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Abstract

The generalized Korteweg–de Vries equation has the property that solutions with initial data that are analytic in a st
complex plane continue to be analytic in a strip as time progresses. Established here are algebraic lower bounds on th
rate of decrease in time of the uniform radius of spatial analyticity for these equations. Previously known results
exponentially decreasing bounds.

Résumé

Si la donnée initiale est analytique sur une bande dans le plan complexe, alors la solution de l’équation de Kortew
Vries généralisée le reste pour tout temps. Nous montrons que la largeur de cette bande décroit algébriquement en
résultats antérieurs ne donnaient qu’un taux de décroissance exponentiel.

1. Introduction

This paper deals with the initial-value problem for the generalized Korteweg–de Vries (gKdV) equation

ut + uxxx + upux = 0, (1)

wherep � 1 is a positive integer, andu is a function of the two real variablesx andt . Eq. (1) withp = 1 orp = 2
arises in modeling wave phenomena in a variety of physical situations. For larger values ofp, (1) has come to th
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In applications of (1) to physical problems, the dependent variableu is usually real-valued. However, for se
eral reasons, complex-valued solutions have attracted interest lately. The present paper aims to add to
discussion. Interest will be focused upon solutionsu(x, t) of (1) which, while real-valued for real valuesx andt ,
admit an extension as an analytic function to a complex stripSσ = {x + iy : |y| < σ }, at least for small values ofσ .
In consequence, initial datau0(x) = u(x,0) will be drawn from a suitable class of analytic functions. It should
noted that there are situations where analytic solutions emanate from non-analytic initial data (see e.g. [7,
example, it is proved in [16] that for the KdV equation itself, the casep = 1 in (1), a certain class of initial dat
with a single point singularity yields analytic solutions. However, these results do not produce explicit es
on a radiusσ of spatial analyticity of solutions. If, on the other hand, the initial datumu0 is analytic in a symmetric
strip around the real axis, it has recently been established that the solution will retain analyticity in the same
least for a small time [10] (see also [11,12]). The present work is focused on studying the asymptotics of th
σ of the strip of analyticity for larget , assuming that a certain Sobolev norm of the solution remains finite. The
result in this direction was proved by Kato and Masuda in [15] where the rate of decrease ofσ in time was shown
to be at mostsuper-exponential. More recently, anexponential bound on the width of the strip was presented
[3] via a Gevrey-class technique. Our intuition, partly based on the existence of algebraic bounds on the
increase in time of Sobolev norms for (1), as shown by Staffilani [20], suggested that analgebraic lower bound for
the widthσ of the strip may hold. The goal of this paper is to provide an affirmative answer to this conjectur
main ingredient in the proof is a new multilinear estimate in Bourgain–Gevrey spaces. This estimate eff
introduces a power ofσ as a prefactor in the nonlinear term, and this induces the algebraic decrease ofσ over time.

The appropriate notation and function spaces are introduced in the next section, while Section 3 conta
auxiliary linear estimates. Multilinear estimates are proved in Section 4, and the proof of the main theorem
in Section 5.

2. Function space setting

The Fourier transform of a functionv0 belonging to the Schwartz class is defined by

v̂0(ξ) = 1√
2π

∞∫
−∞

v0(x)e−ixξ dx.

For a functionv(x, t) of two variables, the spatial Fourier transform is denoted by

Fxv(ξ, t)x = 1√
2π

∞∫
−∞

v(x, t)e−ixξ dx,

whereas the notation̂v(ξ, τ ) designates the space–time Fourier transform

v̂(ξ, τ ) = 1

2π

∞∫
−∞

∞∫
−∞

u(x, t)e−ixξ e−itτ dxdt.

Define Fourier multiplier operatorsA andΛ by

Âv(ξ, τ ) = (
1+ |ξ |)v̂(ξ, τ )

and

Λ̂v(ξ, τ ) = (
1+ |τ |)v̂(ξ, τ ).
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The following notation is used to signify theLp-Lq space–time norms;

‖v‖LpLq =
{ ∞∫

−∞

∣∣∣∣∣
∞∫

−∞

∣∣v(x, t)
∣∣q dt

∣∣∣∣∣
p/q

dx

}1/p

.

A class of analytic functions suitable for our analysis is the analytic Gevrey classGσ,s , introduced by Foias an
Temam [8], which may be defined as the domain of the operatorAs eσA in L2. The Gevrey norm is defined to be

‖v0‖2
Gσ,s

=
∞∫

−∞

(
1+ |ξ |)2s e2σ(1+|ξ |)∣∣v̂0(ξ)

∣∣2 dξ.

It is straightforward to check that a function inGσ,s is the restriction to the real axis of a function analytic o
symmetric strip of width 2σ . The strip{z = x + iy : |y| < σ } will be denoted bySσ .

To efficiently exploit the dispersive effects inherent in (1), we consider a space that is a hybrid betw
analytic Gevrey space and a space of the Bourgain-type. More precisely, forσ > 0, s ∈ R, andb ∈ [−1,1] define
Xσ,s,b to be the Banach space equipped with the norm

‖v‖2
σ,s,b =

∞∫
−∞

∞∫
−∞

(
1+ |τ − ξ3|)2b(1+ |ξ |)2s e2σ(1+|ξ |)∣∣v̂(ξ, τ )

∣∣2 dξ dτ.

Forσ = 0, Xσ,s,b coincides with the spaceXs,b introduced by Bourgain, and Kenig, Ponce and Vega. The nor
Xs,b is denoted by‖ · ‖s,b and is defined by the integral

‖v‖2
s,b =

∞∫
−∞

∞∫
−∞

(
1+ |τ − ξ3|)2b(1+ |ξ |)2s∣∣v̂(ξ, τ )

∣∣2 dξ dτ.

