wave solution uω,c(t) of DNLS (1.1) is given by uω,c(t) = G−1/2(vω,c(t)) (see (1.2)).
For (ω, c) ∈ R

2 satisfying c2 < 4ω, we define a function d(ω, c) by

d(ω, c) = Sω,c(ϕω,c).

Our sufficient condition for orbital stability is stated in terms of the derivatives of d(ω, c) as follows.

Theorem 3. Let (ω0, c0) ∈ R
2 satisfy c2

0 < 4ω0. Assume that there exists ξ ∈ R
2 such that〈

d ′(ω0, c0), ξ
〉 
= 0,

〈
d ′′(ω0, c0)ξ, ξ

〉
> 0, (2.15)

where 〈·,·〉 denotes the inner product on R
2. Then the solitary wave solution vω0,c0(t) given by (2.14) is orbitally

stable for (2.4).

Note that d ′(ω, c) = (∂ωd(ω, c), ∂cd(ω, c)), and by S′
ω,c(ϕω,c) = 0 we have

∂ωd(ω, c) = Q(ϕω,c) > 0, ∂cd(ω, c) = P(ϕω,c). (2.16)

Since d ′′(ω0, c0) is a 2 × 2 symmetric matrix, if det[d ′′(ω0, c0)] < 0 then d ′′(ω0, c0) has one positive eigenvalue. In
addition, since d ′(ω0, c0) 
= (0,0), we see that if det[d ′′(ω0, c0)] < 0 then there exists ξ ∈ R

2 satisfying (2.15). Now,
if ∂2

ωd(ω0, c0) > 0, then (2.15) is satisfied by taking ξ = (1,0). Therefore, as a corollary of Theorem 3, we have the
following (compare with Theorem 2 in [9]).

Corollary 4. Let (ω0, c0) ∈ R
2 satisfy c2

0 < 4ω0. Assume det[d ′′(ω0, c0)] < 0 or ∂2
ωd(ω0, c0) > 0. Then the solitary

wave solution vω0,c0(t) is orbitally stable for (2.4).

Moreover, by elementary computations, we have the following.

Lemma 5. For any (ω, c) ∈ R
2 satisfying c2 < 4ω, we have

Q(ϕω,c) = 4 tan−1

√
2
√

ω + c

2
√

ω − c
, P (ϕω,c) =

√
4ω − c2, (2.17)

det
[
d ′′(ω, c)

] = − 1

ω
< 0. (2.18)

We will prove Theorem 3 and Lemma 5 in Sections 4 and 5, respectively. Now, we prove Theorem 1 using Corollary
4 and Lemma 5.

Proof of Theorem 1. Let (ω, c) ∈ R
2 satisfy c2 < 4ω. By (2.18) and Corollary 4, the solitary wave solution vω,c(t) is

orbitally stable for (2.4). Thus, the orbital stability of the solitary wave solution uω,c(t) for DNLS (1.1) follows from
the fact uω,c(t) = G−1/2(vω,c(t)) and the properties (2.1), (2.2) of the gauge transform Gν . �
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Remark 3. In [9], for the case c < 0, they show det[d ′′(ω, c)] < 0 to prove the orbital stability of uω,c(t) for
DNLS (1.1). However, for the case c < 0, we have ∂2

ωd(ω, c) = ∂ωQ(ϕω,c) > 0. By Corollary 4, we do not need
to compute det[d ′′(ω, c)] to obtain the orbital stability of uω,c(t) for the case c < 0. On the other hand, for the case
c � 0, we have ∂2

ωd(ω, c) � 0. Therefore, we need to compute det[d ′′(ω, c)] to prove the orbital stability for the case
c � 0.

3. Variational characterization

In this section, we give a variational characterization of solitary wave solution vω,c(t) defined by (2.14), which will
be used in the proof of Theorem 3 in the next section.

