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Abstract

The generalized Korteweg—de Vries equation has the property that solutions with initial data that are analytic in a strip in the
complex plane continue to be analytic in a strip as time progresses. Established here are algebraic lower bounds on the possible
rate of decrease in time of the uniform radius of spatial analyticity for these equations. Previously known results featured
exponentially decreasing bounds.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé
Si la donnée initiale est analytique sur une bande dans le plan complexe, alors la solution de I'équation de Korteweg et de
Vries généralisée le reste pour tout temps. Nous montrons que la largeur de cette bande décroit algébriquement en temps. Les

résultats antérieurs ne donnaient qu’'un taux de décroissance exponentiel.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

This paper deals with the initial-value problem for the generalized Korteweg—de Vries (gKdV) equation
U+ thyyy +uluy =0, (1)

wherep > 1 is a positive integer, andis a function of the two real variablesandr. Eq. (1) withp =1orp =2
arises in modeling wave phenomena in a variety of physical situations. For larger vajued phas come to the
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fore in our collective efforts to understand fully the interaction between nonlinearity and dispersion in evolution
equations.

In applications of (1) to physical problems, the dependent varialdeusually real-valued. However, for sev-
eral reasons, complex-valued solutions have attracted interest lately. The present paper aims to add to the latte
discussion. Interest will be focused upon solutiaiis, ) of (1) which, while real-valued for real valuasandz,
admit an extension as an analytic function to a complex $trig- {x +iy: |y| < o}, at least for small values of.
In consequence, initial datay(x) = u(x, 0) will be drawn from a suitable class of analytic functions. It should be
noted that there are situations where analytic solutions emanate from non-analytic initial data (see e.g. [7,16]). For
example, it is proved in [16] that for the KdV equation itself, the case 1 in (1), a certain class of initial data
with a single point singularity yields analytic solutions. However, these results do not produce explicit estimates
on aradiugr of spatial analyticity of solutions. If, on the other hand, the initial datigs analytic in a symmetric
strip around the real axis, it has recently been established that the solution will retain analyticity in the same strip at
least for a small time [10] (see also [11,12]). The present work is focused on studying the asymptotics of the width
o of the strip of analyticity for large, assuming that a certain Sobolev norm of the solution remains finite. The first
result in this direction was proved by Kato and Masuda in [15] where the rate of decrease tifhe was shown
to be at mossuper-exponential. More recently, arexponential bound on the width of the strip was presented in
[3] via a Gevrey-class technique. Our intuition, partly based on the existence of algebraic bounds on the rate of
increase in time of Sobolev norms for (1), as shown by Staffilani [20], suggested thlgearaic lower bound for
the widtho of the strip may hold. The goal of this paper is to provide an affirmative answer to this conjecture. The
main ingredient in the proof is a new multilinear estimate in Bourgain—Gevrey spaces. This estimate effectively
introduces a power af as a prefactor in the nonlinear term, and this induces the algebraic decreaseasftime.

The appropriate notation and function spaces are introduced in the next section, while Section 3 contains some
auxiliary linear estimates. Multilinear estimates are proved in Section 4, and the proof of the main theorem is given
in Section 5.

2. Function space setting

The Fourier transform of a functiam belonging to the Schwartz class is defined by

vo(x) € dyx.

N
vo(S)—m_[o

For a functionw(x, r) of two variables, the spatial Fourier transform is denoted by
o0
Fov(E, Dx = 1 / v(x, 1) e ¥ dx
9 m 9 b
—00

whereas the notatioi(&, ) designates the space—time Fourier transform

oo X
1 . .
ﬁ(é,r):Z/ /u()c,t)ef'xé e "7 dxdr.

—o0 —00
Define Fourier multiplier operator$ and A by
Avg, 1) = (L+ )0 D)
and
Av(E, 7) = (14 7])d(E, 7).
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The following notation is used to signify the”-L4 space—time norms;

o rlq 1/p
Ivllz,L, :{ / /|U(x,t)|q dr dx} .
—00

—00
A class of analytic functions suitable for our analysis is the analytic Gevrey €lagsintroduced by Foias and
Temam [8], which may be defined as the domain of the opersitef 4 in L,. The Gevrey norm is defined to be

o0

loll%, . = f (1+ 1&1)% @ WHED | 55(8) | de.

