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Abstract

We prove global wellposedness of the two-dimensional and three-dimensional Gross–Pitaevskii equations in the natural energy
space.
©

Résumé

On établit que le problème de Cauchy pour l’équation de Gross–Pitaevskii est bien posé dans l’espace d’énergie naturel, en
dimensions deux et trois.
©
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1. Introduction

The Gross–Pitaevskii equation on R
d

i
∂u

∂t
+ �u = (|u|2 − 1

)
u (1.1)

is the Hamiltonian evolution associated to the Ginzburg–Landau energy

E(u) =
∫
Rd

1

2

∣∣∇u(x)
∣∣2 + 1

4

(|u|2 − 1
)2 dx (1.2)

defined on the space

E = {
u ∈ H 1

loc

(
R

d
)
: ∇u ∈ L2(

R
d
)
, |u|2 − 1 ∈ L2(

R
d
)}

. (1.3)

Eq. (1.1) arises naturally in several contexts, in particular superfluidity and Bose–Einstein condensates, see
[18,13,5,19]. The formal Madelung transformation

u = √
ρ eiφ/2
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provides a link with a system close to the one describing compressible irrotational fluids, and the question of turbulence
effects for this equation has been recently addressed in [17]. On the other hand, existence of progressive waves
solutions was recently studied in [2,1,10–12].

It is therefore natural to seek for a theory of the Cauchy problem in the energy space E. Notice that, because of the
special form of the potential energy, functions in the energy space E do not cancel at infinity, therefore the classical
theory of the Cauchy problem for the nonlinear Schrödinger equation developed in [7,8,15,4] does not apply. To our
knowledge, the only results of global wellposedness for (1.1) on the whole space E are due to Zhidkov [20,21] and
are restricted to one space dimension, without using dispersive properties of the Schrödinger group. However, in an
appendix to [2], the strategy of Kato [15] is used to derive global wellposedness in the smaller space 1 + H 1(Rd) for
natural dimensions d = 2,3.

The purpose of this paper is to show how Strichartz estimates can also be used to obtain global wellposedness of
the Cauchy problem for (1.1) in the whole energy space E for d = 2,3. Before stating our result more precisely, let
us introduce a natural structure of metric space on E. We recall that Zhidkov introduced in [20] the space

X1(R) = {
u ∈ L∞(R): u′ ∈ L2(R)

}
and proved that the Cauchy problem for (1.1) is well-posed in{

u ∈ X1(R): |u|2 − 1 ∈ L2(R)
}
.

In fact, it can be shown that this space coincides with E. More generally, we shall show in Section 2 that, in any space
dimension d ,

E ⊂ X1(
R

d
) + H 1(

R
d
)
,

where we have set, for every positive integer k,

Xk
(
R

d
) = {

u ∈ L∞(
R

d
)
: ∂αu ∈ L2(

R
d
)
, 1 � |α| � k

}
, (1.4)

equipped with the natural norm

‖u‖Xk = ‖u‖L∞ +
∑

1�|α|�k

‖∂αu‖L2 .

It is then easy to endow our energy space E with a structure of complete metric space by introducing the following
distance function,

dE(u, ũ) = ‖u − ũ‖X1+H 1 + ∥∥|u|2 − |ũ|2∥∥
L2 . (1.5)

Recall that, given two Banach spaces X,Y of distributions on R
d , the Banach norm on the space X + Y is defined by

‖v‖X+Y = inf
{‖v1‖X + ‖v2‖Y : v = v1 + v2, v1 ∈ X, v2 ∈ Y

}
.

Our result can now be stated as follows.

Theorem 1.1. Let d ∈ {2,3}. For every u0 ∈ E, there exists a unique solution u ∈ C(R,E) of Eq. (1.1) with the initial
condition u(0) = u0. Moreover, the flow of (1.1) on E enjoys the following additional properties:

– If moreover �u0 ∈ L2(Rd), then �u ∈ C(R,L2(Rd)).
– For every time t , E(u(t)) = E(u0).
– If uL(t) = eit�u0 denotes the solution of the linear Schrödinger equation with the same Cauchy data, u − uL ∈

C(R,H 1(Rd)).

– For every R > 0, for every T > 0, there exists C > 0 such that, for every u0, ũ0 ∈ E such that E(u0) � R and
E(ũ0) � R, the corresponding solutions u, ũ satisfy

sup
|t |�T

dE

(
u(t), ũ(t)

)
� C dE(u0, ũ0).
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Let us mention that local existence results in the spaces Xk(Rd), k > d/2, were already proved by Gallo [6], and
that a global existence result in X2(R2) has been obtained recently by Goubet [9] using logarithmic estimates as in
Brezis–Gallouët ’s contribution to cubic nonlinear Schrödinger equation on plane domains [3].