For (ω, c) ∈ R
2 satisfying c2 < 4ω, we consider the following minimization problem:

μ(ω, c) = inf
{
Sω,c(u): u ∈ H 1(R) \ {0}, Kω,c(u) = 0

}
, (3.1)

where Sω,c is defined by (2.9) and

Kω,c(u) = ‖∂xu‖2
2 + ω‖u‖2

2 − c Im
∫
R

ū∂xudx + Im
∫
R

|u|2ū∂xudx. (3.2)

For convenience, we put

Lω,c(u) = ‖∂xu‖2
2 + ω‖u‖2

2 − c Im
∫
R

ū∂xudx, (3.3)

N(u) = − Im
∫
R

|u|2ū∂xudx. (3.4)

Then, we can write

Sω,c(u) = 1

2
Lω,c(u) − 1

4
N(u), Kω,c(u) = Lω,c(u) − N(u). (3.5)

Let Mω,c be the set of all minimizers for (3.1), i.e.,

Mω,c = {
ϕ ∈ H 1(R) \ {0}: Sω,c(ϕ) = μ(ω, c), Kω,c(ϕ) = 0

}
.

Recall that Gω,c = {ϕ ∈ H 1(R) \ {0}: S′
ω,c(ϕ) = 0}, and note that Kω,c(u) = ∂λSω,c(λu)|λ=1 for u ∈ H 1(R). Thus, if

ϕ ∈ Gω,c, then we have Kω,c(ϕ) = 0.
The main result in this section is as follows.

Proposition 6. Let (ω, c) ∈ R
2 satisfy c2 < 4ω. If a sequence {un} ⊂ H 1(R) satisfies

Sω,c(un) → μ(ω, c), Kω,c(un) → 0, (3.6)

then there exist a sequence {yn} ⊂ R and v ∈ Mω,c such that {un(· − yn)} has a subsequence that converges to v

strongly in H 1(R).

To prove Proposition 6, we first prove a simple lemma.

Lemma 7. Let (ω, c) ∈ R
2 satisfy c2 < 4ω.

(1) There exists a constant C1 = C1(ω, c) > 0 such that

Lω,c(u) � C1‖u‖2
H 1, u ∈ H 1(R). (3.7)

(2) μ(ω, c) > 0.
(3) If u ∈ H 1(R) satisfies Kω,c(u) < 0, then Lω,c(u) > 4μ(ω, c).
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Proof. First, we show (1). For α > 0 and u ∈ H 1(R), we have

Lω,c(u) = (1 − α)‖∂xu‖2
2 + 1

α

∥∥∥∥α∂xu − c

2
iu

∥∥∥∥
2

2
+

(
ω − c2

4α

)
‖u‖2

2. (3.8)

Since c2 < 4ω, taking α ∈ ]c2/4ω,1[, we have (1). Next, we show (2). Let u be any element of H 1(R) \ {0} satisfying
Kω,c(u) = 0. By (1) and the Sobolev inequality, there exists a constant C2 > 0 such that

C1‖u‖2
H 1 � Lω,c(u) = N(u) � C2‖u‖4

H 1 .

Since u 
= 0, we have ‖u‖2
H 1 � C1/C2. Thus, by (3.1), (3.5) and (3.7), we see that

μ(ω, c) = 1

4
inf

{
Lω,c(u): u ∈ H 1(R) \ {0}, Kω,c(u) = 0

}
�

C2
1

4C2
> 0. (3.9)

Finally, we show (3). Let u ∈ H 1(R) satisfy Kω,c(u) < 0. Then, there exists λ1 ∈ ]0,1[ such that Kω,c(λ1u) =
λ2

1Lω,c(u) − λ4
1N(u) = 0. Since u 
= 0, by (3.9), we have 4μ(ω, c) � Lω,c(λ1u) = λ2

1Lω,c(u) < Lω,c(u). �
To prove Proposition 6, we use the following compactness lemmas due to Fröhlich, Lieb and Loss [6], Lieb [13]

and Brézis and Lieb [3].

Lemma 8. Let {fn} be a bounded sequence in H 1(R). Assume that there exists p ∈ ]2,∞[ such that

lim sup
n→∞

‖fn‖p > 0.

Then, there exist {yn} ⊂ R and f ∈ H 1(R) \ {0} such that {fn(· − yn)} has a subsequence that converges to f weakly
in H 1(R).

For the proof of Lemma 8, see [6] and [13].