It follows directly from the Sobolev embedding theorem that the inequality

sup
t∈[0,T ]

∥∥v(·, t)∥∥
Gσ,s

� c‖v‖σ,s,b (2)

holds forb > 1
2. In addition, ifv0 ∈ Gσ andε is such that 0< ε < σ , thenv0 and all of its derivatives are bounde

on the smaller stripSσ−ε .

Proposition 1. Let 0< ε < σ and n ∈ N be given. Then there exists a constant c depending on ε and n, such that

sup
x+iy∈Sσ−ε

∣∣∂n
x f (x + iy)

∣∣ � c‖f ‖Gσ .

Proof. This is a direct consequence of the inequality

‖f ‖Gσ−ε,n+1 � cn,ε‖f ‖Gσ (3)

which holds forn ∈ N, and the Sobolev embedding theorem. The inequality (3) follows from the relation

sup
ξ∈R

{
e−ε(1+|ξ |)(1+ |ξ |)n+1} = cn,ε,

wherecn,ε = ((n + 1)/e)n+1(1/εn+1). Note thatcn,ε → ∞ asε → 0, as one would expect.�
The spaceXσ,s,b was introduced by two of the authors in [10], where it was useful to obtain local-in-time

posedness of (1) inGσ,s for an appropriate range of parameterss andb. Here, interest is focused on the glob
behavior of solutions inXσ,s,b, whereσ will be allowed to vary in time.
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Since the analysis is based on boundedness inXσ,s,b of an integral operator given by a variation-of-consta
formula, certain estimates of the solutions of the corresponding linear problem are needed. These estim
addressed now. Denote by{W(t)}∞t=−∞ the solution group associated with the homogeneous linear problem

wt + wxxx = 0,

w(x,0)= w0(x).

}
(4)

Let ψ be an infinitely differentiable cut-off function such that 0� ψ � 1 everywhere and

ψ(t) =
{

0, |t | � 2,

1, |t | � 1,

and, forT > 0, letψT (t) = ψ(t/T ).

Lemma 1. Let σ � 0, b > 1
2 , b − 1< b′ < 0, and T � 1. Then there is a constant c such that∥∥ψT (t)W(t)u0(x)

∥∥
σ,s,b

� cT 1/2‖u0‖Gσ,s , (5)∥∥ψT (t)u(x, t)
∥∥

σ,s,b
� c‖u‖σ,s,b (6)

and ∥∥∥∥∥ψT (t)

t∫
0

W(t − s)v(s)ds

∥∥∥∥∥
σ,s,b

� cT ‖v‖σ,s,b′ . (7)

Proof. The proof of (5) is immediate from the definition ofXσ,s,b, the linearity of the operator eσA and Lemma 3.1
in [18]. In the same way, (6) follows from Lemma 3.2 in [18]. For the proof of (7), one follows the pro
Lemma 2.1 in [9] step by step, keeping in mind thatT � 1. The actual bound that emerges from these ruminat
is c max{T ,T 1−b+b′ }, but since 1− b + b′ < 1

2 andT � 1, the first term is dominant.�
The second kind of linear estimates needed are Kato-type smoothing inequalities and maximal funct

inequalities. For a suitable functionf , defineFρ via its Fourier transform̂Fρ , viz.

F̂ρ(ξ, τ ) = f (ξ, τ )

(1+ |τ − ξ3|)ρ . (8)

Lemma 2 (Bourgain). Let ρ > 1
4 be given. Then there is a constant c, depending on ρ, such that

‖A1/2Fρ‖L4L2 � c‖f ‖L2L2. (9)

For the proof of this lemma, the reader is referred to [6].

Lemma 3 (Kenig–Ponce–Vega). Lets and ρ be given. There is a constant c, depending on s and ρ, such that

(i) If ρ > 1
2 , then

‖AFρ‖L∞L2 � c‖f ‖L2L2; (10)

(ii) If ρ > 1
2 and s > 3ρ, then∥∥A−sFρ

∥∥
L2L∞ � c‖f ‖L2L2; (11)



J.L. Bona et al. / Ann. I. H. Poincaré – AN 22 (2005) 783–797 787

proved

feature
he

n

(iii) If ρ > 1
2 and s > 1

4 , then∥∥A−sFρ

∥∥
L4L∞ � c‖f ‖L2L2; (12)

(iv) If ρ > 1
2 and s > 1

2 , then∥∥A−sFρ

∥∥
L∞L∞ � c‖f ‖L2L2. (13)

The inequality (10) was proved in [18]. The estimates (11) and (13) were proved in [10], and (12) can be
analogously using an estimate appearing in [17].

4. Multilinear estimates in Bourgain–Gevrey spaces

The goal of this section is to prove some multilinear estimates in analytic Bourgain–Gevrey spaces which
explicit dependence on the radius of spatial analyticityσ . These inequalities will play a key role in obtaining t
algebraically decreasing time-asymptotics forσ .

Theorem 1. Let σ > 0, s > 3
2, b > 1

2, b′ < −1
4 and p � 2. Then there exists a constant c > 0 depending only on

s, b, and b′ such that∥∥∂x(u1 . . . up+1)
∥∥

σ,s,b′ � c‖u1‖s,b · · · ‖up+1‖s,b + cσ 1/2‖u1‖σ,s,b · · · ‖up+1‖σ,s,b. (14)

Proof. We present the proof in the casep = 2 and comment on the casep > 2. First note that (14) can be writte
more explicitly as∥∥(

1+ |τ − ξ3|)b′(
1+ |ξ |)s eσ(1+|ξ |)|ξ |û1u2u3(ξ, τ )

∥∥
L2

ξ L2
τ

� c‖u1‖s,b‖u2‖s,b‖u3‖s,b + cσ 1/2‖u1‖σ,s,b‖u2‖σ,s,b.‖u3‖σ,s,b.