In the special case d = 3, it is in fact possible to describe the energy space in a simpler way. Denote by

Ḣ 1(
R

3) =D1,2(
R

3) = {
v ∈ L6(

R
3): ∇v ∈ L2(

R
3)}

the completion of the space C∞
0 (R3) for the Dirichlet norm ‖∇v‖L2 . Then one can prove that

E = {
u = c + v: c ∈ C, |c| = 1, v ∈ Ḣ 1(

R
3), |v|2 + 2 Re

(
c−1v

) ∈ L2(
R

3)}.
Moreover, the distance function dE is equivalent to

δE(c + v, c̃ + ṽ) = |c − c̃| + ‖∇v − ∇ṽ‖L2 + ∥∥|v|2 + 2 Re
(
c−1v

) − |ṽ|2 − 2 Re
(
c̃−1ṽ

)∥∥
L2 (1.6)

and the dynamics of (1.1) keep c invariant. No such simple description is available in two space dimensions, since
elements of E may have complicated oscillations at infinity, for instance

u(x) = ei(log(2+|x|))α , α <
1

2
.

This paper is organized as follows. In Section 2, we prove the inclusion E ⊂ X1 + H 1 and we establish that the
linear Schrödinger group acts nicely on the nonlinear energy space E if d = 2,3. Section 3 is devoted to the proof of
Theorem 1.1 by a contraction argument. An important point consists in observing that the nonlinear drift w = u − uL

belongs to C(R,H 1(Rd)). Finally, in Section 4 we prove the above-mentioned description of the dynamics on the
space E in the special case d = 3. We also discuss the role of the dimension in studying how the energy functional
measures the distance to the circle of constants of null energy. Finally, we sketch a generalization of Theorem 1.1 to
small energy solutions in four space dimensions.

2. The energy space and the linear Schrödinger equation

In this section, we prove some preliminary results concerning the structure of the energy space E and the action of
the Schrödinger group on E.

2.1. The energy space, Sobolev spaces and Zhidkov spaces

Recall that the energy space E is defined in (1.3) and that the Zhidkov space X1(Rd) is defined in (1.4). Our first
result is the following observation.

Lemma 1. In any space dimension d , we have

E ⊂ X1(
R

d
) + H 1(

R
d
)

and there exists C > 0 such that, for every u ∈ E,

‖u‖X1+H 1 � C
(
1 + √

E(u)
)
. (2.1)

Proof. Let χ ∈ C∞
0 (C) such that 0 � χ � 1, χ(z) = 1 for |z| � 2, and χ(z) = 0 for |z| � 3. Let us decompose

u = u1 + u2, u1 = χ(u)u, u2 = (
1 − χ(u)

)
u.

We have

‖u1‖L∞ � 3,

and, since |u| � 2 on the support of u2,

|u2| �
∣∣|u|2 − 1

∣∣,
thus

‖u2‖L2 �
∥∥|u|2 − 1

∥∥
2 � 2

√
E(u).
L
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On the other hand,

∇u1 = (
χ(u) + u∂χ(u)

)∇u + u∂̄χ(u)∇ū; ∇u2 = (
1 − χ(u) − u∂χ(u)

)∇u − u∂̄χ(u)∇ū.

This implies easily, for some A = A(χ),

‖∇u1‖L2 + ‖∇u2‖L2 � A‖∇u‖L2 �
√

2A
√
E(u).

Hence

‖u1‖X1 + ‖u2‖H 1 � 3 + (2 + √
2A)

√
E(u).

The proof is complete. �
Remark 2.1. Notice that, in the special case of dimension d = 1, the above lemma reads E ⊂ X1(R).

We close this subsection by an elementary lemma which will be useful in the sequel.

Lemma 2. If d = 2,3,4, we have E + H 1 ⊂ E and, for every v ∈ E, w ∈ H 1,∥∥|v + w|2 − 1
∥∥

L2 �
∥∥|v|2 − 1

∥∥
L2 + C

(
1 + √

E(v)
)(‖w‖L2 + ‖w‖L4

) + ‖w‖2
L4 . (2.2)

Moreover, for every v ∈ E, ṽ ∈ E and w ∈ H 1, w̃ ∈ H 1,

dE(v + w, ṽ + w̃) � C
(
1 + ‖w‖H 1 + ‖w̃‖H 1

)
dE(v, ṽ)

+ C
(
1 + √

E(v) +
√
E(ṽ) + ‖w‖H 1 + ‖w̃‖H 1

)‖w − w̃‖H 1 .

Proof. Given v ∈ E,w ∈ H 1, trivially ∇(v + w) ∈ L2. Then we expand

|v + w|2 − 1 = |v|2 − 1 + 2 Re(v̄w) + |w|2

and this quantity belongs to L2 since v ∈ L∞ + L4 and w ∈ L2 ∩ L4 by Lemma 1 and the Sobolev inequality. This
gives estimate (2.2). Moreover,

‖v + w − ṽ − w̃‖X1+H 1 � ‖v − ṽ‖X1+H 1 + ‖w − w̃‖H 1 .