Lemma 9. Let 2 � p < ∞ and {fn} be a bounded sequence in Lp(R). Assume that fn → f a.e. in R. Then we have

‖fn‖p
p − ‖fn − f ‖p

p − ‖f ‖p
p → 0.

For the proof of Lemma 9, see [3].
Now, using Lemmas 8 and 9, we prove Proposition 6. Similar arguments can be found in [16] and [19].

Proof of Proposition 6. In what follows, we shall often extract subsequences without mentioning this fact explicitly.
Step 1. By (3.5) and (3.6), we have Lω,c(un) = 4Sω,c(un)−Kω,c(un) → 4μ(ω, c). Thus, by (3.7), we see that {un}

is bounded in H 1(R).
Step 2. We show lim supn→∞ ‖un‖6 > 0 by contradiction. Suppose that limn→∞ ‖un‖6 = 0. Then, by the

Cauchy–Schwarz inequality and the boundedness of {un} in H 1(R), we have |N(un)| � ‖un‖3
6‖∂xu‖2 → 0. Since

Kω,c(un) → 0, we have Lω,c(un) → 0. Moreover, by Lemma 7(2), we have Lω,c(un) → 4μ(ω, c) > 0. This is a
contradiction.

Step 3. By Steps 1 and 2 and Lemma 8, there exist {yn} ⊂ R, a subsequence of {un(· − yn)} (we denote it by {vn})
and v ∈ H 1(R) \ {0} such that vn ⇀ v weakly in H 1(R).

Step 4. We first note that

Kω,c(u) =
∥∥∥∥∂xu − c

2
iu + i

2
|u|2u

∥∥∥∥
2

2
+

(
ω − c2

4

)
‖u‖2

2 + c

2
‖u‖4

4 − 1

4
‖u‖6

6 (3.10)

for any u ∈ H 1(R). Since {vn} is bounded in H 1(R) and vn → v a.e. in R, by Lemma 9, we have ‖vn‖p
p − ‖vn −

v‖p
p − ‖v‖p

p → 0 for 2 � p < ∞. Moreover, if we put

wn = ∂xvn − c
ivn + i |vn|2vn, w = ∂xv − c

iv + i |v|2v,

2 2 2 2
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then wn ⇀ w weakly in L2(R). Thus, we have ‖wn‖2
2 − ‖wn − w‖2

2 − ‖w‖2
2 → 0. Therefore, by (3.10), we have

Kω,c(vn) − Kω,c(vn − v) − Kω,c(v) → 0. (3.11)

Similarly, by (3.8) with c2/(4ω) < α < 1, we have

Lω,c(vn) − Lω,c(vn − v) − Lω,c(v) → 0. (3.12)

Step 5. We show Kω,c(v) � 0 by contradiction. Suppose that Kω,c(v) > 0. By (3.6) and (3.11), we have

Kω,c(vn − v) → −Kω,c(v) < 0,

which shows Kω,c(vn − v) < 0 for large n. By Lemma 7(3), we have Lω,c(vn − v) � 4μ(ω, c) for large n. Since
Lω,c(vn) → 4μ(ω, c), by (3.12), we have

Lω,c(v) = lim
n→∞

{
Lω,c(vn) − Lω,c(vn − v)

}
� 0.

Moreover, by Step 3 and Lemma 7(1), we have v 
= 0 and Lω,c(v) > 0. This is a contradiction. Hence, we have
Kω,c(v) � 0.

Step 6. By (3.9), Lemma 7(3) and the weakly lower semicontinuity of Lω,c, we have

4μ(ω, c) � Lω,c(v) � lim inf
n→∞ Lω,c(vn) = 4μ(ω, c).

Thus, we have Lω,c(v) = 4μ(ω, c)(v) and vn → v strongly in H 1(R). Moreover, by Step 5, (3.5) and Lemma 7(3),
we have Kω,c(v) = 0 and Sω,c(v) = μ(ω, c), which show v ∈Mω,c. This completes the proof. �

Finally, we prove the following lemma, which gives a characterization of the set Mω,c.

Lemma 10. Let (ω, c) ∈ R
2 satisfy c2 < 4ω. Then, we have Mω,c = Gω,c . In particular, we have d(ω, c) = μ(ω, c).