Definevi , i = 1,2,3, by

vi(ξ, τ ) = (
1+ |ξ |)s(1+ |τ − ξ3|)b eσ(1+|ξ |)ûi (ξ, τ ).

Then, proving the inequality (14) is equivalent to establishing the estimate∥∥∥∥ (1+ |ξ |)s |ξ |eσ(1+|ξ |)

(1+ |τ − ξ3|)−b′

∫
R4

v1(ξ1, τ1)e−σ(1+|ξ1|)(1+ |ξ1|)−s

(1+ |τ1 − ξ3
1 |)b

v2(ξ − ξ2, τ − τ2)e−σ(1+|ξ−ξ2|)(1+ |ξ − ξ2|)−s

(1+ |τ − τ2 − (ξ − ξ2)3|)b

× v3(ξ2 − ξ1, τ2 − τ1)e−σ(1+|ξ2−ξ1|)(1+ |ξ2 − ξ1|)−s

(1+ |τ2 − τ1 − (ξ2 − ξ1)3|)b dξ1 dτ1 dξ2 dτ2g

∥∥∥∥
L2

ξ L2
τ

� c
∥∥e−σ(1+|ξ |)v1

∥∥
L2

ξ L2
τ

∥∥e−σ(1+|ξ |)v2
∥∥

L2
ξ L2

τ

∥∥e−σ(1+|ξ |)v3
∥∥

L2
ξ L2

τ
+ cσ‖v1‖L2

ξ L2
τ
‖v2‖L2

ξ L2
τ
‖v3‖L2

ξ L2
τ
.

Using duality, it suffices to estimate a 6-fold integral of the form∫
R6

h(ξ, τ )(1+ |ξ |)1+s eσ(1+|ξ |)

(1+ |τ − ξ3|)−b′
v1(ξ1, τ1)e−σ(1+|ξ1|)(1+ |ξ1|)−s

(1+ |τ1 − ξ3
1 |)b

× v2(ξ − ξ2, τ − τ2)e−σ(1+|ξ−ξ2|)(1+ |ξ − ξ2|)−s

(1+ |τ − τ2 − (ξ − ξ2)3|)b

× v3(ξ2 − ξ1, τ2 − τ1)e−σ(1+|ξ2−ξ1|)(1+ |ξ2 − ξ1|)−s

3 b
dµ
(1+ |τ2 − τ1 − (ξ2 − ξ1) |)
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whereh is an arbitrary element of the unit ballB in L2(R2) and dµ= dξ2 dτ2 dξ1 dτ1 dξ dτ. Using the simple
inequality

eσ(1+|ξ |) � e+ σ 1/2(1+ |ξ |)1/2
eσ(1+|ξ |), (15)

it is plain that the latter integral is bounded byI1 + I2 where

I1 = e sup
h∈B

∫
R6

|h(ξ, τ )|(1+ |ξ |)1+s

(1+ |τ − ξ3|)−b′
|v1(ξ1, τ1)|e−σ(1+|ξ1|)(1+ |ξ1|)−s

(1+ |τ1 − ξ3
1 |)b

× |v2(ξ − ξ2, τ − τ2)|e−σ(1+|ξ−ξ2|)(1+ |ξ − ξ2|)−s

(1+ |τ − τ2 − (ξ − ξ2)3|)b

× |v3(ξ2 − ξ1, τ2 − τ1)|e−σ(1+|ξ2−ξ1|)(1+ |ξ2 − ξ1|)−s

(1+ |τ2 − τ1 − (ξ2 − ξ1)3|)b dµ

and

I2 = σ 1/2 sup
h∈B

∫
R6

|h(ξ, τ )|(1+ |ξ |)1+s(1+ |ξ |)1/2 eσ(1+|ξ |)

(1+ |τ − ξ3|)−b′
|v1(ξ1, τ1)|e−σ(1+|ξ1|)(1+ |ξ1|)−s

(1+ |τ1 − ξ3
1 |)b

× |v2(ξ − ξ2, τ − τ2)|e−σ(1+|ξ−ξ2|)(1+ |ξ − ξ2|)−s

(1+ |τ − τ2 − (ξ − ξ2)3|)b

× |v3(ξ2 − ξ1, τ2 − τ1)|e−σ(1+|ξ2−ξ1|)(1+ |ξ2 − ξ1|)−s

(1+ |τ2 − τ1 − (ξ2 − ξ1)3|)b dµ.

To analyzeI1, split the integration with respect toξ, ξ1, ξ2 into six regions corresponding to combinations
inequalities such as|ξ2 − ξ1| � |ξ − ξ2| � |ξ1|, and estimate the integral on each region separately. The porti
I1 corresponding to the particular region just delineated can be dominated by the supremum over allh in B of the
duality relation〈

A1/2H+
−b′ ,e−σAA1/2(V1)

+
b e−σAA−s(V2)

+
b e−σAA−s(V3)

+
b

〉
where〈·, ·〉 denotes the inner product inL2(R2) andH+

−b′ and(Vi)
+
b are related to|h| and |vi |, respectively, as

in (8). This inner product can be bounded by the quantity∥∥A1/2H−b′
∥∥

L4L2

∥∥e−σAA1/2(V1)b
∥∥

L4L2

∥∥e−σAA−s(V2)b
∥∥

L2L∞
∥∥e−σAA−s(V3)b

∥∥
L∞L∞ .

Using the estimates (9), (11), and (13), it is deduced that

I1 � c
∥∥e−σAv1

∥∥
L2L2

∥∥e−σAv2
∥∥

L2L2

∥∥e−σAv3
∥∥

L2L2
.