Finally, the estimate of ‖|v + w|2 − |ṽ + w̃|2‖L2 can be established along the same lines as (2.2). �
2.2. Action of the linear Schrödinger group on the energy space

We start with a general statement about the spaces Xk + Hk . Denote by S(t) = eit� the linear Schrödinger propa-
gator.

Lemma 3. Let d be a positive integer. For every positive integer k, for every t ∈ R, S(t) maps Xk(Rd) + Hk(Rd) into
itself, with the estimates∥∥S(t)f

∥∥
Xk+Hk � C

(
1 + |t |)1/2‖f ‖Xk+Hk ,

and ∥∥S(t)f − f
∥∥

L2 � C|t |1/2‖∇f ‖L2 . (2.3)

Moreover, if f ∈ Xk(Rd) + Hk(Rd), the map

t ∈ R 
→ S(t)f ∈ Xk
(
R

d
) + Hk

(
R

d
)

is continuous.



P. Gérard / Ann. I. H. Poincaré – AN 23 (2006) 765–779 769
Proof. Since S(t) acts isometrically on Hk(Rd), it is enough to assume f ∈ Xk(Rd). We just write

S(t)f = f + S(t)f − f

and we are led to prove that S(t)f − f ∈ Hk(Rd) with∥∥S(t)f − f
∥∥

Hk � C
(
1 + |t |)1/2‖f ‖Xk and

∥∥S(t)f − f
∥∥

Hk → 0

as t tends to 0. For 1 � |α| � k, it is clear that ∂α(S(t)f − f ) = (S(t) − 1)∂αf ∈ L2(Rd) with∥∥∂α
(
S(t)f − f

)∥∥
L2 � C

∥∥∂αf
∥∥

L2 and
∥∥∂α

(
S(t)f − f

)∥∥
L2 → 0

as t tends to 0. Moreover, introducing χ ∈ C∞
0 (R) such that χ = 1 near the origin, we can write

e−it |ξ |2 − 1 =
d∑

j=1

gj (t, ξ)ξj

with

gj (t, ξ) = −itχ
(
t |ξ |2)ξj

1∫
0

e−ist |ξ |2 ds + 1 − χ(t |ξ |2)
|ξ |2 ξj

(
e−it |ξ |2 − 1

) =O
(|t |1/2).

Consequently,

S(t)f − f = i
d∑

j=1

gj (t,D)∂jf ∈ L2(
R

d
)

and this yields (2.3). The last assertion is a simple consequence of (2.3) and of the continuity of t 
→ S(t)f ∈ L2 if
f ∈ L2. �
Remark 2.2. In the case k > d/2, we have Hk(Rd) ⊂ Xk(Rd) and we recover the fact that S(t) acts on Xk(Rd) (see
Gallo [6] for the original proof).

Combining the previous lemmas, it is now possible to show that the energy space is kept invariant by the
Schrödinger group if the dimension is not larger than 4.

Proposition 2.3. Let d ∈ {2,3,4}. For every t ∈ R, S(t)(E) ⊂ E and, for every u0 ∈ E, the map

t ∈ R 
→ S(t)u0 ∈ E

is continuous. Moreover, for every R > 0, for every T > 0, there exists C > 0 such that, for every u0, ũ0 ∈ E such that
E(u0) � R and E(ũ0) � R,

sup
|t |�T

dE

(
S(t)u0, S(t)ũ0

)
� CdE(u0, ũ0). (2.4)

Finally, if d = 2,3, for every R > 0 there exists T (R) > 0 such that, for every u0 ∈ E such that E(u0) � R, we have

sup
|t |�T (R)

E
(
S(t)u0

)
� 2R. (2.5)

If d = 4, there exists A > 0 such that, for every u0 ∈ E such that E(u0) � 1, we have

sup
|t |�1

E
(
S(t)u0

)
� AE(u0). (2.6)

Proof. Writing again

S(t)u0 = u0 + (
S(t)u0 − u0

)
,
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and using Lemmas 2 and 3, we have easily S(t)(E) ⊂ E, while the continuity property

S(t)u0 −→
t→0

u0 in E

is a consequence of the second estimate in Lemma 2 and of Lemma 3. Finally, estimates (2.5) and (2.6) are conse-
quences of (2.2). Indeed, if d = 2,3, the combination of (2.3) and of the interpolation inequality

‖w‖L4 � C‖w‖θ
L2‖∇w‖1−θ

L2 ,

for some θ ∈ ]0,1[, allows to make the L4 norm of S(t)u0 − u0 uniformly small for E(u0) � R and |t | � T (R). If
d = 4, 4 is exactly the Sobolev exponent and we must be content with the linear estimate (2.6). �
3. Proof of the main theorem

In this section, we prove Theorem 1.1, thus d ∈ {2,3}. We start by observing that the nonlinear drift belongs to
H 1(Rd) at every time. Then we solve the equation by a contraction argument in the space C([−T ,T ],E) for T small
enough with respect to the energy of the data. Finally we establish propagation of the regularity of the solution and
conservation of the energy, which leads classically to global existence of the solution.