—00

It is straightforward to check that a function @ ; is the restriction to the real axis of a function analytic on a
symmetric strip of width 2. The strip{z =x +iy: |y| < o} will be denoted bys, .

To efficiently exploit the dispersive effects inherent in (1), we consider a space that is a hybrid between the
analytic Gevrey space and a space of the Bourgain-type. More precisaly>fd@, s € R, andb € [—1, 1] define
Xo.5.p t0 be the Banach space equipped with the norm

2, , = / /(1+ it —&3)% (1+1€))> @ D |5g, 1) [P de e

—00 —00

Foro =0, X, 5.5 coincides with the spack; , introduced by Bourgain, and Kenig, Ponce and Vega. The norm of
X,.p is denoted by - ||5.» and is defined by the integral

IIvllf,b=/ /(1+|r—g3|)2”(1+|§|)”

—00 —00

o€, )[* de dr.

It follows directly from the Sobolev embedding theorem that the inequality

sup [[v(, 0|5 <cllvllosp @
te[0,T] :

holds forb > % In addition, ifvg € G, ande is such that < € < o, thenuvg and all of its derivatives are bounded
on the smaller strifg, _c.
Proposition 1. Let 0 < € < o and n € N be given. Then there exists a constant ¢ depending on € and n, such that

sup |37 fF(x +iv)| <clfllg, -

X+iyeSs_e

Proof. This is a direct consequence of the inequality

111G, —cni1 < Cnell fllG, 3
which holds forn € N, and the Sobolev embedding theorem. The inequality (3) follows from the relation

sup{e <@+Eb (1 4 |§|)"+1} = Cpe.
£eR

wherec, = ((n + 1) /e)"t1(1/€"+1). Note thatc, . — oo ase — 0, as one would expect.00
The spaceX, 5., was introduced by two of the authors in [10], where it was useful to obtain local-in-time well-

posedness of (1) i, s for an appropriate range of parameterandb. Here, interest is focused on the global
behavior of solutions X, ; ,, whereo will be allowed to vary in time.
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3. Linear estimates

Since the analysis is based on boundedness;ipn, of an integral operator given by a variation-of-constants
formula, certain estimates of the solutions of the corresponding linear problem are needed. These estimates ar
addressed now. Denote bW (r)}° _ . the solution group associated with the homogeneous linear problem

Wy + Wyxx =0,
4)

w(x, 0) = wo(x).

Let ¢ be an infinitely differentiable cut-off function such that0y < 1 everywhere and

_ [0, =2,
W)_{L <1,
and, forT > 0, letyr(t) =y (¢t/T).

Lemmal.Leto >0, > % b—1<b' <0,and T > 1. Then thereis a constant ¢ such that

|y @W@Ouo)| ., , < eT?luolc,, (5)
lvr@ue, 0, , <cluloss (6)

and

< T 0l @)

o,s,b

!
1)0T(t)/W(t—s)v(s)ds
0

Proof. The proof of (5) is immediate from the definition &%, 5, the linearity of the operatofé and Lemma 3.1

in [18]. In the same way, (6) follows from Lemma 3.2 in [18]. For the proof of (7), one follows the proof of
Lemma 2.1 in [9] step by step, keeping in mind tfat: 1. The actual bound that emerges from these ruminations
is cmax(T, T3>}, but since - b+’ < 3 andT > 1, the first term is dominant. O

The second kind of linear estimates needed are Kato-type smoothing inequalities and maximal function-type
inequalities. For a suitable functiofy defineF, via its Fourier transforn¥,, viz.

= f&, 1)
F =
(&, 7) At 1c— 37 8)
Lemma 2 (Bourgain) Let p > 4—11 be given. Then there is a constant ¢, depending on p, such that
IAY2FyllLar, < €Il f I LoLs- 9

For the proof of this lemma, the reader is referred to [6].
Lemma 3 (Kenig—Ponce—-Vega). Laetand p be given. There isa constant ¢, depending on s and p, such that

(i) 1f p > 3, then

NAF,Lpor, <l fllors: (10)
(i) If p> 3 ands > 3p, then

||A73Fp ||L2LOO < C”f”Lsz; (11)
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(i) 1fp> 21 ands > 2, then
2 4

||A7SF/J ||L4Loo < C”f”Lsz; (12)
(iv) Ifp> % ands > %,then
||A7st ”LooLoo < C||f||L2L2~ (13)

The inequality (10) was proved in [18]. The estimates (11) and (13) were proved in [10], and (12) can be proved
analogously using an estimate appearing in [17].