The other five cases (e.g.|ξ2 − ξ1| � |ξ1| � |ξ − ξ2|, |ξ − ξ2| � |ξ2 − ξ1| � |ξ1|, etc.) follow by symmetry.
To effect a similar analysis ofI2 first note that

eσ(1+|ξ |) � eσ(1+|ξ1|) eσ(1+|ξ−ξ2|) eσ(1+|ξ2−ξ1|)

and then split theξ -integrations exactly as in the treatment ofI1. This strategy yields the inequality

I2 � σ 1/2 sup
h∈B

∥∥A1/2H−b′
∥∥

L4L2

∥∥A(V1)b
∥∥

L∞L2

∥∥A−s(V2)b
∥∥

L2L∞
∥∥A−s(V3)b

∥∥
L4L∞

� cσ 1/2‖v1‖L2L2‖v2‖L2L2‖v3‖L2L2

where the estimates (9)–(11) and (12) were used. Notice that in estimatingI2, both types of smoothing results we
needed to compensate for the extra half-derivative coming from the inequality (15). This concludes the pro
casep = 2.
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In casep > 2, the same scheme of estimation will yieldp − 2 additional factors of the form∥∥A−s(Vi)b
∥∥

L∞L∞ .

These remaining factors can be handled using (13).�
For p = 1, there are too few factors to absorb an extra power of the spatial derivative in an analogo

However, by carefully splitting the(ξ, τ )-Fourier space into a number of regions and then applying the smoo
and the maximal function-type estimates, it is possible to overcome this difficulty, as is now demonstrated

Theorem 2. Let σ > 0, s � 0, b > 1
2 and b′ � −3

8 . Then there exists a constant c depending only on s, b, and b′
such that∥∥∂x(uv)

∥∥
σ,s,b′ � c‖u‖s,b‖v‖s,b + cσ 1/4‖u‖σ,s,b‖v‖σ,s,b.

Proof. Only the cases = 0 is treated; the cases > 0 is straightforwardly reduced to the cases = 0. The inequality

eσ(1+|ξ |) � e+ σ 1/4(1+ |ξ |)1/4 eσ(1+|ξ |) (16)

will play the role of (15) in the proof of the previous theorem. Setting

f (ξ, τ ) = (
1+ |τ − ξ3|)b eσ(1+|ξ |)û(ξ, τ )

and

g(ξ, τ ) = (
1+ |τ − ξ3|)b eσ(1+|ξ |)v̂(ξ, τ ),

it is required to bound appropriately the quantity∫
R4

h(ξ, τ )|ξ |eσ(1+|ξ |)

(1+ |τ − ξ3|)−b′
f (ξ1, τ1)e−σ(1+|ξ1|)

(1+ |τ1 − ξ3
1 |)b

g(ξ − ξ1, τ − τ1)e−σ(1+|ξ−ξ1|)

(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ (17)

uniformly in h belonging to the unit ballB in L2(R2) where dµ= dξ1 dτ1 dξ dτ. Using the inequality (16), th
integral (17) is bounded by the sum of the two terms

I1 = e sup
h∈B

∫
R4

|h(ξ, τ )||ξ |
(1+ |τ − ξ3|)−b′

|f (ξ1, τ1)|e−σ(1+|ξ1|)

(1+ |τ1 − ξ3
1 |)b

|g(ξ − ξ1, τ − τ1)|e−σ(1+|ξ−ξ1|)

(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ

and

I2 = σ 1/4 sup
h∈B

∫
R4

|h(ξ, τ )||ξ |(1+ |ξ |)1/4 eσ(1+|ξ |)

(1+ |τ − ξ3|)−b′
|f (ξ1, τ1)|e−σ(1+|ξ1|)

(1+ |τ1 − ξ3
1 |)b

|g(ξ − ξ1, τ − τ1)|e−σ(1+|ξ−ξ1|)

(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ.

The first term can be dominated by

c
∥∥e−σAf

∥∥
L2L2

∥∥e−σAg
∥∥

L2L2

in a way completely analogous to the estimate in the casep � 2. EstimatingI2 in the casep = 1 turns out to be a
bit more challenging. First, observe thatI2 can be dominated by

σ 1/4 sup
h∈B

∫
R4

|h(ξ, τ )|(1+ |ξ |)5/4

(1+ |τ − ξ3|)−b′
|f (ξ1, τ1)|

(1+ |τ1 − ξ3
1 |)b

|g(ξ − ξ1, τ − τ1)|
(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ (18)

because e(1+|ξ |) � e(1+|ξ1|) e(1+|ξ−ξ1|). Proceeding as in [6] and [18], the relation

τ − ξ3 − [
(τ1 − ξ3

1 ) + (τ − τ1) − (ξ − ξ1)
3] = 3ξ1(ξ − ξ1)ξ
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the
implies that one of the cases

(a) |τ − ξ3| � |ξ1||ξ − ξ1||ξ |,
(b) |τ1 − ξ3

1 | � |ξ1||ξ − ξ1||ξ | or

(c)
∣∣τ − τ1 − (ξ − ξ1)

3
∣∣ � |ξ1||ξ − ξ1||ξ |

(19)

always occurs. In case (a), the quantity in (18) is bounded by

σ 1/4 sup
h∈B

∫
R4

∣∣h(ξ, τ )
∣∣(1+ |ξ |)5/4+b′ (1+ |ξ1|)b′ |f (ξ1, τ1)|

(1+ |τ1 − ξ3
1 |)b

(1+ |ξ − ξ1|)b′ |g(ξ − ξ1, τ − τ1)|
(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ.