3.1. Estimates on the nonlinear drift

Let u0 ∈ E. As in the previous section, we denote by uL the solution of the linear Schrödinger equation such that
uL(0) = u0. Then Eq. (1.1) is, at least formally, equivalent to

u(t) = uL(t) − i

t∫
0

S(t − τ)
[(|u|2 − 1

)
u(τ)

]
dτ.

Therefore it is natural to study first the map

u 
→ F(u) = (|u|2 − 1
)
u

for u ∈ E. The following lemma is an elementary consequence of Lemma 1 and of the Sobolev inequalities.

Lemma 4. Assume d ∈ {2,3}. Then, for every u ∈ E, F(u) ∈ L2 + L3/2 and ∇(F (u)) ∈ L2 + L6/5. Moreover, for
every R > 0, there exists C(R) such that, for every u, ũ in E such that E(u) � R,E(ũ) � R, we have∥∥F(u) − F(ũ)

∥∥
L2+L3/2 + ∥∥∇(

F(u)
) − ∇(

F(ũ)
)∥∥

L2+L6/5 � C(R)dE(u, ũ). (3.1)

Proof. Since u ∈ X1 + H 1 and d � 3, we have u ∈ L∞ + L6. Since |u|2 − 1 ∈ L2, Hölder’s inequality then implies
F(u) ∈ L2 + L3/2. Moreover,

F(u) − F(ũ) = (|u|2 − |ũ|2)u + (u − ũ)
(|ũ|2 − 1

)
,

therefore∥∥F(u) − F(ũ)
∥∥

L2+L3/2 �
∥∥|u|2 − |ũ|2∥∥

L2‖u‖L∞+L6 + ∥∥|ũ|2 − 1
∥∥

L2‖u − ũ‖L∞+L6 � C(R)dE(u, ũ).

As for the gradient, we have

∇(
F(u)

) = (
2|u|2 − 1

)∇u + u2∇ū.

Using that 2|u|2 − 1 and u2 belong to L∞ + L3, and that ∇u ∈ L2, we conclude ∇(F (u)) ∈ L2 + L6/5. Moreover,

∇(
F(u)

) − ∇(
F(ũ)

) = 2(u − ũ)ū∇u + 2ũ(u − ũ)∇u + (
2|ũ|2 − 1

)
(∇u − ∇ũ)

+ (u − ũ)(u + ũ)∇u + ũ2(∇u − ∇ũ).

This yields
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∥∥∇(
F(u)

) − ∇(
F(ũ)

)∥∥
L2+L6/5 � C

(‖u‖L∞+L6 + ‖ũ‖L∞+L6

)‖∇u‖L2‖u − ũ‖L∞+L6

+ C
(
1 + ‖ũ‖2

L∞+L6

)‖∇u − ∇ũ‖L2

and (3.1) follows. �
Next we recall the nonhomogeneous generalized Strichartz estimates [8,16]. We denote by r ′ the conjugate expo-

nent of r . We shall say that a pair (p, q) of positive numbers is admissible if

2

p
+ d

q
= d

2
, p � 2, (p, q) �= (2,∞). (3.2)

Notice that q < ∞ can be as large as we want if d = 2, while q is limited by the Sobolev exponent 2∗ = (2d)/(d − 2)

if d � 3. For every admissible pair (p1, q1), for every T > 0, for every f ∈ Lp′
1([−T ,T ],Lq ′

1(Rd)), the function

w(t) =
t∫

0

S(t − τ)f (τ)dτ

satisfies w ∈ Lp2([−T ,T ],Lq2(Rd)) for every admissible pair (p2, q2), with the estimate

‖w‖Lp2 ([−T ,T ],Lq2 (Rd )) � C‖f ‖
L

p′
1 ([−T ,T ],Lq′

1 (Rd ))
. (3.3)

Combining these estimates with Lemma 4, we infer

Lemma 5. Let d ∈ {2,3}. For every u ∈ C([−T ,T ],E), the quantity

Φ(u)(t) = −i

t∫
0

S(t − τ)
[
F

(
u(τ)

)]
dτ (3.4)

belongs to C([−T ,T ],H 1(Rd)). Moreover, if T � 1, for every R > 0 there exists C(R) > 0 such that, if u, ũ satisfy

∀t ∈ [−T ,T ], E
(
u(t)

)
� R, E

(
ũ(t)

)
� R,

then, if T � 1,

sup
|t |�T

∥∥Φ(u)(t) − Φ(ũ)(t)
∥∥

H 1 � C(R)T 1/2 sup
|t |�T

dE

(
u(t), ũ(t)

)
. (3.5)

Proof. From Lemma 4, we know that F(u) ∈ L∞([−T ,T ],L2 +L3/2), hence, applying (3.3) with q2 = 2 and q1 = 2
or q1 = 3, we obtain Φ(u) ∈ C([−T ,T ],L2(Rd)). Observing that

∇Φ(u)(t) = −i

t∫
0

S(t − τ)
[∇(

F
(
u(τ)

))]
dτ

we argue similarly with q1 = 2 or q1 = 6, and this gives ∇(Φ(u)) ∈ C([−T ,T ],L2(Rd)). Estimate (3.5) similarly
follows from (3.1), the factor T 1/2 coming from the fact that p′

1 � 2 in estimates (3.3) and that T � 1. �
3.2. Local wellposedness

As a first classical step, we shall solve the Cauchy problem for (1.1) locally in time. Denote by uL the solution of
the linear Schrödinger equation,

uL(t) = S(t)u0.