4. Multilinear estimatesin Bourgain—-Gevrey spaces

The goal of this section is to prove some multilinear estimates in analytic Bourgain—Gevrey spaces which feature
explicit dependence on the radius of spatial analytigityr hese inequalities will play a key role in obtaining the
algebraically decreasing time-asymptoticsdor

Theorem 1. Leto > 0,5 > 3,5 > 3,5’ < —3 and p > 2. Then there exists a constant ¢ > 0 depending only on
s, b, and b’ such that

1/2
|0xua upi)| s <eluallsn - lupialls o+ colutlos s luprilloss- (14)

Proof. We present the proof in the cage= 2 and comment on the cage> 2. First note that (14) can be written
more explicitly as

b —
[(@+1r =€) (1+16)" & HED g amuzins €, 0 2,2
< cllulls plluzlls plluslls.p + coY?lullos.pluzllo.ss luslos.p.
Definev;, i =1,2,3, by
b N
i, 1) = (1+ €))L+ 17 — &%) & IHEDg, &, ).
Then, proving the inequality (14) is equivalent to establishing the estimate

‘ (1+|&])%|&| e LHED / v1(£1, 1) €O AHED (L 4 6175 vp(E — &, 7 — 1) @O IFEED (14 g — £5)) S
A+ —&3~7 (L4 |7 — ED)P A+t —12— (E— &3P

y v3(E2 — &1, 1o — T1) e O MR8 (1 4 |5 — £
A+ — 11— (52— €D3)P

< C|}e_d(1+|§|)U1HL§L$ |’e—a(1+\$|)vz||L§L$ He_”(”‘g‘)%”Lng + co'||vl||L§Lg ||v2||L§Lg ||v3||L§L§.

d& dr dédrog

L2L2

Using duality, it suffices to estimate a 6-fold integral of the form

/ h(g, T)(L+ |E))1Hs @ WHED yy (&g, 17) 0 WHED (1 4 |5y)) S
1+t —&3)~* 1+ |71 — &3P

RG
vo(E —E2, 7 —1p) € T MHEED (L 4 g — &)~
I+t — 12— (€ —&)3)P
g —m) e o MHE=81l (1 4 &, — &)~
L+ |12 — 11— (B2 — £1)3))P

du
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where# is an arbitrary element of the unit ball in L2(R?) and du= d& d dé; dry dé dr. Using the simple
inequality

& D ey g 2(14 |§|)1/Zea<l+\5|>, (15)
it is plain that the latter integral is bounded by+ I> where

; Ih(E, )L+ DM [v1(Er, 1) €O AHED (L 4 1&g )~
1=esup 3N—0 3nh
hes ) 1+t —&3)) A+t —&3)

02 — 27— )| e o HE=82D (1 4 |5 — &)
L+t —12— (£ — &3P
& —&, 12— ) e o WHE=8D (1 4 & — &)~

d
A+ 21— (E&2—EDI)P o

and

1+s 1/2 g0 (1+[€]) —0 (1+51]) -5
L=oY2sup (€, DIA+EDTA+1ED7€ [vi(51, )| € 1+ 151D

hee ), L+ |z —&3)~Y (L+ |t — &3P

026 — 2 7 — )| e TN A4 | — &)
A+t —2— (£ —&)3)°
w3 — &1, 1o — )| e TR+ 18 — )
A+ |r2— 11— (52— &)%)
To analyzels, split the integration with respect £ &1, & into six regions corresponding to combinations of
inequalities such alg> — &1| < |€ — &2 < |1/, and estimate the integral on each region separately. The portion of

I corresponding to the particular region just delineated can be dominated by the supremum/oireBatif the
duality relation

du.

where(-, -) denotes the inner product i?(R?) and H™,, and (V;); are related tdh| and |v;|, respectively, as
in (8). This inner product can be bounded by the quantity

|AY2H |, e A2V, €774 AT (Vo)

Using the estimates (9), (11), and (13), it is deduced that

e A ATS (Va)y

leoe | (P
h<c H e 7y “ LoLo ” e 7, “ LoLo ” CRETE “ LoLy®

The other five cases (e.lf2 — £1] < [&1] < |§ — &2, € — &2| < €2 — £1] < |£1], etc.) follow by symmetry.
To effect a similar analysis ab first note that

& (HED @ (11D g (UHE—E2]) g (L+IE2—E1])
and then split thg -integrations exactly as in the treatment/gf This strategy yields the inequality

I2 < ol/? }?UEH Al/zH—b’ LsL> ” A(V1)p “LOOLZ “ A7 (V2)p ”LZLOO HAiS(V??)b ”L4Lc>c>
€

1/2
< co3villor, V2l Lo, V3l oLy

where the estimates (9)-(11) and (12) were used. Notice that in estinigtimgth types of smoothing results were
needed to compensate for the extra half-derivative coming from the inequality (15). This concludes the proof in the
casep = 2.