We now split the domain of integration into two further subregions,|ξ1| > |ξ − ξ1| and|ξ1| � |ξ − ξ1|. In the region
where|ξ1| > |ξ − ξ1|, the quantity in the just displayed integral is dominated by

σ 1/4 sup
h∈B

∫
R4

∣∣h(ξ, τ )
∣∣(1+ |ξ |)b′+3/8 (1+ |ξ1|)7/8+b′ |f (ξ1, τ1)|

(1+ |τ1 − ξ3
1 |)b

(1+ |ξ − ξ1|)b′ |g(ξ − ξ1, τ − τ1)|
(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ.

The latter integral can be further bounded by

sup
h∈B

〈
Ab′+3/8H+

0 , A7/8+b′
F+

b Ab′
G+

b

〉
� c sup

h∈B

∥∥Ab′+3/8H0
∥∥

L2L2

∥∥A7/8+b′
Fb

∥∥
L4L2

∥∥Ab′
Gb

∥∥
L4L∞

� c‖f ‖L2L2‖g‖L2L2

whereH+
0 ,F+

b andG+
b are related to|h|, |f | and |g|, respectively, as in (8). Since the last two factors in

integral have identical structure, the analysis in the region|ξ1| � |ξ − ξ1| is the same.
In case (b), the quantity in (18) is dominated by

σ 1/4 sup
h∈B

∫
R4

|h(ξ, τ )|(1+ |ξ |)5/4−b

(1+ |τ − ξ3|)−b′
|f (ξ1, τ1)|
(1+ |ξ1|)b

|g(ξ − ξ1, τ − τ1)|
(1+ |ξ − ξ1|)b(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ.

We split the domain of integration into the same two subregions as before. In the region where|ξ1| > |ξ − ξ1|, the
quantity is dominated by

σ 1/4 sup
h∈B

∫
R4

|h(ξ, τ )|(1+ |ξ |)5/4−2b

(1+ |τ − ξ3|)−b′
∣∣f (ξ1, τ1)

∣∣ |g(ξ − ξ1, τ − τ1)|
(1+ |ξ − ξ1|)b(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ,

and the latter can be bounded by

sup
h∈B

〈
A5/4−2bH+

−b′ ,F
+
0 A−bG+

b

〉
� c sup

h∈B

∥∥A5/4−2bH−b′
∥∥

L4L2
‖f ‖L2L2

∥∥A−bGb

∥∥
L4L∞ � c‖f ‖L2L2‖g‖L2L2.

In the region|ξ1| � |ξ − ξ1|, the quantity is dominated by

σ 1/4 sup
h∈B

∫
R4

|h(ξ, τ )|(1+ |ξ |)1−b

(1+ |τ − ξ3|)−b′
|f (ξ1, τ1)|
(1+ |ξ1|)b

(1+ |ξ − ξ1|)1/4|g(ξ − ξ1, τ − τ1)|
(1+ |ξ − ξ1|)b(1+ |τ − τ1 − (ξ − ξ1)3|)b dµ.

The estimate continues in a similar fashion, namely

sup
h∈B

〈
A1−bH+

−b′ ,A−bF+
0 A1/4−bG+

b

〉
� c sup

h∈B

∥∥A1−bH−b′
∥∥

L4L2

∥∥A−bf
∥∥

L2L2

∥∥A1/4−bGb

∥∥
L4L∞

� c‖f ‖L2L2‖g‖L2L2.

The proof in case (c) in (19) is similar to the proof in case (b).�
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5. Algebraic lower bounds on σ

In this section, the algebraic decrease ofσ as a function of timeT is proved. The main objective is to obta
an a priori bound inGσ(T ),s on the solutions of (1) for a fixed but arbitraryT > 0. This bound, combined wit
the local existence theory in [10] will enable us to prove the desired result. To obtain such a bound, a seq
approximations to (1) is defined and it is proved that the sequence is bounded inGσ(T ),s for an appropriate valu
for σ(T ). Consider first the following result relating the boundedness of a Sobolev-type norm to the bound
of a Bourgain-type norm.

Lemma 4. Let s > −1
2, b ∈ [−1,1], T � 1, σ > 0, and let u be a solution of (1) on the time interval [−2T ,2T ].

(i) There exists a constant c depending only on s and b such that∥∥ψT (t)u(·, t)∥∥
s,b

� cT 1/2(1+ αT (u)
)p+1 (20)

where

αT (u) ≡ sup
t∈[−2T ,2T ]

∥∥u(·, t)∥∥
s+1. (21)

(ii) There exists a constant c depending only on s and b such that∥∥ψT (t)u(·, t)∥∥
σ,s,b

� cT 1/2(1+ βT (u)
)p+1 (22)

where

βT (u) ≡ sup
t∈[−2T ,2T ]

∥∥u(·, t)∥∥
Gσ,s+1

. (23)

Proof. Changing variables in the definition of the norm, it follows immediately that

∥∥ψT (t)u(x, t)
∥∥2

s,b
=

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣Λb
(
ψT (t)e−iξ 3tFxu(ξ, t)

)∣∣2 dt dξ

� c

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣ψT (t)e−iξ 3tFxu(ξ, t)
∣∣2 dt dξ

+ c

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣∂t

(
ψT (t)e−iξ 3tFxu(ξ, t)

)∣∣2 dt dξ.

Differentiating with respect tot , the second integrand is seen to be

1

T
ψ ′

T (t)e−iξ 3tFxu(ξ, t) + ψT (t)(−iξ 3)e−iξ 3tFxu(ξ, t) + ψT (t)e−iξ 3tFxut (ξ, t).

Using the equationut = −upux − uxxx , the last term can be replaced by

− 1

p + 1
ψT (t)e−iξ 3t iξFx(u

p+1)(ξ, t) − ψT (t)(−iξ 3)e−iξ 3tFxu(ξ, t).