The Duhamel equation for u reads

u(t) = uL(t) + Φ(u)(t), (3.6)

where Φ was defined in (3.4).
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Proposition 3.1. Let d = 2,3. For every R > 0, there exists T > 0 such that, for every u0 ∈ E with E(u0) � R, there
exists a unique solution

u ∈ C
([−T ,T ],E)

of Eq. (1.1) with u(0) = u0. Moreover, if ũ0 ∈ E satisfies E(ũ0) � R and ũ is the corresponding solution of (1.1), then
we have the Lipschitz estimate,

sup
|t |�T

dE

(
u(t), ũ(t)

)
� C(R)dE(u0, ũ0).

Proof. Denote by XT the complete metric space of functions u ∈ C([−T ,T ],E) such that sup|t |�T E(u(t)) � 3R.
We shall prove that, for T small enough, the map

u 
→ uL + Φ(u)

is a contraction of XT . Given u0 ∈ E such that E(u0) � R, Proposition 2.3 implies that, for T small enough with
respect to R,

sup
|t |�T

E
(
uL(t)

)
� 2R.

On the other hand, applying estimate (3.5) in Lemma 5 in the special case where ũ is a constant of modulus 1,

sup
|t |�T

∥∥Φ(u)(t)
∥∥

H 1 � C(R)T 1/2.

It remains to apply Lemma 2 to conclude, for T small enough with respect to R,

sup
|t |�T

E
(
uL(t) + Φ(u)(t)

)
� 3R,

hence u 
→ uL +Φ(u) acts on XT . Then we combine the second estimate of Lemma 2 with estimate (3.5) of Lemma 5
to obtain, if u, ũ ∈ XT ,

sup
|t |�T

dE

(
uL(t) + Φ

(
u(t)

)
, uL(t) + Φ

(
ũ(t)

))
� C(R) sup

|t |�T

∥∥Φ(u)(t) − Φ
(
ũ(t)

)∥∥
H 1

� C′(R)T 1/2 sup
|t |�T

dE

(
u(t), ũ(t)

)
.

Choosing T small enough with respect to R completes the proof of the contraction argument. The proof of the
Lipschitz estimate is similar. �
Remark 3.2. An equivalent approach would consist in solving the equation

w = Φ(uL + w)

in the space C([0, T ],H 1(Rd)) for T = T (R) small enough.

3.3. Regularity and conservation of the energy

We now come to the regularity of the solution constructed in the previous subsection.
Assume that �u0 ∈ L2(Rd), d = 2,3. Then

u0 ∈ X2 + H 2 = X2

by taking into account that d � 3. Therefore it is classical that the map

u 
→ (|u|2 − 1
)
u

leaves X2 invariant, and is Lipschitz continuous on the bounded subsets of X2. Consequently, Eq. (1.1) has a maximal
solution belonging to C(]−T∗, T ∗[,X2), which blows up in X2 as t approaches a boundary point −T∗ or T ∗ if this
point is finite. Let us show that ]−T∗, T ∗[ = R. As a first step, we shall prove that, for every R > 0, there exits T1 > 0
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depending only on R such that, if E(u0) � R and �u0 ∈ L2, then [−T1, T1] ⊂ ]−T∗, T ∗[. Denote by T the time
constructed in Proposition 3.1, so that u(t) stays bounded in E for |t | � T by a constant depending only on R. Then,
for t ∈ [−T ,T ] ∩ ]−T∗, T ∗[, we have∣∣�((|u|2 − 1

)
u
)∣∣ �

(
3|u|2 + 1

)|�u| + 2|u||∇u|2
so that, for every T ′ such that [−T ′, T ′] ⊂ [−T ,T ] ∩ ]−T∗, T ∗[,∥∥�

((|u|2 − 1
)
u
)‖L∞([−T ′,T ′],L2+L6/5) � C(R)‖�u‖L∞([−T ′,T ′],L2).

By estimate (3.3), we conclude

‖�u‖L∞([−T ′,T ′],L2) � C‖�u0‖L2 + C(R)
√

T ′‖�u‖L∞([−T ′,T ′],L2)

hence u stays bounded in X2 for |t | � T1(R) small enough, and thus[−T1(R),T1(R)
] ⊂ ]−T∗, T ∗[

as claimed.
Since ∂tu ∈ L∞([−T1, T1],L2), we can compute, using Eq. (1.1),

d

dt
E
(
u(t)

) =
∫
Rd

(
Re(∇ū · ∇∂tu) + (|u|2 − 1

)
Re(ū∂tu)

)
dx = 0.