Proof. First, we show that Mω,c ⊂ Gω,c . Let ϕ ∈ Mω,c. Then, there exists a Lagrange multiplier λ ∈ R such that
S′

ω,c(ϕ) = λK ′
ω,c(ϕ). Thus, we have

0 = Kω,c(ϕ) = 〈
S′

ω,c(ϕ),ϕ
〉 = λ

〈
K ′

ω,c(ϕ),ϕ
〉
.

By Kω,c(ϕ) = 0, (3.7) and ϕ 
= 0, we have〈
K ′

ω,c(ϕ),ϕ
〉 = 2Lω,c(ϕ) − 4N(ϕ) = −2Lω,c(ϕ) < 0.

Thus, we see that λ = 0 and ϕ ∈ Gω,c , which implies Mω,c ⊂ Gω,c . We now show the converse. Let ϕ ∈ Mω,c . Then
ϕ ∈ Gω,c and by Lemma 2 there exists (θ, y) ∈ R

2 such that ϕ(·) = eiθϕω,c(· − y). It follows

Sω,c(ϕ) = μ(ω, c) = Sω,c

(
eiθϕω,c(· − y)

) = Sω,c(ϕω,c),

which implies ϕω,c ∈ Mω,c. Finally, we conclude the proof by using Lemma 2. �
4. Proof of Theorem 3

In this section, we prove Theorem 3. The proof is based on the variational characterization of solitary wave solutions
in Section 3 and the arguments in [22] and [17]. Throughout this section, we assume that (ω, c) ∈ R

2 satisfies c2 < 4ω.
We put

A+
ω,c = {

v ∈ H 1(R) \ {0}: Sω,c(v) < d(ω, c), Kω,c(v) > 0
}
,

A−
ω,c = {

v ∈ H 1(R) \ {0}: Sω,c(v) < d(ω, c), Kω,c(v) < 0
}
,

B+
ω,c = {

v ∈ H 1(R) \ {0}: Sω,c(v) < d(ω, c), N(v) < 4d(ω, c)
}
,

B−
ω,c = {

v ∈ H 1(R) \ {0}: Sω,c(v) < d(ω, c), N(v) > 4d(ω, c)
}
,

where Sω,c, Kω,c and N are defined by (2.9), (3.2) and (3.4), respectively, and note that d(ω, c) = μ(ω, c) by
Lemma 10.
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Lemma 11. Let (ω, c) ∈ R
2 satisfy c2 < 4ω.

(1) The sets A+
ω,c and A−

ω,c are invariant under the flow of (2.4), i.e., if u0 belongs to A+
ω,c (resp. A−

ω,c), then the
solution u(t) of (2.4) with u(0) = u0 belongs to A+

ω,c (resp. A−
ω,c) as long as u(t) exists.

(2) A+
ω,c = B+

ω,c and A−
ω,c = B−

ω,c.

Proof. (1) Let u0 ∈ A+
ω,c and Tmax be the maximal existence time of the solution u(t) of (2.4) with u(0) = u0. By

u0 
= 0 and the conservation laws (1.6), we have u(t) 
= 0 for t ∈ [0, Tmax[. Since E, Q, P defined by (2.6) and
(2.7) are conserved quantities of (2.4), Sω,c is also conserved. Thus, we have Sω,c(u(t)) = Sω,c(u0) < d(ω, c) for
t ∈ [0, Tmax[. Moreover, by (3.1) and μ(ω, c) = d(ω, c), we see that Kω,c(u(t)) 
= 0 for t ∈ [0, Tmax[. Since the
function t → Kω,c(u(t)) is continuous, we have Kω,c(u(t)) > 0 for t ∈ [0, Tmax[. Hence, A+

ω,c is invariant under the
flow of (2.4). By the same way, we see that A−

ω,c is invariant under the flow of (2.4).
(2) If v ∈ A+

ω,c, then by (3.5) we have N(v) = 4Sω,c(v) − 2Kω,c(v) < 4d(ω, c), which shows v ∈ B+
ω,c and

A+
ω,c ⊂ B+

ω,c. Now, let v ∈ B+
ω,c. We show Kω,c(v) > 0 by contradiction. Suppose that Kω,c(v) � 0. Then, by (3.9)

and Lemma 7(3), we have Lω,c(v) � 4μ(ω, c) = 4d(ω, c). Thus, by (3.5), we have

Sω,c(v) = 1

2
Lω,c(v) − 1

4
N(v) � d(ω, c),

which contradicts Sω,c(v) < d(ω, c). Therefore, we have Kω,c(v) > 0, which shows v ∈ A+
ω,c and B+

ω,c ⊂ A+
ω,c .