J.L. Bonaet al./ Ann. I. H. Poincaré— AN 22 (2005) 783-797 789

In casep > 2, the same scheme of estimation will yigld- 2 additional factors of the form

”A_S(Vi)b ” LooLoo®
These remaining factors can be handled using (18).

For p = 1, there are too few factors to absorb an extra power of the spatial derivative in an analogous way.
However, by carefully splitting thés, t)-Fourier space into a number of regions and then applying the smoothing
and the maximal function-type estimates, it is possible to overcome this difficulty, as is now demonstrated.

Theorem 2. Leto >0, s >0, b > % and b’ < —g. Then there exists a constant ¢ depending only on s, b, and b’
such that

1/4

|x @), s < clullsplivllss +co ullasplvllos,b-

Proof. Only the case = 0 is treated; the case> 0 is straightforwardly reduced to the case 0. The inequality
& D c e o141+ |§|)1/4ea(1+|s|> (16)
will play the role of (15) in the proof of the previous theorem. Setting
fE D=1+ — &) M, o)
and
g€, 1) = (141t — &%) e HHDje, 1),
it is required to bound appropriately the quantity
hE. 0)|E| € MHED f&y, 1) e 7D g (¢ — £y, 7 — g e 7 THETRD
A A+t -8~ A+|n- Sfl)” A+t —11— (- &3P
R

du (17)

uniformly in 2 belonging to the unit balB in L2(R?) where du= d&; dr; d¢ dr. Using the inequality (16), the
integral (17) is bounded by the sum of the two terms

IhE, OIEl | f &) e oD g — &, T — 1q)| e o AHE8D

I1=esu - d
O AT @)y Atli-u- €
R
and
Iy — oA sup [ VHEDIEIL+IEDY 4 MED |76y, epy|e M8 g6 — &7 —mple™HEaD
nes ) L+t —&3)~7 A+lm—g3)p  A+lt—u-E—-E)3>
The first term can be dominated by
C”e_o-Af ||L2L2 ||e_UAg ||L2L2

in a way completely analogous to the estimate in the gase2. Estimatingl, in the casep = 1 turns out to be a
bit more challenging. First, observe thatcan be dominated by
vagp [ 1MEDIA+IENTE  |fEr ) g6 — &1, 7 — 1)l

’ nebJ, A+t =&)Y A+ lu—-&ht A+t —u—(E-&)3)°

(18)

because @+¢) < e1+l&1D g1+lE=&1)  proceeding as in [6] and [18], the relation
- —[(m—&)+ @ —n) - (¢ - %] =3¢ — £k
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implies that one of the cases

@) |t — &3 > |&all& — &11lE],
(b) |71 — &3) > |€1]1E — £11I€| Or (19)
(©) |t — 1 — (€ — &3] > |&1]IE — &1]]8]

always occurs. In case (a), the quantity in (18) is bounded by

s/ave (L+ [E)7 1 £ (€1, t)| 1+ € — E1)D” |8 (6 — &1, T — 1)
(1+ |1 — E3))P L+t —11— (€ —£)3)P

al/4sup/|h(§,r)|(1+ £1)
heB]R4

We now split the domain of integration into two further subregiohg,> |§ — &1| and|&1] < |€ — &1]. In the region
wherel&1| > |& — &1/, the quantity in the just displayed integral is dominated by

p+3/8 (L4 161D /8| £ (61, )| (L4 16 — &) 1g(€ — £1, T — 1)
L+ |m - EP 1+t — 11— — &3P

ol/4 supf|h(§, )| (1+ 1€])
heBR4

The latter integral can be further bounded by
Squb/H/BHJ* A7/8+b/Fb+Ab,Glj> < CSUp”Ab/Jrg/SHO“L L HAY/SH)/ Fp ”L L “Ab/Gb ”L L
heB heB 2L2 4L2 4Loo
< C”f”Lsz ||g||L2L2
where HJ, F;r and GZ{ are related tgx|, | f| and |g|, respectively, as in (8). Since the last two factors in the

integral have identical structure, the analysis in the refion< |¢ — &1| is the same.
In case (b), the quantity in (18) is dominated by