Consequently we have E(u(t)) = E(u0) � R on [−T1, T1], and, by iterating this argument and Proposition 3.1, we
conclude that u can be extended as a global solution with u ∈ C(R,X2) and E(u(t)) = E(u0) for every t ∈ R.

Let us come back to the general case u0 ∈ E, and let us prove global existence and conservation of energy in this
case. By iterating Proposition 3.1, it is enough to show that the energy is constant on the time interval [−T ,T ]. In
view of conservation of energy for regular solutions, it is enough to prove that every data u0 ∈ E can be approximated
in the sense of dE by a sequence uε

0 of elements of E such that �uε
0 ∈ L2. Indeed, by Proposition 3.1, we shall have

sup
|t |�T

dE

(
uε(t), u(t)

) → 0,

therefore, for every t ,

E
(
uε(t)

) → E
(
u(t)

)
and conservation of energy for uε will imply conservation of energy for u. Therefore the proof of Theorem 1.1 is
completed by the following lemma.

Lemma 6. Let d = 2,3. For every u ∈ E, define uε = ρε ∗ u, where

ρε(x) = ε−dρ

(
x

ε

)
is a classical mollifier on R

d , with ρ ∈ C∞
0 . Then dE(uε,u) → 0 as ε tends to 0.

Proof. We have to show that uε converges to u in X1 + H 1, and that |uε|2 − 1 converges to |u|2 − 1 in L2. Writing

u = χ(D)u1 + (
1 − χ(D)

)
u1 + u2, u1 ∈ X1, u2 ∈ H 1,

with χ ∈ C∞
0 (Rd) satisfying χ = 1 near the origin, we have

uε = ρ̂(εD)χ(D)u1 + ρε ∗ [(
1 − χ(D)

)
u1 + u2

]
,

and the first term in the right-hand side converges to χ(D)u1 in X1, while the second one converges to (1−χ(D))u1 +
u2 in H 1. This proves the first convergence. The second one is a little more tricky. We write

∣∣uε(x)
∣∣2 − 1 = ε−2d

∫ ∫
Rd×Rd

ρ

(
x − y

ε

)
ρ

(
x − y′

ε

)[
u(y)ū(y′) − 1

]
dy dy′

= ρε ∗ (|u|2 − 1
)
(x) + rε(x),
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with

rε(x) =
1∫

0

ε−2d

∫ ∫
Rd×Rd

ρ

(
x − y

ε

)
ρ

(
x − y′

ε

)
u(y)(y − y′) · ∇ū

(
y + θ(y′ − y)

)
dy dy′ dθ.

Notice that |y′ − y| � ε in the above integral, therefore we set y′ = y + εa and we obtain

∣∣rε(x)
∣∣ � Cε

1∫
0

dθ

∫
|a|�1

da

( ∫
Rd

ε−dρa

(
x − y

ε

)∣∣u(y)
∣∣∣∣∇u(y + εθa)

∣∣dy

)
,

with ρa(z) = ρ(z)ρ(z − a). Since u ∈ L∞ + L6 and ∇u ∈ L2, the function

y 
→ ∣∣u(y)
∣∣∣∣∇u(y + εθa)

∣∣
has a uniform bound in L2 + L3/2 as ε, θ , a vary. Consequently, by the Young inequality,

‖rε‖L2 � Cεε−d/6 → 0,

which completes the proof. �
4. The three-dimensional case

In this section, we show that the description of the energy space and of the dynamics of (1.1) can be simplified in
the case d = 3.

4.1. On the structure of the energy space

For every complex number of modulus 1, we introduce

Fc = {
v ∈ Ḣ 1(

R
3): |v|2 + 2 Re

(
c−1v

) ∈ L2(
R

3)},
and, for v ∈ Fc, ṽ ∈ Fc̃, we set

δc,c̃(v, ṽ) = ‖∇v − ∇ṽ‖L2 + ∥∥|v|2 + 2 Re
(
c−1v

) − |ṽ|2 − 2 Re
(
c̃−1ṽ

)∥∥
L2 .

In particular, δc,c is a distance function on Fc.

Proposition 4.1. The space E is exactly the set of functions of the form

u = c + v

where c is a complex number of modulus 1 and v ∈ Fc. Moreover, the distance function dE given by (1.5) is equivalent
to

δE(c + v, c̃ + ṽ) = |c − c̃| + δc,c̃(v, ṽ).

Proof. Since |c + v|2 − 1 = |v|2 + 2 Re(c−1v), it is trivial that c + v ∈ E for any c of modulus 1, for any v ∈ Fc. The
converse will be a consequence of the following lemma.

Lemma 7. Let u ∈ H 1
loc(R

3) such that ∇u ∈ L2(R3). Then the family Ur of functions defined on the unit sphere S2 by

Ur(ω) = u(rω)

converges in L2(S2) to a constant c(u) as r goes to infinity. Moreover u belongs to Ḣ 1(R3) if and only if c(u) = 0.