Notice that the terms containing the third derivative cancel. Thus there appears the inequality
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∥∥ψT (t)u(x, t)
∥∥2

s,b
� c

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣ψT (t)e−iξ 3tFxu(ξ, t)
∣∣2 dt dξ

+ c

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣∣∣ 1

T
ψ ′

T (t)e−iξ 3tFxu(ξ, t)

∣∣∣∣2 dt dξ

+ c

∞∫
−∞

(
1+ |ξ |)2s

∞∫
−∞

∣∣∣∣ 1

p + 1
ψT (t)e−iξ 3t iξFx(u

p+1)(ξ, t)

∣∣∣∣2 dt dξ

� 2c

∞∫
−∞

(
1+ |ξ |)2s

2T∫
−2T

∣∣Fxu(ξ, t)
∣∣2 dt dξ + c

∞∫
−∞

(
1+ |ξ |)2s

2T∫
−2T

∣∣ξFx(u
p+1)(ξ, t)

∣∣2 dt dξ

� 8cT sup
t∈[−2T ,2T ]

∥∥u(·, t)∥∥2
Hs + 4cT sup

t∈[−2T ,2T ]
∥∥up+1(·, t)∥∥2

Hs+1.

It is now clear that the inequality (20) holds. The proof of part (ii) is obtained by adding the exponential w
e2σ(1+|ξ |) to theξ -integral in the proof of (i). �

Next, define a sequence of approximations to (1) as follows. Consider the initial-value problems

un
t + un

xxx = − 1

p + 1
∂x

[
(ηn ∗ ψSun)p+1

]
,

un(x,0)= u0(x),

 (24)

for n in N andS > 0 whereηn is defined via its Fourier transform to be

η̂n(ξ) =
{

0, |ξ | � 2n,

1, |ξ | � n,

andη̂n is smooth and monotone on(−2n,−n) and(n,2n). Eachηn is therefore an entire function of exponent
type. The following properties of{un} are evident sinceFx[∂x(ηn ∗ ψSun)p+1] is a smooth function with compac
support for(ξ, t) ∈ R × R.

Lemma 5. (i) Let r � 0 and u0 ∈ Hr , and let u be a solution of (1) with initial data u0 that lies in C([−2S,2S],H r)

for some S > 0. For n = 1,2, . . . , let un be the solution of (24) with initial data u0. Then each un lies in
C((−2S,2S),Hr), and the sequence {un} converges to u in C([−S,S],H r). In addition, the bounds in Lemma 4
hold for each un, uniformly in n.

(ii) An identical result holds in C([−S,S],Gσ,r ) provided u0 ∈ Gσ,r for some σ > 0.

Henceforth, it is assumed thatu is a solution of (1) inC([−4T ,4T ],H s+1) with initial datau0 in Gσ0,s+1 for
someσ0 > 0 ands > 3

2. Note that Lemma 5 and (24) withT = S imply that

ψT (t)un = ψT (t)W(t)u0 − 1

p + 1
ψT (t)

t∫
0

W(t − s)∂x

([
ηn ∗ (ψT un)

]p+1)ds (25)

holds for allt in (−∞,∞). This representation will reveal thatψT un is in Xσ,s,b for all n in N. Our goal now is to
show that there exists aσ(T ) and a suitableR(T ) such that the sequence{ψT un} lies in the ballBR(T ) ⊂ Xσ(T ),s,b

of radiusR(T ) for n large enough.
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Proposition 2. Let T � 1,p � 2, σ0 > 0, s > 3
2 and b = 1

2 + ε for some ε in the range 0 < ε < 1
4 . Suppose u

is a solution of (1) in C([−4T ,4T ],H s+1) with initial data u0 ∈ Gσ0,s+1. Then there exist constants σ1 < σ0
and K > 0 depending on s, b,p,‖u0‖Gσ0,s+1 and αT (u) (see (21)) such that the sequence {ψT un} is bounded in
Xσ(T ),s,b as long as

σ(T ) � min
{
σ1,KT −(p2+3p+2)

}
. (26)

For the proof of this proposition, use will be made of the following inequality which was proved by two o
authors (Theorem 11 in [3]). It is worth note that the hypothesiss > 3

2 goes back to the seminal work of Ka
[13,14].

Theorem 3 (Bona–Grujíc). Let u be the solution of (1) corresponding to the initial data u0 ∈ Gσ0,s+1 for some
σ0 > 0 and s > 3

2 , and let τ > 0. Then

sup
t∈[−2τ,2τ ]

∥∥u(·, t)∥∥
Gσ(t),s+1

� ‖u0‖Gσ0,s+1 + Cτ1/2 sup
t∈[−2τ,2τ ]

∥∥u(·, t)∥∥(p+2)/2
Hs+1 , (27)

with σ(t) = σ0 e−γ (t), and

γ (t) = 1

p + 1

t∫
0

[
d1 + d2

t ′∫
0

∥∥u(·, t ′′)∥∥p+2
Hs+1 dt′′

]p

dt′,

where d1 = ‖u0‖2
Gσ0,s+1

, and d2 is a constant depending only on s and p.

Notice that this theorem implies that

sup
t∈[−2τ,2τ ]

γ (t) � d3τ‖u0‖2p
Gσ0,s+1

+ d4τ
p sup

t∈[−2τ,2τ ]
∥∥u(·, t)∥∥p(p+2)

Hs+1 (28)

whered3 = 2p/(p + 1) andd4 = 22pd
p

2 /(p + 1). With this estimate in hand, we can mount a direct attack
proving the foregoing proposition.