A gyp [ 1€ DIA+IEDY* £, )] g€ — &1, 7 — )l du
heb ), A+t =€)~  A+1&aD? A+E-ah’A+lt—n—E-)3>

We split the domain of integration into the same two subregions as before. In the regiongyherg — &1, the
guantity is dominated by

Y4 sup h(E, DI+ )2
hes)  (A+lr =g~
R

g€ — &1, 7 —11)| du
A+1E—&D’A+r—nn— E—ED3>

| f(E1 )|

and the latter can be bounded by

supA> P HY, FFATGl) < c }?SIEH A2y

—b
L4L2||f||L2L2 HA Gb ||L4Loo < c”f”Lsz”g”Lng-

heB
In the region|&1| < |€ — &1/, the quantity is dominated by
/4 sup hEDIA+IED IfEL )l A4 1E - &)Y gE — &1, 7 — ) "
nep)  A+lr =€) A+ aD” A+l —aD A+t —n—E—E)%)"
R

The estimate continues in a similar fashion, namely

U 1 A7 B AV G ) < eSupl AT A7 1AV Gl

< C”f”Lsz ||g||L2L2~

The proof in case (c) in (19) is similar to the proof in case (ki
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5. Algebraic lower boundson o

In this section, the algebraic decreaseroés a function of timel" is proved. The main objective is to obtain
an a priori bound inG4(ry,s on the solutions of (1) for a fixed but arbitra#y > 0. This bound, combined with
the local existence theory in [10] will enable us to prove the desired result. To obtain such a bound, a sequence of
approximations to (1) is defined and it is proved that the sequence is boun@ggyiy for an appropriate value
for o (T'). Consider first the following result relating the boundedness of a Sobolev-type norm to the boundedness
of a Bourgain-type norm.

Lemma4. Let s > —%, be[-1,1],T > 1,0 > 0,and let u be a solution of (1) onthetimeinterval [—2T, 2T].

(i) Thereexistsa constant ¢ depending only on s and b such that

lvr@uc.n], , <cTY2(1+ar@)’™ (20)
where
ar@s= _sup JuC.0] (21)

(i) There exists a constant ¢ depending only on s and b such that

lvr@uc.n)|,,, <cTY?(1+ pra)’™ (22)
where
Br(u)= sup ||u(-,t)||G“+1. (23)
te[—2T,2T] .

Proof. Changing variables in the definition of the norm, it follows immediately that

o]

|vr@u,n)?, = f (1+1€)® / | A (Yr (1) €8 Fru(e, 1) dr de

—0o0

<cf(1+|s|)2s/|wr(z>e—i53’fxu(s,r)|2drds

+e / (1+1&)* f |0, (v () € 5% Fou(e, 1) | de de.

Differentiating with respect to, the second integrand is seen to be

1 . ) . .
SO e Fau )+ yr ()% e Fau. ) + Y () € P €. 1),
Using the equation; = —u”u, — u,y, the last term can be replaced by

> i V() e ig F Pt (6, 1) — Yr (0)(—iE3) e Fou e, 1),

Notice that the terms containing the third derivative cancel. Thus there appears the inequality
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[r@u.n|?, < /(1+|§| /|wr(t)e*'S ' Fou(e, )| drdg

—00

2
drdg

+c/(1+|s|)k/‘%w}<r>eifofxu@,t)
f 1+ &) ny‘

<2c/(1+|s| /|J—' u(, 1| dtds+c/(1+|g| /|§]—' WP, t)| drdé

—00 2T —00 =27

2
Svrne g Fo Pt (&, 1) deds

oo

<8cT sup ||u( t)|H3+4cT sup ||uP+1(-,t)|zH1.
te[—2T.2T te[—2T,2T]

It is now clear that the inequality (20) holds. The proof of part (ii) is obtained by adding the exponential weight
&2 +IED to theg-integral in the proof of (i). O

Next, define a sequence of approximations to (1) as follows. Consider the initial-value problems

8. [ % wsu P+, }

n n _ _
uy +uxxx_

+1
u"(x,0)=uo(x),

(24)

for nin NandS > 0 wheren, is defined via its Fourier transform to be

0, I§1=2n,

1, |§l<n,

and7,, is smooth and monotone @r-2n, —n) and(n, 2n). Eachy,, is therefore an entire function of exponential

type. The following properties dis,} are evident sincé, [ (17, * wsu™)?*1] is a smooth function with compact
support for(&,7) e R x R.