Proof. The assumption ∇u ∈ L2(R3) reads
∞∫

r2‖∂rUr‖2
L2(S2)

+ ‖∇ωUr‖2
L2(S2)

dr < +∞. (4.1)
0
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Consequently, by the Schwarz inequality,
∞∫

1

‖∂rUr‖L2(S2) dr < +∞

which implies the existence of a limit U for Ur in L2(S2). Moreover, in D′(S2), ∇ωU is the limit, as R goes to ∞, of

FR = ∇ω

R+1∫
R

Ur dr =
R+1∫
R

∇ωUr dr,

and

‖FR‖2
L2(S2)

�
R+1∫
R

‖∇ωUr‖2
L2(S2)

dr

which goes to 0 in view of (4.1). This shows that U is a constant c.
If u ∈ Ḣ 1, then, by Hardy’s inequality,

∞∫
0

‖Ur‖2
L2(S2)

dr =
∫
R3

|u(x)|2
|x|2 dx < +∞

which implies c(u) = 0. Conversely, if c(u) = 0, then

Ur = −
∞∫
r

∂ρUρ dρ

implies, by the Schwarz inequality,

‖Ur‖2
L2(S2)

� 1

r
‖∇u‖2

L2(|x|�r)
= o(1)

r
,

as r goes to infinity. Let χ ∈ C∞
0 (R3) be supported in {|x| � 2} with χ = 1 for |x| � 1, and let

un(x) = χ

(
x

n

)
u(x),

so that un converges to u in D′(R3) as n goes to infinity. We have

∇un(x) − ∇u(x) =
(

χ

(
x

n

)
− 1

)
∇u(x) + 1

n
u(x)∇χ

(
x

n

)
from which we infer, as n → ∞,

‖∇un − ∇u‖2
L2 � o(1) + C

n2

∫
n�|x|�2n

∣∣u(x)
∣∣2 dx � o(1)

in view of the above estimate on ‖Ur‖2
L2(S2)

. Using the Sobolev inequality, we conclude that (un) is a Cauchy sequence

in L6, hence u ∈ Ḣ 1. This completes the proof of Lemma 7. �
Remark 4.2. The above proof easily extends to functions u satisfying

∇u ∈ Lp
(
R

d
)

with p < d.

A consequence of this result is the well-known fact that, for every u such that ∇u ∈ Lp(Rd), p < d , there exists
c ∈ C such that u − c ∈ Lp∗

(R3), where p∗ is the Sobolev exponent; see e.g. Theorem 4.5.9 of Hörmander [14] for a
different proof. The case p = 2, d = 2 is more problematic, as suggested by the following example,

u(x) = exp
(
i
[
log

(
2 + |x|)]α)

, α <
1

2
.
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It is now easy to complete the proof of Proposition 4.1. Given u ∈ E, denote by c(u) the constant given by Lemma 1.
Since |u|2 − 1 ∈ L2, we have

+∞ >

∞∫
0

r2
∥∥|Ur |2 − 1

∥∥2
L2(S2)

dr � R2

R+1∫
R

∥∥|Ur | − 1
∥∥2

L2(S2)
dr

and the right-hand side is equivalent to 4πR2||c(u)| − 1|2 as R → ∞, which imposes |c(u)| = 1. It remains to set

v = u − c(u)

and to observe that c(v) = 0, hence v ∈ Ḣ 1, and finally in Fc(u).
Let us prove that the distance functions dE and δE are equivalent. It is enough to establish that there exists A > 0

such that, for complex numbers c, c̃ of modulus 1, for functions v, ṽ in Ḣ 1(R3),

1

A

(|c − c̃| + ‖∇v − ∇ṽ‖L2

)
� ‖c + v − c̃ − ṽ‖X1+H 1 � A

(|c − c̃| + ‖∇v − ∇ṽ‖L2

)
. (4.2)

If χ ∈ C∞
0 (R3) with χ = 1 near the origin, then it is clear that χ(D) maps Ḣ 1 into X1, while 1 − χ(D) maps Ḣ 1

into H 1. Consequently, writing

c + v − c̃ − ṽ = c − c̃ + χ(D)(v − ṽ) + (
1 − χ(D)

)
(v − ṽ),

we obtain the second inequality in (4.2). Conversely, if u belongs to X1 + H 1, then, by Lemma 7,

∣∣c(u)
∣∣2 = lim

R→∞
1

4π

∫
R�|x|�R+1

|u(x)|2
|x|2 dx,

which implies∣∣c(u)
∣∣ � A‖u‖L∞+L2 � A‖u‖X1+H 1,

and therefore

|c − c̃| � A‖c + v − c̃ + ṽ‖X1+H 1 .

Since, on the other hand, we have trivially

‖∇v − ∇ṽ‖L2 � ‖c + v − c̃ − ṽ‖X1+H 1,

this completes the proof of (4.2). �
One advantage of the structure provided by Proposition 4.1 arises when studying how the energy functional mea-

sures the distance in E to the circle of constants,

S1 = {
u ∈ E: E(u) = 0

}
.