Proof of Proposition 2. From Eq. (25), the linear estimates (5) and (7), and the multilinear estimate in Theo
it follows that

‖ψT un‖σ,s,b � ‖ψT W(t)u0‖σ,s,b + 1

p + 1

∥∥∥∥∥ψT

t∫
0

W(t − s)∂x

[(
ηn ∗ ψT un(s)

)p+1]ds

∥∥∥∥∥
σ,s,b

� cT 1/2‖u0‖Gσ,s + cT
∥∥∂x

[
(ηn ∗ ψT un)p+1]∥∥

σ,s,b′

� cT 1/2‖u0‖Gσ,s + cT
{‖ψT un‖p+1

s,b + σ 1/2‖ψT un‖p+1
σ,s,b

}
for any 0< σ � σ0, whereb′ = b − 1 + ε′ for someε′ > 0 small enough, and for some large enough constac

depending only ons, b andb′. Next, note that (see Lemmas 4 and 5)

‖ψT un‖s,b � cT 1/2(1+ αT (un)
)p+1 � 2cT 1/2(1+ αT (u)

)p+1

for n andc large enough. Here,αT (u) is as in (21). Thus, the first inequality in the proof may be extended to

‖ψT un‖σ,s,b � cT 1/2‖u0‖Gσ,s + cT (p+3)/2(1+ αT (u)
)(p+1)2 + cT σ 1/2‖ψT un‖p+1 (29)
σ,s,b
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for n large and an appropriate constantc. The relation (29) holds under the presumption thatT � 1. Additional
information about the boundedness of the sequence atT = 1 will now be provided by Theorem 3. To be mo
specific, using (22), (23), Lemma 5, and the bounds (27) and (28), the norm can be estimated atT = 1 as follows.

‖ψ1u
n‖σ1,s,b � c

(
1+ sup

t∈[−2,2]

∥∥un(·, t)∥∥
Gσ1,s+1

)p+1
� 2c

(
1+ sup

t∈[−2,2]

∥∥u(·, t)∥∥
Gσ1,s+1

)p+1

� 2cl
(
1+ ‖u0‖p+1

Gσ1,s+1
+ C sup

t∈[−2,2]

∥∥u(·, t)∥∥((p+1)(p+2))/2
Hs+1

)
≡ M1 (30)

for n large enough whereσ1 = σ0 e−γ (1) and

γ (1)= d3‖u0‖2p
Gσ0,s+1

+ d4 sup
t∈[−2,2]

∥∥u(·, t)∥∥p(p+2)

Hs+1 .

Consider a slightly weakened version of (29), namely

‖ψT un‖σ(T ),s,b � M1 + cT 1/2‖u0‖Gσ0,s + cT (p+3)/2(1+ αT (u)
)(p+1)2 + cT σ(T )1/2‖ψT un‖p+1

σ(T ),s,b (31)

for T � 1, σ (T ) � σ1 < σ0 and n large enough. Fixn large enough so that (30) holds and define depen
variablesz, a andd by

z = z(T ) = ‖ψT un‖σ(T ),s,b,

a = a(T ) = M1 + cT 1/2‖u0‖Gσ0,s + cT (p+3)/2(1+ αT (u)
)(p+1)2

and

d = d(T ) = cT .

With this notation, (31) becomes

z � a + dσ(T )1/2zp+1. (32)

If σ(T ) is defined to be

σ(T ) = δ2

d2a2p22p
,

then (32) becomes

y(1− δyp) � 1

2
,

wherey = y(T ) = z
2a

. It follows that by choosingδ small enough for a givenp, there are constantsm∗ andM∗
with 1

2 < m∗ < 1 < M∗ such that eithery � m∗ or y � M∗. Because of (30) and the definition ofa, z(1) � a, so
thaty(1)� 1

2 < m∗. Because‖ψT un‖σ(T ),s,b is a continuous function ofT � 1, it follows thaty � m∗ < 1 for all
T � 1, which means thatz(T ) � 2a for T � 1. This yields the desired estimate with a constantK depending onp,
s, b, b′, ‖u0‖Gσ0,s+1 andαT (u). �
Proposition 3. Let T � 1, p = 1, σ0 > 0, s > 3

2 and b = 1
2 + ε for some ε in the range 0 < ε < 1

8 . Suppose u

is a solution of (1) in C([−4T ,4T ],H s+1) with initial data u0 ∈ Gσ0,s+1. Then there exist constants σ1 < σ0 and
K > 0 depending on s, b,‖u0‖Gσ0,s+1 and αT (u) such that the sequence {ψT un} is bounded in Xσ(T ),s,b as long as

σ(T ) � min
{
σ1,KT −12}. (33)

Proof. Eq. (25), the linear estimates (5) and (7), and the bilinear estimate in Theorem 2 yield the inequalit

‖ψT un‖σ,s,b � cT 1/2‖u0‖Gσ0,s + cT
{‖ψT un‖2

s,b + σ 1/4‖ψT un‖2
σ,s,b

}
for an appropriate constantc. The proof now follows along the same lines as the proof of Proposition 2.�
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The estimates (26) and (33) provide the basis for the proof of the main theorem of the paper which i
next.

Theorem 4. (i) Let p � 2, and suppose that u0 ∈ Gσ,s+1 for some s > 3
2 and σ > 0. Let T � 1 and as-

sume that the solution u of (1) corresponding to the initial value u0 lies in C([−4T ,4T ],H s+1). Then u ∈
C([−T ,T ],Gσ(T )/2,s) where σ(T ) is given by (26).

(ii) Let p = 1, and suppose that u0 ∈ Gσ,s+1 for some s > 3
2 and σ > 0. Let T � 1 and assume that the solution

u of (1) corresponding to the initial value u0 lies in C([−4T ,4T ],H s+1). Then u ∈ C([−T ,T ],Gσ(T )/2,s) where
σ(T ) is given by (33).