ﬁn(é’):{

Lemmab. (i) Letr > 0andug € H", andlet u beasolution of (1) withinitial dataug that liesin C([—28,2S], H")
for some S > 0. For n =1,2,..., let u" be the solution of (24) with initial data ug. Then each u” lies in
C((—28,2S8), H"), and the sequence {u"} convergesto u in C([—S, S], H"). In addition, the bounds in Lemma 4
hold for each «”, uniformly in n.

(i) Anidentical result holdsin C([—S, S], G,.,) provided ug € G, for someo > 0.

Henceforth, it is assumed thatis a solution of (1) inC([—4T,4T], H**1) with initial dataug in Gy, s+1 for
someop > 0 ands > %’ Note that Lemma 5 and (24) with = S imply that

t
1
Yr(@Ou" = Yr @)W (1)ug — SV ® / Wt — )3 ([0 * (pru)]” ™) ds (25)
0

holds for allz in (—oo, 00). This representation will reveal thet-u” is in X, 5 5 for all n in N. Our goal now is to
show that there existsa(T") and a suitable&? (T') such that the sequen¢¢ru”} lies in the ballBg(ry C Xo(7).5.6
of radiusR(T) for n large enough.
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Proposition 2. Let T > 1,p > 2,00 > 0,5 > 5 Sandb =13 5 + € for some e intherange 0 < € < ‘—1 Suppose u
is a solution of (1) in C([—4T,4T], H*t1) with initial data ug € Gy s+1. Then there exist constants oy < og
and K > 0 depending on s, b, p, 14011 G g 52 and a7 (1) (see (21)) such that the sequence {yrru"} is bounded in
Xo(1).5,b @SlONg @

o (T) <minfoy, KT~ +3r+2), (26)
For the proof of this proposition, use will be made of the following inequality which was proved by two of the

authors (Theorem 11 in [3]). It is worth note that the hypothesis% goes back to the seminal work of Kato
[13,14].

Theorem 3 (Bona—Gruijt). Let u be the solution of (1) corresponding to the initial data ug € G, s+1 for some
op>0ands > % andlet r > 0. Then

1/2 . (p+2)/2
te[sgrph ||u( I)HG“( D.s+1 s HMOHGJO’SH ter te[fgtr,)Zr]Hu( 0 “ e (27)

with o (1) = ope ¥, and

t t p
1
J/(f)=m/|:dl+d2/H”(‘7l”)’|1171t31dl‘”:| dr,
0 0

whered; = ||M0||%rro,s+1' and d, is a constant depending only on s and p.

Notice that this theorem implies that

2
sup y () <dstluoly  +dar” sup Ju( 057 (28)
te[—21,27] te[—21,21]

wheredz =27 /(p+1) andds = 22Pd£’/(p + 1). With this estimate in hand, we can mount a direct attack on
proving the foregoing proposition.

Proof of Proposition 2. From Eq. (25), the linear estimates (5) and (7), and the multilinear estimate in Theorem 1,
it follows that

Iru*llose < 1T W@uollo,s.b + —

T[vr / Wt — )3, [ (1 % yru(s))" ] ds

o,s,b

<cT?|uolig,, + T |3 (na * wTu”>”+1] I

+1 +1
< cTY?|uoli,, + T {Ivru I+ o2 Iwru 253}

o,s,b

a,s,b’

for any O< o < o9, whered’ = b — 1+ ¢’ for somee’ > 0 small enough, and for some large enough constant
depending only on, » and?’. Next, note that (see Lemmas 4 and 5)

1Wru o < eTY2(14 ar @) < 2eTY2(1 + a7 ()"
for n andc large enough. Hereyr (1) is as in (21). Thus, the first inequality in the proof may be extended to read