It turns out that the situation is quite different in dimension 2 and dimension 3.

Proposition 4.3. If d = 3, there exists A > 0 such that, for every u ∈ E,

A−1dE

(
u,S1)2 � E(u) � AdE

(
u,S1)2

.

If d = 2, there exists a sequence (un) in E such that

E(un) → 0 but d
(
un,S

1) � c0 > 0.

Proof. First assume d = 3. In view of the expression of δE , we have, for every c ∈ S1,

δE(u, c)2 � ∣∣c(u) − c
∣∣2 + E(u)
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therefore, by Proposition 4.1,

dE

(
u,S1)2 � E(u).

If d = 2, we consider

un(x) = exp

(
i

n
φ(x)

)
, φ(x) = [

log
(
2 + |x|)]α, 0 < α <

1

2
.

Then it is clear that |un| = 1 and

‖∇un‖L2 = 1

n
‖∇φ‖L2

so that E(un) tends to 0. On the other hand, un(x) tends to 1 uniformly for x in the unit disc D, while, uniformly for
x ∈ yn + D, with

|yn| = e(θn)1/α

, θ > 0

we have

un(x) → eiθ .

Since

dE(f,g) � ‖f − g‖X1+H 1 � sup
y∈R2

‖f − g‖L2(y+D)

we conclude that dE(un,S
1) stays away from 0. �

4.2. Description of the dynamics

It is now easy to describe the dynamics of (1.1) in terms of the decomposition provided by Proposition 4.1.

Proposition 4.4. Let u0 = c + v0 with c of modulus 1 and v0 ∈ Fc. Then the solution u ∈ C(R,E) of (1.1) is given by

u(t) = c + v(t)

where v ∈ C(R,Fc) is the unique solution of

i∂tv + �v = (|v|2 + 2 Re
(
c−1v

))
v. (4.3)

Proof. For every t , we decompose

u(t) = c(t) + v(t)

with c ∈ C(R,C) and v ∈ C(R, Ḣ 1). Proposition 4.3 then reduces to the fact that c(t) = c for every t . For every t ,
observe that, by Theorem 1.1 and Proposition 2.3,

u(t) = uL(t) + H 1 = u0 + H 1 = c + Ḣ 1.

This completes the proof. �
Remark 4.5. Of course it is possible to solve directly Eq. (4.3) by using Strichartz estimates on the gradient, providing
a slightly different proof of Theorem 1.1 in the special case d = 3.

5. The four-dimensional case

In this last part, we sketch the proof of the following generalization of Theorem 1.1 to the four-dimensional case.
Since the cubic nonlinearity is critical, existence is only obtained for small energy data.
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Theorem 5.1. Assume d = 4. There exists δ > 0 such that, for every u0 ∈ E such that E(u0) � δ, there exists a unique
solution of (1.1) u ∈ C(R,E) with ∇u ∈ L2

loc(R),L4(R4)) and u(0) = u0. Moreover, the energy of u is constant, and
the flow map such defined enjoys the properties of regularity and Lipschitz continuity stated in Theorem 1.1 and in
Proposition 4.4.

Proof. According to Remark 4.2 and Proposition 4.4, we shall look u under the form

u(t) = c + v(t),

where c ∈ S1 and v(t) belongs to

Fc = {
v ∈ Ḣ 1(

R
4): c + v ∈ E

}
.

The specificity of dimension 4 is that the space Fc is a (real) vector space. Indeed, because of the Sobolev inclusion
Ḣ 1(R4) ⊂ L4(R4), we have

Fc = {
v ∈ Ḣ 1(

R
4): Re

(
c−1v

) ∈ L2(
R

4)}
and, if E(c + v) is small enough,

E(c + v) � ‖∇v‖2
L2 + ∥∥Re

(
c−1v

)∥∥2
L2 .

In particular, the approximation Lemma 6 still holds, though the proof we gave in Section 3 breaks down if d = 4.
The main argument for local existence is the following estimate of the Duhamel term (3.4), which is a consequence
of the nonhomogeneous Strichartz estimates (3.3),

sup
|t |�T

∥∥Φ(c + v)(t)
∥∥

H 1 + ∥∥∇Φ(c + v)
∥∥

L2
T (L4)

� C
(
T sup

|t |�T

√
E
(
c + v(t)

) + (√
T + ‖∇v‖L2

T (L4)

)
sup

|t |�T

E
(
c + v(t)

))
.

If E(c + v0) � δ, it is then possible to solve the Duhamel equation

v(t) = S(t)(v0) + Φ(c + v)(t)

by a contraction argument in the space

YT,δ =
{
v ∈ C

([−T ,T ],Fc

)
: ∇v ∈ L2([−T ,T ],L4(

R
4)),

sup
|t |�T

E
(
c + v(t)

)
� Aδ, ‖∇v‖L2

T (L4) � B
√

δ
}

for δ and T small enough. �
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