Proof. It follows from Propositions 2 or 3 and inequality (2) that the sequence{un} associated withu0 as in (24)
is bounded inGσ(T ),s , uniformly on [−T ,T ]. Proposition 1 then implies that all the spatial derivatives ofun are
bounded on the stripSσ(T )/2,s . Since eachun satisfies Eq. (24), the time derivatives ofun are also uniformly
bounded on the stripSσ(T )/2,s .

Thus, in particular,{∂tu
n} and{∂k

xun} for k = 0,1,2,3 are equicontinuous families on(−T ,T ) × Sσ(T )/2 and
we can therefore extract a subsequence (call it{un} again) converging uniformly on compact subsets of(−T ,T )×
Sσ(T )/2 – along with the sequences{∂tu

n}, {∂xu
n} and{∂3

xun} – to a smooth functioñu. Passing to the limit in (24
reveals that̃u is a smooth extension ofu to (−T ,T ) × Sσ(T )/2. Moreover, since for everyt ∈ (−T ,T ), un(·, t)
converges uniformly on compact subsets inSσ(T )/2 to ũ(·, t), and eachun(·, t) is analytic onSσ(T )/2, ũ(·, t) is also
analytic onSσ(T )/2. In addition, since the sequence{un} is bounded inGσ(T )/2,s , uniformly on[−T ,T ], it follows
thatu ≡ ũ ∈ L∞((−T ,T ),Gσ(T )/2,s). This combined with the local-in-time well-posedness obtained in [10] yi
u ∈ C([−T ,T ],Gσ(T )/2,s), as advertised. �

This theorem has some interesting consequences. First, suppose that‖u(·, t)‖Hs+1 is bounded for all time. Then
Theorem 3 can be strengthened to yield the following.

Corollary 1. Let p � 2, and suppose that u0 ∈ Gσ,s+1 for some s > 3
2 and σ > 0. If supt∈(−∞,∞) ‖u(·, t)‖Hs+1 � C,

then for all T � 1, u ∈ C([−T ,T ],Gσ(T )/2,s), where σ(T ) is given by (26). The same result holds for p = 1, but
σ(T ) is given by (33).

In fact, for p = 1 or p = 2, all the integer Sobolev norms remain bounded owing to the well known in
sequence of polynomial conservation laws. Thus the following corollary emerges.

Corollary 2. (i) For p = 1, suppose that u0 ∈ Gσ,k+1 for some integer k � 2 and σ > 0. Then u ∈
C([−T ,T ],Gσ(T )/2,k) for any T � 1 where σ(T ) is given by

σ(T ) � min
{
σ1,KT −12}.

(ii) For p = 2, suppose that u0 ∈ Gσ,k+1 for some integer k � 2 and σ > 0. Then u ∈ C([−T ,T ],Gσ(T )/2,k) for
any T � 1 where σ(T ) is given by

σ(T ) � min
{
σ1,KT −24}.

Note that in both cases, the constantK depends only onk, p and‖u0‖Gσ,k+1, as well as on the choice ofb
andb′.

Time-independent bounds on Sobolev norms of solutions of (1) in casep = 3 are known only forH 1. However,
solutions are globally defined. On the other hand, forp = 4 there is a finite-time blow-up [19]. Strong numeric
evidence supplemented with scaling arguments indicate that some solutions may lose regularity in finite
p > 4 [1,2,4]. Consequently, assuming finiteness of a certain Sobolev norm whenp � 3 seems necessary f
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studying global-in-time analyticity of solutions. According to Corollary 1, uniform-in-timeHr -boundedness fo
somer > 5

2 suffices. The following theorem due to Staffilani implies that this can be scaled down to unifo
timeH 1-boundedness.

Theorem 5 (Staffilani). Let p � 3 and s > 1. Assume that for a solution u of (1) supt∈(−∞,∞) ‖u(·, t)‖H1 � C.

Then there exists a constant c(s,p) such that the estimate∥∥u(·, t)∥∥
Hs � c(s,p)

(
1+ |t |)s−1

holds for all t in (−∞,∞).

More precisely, Corollary 1 and Theorem 5 yield the following result.

Corollary 3. Let p � 3 and suppose that u0 ∈ Gσ,s+1 for some s > 3
2 and σ > 0. Assume that for a solution u of

(1) emanating from u0, supt∈(−∞,∞) ‖u(·, t)‖H1 � C. Then u ∈ C([−T ,T ],Gσ(T )/2,s) for any T � 1 where σ(T )

is given by

σ(T ) � min
{
σ1,KT −µ(s,p)

}
,

with µ(s,p) = (p2 + 3p + 2)+ 2p(p + 1)2s, and the constant K depending only on s,p and ‖u0‖Gσ,s+1 , and on
the choice of b and b′.

Noting that indeed theH 1-norm stays bounded for all time ifp = 3, the final corollary emerges.

Corollary 4. Let p = 3 and suppose that u0 ∈ Gσ,s+1 for some s > 3
2 and σ > 0. Then there exists a solution

u ∈ C([−T ,T ],Gσ(T )/2,s) of (1) for any T � 1, where σ(T ) is given by

σ(T ) � min
{
σ1,KT −20−96s

}
.

Also in this case, the constantK depends only ons and‖u0‖Gσ,s+1, as well as on the choice ofb andb′.
This paper has been concerned with the question of lower bounds on the uniform radius of spatial analyσ .

The question of upper bounds is currently being studied by the authors using a completely different m
based on finite-time blow-up results for certain complex-valued solutions for a large class of nonlinear dis
wave equations presented in [5]. If such upper bounds could indeed be proved, the complex singularitie
be confined between the lower and the upper bounds. This would yield a much more precise descriptio
dynamics of complex singularities in time.
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