+1)2 1
I los.o < cTY?uollG, , + T P21+ ar@) P + cTo V2 yrut 2t (29)

o,s,b
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for n large and an appropriate constanfThe relation (29) holds under the presumption thiat 1. Additional
information about the boundedness of the sequende-=atl will now be provided by Theorem 3. To be more
specific, using (22), (23), Lemma 5, and the bounds (27) and (28), the norm can be estinfated at follows.

pt+l p+1
126" lloys.6 < C(1+ sup [u" (-, 1) ) < 2c(1+ sup |lu(-, 1) )
01,8,b X re[-2.2] ” ” Ggl<.v+1 = re[-2.2] ” ” Grrl,.H—l
1 +1)(p+2)/2
< 2Cl<1+ ||uo||[é:l L tC su2p2 Juc, )| gfﬂ )P+ ) =M (30)
' 1e[-2,2]

for n large enough where; = ope™ 7V and

_ 2p p(p+2)
y()=dsluolld, ., + d4t€[s_uzp2] |uC o) 5ia

Consider a slightly weakened version of (29), namely

1)2 1
W7t lory.s0 < M1+ cTY?|uoll G,y , + T P21+ ar ) "™ + cTo (Y2 yrualll s, (31)

for T > 1,0(T) < 01 < 0op andn large enough. Fix: large enough so that (30) holds and define dependent
variablesz, a andd by

z=2(T) = ¥ru"llo(T).s.5
a=a(T)= M+ CT1/2||u0||GUO,s + T PHI2(1 4 ar (u))
d=d(T)=cT.
With this notation, (31) becomes
z<a+do(T)Y2PHL, (32)

If o(T) is defined to be
2

2
P07 and

O—(T) = d2a2p22p ’

then (32) becomes

[

yA=8yP) < >
wherey = y(T') = 5. It follows that by choosing small enough for a givep, there are constants™ and M*
with % <m* <1< M* such that eithep < m* or y > M*. Because of (30) and the definition@fz(1) < «, so
thaty(1) < % < m*. Becausd|yru"| s (1).5,p IS @ continuous function df > 1, it follows thaty <m* < 1 for all
T > 1, which means that(T) < 2a for T > 1. This yields the desired estimate with a constrtepending orp,
s, b, b, lluoll G,y 1 @ndar ). O

Proposition 3. Let 7 > 1, p=1, 0p>0, s >3 and b = 3 + ¢ for some e intherange 0 < e < &. Suppose u

isasolution of (1)in C([—4T,4T], H**1) with initial data ug € Gy, s+1- Then there exist constants o1 < og and
K > Odependingon s, b, ||”0||Gao,s+1 and a7 (1) such that the sequence {y7u"} isbounded in X7y 5., aslong as

o(T) < min{oy, KT~*2). (33)

Proof. Eq. (25), the linear estimates (5) and (7), and the bilinear estimate in Theorem 2 yield the inequality

1/2 2 1/4 2
I llos.o < cTY2uollGyy , + cT{Ilru" 15, + o Ivru 2, }

for an appropriate constaat The proof now follows along the same lines as the proof of Propositiorn2.
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The estimates (26) and (33) provide the basis for the proof of the main theorem of the paper which is stated
next.

Theorem 4. (i) Let p > 2, and suppose that up € G4 41 for some s > g and o > 0. Let T > 1 and as
sume that the solution u of (1) corresponding to the initial value ug lies in C([—4T,4T], H**1). Then u €
C([=T,T1,Go(r)/2,5) Where o (T) is given by (26).

(i) Let p =1, and suppose that ug € G4 5+1 for somes > % ando > 0. Let T > 1 and assume that the solution
u of (1) corresponding to theinitial value ug liesin C([—4T,4T], H*tY). Thenu e C([-T, T1, Go(1)/2,5) Where
o (T) isgiven by (33).

Proof. It follows from Propositions 2 or 3 and inequality (2) that the sequgntgassociated withg as in (24)
is bounded inG, ()5, uniformly on[—T7, T]. Proposition 1 then implies that all the spatial derivativea’ofire
bounded on the stri,(r)/2s. Since each/” satisfies Eq. (24), the time derivatives f are also uniformly
bounded on the strif, (ry/2.s-