Next, if v ∈ A−
ω,c, then by Lemma 7(3) we have Lω,c(v) > 4μ(ω, c) = 4d(ω, c). Thus, by (3.5), we have N(v) =

Lω,c(v) − Kω,c(v) > 4d(ω, c), which shows v ∈ B−
ω,c and A−

ω,c ⊂ B−
ω,c. Finally, if v ∈ B−

ω,c, then by (3.5) we have
2Kω,c(v) = 4Sω,c(v) − N(v) < 4d(ω, c) − 4d(ω, c) = 0, which shows v ∈ A−

ω,c and B−
ω,c ⊂ A−

ω,c . This completes
the proof. �

Let (ω0, c0) ∈ R
2 satisfy c2

0 < 4ω0, and assume that there exists ξ ∈ R
2 that satisfies (2.15). We define the function

h : ]−ε0, ε0[ → R by

h(τ) = d
(
(ω0, c0) + τξ

)
, τ ∈ ]−ε0, ε0[ (4.1)

for sufficiently small ε0 > 0. Then, by (2.15), we have

h′(0) = 〈
d ′(ω0, c0), ξ

〉 
= 0, h′′(0) = 〈
d ′′(ω0, c0)ξ, ξ

〉
> 0. (4.2)

Without loss of generality, we can assume that h′(0) > 0 by replacing ξ by −ξ if necessary. Moreover, by the conti-
nuity of h′ and h′′, we can choose ε0 such that h satisfies

h′(τ ) > 0, h′′(τ ) > 0 for τ ∈ ]−ε0, ε0[. (4.3)

Lemma 12. Let (ω0, c0) ∈ R
2 satisfy c2

0 < 4ω0. Assume that there exists ξ ∈ R
2 that satisfies (2.15), and let h be

the increasing function defined by (4.1). Then, for any ε ∈ ]0, ε0[, there exists δ > 0 such that if u0 ∈ H 1(R) satisfies
‖u0 − ϕω0,c0‖H 1 < δ, then the solution u(t) of (2.4) with u(0) = u0 satisfies 4h(−ε) < N(u(t)) < 4h(ε) for all
t ∈ [0, Tmax[.

Proof. As mentioned above, we can assume that h satisfies (4.3). Let ε ∈ ]0, ε0[. Since h is increasing, we have
h(−ε) < h(0) < h(ε). Moreover, by Kω0,c0(ϕω0,c0) = 0 and (3.5), we deduce 4h(0) = 4d(ω0, c0) = 4Sω0,c0(ϕω0,c0) =
N(ϕω0,c0). Thus, if u0 ∈ H 1(R) satisfies ‖u0 − ϕω0,c0‖H 1 < δ then we have 4h(0) = N(u0) + O(δ), and 4h(−ε) <

N(u0) < 4h(ε) for sufficiently small δ > 0. Since h(±ε) = d((ω0, c0)±εξ) and the sets B±
ω0,c0

are invariant under the
flow of (2.4) by Lemma 11, to conclude the proof, we have only to show that there exists δ > 0 such that if u0 ∈ H 1(R)

satisfies ‖u0 − ϕω0,c0‖H 1 < δ then S(ω0,c0)±εξ (u0) < h(±ε). Assume that u0 ∈ H 1(R) satisfies ‖u0 − ϕω0,c0‖H 1 < δ,
and put ξ = (ξ1, ξ2). Then, by (2.7), (2.9), (2.16) and (4.2), we have

S(ω0,c0)±εξ (u0) = S(ω0,c0)±εξ (ϕω0,c0) + O(δ)

= Sω0,c0(ϕω0,c0) ± ε
{
ξ1Q(ϕω0,c0) + ξ2P(ϕω0,c0)

} + O(δ)

= h(0) ± εh′(0) + O(δ).
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On the other hand, by the Taylor expansion, there exists τ1 = τ1(ε) ∈ ]−ε0, ε0[ such that

h(±ε) = h(0) ± εh′(0) + ε2

2
h′′(τ1).

Since h′′(τ1) > 0 by (4.3), we see that there exists δ > 0 such that if u0 ∈ H 1(R) satisfies ‖u0 − ϕω0,c0‖H 1 < δ then
S(ω0,c0)±εξ (u0) < h(±ε). This completes the proof. �

Now, we prove Theorem 3.

Proof of Theorem 3. We prove by contradiction. Suppose that vω0,c0(t) is not orbitally stable for (2.4). Then, there
exist a constant ε1 > 0, a sequence of solutions {un} to (2.4), and a sequence {tn} in ]0,∞[ such that

un(0) → ϕω0,c0 in H 1(R), (4.4)

inf
(θ,y)∈R2

∥∥un(tn) − eiθϕω0,c0(· − y)
∥∥

H 1 � ε1. (4.5)

Then, since E, Q and P are conserved, by (2.9) and (4.4), we have

Sω0,c0

(
un(tn)

) = Sω0,c0

(
un(0)

) → Sω0,c0(ϕω0,c0) = d(ω0, c0). (4.6)

Note that d(ω0, c0) = μ(ω0, c0) by Lemma 10. Moreover, by Lemma 12 and (4.4), we have

N
(
un(tn)

) → 4d(ω0, c0). (4.7)

Thus, by (3.5), (4.6) and (4.7), we have

Kω0,c0

(
un(tn)

) = 2Sω0,c0

(
un(tn)

) − 1

2
N

(
un(tn)

) → 0. (4.8)

Therefore, by (4.6), (4.8) and Proposition 6, there exist a sequence {yn} ⊂ R and v ∈Mω0,c0 such that {un(tn, ·− yn)}
has a subsequence (we denote it by the same letter) that converges to v in H 1(R). Thus, by Lemmas 2 and 10, we
have

inf
(θ,y)∈R2

∥∥un(tn) − eiθϕω0,c0(· − y)
∥∥

H 1 → 0,

which contradicts (4.5). Hence, vω0,c0(t) is orbitally stable for (2.4). �
5. Proof of Lemma 5

In this section, we prove Lemma 5 using the expression (1.3) of φω,c and elementary computations. In what follows,
we put

α = 4ω − c2, β = c

2
√

ω
.

Note that α > 0 and −1 < β < 1 by c2 < 4ω. Then, by (1.3), we have

φω,c(x)2 = α√
ω{cosh(

√
α x) − β} .

By (2.13) and by elementary formulas

∞∫
0

dy

cosh 2y − β
= 1√

1 − β2
tan−1

√
1 + β

1 − β
,

∞∫
0

dy

{cosh 2y − β}2
= β

(1 − β2)3/2
tan−1

√
1 + β

1 − β
+ 1

2(1 − β2)
,

we have
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Q(ϕω,c) =
∞∫

0

φω,c(x)2 dx = 4 tan−1

√
1 + β

1 − β
,

∞∫
0

φω,c(x)4 dx = 8c tan−1

√
1 + β

1 − β
+ 4

√
α,

P (ϕω,c) = − c

2

∞∫
0

φω,c(x)2 dx + 1

4

∞∫
0

φω,c(x)4 dx = √
α,

which imply (2.17). Moreover, by (2.17), we have

∂cQ(ϕω,c) = ∂ωP (ϕω,c) = 2√
4ω − c2

,

∂cP (ϕω,c) = − c√
4ω − c2

, ∂ωQ(ϕω,c) = − c

ω
√

4ω − c2
.

Thus, we have

det
[
d ′′(ω, c)

] = ∂ωQ(ϕω,c)∂cP (ϕω,c) − ∂cQ(ϕω,c)∂ωP (ϕω,c) = − 1

ω
,

which shows (2.18). This completes the proof of Lemma 5. �
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