Thus, in particular{d,u"} and{ajc‘u”} for k =0,1,2,3 are equicontinuous families aa-T, T) x S, (r)/2 and
we can therefore extract a subsequence (céllif again) converging uniformly on compact subsetg¢-ef’, T') x
So(1)/2 — along with the sequencésdyu”}, {0, u"} and{afu"} —to a smooth functio@. Passing to the limit in (24)
reveals thati is a smooth extension of to (-7, T) x Sq(r)/2. Moreover, since for everye (=T, T), u"(-, 1)
converges uniformly on compact subsetsijnr) > toi (-, ), and each” (-, t) is analytic onS, (1,2, (-, ¢) is also
analytic onS,(r),2. In addition, since the sequen€'} is bounded inG,(r)/2,s, uniformly on[—T, T'1, it follows
thatu =it € Loo((—=T, T), G4(1)/2,5)- This combined with the local-in-time well-posedness obtained in [10] yields
ueC(-T,T],Go(r)/2;5), as advertised. O

This theorem has some interesting consequences. First, suppolge(that| ;s+1 is bounded for all time. Then
Theorem 3 can be strengthened to yield the following.

Corollary 1. Let p > 2, and supposethat ug € G, 541 for somes > % ando > 0.1fSUR¢(_ oo 00y 1, Dl st < C,
thenforall T > 1,u € C([-T,T1, Go(1)/2,5), Where o (T) is given by (26). The same result holds for p =1, but
o (T) isgiven by (33).

In fact, for p =1 or p = 2, all the integer Sobolev norms remain bounded owing to the well known infinite
sequence of polynomial conservation laws. Thus the following corollary emerges.

Corollary 2. (i) For p = 1, suppose that ug € Gyx+1 for some integer k > 2 and o > 0. Then u €
C([=T,T1,Go(r)/2,k) for any T > 1 where o (T) is given by

o(T) < min{oy, KT 712}

(if) For p = 2, supposethat ug € G, 1 for someinteger k > 2ando > 0. Thenu € C([—T, T1, Go(1)/2,i) for
any T > 1 whereo (T) isgiven by

o(T) < min{oy, KT~%4).

Note that in both cases, the constahtdepends only o, p and [uol G,,,,, @S Well as on the choice &f
andd’.

Time-independent bounds on Sobolev norms of solutions of (1) incas8 are known only forH1. However,
solutions are globally defined. On the other hand,/fet 4 there is a finite-time blow-up [19]. Strong numerical
evidence supplemented with scaling arguments indicate that some solutions may lose regularity in finite time for
p > 4 [1,2,4]. Consequently, assuming finiteness of a certain Sobolev norm wheB seems necessary for
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studying global-in-time analyticity of solutions. According to Corollary 1, uniform-in-tifhe-boundedness for
somer > % suffices. The following theorem due to Staffilani implies that this can be scaled down to uniform-in-
time H1-boundedness.

Theorem 5 (Staffilani) Let p > 3 and s > 1. Assume that for a solution u of (1) SUR¢(—co. 00 14 (D)l 2 < C.
Then there exists a constant c(s, p) such that the estimate

a0 s <l p)(X+121)
holdsfor all 7 in (—o0, 00).

More precisely, Corollary 1 and Theorem 5 yield the following result.

Corollary 3. Let p > 3 and suppose that ug € G, 5+1 for some s > % and o > 0. Assume that for a solution u of
(1) emanating from o, SUR¢(—oo.00) 14, D)l g2 < C. Thenu € C([=T, T1, Go(1)/2.5) forany T > 1 where o (T')
isgiven by

o (T) <minfoy, KTHEP],

with uu(s, p) = (p?> +3p +2)+ 2p(p + 1)%s, and the constant K depending only on s, p and |luo||G and on

the choice of » and »’.

o,s+17

Noting that indeed théZ1-norm stays bounded for all time jf = 3, the final corollary emerges.

Corollary 4. Let p = 3 and suppose that g € G, 541 for some s > % and o > 0. Then there exists a solution
ueC(-T,T],Go(r)/2s) Of (1)forany T > 1, where o (T) isgiven by

o (T) < min{oy, KT 20795,

Also in this case, the constakt depends only o and|uollc,,,,, as well as on the choice éfandb’.

This paper has been concerned with the question of lower bounds on the uniform radius of spatial anralyticity
The question of upper bounds is currently being studied by the authors using a completely different method,
based on finite-time blow-up results for certain complex-valued solutions for a large class of nonlinear dispersive
wave equations presented in [5]. If such upper bounds could indeed be proved, the complex singularities would
be confined between the lower and the upper bounds. This would yield a much more precise description of the
dynamics of complex singularities in time.
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